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A REMARK ON THE N -INVARIANT GEOMETRY OF BOUNDED
HOMOGENEOUS DOMAINS

LAURA GEATTI and ANDREA IANNUZZI

Abstract. Let D be a bounded homogeneous domain in Cn. In this note,

we give a characterization of the Stein domains in D which are invariant

under a maximal unipotent subgroup N of Aut(D). We also exhibit an N -

invariant potential of the Bergman metric of D, expressed in a Lie theoretical

fashion. These results extend the ones previously obtained by the authors in

the symmetric case.

§1. Introduction

By the results of Gindikin, Pijatetcki-Shapiro, and Vinberg (see [4], [8]), every bounded

homogeneous domain D in Cn admits a realization as a Siegel domain. Such a realization

relies on the existence of a simply transitive real split solvable group S of holomorphic

automorphisms of D. In the symmetric case, the group G = Aut(D) is semisimple and

S = AN , where A and N are the abelian and the unipotent subgroups arising from an

Iwasawa decomposition of G.

In [3], the N -invariant Stein domains in irreducible symmetric Siegel domains were

characterized. The goal of this note is to prove a similar characterization for N -invariant

Stein domains in arbitrary homogeneous Siegel domains, which form a much wider class of

domains containing the symmetric ones as special cases.

As in the symmetric case, to an N -invariant domain D in D, we associate an

r -dimensional tube domain in Hr, the product of r copies of the upper half plane H in

C (here r is the rank of D). Then we prove that D is Stein if and only if the base of

the associated tube is convex and satisfies an additional geometric condition (see Theorem

3.4). In the symmetric case, such condition only depends on whether D is of tube type or

of non-tube type, while in the general case it depends on the specific root decomposition of

the normal J -algebra s= Lie(S) of D.

The univalence of holomorphically separable, N -equivariant, Riemann domains over D

continues to hold true in this more general context, yielding a precise description of the

envelope of holomorphy (cf. [9]) of an arbitrary N -invariant domain inD (see Corollary 3.5).

Finally, we exhibit an N -invariant potential of the Bergman metric of D, expressed in

a Lie theoretical fashion and obtained via an explicit N -moment map with respect to the

Bergman Kähler structure of D (see Proposition 4.3).

§2. Preliminaries

Every bounded homogeneous domain D in Cn admits a real split solvable group S of

holomorphic automorphisms acting simply transitively on D. The Lie algebra s of S has

the structure of a normal J-algebra, with the complex structure J inherited from D and
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N -INVARIANT GEOMETRY 929

the linear form −f0 ∈ s∗ inducing the Bergman metric (cf. [7]). This means in particular

that ω(X,Y ) :=−f0([X,Y ]) is a nondegenerate skew-symmetric J -invariant bilinear form

on s and 〈X,Y 〉 :=−f0([JX,Y ]) is a J -invariant positive definite inner product on s.

2.1 The normal J -algebra of a bounded domain

For the structure of normal J -algebras, we mainly refer to [10, §5A]. Further details

and comments can be found in [3]. Denote by n := [s,s] the nilradical of s, and let a be

the orthogonal complement of n in s, with respect to the inner product 〈·, ·〉. Then a is an

abelian subalgebra, whose dimension r is by definition the rank of D. The adjoint action of

a on s is symmetric with respect to 〈·, ·〉 and decomposes s into the orthogonal direct sum

of root spaces sα = {X ∈ s | [H,X] = α(H)X, ∀H ∈ a}. There exist e1, . . . , er ∈ s∗ such that

the roots α are of the form

ej −el, ej +el, 1≤ j < l ≤ r, 2ej , ej , 1≤ j ≤ r.

In the nonsymmetric case, not all possibilities need occur. Here, the roots are normalized so

that, in the symmetric case, they coincide with the restricted roots. The complex structure

J permutes the root spaces as follows:

Ja=
⊕
j

s2ej , Jsej−el = sej+el , Jsej = sej .

