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Abstract We define slope subalgebras in the shuffle algebra associated to a (doubled) quiver, thus yielding
a factorization of the universal R-matrix of the double of the shuffle algebra in question. We conjecture
that this factorization matches the one defined by [1, 18, 32, 33, 34] using Nakajima quiver varieties.
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1. Introduction

Fix a quiver Q with vertex set I and edge set E ; edge loops and multiple edges are

allowed. We consider a certain Hopf algebra

A=A+⊗ (Cartan subalgebra)⊗A−,

where A+ is the shuffle algebra associated to the (double of the) quiver Q and A− is its

opposite. When Q is a finite (resp., affine) Dynkin diagram, the algebra A is the quantum
loop (resp., quantum toroidal) algebra. In general, the shuffle algebra A+ matches the

localized K -theoretic Hall algebra of the quiver Q [31].

The main purpose of the present paper is to define and study slope subalgebras

B±
m ⊂A±

for any m ∈QI , and produce a Hopf algebra

Bm = B+
m⊗ (Cartan subalgebra)⊗B−

m.

For nontrivial reasons, there exist inclusions Bm ⊂ A which preserve the product and

the Hopf pairing but not the coproduct and antipode. As A and Bm arise as Drinfeld
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doubles, we may consider their universal R-matrices1

R′ ∈ A⊗̂A and R′
m ∈ Bm ⊗̂Bm.

Our main result, proved by combining Corollaries 3.20 and 3.21, is the following:

Theorem 1.1. For any m ∈ QI and θ ∈ QI
+, the multiplication map induces an

isomorphism

→⊗
r∈Q

B±
m+rθ

∼−→A± (1.1)

(the arrow → refers to taking the product in increasing order of r) which preserves the
Hopf pairings on the two sides, and thus leads to a factorization

R′ =
→∏
r∈Q

R′
m+rθ (1.2)

of the (off-diagonal part of the) universal R-matrix.

When Q is a cyclic quiver, Theorem 1.1 was proved in [27, 26]. The isomorphism (1.1)

is inspired by the one constructed by Burban and Schiffmann [3] in the elliptic Hall

algebra (which is isomorphic to A+ when Q is the Jordan quiver, namely one vertex
and one loop). Meanwhile, the product formula (1.2) generalizes well-known formulas for

R-matrices of finite and affine-type quantum groups [6, 14, 13, 16, 17, 37].

In §2, we recall general facts about the shuffle algebra A+. In §3, we define the
slope subalgebras Bm and prove Theorem 1.1. In §4, we present connections (as well as

conjectures and open questions) between our slope subalgebras and other concepts in the

field such as Kac polynomials, cohomological and K -theoretic Hall algebras (particularly
the connection between B0 and the Lie algebra of BPS states studied in [4, 5]), and the

conjectural connection between formulas (1.1) and (1.2) and the analogous formulas for

quantum groups defined via geometric R-matrices [1, 18, 32, 33, 34] in the context of

Nakajima quiver varieties.
It is likely that Theorem 1.1 can be generalized to the case of quivers with potential,

although working out all the details would probably be a very nontrivial and interesting

task (see [35] for the setting of such a generalization; note, however, that Theorem 6.3
there provides an isomorphism of a different nature from formula (1.1)).

2. The shuffle algebra of a (doubled) quiver

2.1. A quiver is a finite oriented graph Q with vertex set I and edge set E ; edge loops

and multiple edges are allowed. We will work over the field

F=Q(q,te)e∈E .

1The symbol ⊗̂ refers to the fact that the universal R-matrices lie in certain completions of the
algebras in question, as they are given by infinite sums. Meanwhile, the primes refer to the
fact that R′ is only the ‘off-diagonal’ part of the universal R-matrix; see equations (2.28) and
(3.24)
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We will write elements of NI as n= (ni ≥ 0)i∈I .
2 For such an n, let us define

n! =
∏
i∈I

ni!.

Consider the vector space

V =
⊕

n=(ni)i∈I∈NI

F
[
. . . ,z±1

i1 , . . . ,z±1
ini

, . . .
]sym

, (2.1)

where ‘sym’ refers to Laurent polynomials which are symmetric in zi1, . . . ,zini
, for each

i ∈ I separately. We will make V into an associative algebra using the following shuffle

product (which originated with a construction of [9] involving elliptic algebras, though
the setting at hand is closer to the one studied in [7, 8, 39] and other works):

F (. . . ,zi1, . . . ,zini
, . . . )∗F ′ (. . . ,zi1, . . . ,zin′

i
, . . .

