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1. Introduction

Let {Xn : n 3; 1} be a sequence of independent random variables and
write Sn = JJLiXk. Let

(1)

and let

(2)

EXt = 0, EX\ = oj

» <-i "

Suppose that n~lsn
lSn converges in law to the standard normal distribution

(see [5, 280] for necessary and sufficient conditions). Let {xn} be a monotonic
sequence of positive real numbers such that xn —»• oo as n ->• oo. Then
x^n^s^Sn -*• 0 in probability. In particular, choose xn = Vlog n. Then

(3) Pr

as n -> oo for all e > 0. In [6] Rubin and Sethuraman call probabilities of
the form Pr {\Sn\ > esn Vn log n) probabilities of moderate deviations and
obtain asymptotic forms for such probabilities under appropriate moment
conditions.

In this note we study the convergence rate problem for the sequences
Pr {|5n-«B| > esn Vn log »},

Pr I max > e and Pr {sup > e

where ak,bk,ck are appropriate centering constants. The corresponding
problem for the special case of identically distributed summands has
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recently been treated by Davis in [2] where he considers only the first and
the third of above sequences.

In Theorems A and B in section 2 we assume that (1) and (2) hold
and that the sequence of normed sums n~is~lSn converges in law to the
normal distribution so that, in particular, (3) holds. !,(•) is a nonnegative,
nondecreasing and continuous function of slow variation [3].

2. Results

THEOREM A. For t ^ 0 the following statements are equivalent:

(a) n'L(n) Pr{|SJ > esn Vn log n) -> 0 for all e > 0.

(b) n*L(n) Pr{max \Sk\ > esn Vn log n) -> 0 for all e > 0.

If t > 0, the above statements are equivalent to

Sk(c) n'L{n) Pr sup

THEOREM B.

> e -> 0 for all e > 0.

(a) For if ^ 0, 2 n^Lin) P r{ |SJ > esnVn log »} < oo for all e>0
if, and only if "=1

f nt-1L(n)Prlm3.x * -meH / * " ) > £\
n=i listen snVnlogn \snVn log nl >

for all s > 0.

(b) For t > 0,

< co

f n*~lL{n) Pr( - ^ - m e d ( ^
»=i I sn v « log n \snVn log n

/or all s > 0 if, and only if

f n ,SJ— ~med( J ! _ ) >*)
stV^logA \sJ.v£log&/ Jn = l

/or a// £ > 0.

(c) For < ^ 1 tffe following statements are equivalent.

(Cj) 1 n<-iL(n) Pr{|Sn| > ^ v V I o g ^ } < co

oo

< oo

/or a« e > 0.

(c2) ^ nt~xL{yi) Pr {max |Sfc| > snVn log «} < oo for all e > 0.
n = l
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(c.)

THEOREM C. For t ^ 1,

Rate of convergence of probabilities

sk
skVk log k

> e < oo

93

for all e > 0.

n = l
»)« Pr{|SB| > eVn logn} < oo

/or a/Z e > 0 implies E\Xk\
2t < oo /or a// &.

REMARK 1. The L(n) = log n case of part (b) of Theorem B has been
obtained by Davis [2] in the special case of identically distributed sum-
mands.

PROOFS. The (a), (b) equivalence part of Theorem A and part (a) of
Theorem B follows from the inequalities

(4) Pr{|Sn s,yn log »}

iS Pr { max
snV

/wlog

, / Sh-Sn \ )
= —medl I > s)
n \snVn log nl )

n| >esnVnlogn}.

The first of these inequalities is trivial while the second follows from Levy's
inequality [5, 247].

The (cj , (c2) equivalence part of Theorem B follows since

Pr{|SJ > esnVnlogn} < oo

for all s > 0 implies

med
Sk-Sn

>nVn log
=)+0as« 00 .

For (a), (c) equivalence part of Theorem A and part (b) of Theorem B
the proof can be constructed on the lines of [4] and we do not intend to
repeat the computations.

The (cj), (c3) equivalence in Theorem B follows similarly using once
again the fact that for t ^ 1

n = l
n'-iLin) Pr{|Sn| > e snVn log n) < oo

for all e > 0 implies

medl -
\snVn log

= ) - ^ O a s n
i g « /

oo.
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In the case of Theorem C we use the methods of Baum, Katz and
Read [1] and Lemma 1 of Da.vis [2]. We omit the details.

REMARK 2. In Theorems A and B we may replace L (n) by an arbi-
trary non-negative, non-decreasing function of n.

REMARK 3. The result of Theorem C cannot be improved. This follows
triviaUy by considering the sequences for which Xk = 0, k = 2, 3, • • • and

< oo but ElX^+s = oo for d > 0.
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