Let H1, . . . ,Hr be the basis of a dual to e1, . . . , er ∈ a∗. As dims2ej = 1, for j = 1, . . . , r, one

can fix generators Ej ∈ s2ej such that the pairs {Hj , E
j} satisfy

[Hj ,E
l] = δjl2E

l, JEj = 1
2Hj , for j, l = 1, . . . , r.

For j = 1, . . . , r, the real split solvable subalgebras generated by {Hj , E
j} pairwise commute

and are isomorphic to the a⊕n-component of an Iwasawa decomposition of sl(2,R).

Set H0 :=
1
2

∑
jHj ∈ a . The adjoint action of H0 decomposes s and n as

s= s0⊕ s1/2⊕ s1, n= n0⊕n1/2⊕n1 ,

where nj = n∩ sj and

s0 = a⊕
⊕

1≤j<l≤r

sej−el , s1/2 =
⊕

1≤j≤r

sej , s1 =
⊕

1≤j≤r

s2ej ⊕
⊕

1≤j<l≤r

sej+el .

If s1/2 = {0}, then the domain D is of tube type, otherwise it is of non-tube type.

Set E0 :=
∑

jE
j . The complex structure on s0 is given by JX = [E0,X], for all X ∈ s0.

The orbit

V :=Adexps0E0

is a sharp convex cone in s1 and

F : s1/2× s1/2 → sC1 , F (W,W ′) := 1
4([JW

′,W ]− i[W ′,W ]),

is a V -valued Hermitian form, that is, it is sesquilinear and F (W,W ) ∈ V (the topological

closure of V ), for all W ∈ s1/2. The group S acts on sC1 ⊕ s1/2 by affine transformations,

given by

s · (Z,W ) = (AdexpγZ+ ξ+2iF (AdexpγW,ζ)+ iF (ζ,ζ),AdexpγW + ζ), (2.1)
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where s = expζ expξ expγ, with ζ ∈ s1/2, ξ ∈ s1, γ ∈ s0. If we fix the base point

p0 := (iE0,0) ∈ sC1 ⊕ s1/2, then the map

L : S 
→D(V,F ), s 
→ s ·p0 (2.2)

defines a biholomorphism between D∼= S and the Siegel domain

D(V,F ) = {(Z,W ) ∈ sC1 ⊕ s1/2 | Im(Z)−F (W,W ) ∈ V }

(cf. [10, Lem. 5.2, p. 330]). Denote by

(E1)∗, . . . ,(Er)∗

the elements in the dual n∗ of n, with the property that (Ej)∗(El) = δjl and (Ej)∗(X) = 0,

for all X ∈ sα, with α /∈ {2e1, . . . ,2er}.

Lemma 2.1. (a) The form −f0 : s → R is given by −f0 =
∑

k ck(E
k)∗, for some

ck ∈ R>0.

(b) Let X ∈ sej−el \{0} . Then [JX,X] = sEj, for some s∈R>0. Let X,Y ∈ sej−el \{0} ,
satisfying 〈X,Y 〉= 0. Then [JX,Y ] = 0.

(c) Let X ∈ sej \ {0}. Then [JX,X] = tEj, for some t ∈ R>0. Let X,Y ∈ sej \ {0} ,
satisfying 〈X,Y 〉= 0. Then [JX,Y ] = 0.

Proof. The proof of statement (a) is contained in [10]. For the sake of completeness, we

recall the main arguments. Let f0 also denote the C-linear extension of f0 to sC. From the

integrability of J, one has that f0([X+iJX,Y +iJY ]) = 0, for all X,Y ∈ s. This implies that

f0([H,X]) = f0(J [H,X]) = 0, for all H ∈ a and X ∈ q := s1/2⊕
⊕

j<l s
ej−el . Since [a,q] = q

and Jq= s1/2⊕
⊕

j<l s
ej+el , the form f0 identically vanishes on q and −f0 =

∑
j cj(E

j)∗, for

some cj ∈ R. The identity cj =−f0(E
j) =−1

2f0([Hj ,E
j ]) =−f0([JE

j ,Ej ]) = 〈Ej ,Ej〉> 0

concludes the proof.

