ON THE RATE OF CONVERGENCE OF PROBABILITIES OF MODERATE DEVIATIONS

V. K. ROHATGI 1

(Received 22 July 1968)

Communicated by P. D. Finch

1. Introduction

Let $\{X_n : n \ge 1\}$ be a sequence of independent random variables and write $S_n = \sum_{k=1}^n X_k$. Let

(1)
$$EX_i = 0, \quad EX_i^2 = \sigma_i^2$$

and let

(2)
$$s_n^2 = \frac{1}{n} \sum_{i=1}^n \sigma_i^2, \quad 0 < a \le s_n \le A < \infty.$$

Suppose that $n^{-\frac{1}{2}}s_n^{-1}S_n$ converges in law to the standard normal distribution (see [5, 280] for necessary and sufficient conditions). Let $\{x_n\}$ be a monotonic sequence of positive real numbers such that $x_n \to \infty$ as $n \to \infty$. Then $x_n^{-1}n^{-\frac{1}{2}}s_n^{-1}S_n \to 0$ in probability. In particular, choose $x_n = \sqrt{\log n}$. Then

(3)
$$\Pr\left\{\left|\frac{S_n}{n}\right| > \varepsilon s_n \sqrt[n]{\frac{\log n}{n}}\right\} \to 0$$

as $n \to \infty$ for all $\varepsilon > 0$. In [6] Rubin and Sethuraman call probabilities of the form $\Pr\{|S_n| > \varepsilon s_n \sqrt{n \log n}\}$ probabilities of moderate deviations and obtain asymptotic forms for such probabilities under appropriate moment conditions.

In this note we study the convergence rate problem for the sequences $\Pr\{|S_n-a_n|>\varepsilon s_n\,\sqrt{n\log n}\},$

$$\Pr\left\{\max_{1 \leq k \leq n} \left| \frac{S_k}{s_n \sqrt{n \log n}} - b_k \right| > \varepsilon \right\} \text{ and } \Pr\left\{\sup_{k \geq n} \left| \frac{S_k}{s_k \sqrt{k \log k}} - c_k \right| > \varepsilon \right\}$$

where a_k , b_k , c_k are appropriate centering constants. The corresponding problem for the special case of identically distributed summands has

¹ This work was supported by the Office of Naval Research, Contract No. Nonr-2249 (05).

recently been treated by Davis in [2] where he considers only the first and the third of above sequences.

In Theorems A and B in section 2 we assume that (1) and (2) hold and that the sequence of normed sums $n^{-\frac{1}{2}}s_n^{-1}S_n$ converges in law to the normal distribution so that, in particular, (3) holds. $L(\cdot)$ is a nonnegative, nondecreasing and continuous function of slow variation [3].

2. Results

THEOREM A. For $t \ge 0$ the following statements are equivalent:

(a)
$$n^t L(n) \Pr\{|S_n| > \varepsilon s_n \sqrt{n \log n}\} \to 0 \text{ for all } \varepsilon > 0.$$

(b)
$$n^t L(n) \Pr \{ \max_{1 \le k \le n} |S_k| > \varepsilon s_n \sqrt{n \log n} \} \to 0 \text{ for all } \varepsilon > 0.$$

If t > 0, the above statements are equivalent to

(c)
$$n^t L(n) \Pr\left\{\sup_{k\geq n} \left| \frac{S_k}{s_k \sqrt{k \log k}} \right| > \varepsilon \right\} \to 0 \text{ for all } \varepsilon > 0.$$

THEOREM B.

(a) For $t \ge 0$, $\sum_{n=1}^{\infty} n^{t-1} L(n) \Pr\{|S_n| > \varepsilon s_n \sqrt{n \log n}\} < \infty$ for all $\varepsilon > 0$ if, and only if

$$\sum_{n=1}^{\infty} n^{t-1} L(n) \Pr\left\{ \max_{1 \le k \le n} \left| \frac{S_k}{S_n \sqrt{n \log n}} - \operatorname{med}\left(\frac{S_k - S_n}{S_n \sqrt{n \log n}}\right) \right| > \varepsilon \right\} < \infty$$

for all $\varepsilon > 0$.

(b) For t > 0,

$$\left| \sum_{n=1}^{\infty} n^{t-1} L(n) \operatorname{Pr} \left\{ \left| \frac{S_n}{s_n \sqrt{n \log n}} - \operatorname{med} \left(\frac{S_n}{s_n \sqrt{n \log n}} \right) \right| > \varepsilon \right\} < \infty$$

for all $\varepsilon > 0$ if, and only if

$$\sum_{n=1}^{\infty} n^{t-1} L(n) \Pr \left\{ \sup_{k \geq n} \left| \frac{S_k}{s_k \sqrt{k \log k}} - \operatorname{med} \left(\frac{S_k}{s_k \sqrt{k \log k}} \right) \right| > \varepsilon \right\} < \infty$$

for all $\varepsilon > 0$.