(b) Let X ∈ sej−el \ {0}. Then JX = [El,X] ∈ sej+el . Since s2ej is one-dimensional,

[JX,X] = sEj , for some s∈R. By applying −f0 to both terms, one obtains −f0([JX,X]) =

〈X,X〉 = cjs > 0. Since cj > 0, also s > 0. For the second part of the statement, write

[JX,Y ] = sEj , for some s ∈ R. Then, from

0 = 〈X,Y 〉=−f0([JX,Y ]) =−
∑
k

ck(E
k)∗(sEj) = cjs,

one obtains s= 0 and therefore [JX,Y ] = 0, as desired.

As sej is J -invariant, statement (c) follows in a similar way.

Remark 2.2. The forms
∑

j cj(E
j)∗, where the cj ’s vary in R>0 for j = 1, . . . , r,

determine all S -homogeneous Kähler metrics on D(V,F ) (cf. [2, Th. 1, p. 304]).

By [1, Th. 4], one such metric is Kähler–Einstein if and only if the quantity
1
cj
(1+ 1

4 dimsej + 1
2

∑
j<l s

ej+el) is a constant independent of j = 1, . . . , r.

2.2 N -invariant domains in D(V,F ) and tube domains in Hr

In S =NA, consider the unipotent abelian subgroup R := expJa, isomorphic to Rr. The

R-invariant set

Rexp(a) ·p0
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is an r -dimensional closed complex submanifold of D(V,F ), intersecting all N -orbits in

D(V,F ). Define the positive octant in Ja

Ja+ := {
∑

ykE
k : yk > 0, for k = 1, . . . , r}.

Then the map L defined in (2.1) and (2.2) restricts to a biholomorphism

Rexp(a)→ Ja⊕ iJa+,

given by

exp(
∑

j ejE
j)exp(

∑
k hkHk) 
→

∑
j ejE

j + iAdexp(
∑

k hkHk)E0. (2.3)

In particular, L|exp(a) defines a diffeomorphism L : a→ Ja+ given by∑
k

hkHk 
→Adexp(
∑

k hkHk)E0 =
∑
j

e2hjEj . (2.4)

Write an N -invariant domain in a rank-r homogeneous Siegel domain D(V,F ) as

D =N expD ·p0, for some domain D ⊂ a. Then, as in the symmetric case (see [3, §3]),
one can associate with D an r -dimensional tube domain.

Definition 2.3. The r -dimensional tube domain associated with an N -invariant

domain D in D(V,F ) is the image of the set Rexp(D) under L, namely,

D∩ (Ja⊕ iJa+) = Ja+ iΩ, where Ω := L(D).

§3. N -invariant Stein domains in a homogeneous Siegel domain

Let D(V,F ) be a homogeneous bounded domain. In this section, we give a characteriza-

tion of the

N -invariant Stein domains D in D(V,F ) in terms of the associated tube domain. If D

is Stein, then such tube domain is Stein and its base Ω is an open convex set in Ja+. On

the other hand, we will see that Ω must satisfy some further geometric conditions which

depend on the specific root decomposition of the normal J -algebra of D(V,F ).

Let D be an N -invariant domain in D(V,F ). Then

D = {(Z,W ) ∈D(V,F ) | Im(Z)−F (W,W ) ∈Ω},

where Ω is the Adexpn0-invariant open subset in V determined by

iΩ :=D∩ iV.

By (2.2)–(2.4), the base of the associated tube is

Ω =Ω∩Ja+.

Note that, since AdAE0 = Ja+, the set iΩ is a slice both for the Adexpn0-action on iΩ and

for the N -action on D.

For D(V,F ) irreducible, define a cone in Ja+ as follows:

C :=

{
Ct, in the tube case,

Cnt, in the non-tube case,
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where Ct := cone{Ej}j , with j ∈ {1, . . . , r− 1} such that sej−el = {0} for some l > j, and

Cnt = cone{Ej}j , with j ∈ {1, . . . , r} such that either sej−el = {0} for some l > j, or sej = {0}.
(Here, given nonzero vectors v1, . . . ,vk, we set cone{v1, . . . ,vk} := {

∑
j tjvj , tj > 0}.)

In the reducible case, if D(V,F ) decomposes in the product of irreducible domains as

D(V (1),F (1))×·· ·×D(V (m),F (m)), then the normal J-algebra s and all its related objects

decompose accordingly. In particular, the cone decomposes as C = C(1)×·· ·×C(m), where

C(i) is the cone associated with the i-th irreducible component of D(V,F ).

Example 3.1. (a) If D(V,F ) is irreducible symmetric, then Ct = cone{E1, . . . ,Er−1}
and Cnt = cone{E1, . . . ,Er} (see (9) in [3]).

(b) Let D(V ) be the tube domain over the five-dimensional Vinberg cone

D(V ) =

⎧⎨⎩
⎛⎝z11 0 z13

0 z22 z23
z13 z23 z33

⎞⎠ | zij = xij + iyij ∈ C,

{
y11y33−y213 > 0

y22y33−y223 > 0
and y33 > 0

⎫⎬⎭ .

Then

s= a⊕Ja⊕ se1±e3 ⊕ se2±e3 , dima= 3, dimsej±el = 1

and Ct = cone{E1,E2}.
(b) Let D(V,F ) be the four-dimensional nonsymmetric domain

D(V,F ) =

{((
z11 z12
z12 z22

)
,w

)
| zij = xij + iyij , w ∈ C,

{
(y11−|w|2)y22−y212 > 0

y22 > 0

}
.

Then

s= a⊕Ja⊕ se1±e2 ⊕ se1 , dima= 2, dimse1±e2 = 1, dimse1 = 2

and Cnt = cone{E1}.

Definition 3.2. A domain Ω ⊂ Ja+ is C -invariant if E ∈ Ω implies E+C ⊂ Ω or,

equivalently, if E ∈ Ω implies E+C ⊂ Ω.

Denote by

p : is1 → iJa

the projection onto iJa, parallel to i(⊕sej+el) and by

p̃ : sC1 ⊕ s1/2 → iJa

the projection onto iJa parallel to s1⊕ i(⊕sej+el)⊕ s1/2.

For simplicity, the next lemma is formulated in the irreducible case. In the reducible case,

it applies to each irreducible component.

Lemma 3.3. The following statements hold true.

(i) Assume that sej−el = {0}, for some l > j, and let X ∈ sej−el be a nonzero element.

Then [[El,X],X] = sEj, for some s ∈ R>0.

(ii) Let E =
∑

ykE
k ∈ Ja+. Then p(iAdexpn0E) = i(E+Ct).

(iii) Let E ∈ Ja+. Then p̃(N · (iE,0)) = i(E+Cnt).
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Proof. (i) Since [[El,X],X] = [JX,X], then the statement follows from Lemma 2.1(b).

(ii) Fix 1≤ j ≤ r−1 and define Lj :=⊕l>js
ej−el . In each root space sej−el = {0} in Lj ,

there exists an orthogonal basis {Ep
jl}p such that for X =

∑
l>j,px

p
jlE

p
jl ∈ Lj , one has

(Ej)∗(AdexpXE) = yj(1+
∑

l>j,p(x
p
jl)

2) and (Er)∗(AdexpXE) = yr

(cf. Lemma 2.1(b) and (c)). Moreover, from a discussion similar to the one in [10, p. 363],

one obtains

(Ej)∗(Adexpn0E) = (Ej)∗AdexpLjE

[10, Th. 4.10 and (4.13)]. Hence, p(iAdexpn0E) = i(E+Ct), as claimed.

(iii) The N -orbit of the point (iE,0) ∈ sC1 ⊕ s1/2 is given by

{(ξ+ i(Adexpn0E+F (ζ,ζ)), ζ) : ξ ∈ s1, ζ ∈ s1/2}. (3.1)

By (3.1) and Lemma 3.3(ii), one has

p̃(N · (iE,0)) = i(E+Ct)+{p̃(iF (ζ,ζ)) : ζ ∈ s1/2} .