(c) For $t \ge 1$ the following statements are equivalent.

$$(c_1) \sum_{n=1}^{\infty} n^{t-1} L(n) \Pr\{|S_n| > \varepsilon s_n \sqrt{n \log n}\} < \infty \qquad \text{for all } \varepsilon > 0.$$

$$(c_2) \sum_{n=1}^{\infty} n^{t-1} L(n) \Pr \{ \max_{1 \le k \le n} |S_k| > s_n \sqrt{n \log n} \} < \infty \qquad \text{for all } \varepsilon > 0.$$

$$(c_3) \sum_{n=1}^{\infty} n^{t-1} L(n) \Pr \left\{ \sup_{k \ge n} \left| \frac{S_k}{s_k \sqrt{k \log k}} \right| > \varepsilon \right\} < \infty \qquad \text{for all } \varepsilon > 0.$$

THEOREM C. For $t \geq 1$,

$$\sum_{n=1}^{\infty} n^{t-1} (\log n)^t \Pr\{|S_n| > \varepsilon \sqrt{n \log n}\} < \infty$$

for all $\varepsilon > 0$ implies $E|X_k|^{2t} < \infty$ for all k.

REMARK 1. The $L(n) = \log n$ case of part (b) of Theorem B has been obtained by Davis [2] in the special case of identically distributed summands.

PROOFS. The (a), (b) equivalence part of Theorem A and part (a) of Theorem B follows from the inequalities

$$(4) \quad \Pr\{|S_n| > \varepsilon \, s_n \sqrt{n \log n}\}$$

$$\leq \Pr\left\{ \max_{1 \leq k \leq n} \left| \frac{S_k}{s_n \sqrt{n \log n}} - \operatorname{med}\left(\frac{S_k - S_n}{s_n \sqrt{n \log n}}\right) \right| > \varepsilon \right\}$$

$$\leq 2 \Pr\{|S_n| > \varepsilon s_n \sqrt{n \log n}\}.$$

The first of these inequalities is trivial while the second follows from Lévy's inequality [5, 247].

The (c1), (c2) equivalence part of Theorem B follows since

$$\sum_{n=1}^{\infty} n^{t-1} L(n) \Pr\{|S_n| > \varepsilon \, s_n \sqrt{n \log n}\} < \infty$$

for all $\varepsilon > 0$ implies

$$\operatorname{med}\left(\frac{S_k - S_n}{S_n \sqrt{n \log n}}\right) \to 0 \text{ as } n \to \infty.$$

For (a), (c) equivalence part of Theorem A and part (b) of Theorem B the proof can be constructed on the lines of [4] and we do not intend to repeat the computations.

The (c_1) , (c_3) equivalence in Theorem B follows similarly using once again the fact that for $t \ge 1$

$$\sum_{n=1}^{\infty} n^{t-1} L(n) \Pr\{|S_n| > \varepsilon \, s_n \sqrt{n \log n}\} < \infty$$

for all $\varepsilon > 0$ implies

$$\operatorname{med}\left(\frac{S_k - S_n}{S_n \sqrt{n \log n}}\right) \to 0 \text{ as } n \to \infty.$$

In the case of Theorem C we use the methods of Baum, Katz and Read [1] and Lemma 1 of Davis [2]. We omit the details.

REMARK 2. In Theorems A and B we may replace L(n) by an arbitrary non-negative, non-decreasing function of n.

REMARK 3. The result of Theorem C cannot be improved. This follows trivially by considering the sequences for which $X_k = 0$, $k = 2, 3, \cdots$ and $E|X_1|^{2t} < \infty$ but $E|X_1|^{2t+\delta} = \infty$ for $\delta > 0$.

References

- [1] Baum, L. E., Katz, M. L., and Read, R. R., 'Exponential convergence rates for the law of large numbers', Trans. Amer. Math. Soc., 102 (1962), 187—199.
- [2] Davis, James Avery, 'Convergence rates for probabilities of moderate deviations', Department of Mathematics and Statistics, The University of New Mexico, Tech. Report No. 147, (1967).
- [3] Feller, W., An Introduction to Probability Theory and its Applications, Vol. II. (Wiley, New York, 1966).
- [4] Heyde, C. C., and Rohatgi, V. K., 'A pair of domplementary theorems on convergence rates in the law of large numbers', *Proc. Cambr. Phil. Soc.*, 63 (1967), 73—82.
- [5] Loève, M., Probability Theory. (Van Nostrand, 3rd Ed., New York, 1963).
- [6] Rubin H., and Sethuraman, J., 'Probabilities of moderate deviations', Sankhya, 27 (1965) Series A, 325—346.

The Catholic University of America Washington, D.C.