If sej = {0} and ζ = 0 in sej , then by Lemma 2.1(c), the element F (ζ,ζ) = 1
4 [Jζ,ζ] is a

positive multiple of Ej . Therefore, p̃(N · (iE,0)) = i(E+Cnt), as claimed.

Theorem 3.4. Let D(V,F ) be a homogeneous Siegel domain of rank r. Let D be an

N -invariant domain in D(V,F ) , and let Ω be the base of the associated tube domain. Then

D is Stein if and only if Ω is convex and C-invariant.

Proof of Theorem 3.4. We first prove that D Stein implies Ω convex and C -invariant.

Then we show that Ω convex and C -invariant implies D convex and therefore Stein (cf. [5,

Vol. 1, Th. 10, p. 67]). In particular, if D is Stein, then it is necessarily convex. An essential

fact is that the N -action on D is affine and every affine map commutes with taking convex

hulls.

3.1

We begin with the tube case. An N -invariant domain D in a homogeneous tube domain

D(V ) is itself a tube domain with base the Adexpn0-invariant set Ω. Since D is Stein if and

only if its base is convex, all we have to show is that Ω convex and Ct-invariant is equivalent
to Ω being convex.

If Ω is convex, then Ω is clearly convex. In order to prove that Ω is Ct-invariant, let
E =

∑
k ykE

k ∈ Ω, with yk > 0, for k = 1, . . . , r. If the root space sej−el = {0}, let X be a

nonzero element therein. Since adX is two-step nilpotent, for every t ∈ R,

Adexp tXE = E+ tyl[X,El]+ 1
2 t

2yl[X, [X,El]]

is an element of Ω. As Ω is convex, by replacing t with −t, one finds that also the midpoint

E+ 1
2 t

2yl[X, [X,El]] lies in Ω. This says that E+λEj lies in Ω, for all λ ≥ 0. The same

argument applied to all j ∈ {1, . . . , r− 1} for which sej−el = {0}, for some l > j, and the

convexity of Ω imply that Ω+Ct ⊂ Ω, as desired.

Conversely, assume that Ω is convex and Ct-invariant. We are going to prove that

conv(Ω) ⊂ Ω. Since Ω = Adexpn0Ω, from Lemma 3.3(ii) and the Ct-invariance of Ω, one

has

p(iΩ) = p(iAdexpn0Ω) = i(Ω+Ct)⊂ iΩ.
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From the above inclusion and the convexity of Ω, one has

conv(iΩ)∩ iJa⊂ p(conv(iΩ)) = conv(p(iΩ))⊂ iΩ.

Finally, from the Adexpn0-invariance of conv(iΩ), it follows that

conv(iΩ) =Adexpn0(conv(iΩ)∩ iJa)⊂Adexpn0iΩ= iΩ.

This completes the proof of the theorem in the tube case.

3.2

Next we deal with the non-tube case. Let D be an N -invariant domain in a homogeneous

Siegel domain D(V,F ). Denote by conv(D) the convex hull of D in sC1 ⊕ s1/2, which is

N -invariant as well.

If D is Stein, then D∩ (sC1 ×{0}) = {(Z,0) ∈ sC1 ⊕s1/2 |Im(Z) ∈Ω} is biholomorphic to a

Stein tube domain in sC1 , invariant under exp(n0⊕n1). Hence, by Theorem 3.4 in the tube

case, the set Ω is convex and Ω+Ct ⊂ Ω. The fact that Ω+Cnt ⊂ Ω follows from (3.1) and

the fact that F (ζ,ζ) is an arbitrary positive multiple of Ej , when ζ varies in sej \{0}.
Conversely, assume that Ω is convex and Cnt-invariant. By Lemma 3.3(iii), one has

p̃(D) = p̃(N · iΩ) = i(Ω+Cnt)⊂ iΩ.

Moreover,

conv(D)∩ iJa⊂ p̃(conv(D)) = conv(p̃(D))⊂ iΩ.

By the N -invariance of conv(D), one obtains

conv(D) =N · (conv(D)∩ iJa)⊂N · iΩ=D.

Hence, D is convex and therefore Stein (cf. [5, Vol. 1, Th. 10, p. 67]). This concludes the

proof of the theorem.

We conclude this section by observing that holomorphically separable, N -equivariant,

Riemann domains over a bounded homogeneous domain D are univalent: the same proof as

in the symmetric case works in this more general case (see [3, Prop. 3.7]). As a consequence,

one obtains the following corollary.

Corollary 3.5. The envelope of holomorphy D̂ of an N -invariant domain D in D is

the smallest Stein domain in D containing D. Namely, D̂ is the N-invariant domain such

that the base Ω̂ of the associated tube is the convex C-invariant hull of Ω.

§4. An N -invariant potential of the Bergman metric

Let D(V,F ) be a homogeneous Siegel domain, and let (s,J,−f0) be the associated normal

J -algebra, where −f0 ∈ s∗ is the form inducing the Bergman metric g on D(V,F ). In this

section, we exhibit an N -invariant potential of g, expressed in a Lie theoretical fashion. In

order to do this, we determine an explicit formula for the N -moment map associated with g.

For X ∈ s, denote by X̃ the vector field on D(V,F ) induced by the left S -action. Its value

at z = s ·p0 is given by X̃z =
d
dt

∣∣
t=0

exp tX · z. If z = a ·p0, with a = expH and H ∈ a, and

X ∈ sα, then X̃z = e−α(H)a∗X.
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Lemma 4.1. (a) The map μS : D(V,F )→ s∗, defined by

μS(z)(X) :=−f0(Ads−1X), z = s ·p0, X ∈ s,

is an S-moment map with respect to g.

(b) The map μN : D(V,F )→ n∗, defined by

μN (z)(X) :=−(Ad∗af0)(Adn−1X), z = na ·p0, X ∈ n,

is an N-moment map with respect to g.

Proof. (a) By definition, the map μS is S -equivariant and satisfies μS(p0) =−f0.

We identify D(V,F ) with the group S by the map (2.1), and prove that

dμX
S (s)(Z) = ωs(X̃s,Z), Z ∈ TsS, X ∈ s. (4.1)

Let W ∈ TeS ∼= s. Then

dμX
S (W ) = d

dt

∣∣
t=0

μX
S (exp tW ) = d

dt

∣∣
t=0

−f0(Adexp(−tW )X) =−f0(
d
dt

∣∣
t=0

ead−tWX)

=−f0(−[W,X]) =−f0([X,W ]) = ω(X,W ).

Now take s ∈ S and let s∗W ∈ TsS ∼= s∗s. On the left-hand side of (4.1), we find

(dμX
S )(s∗W ) = d

dt

∣∣
t=0

μX
S (sexp tW ) = d

dt

∣∣
t=0

−f0(Adexp−tWAds−1X)

=−f0(−[W,Ads−1X]) =−f0([Ads−1X,W ]).

Since also the right-hand side of (4.1) is given by

ωs

(
d

dt

∣∣
t=0

exp tX ·s,s∗W
)

= ωs(s∗Ads−1X,s∗W ) = ω(Ads−1X,W ) =−f0([Ads−1X,W ]),

the proof of (a) is complete.

(b) The restriction of μS to n defines an N -moment map μN on D(V,F ). Since μN is

N -equivariant, it is uniquely determined by μN (a · p0)(X) = −Ad∗af0(X), for X ∈ n. It

follows that μN (z)(X) =−(Ad∗af0)(Adn−1X), is an N -invariant moment map with respect

to g as claimed.

The moment map μS defined in Lemma 4.1 is an embedding of D(V,F ) in s∗ as the

coadjoint orbit of −f0 , with trivial isotropy subgroup. The image μS(D(V,F )) is the convex

domain s∗0 + s∗1/2+V ∗ in s∗, where V ∗ := {φ ∈ s∗1 | φ(X) > 0, ∀X ∈ V \ {0}} is the dual

cone of V in s1 (cf. [10, Lem. 3.5, p. 350]). Similarly, the image μN (D(V,F )) is the convex

domain n∗0+ s∗1/2+V ∗ in n∗.

Convexity properties of the moment map have been studied in several settings (see [6]

and the references therein). Here, we show that the image under μN of a Stein N -invariant

domain in D(V,F ) is not necessarily convex.

Let D(V,F ) be a homogeneous Siegel domain, and let D=N · iΩ be an N -invariant Stein

domain therein. One has

(Ja)∗∩μN (D(V,F )) = (Ja)∗∩V ∗ = (Ja+)∗,

and one can easily verify that μN maps A ·p0 = iJa+ bijectively onto(Ja+)∗.
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Therefore, μN (iΩ) = (Ja)∗∩μN (D). Consequently, if μN (iΩ) is not convex, then μN (D)

is not convex either.

Example 4.2. Let P = {Z =X+ iY | Zt = Z, Y � 0} be the Siegel upper half-plane

of rank 2. Then

A ·p0 =
{
i

(
y1 0

0 y2

)
| y1, y2 > 0

}
and

μS

(
i

(
y1 0

0 y2

))
=−3( 1

y1
(E1)∗+ 1

y2
(E2)∗).

Let D := N · iΩ be the Stein N -invariant domain in P associated with the convex,

Ct-invariant domain

Ω :=

{
i

(
y1 0

0 y2

)
| y1y2 > 1

}
.

The image

μN (iΩ) = {η1(E1)∗+η2(E
2)∗ | η1, η2 < 0, η1η2 < 9}

is clearly not convex. Therefore, μN (D) is not convex either.

As the domain Ω⊂ Ja+ is convex and also Cnt-invariant, a similar construction provides

examples of N -invariant Stein domains with non-convex moment image in all rank-2

symmetric Siegel domains, both of tube type and of non-tube type.

Proposition 4.3. The N-invariant function ρ : D(V,F )→ R, given by

ρ(na ·p0) := 2
∑

k ckhk,

where a=expH, for H =
∑

k hkHk ∈ a , and −f0 =
∑

k ck(E
k)∗, is a potential for the Kähler

metric induced by −f0.

Proof. As in the previous lemma, we identify D(V,F ) with S. In order to check that

−ddcρ = ω, we need to show that dcρ(X̃s) = μX
N (s), for all s ∈ S. By the N -invariance of

ρ and of J , one has

dcρ(X̃na) = dcρ( ˜Adn−1Xa) ,

for every na ∈ S. Then, as μN is N -equivariant, it is enough to show that

dcρ(X̃a) = μX
N (a), (4.2)

for all a ∈A and X ∈ n. If X = Ej , then

dcρ((Ẽj)a) = e−2ej(H)dρ(a∗JE
j) = 1

2e
−2hj d

ds

∣∣
s=0

ρ(exp(H+sHj))

= e−2hjcj =−f0(Ada−1Ej) = μEj

N (a).

If X ∈ sα, with 0 = α /∈ {2e1, . . . ,2er}, then JX ∈ sβ, with 0 = β /∈ {2e1, . . . ,2er}. By the

N -invariance of ρ, one obtains

dcρ(X̃a) = e−α(H)dρ(a∗JX) = e−α(H)+β(H) d
ds

∣∣
s=0

ρ(exp(sJX)a) = 0.
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Since

μX
N (a) =−f0(Ada−1X) =−e−α(H)f0(X) = 0,

equation (4.2) holds true and the proposition follows.

Remark 4.4. The above computation produces an N -invariant potential and an

associated N -moment map, for any S -invariant Kähler metric on D induced by an element∑
j dj(E

j)∗ ∈ s∗, with dj ∈ R>0, for j = 1, . . . , r (cf. Remark 2.2).
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