)
=

Sym

⎡⎢⎢⎢⎣F (. . . ,zi1, . . . ,zini
, . . . )F ′ (. . . ,zi,ni+1, . . . ,zi,ni+n′

i
, . . .

)
n! ·n′!

i,j∈I∏
1≤a≤ni

nj<b≤nj+n′
j

ζij

(
zia
zjb

)⎤⎥⎥⎥⎦,
(2.2)

where ‘Sym’ denotes symmetrization with respect to the variables zi1, . . . ,zi,ni+n′
i
for each

i ∈ I separately, and for any i,j ∈ I we define the following function:

ζij(x) =

(
1−xq−1

1−x

)δij ∏
e=

−→
ij∈E

(
1

te
−x

) ∏
e=

−→
ji∈E

(
1− te

qx

)
. (2.3)

Note that although the right-hand side of equation (2.2) seemingly has simple poles at

zia− zib for all i ∈ I and all a < b, these poles vanish when we take the symmetrization,

as the orders of such poles in a symmetric rational function must be even.

Definition 2.2. The shuffle algebra is defined as the subset

S ⊂ V
of Laurent polynomials F (. . . ,zi1, . . . ,zini

, . . . ) that satisfy the ‘wheel conditions’

F |
zia=

qzjb
te

=qzic
= F |zja=tezib=qzjc = 0 (2.4)

for all edges e=
−→
ij and all a �= c (and further, a �= b �= c if i= j).

It is easy to show that S is a subalgebra of V – that is, that it is closed under the

shuffle product (see [23, Proposition 2.1] for the proof in the particular case of the Jordan
quiver, which already incorporates all the ideas that one needs in the general case).

Theorem 2.3 ([31, Theorem 1.2].). As an F-algebra, S is generated by
{
zdi1

}d∈Z

i∈I
.

2Although nonstandard, it will be convenient for us to include 0 in the set N.
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2.4. The algebra S is NI ×Z graded via

degF = (n,d) (2.5)

if F lies in the nth direct summand of equation (2.1), and has homogeneous degree d.

The components of the degree will be called ‘horizontal’ and ‘vertical’, respectively:

hdegF = n, vdegF = d. (2.6)

We will denote the graded pieces of the shuffle algebra by

S =
⊕
n∈NI

Sn =
⊕

(n,d)∈NI×Z

Sn,d. (2.7)

For any k ∈ ZI , we have a shift automorphism

S τk−→S, F (. . . ,zia, . . . ) 	→ F (. . . ,zia, . . . )
∏

i∈I,a≥1

zki
ia . (2.8)

These notions also apply to the opposite algebra Sop, although we make slightly different

conventions. For one thing, we set the grading on Sop to

degG= (−n,d) (2.9)

if G lies in the nth direct summand of equation (2.1) and has homogeneous degree d. As

for the analogue of the shift automorphism (2.8), we make the following convention:

Sop τk−→Sop, G(. . . ,zia, . . . ) 	→G(. . . ,zia, . . . )
∏

i∈I,a≥1

z−ki
ia . (2.10)

2.5. We will now recall the well-known Hopf algebra structure on the shuffle algebra

(see [23, 39, 43] for incarnations of this construction in settings such as ours). As usually,

the Hopf algebra is actually the double extended shuffle algebra,3 namely,

A= S ⊗F
[
h±1
i,±0,hi,±1,hi,±2, . . .

]
i∈I

⊗Sop
/
relations (2.13)–(2.15). (2.11)

Since the algebras S and Sop are generated by

ei,d = zdi1 ∈ S and fi,d = zdi1 ∈ Sop,

it suffices to present the defining relations, as well as the Hopf algebra structure, on the

generators. More precisely, if we package the generators into formal series

ei(z) =
∑
d∈Z

ei,d
zd

, fi(z) =
∑
d∈Z

fi,d
zd

, h±
i (w) =

∞∑
d=0

hi,±d

w±d
, (2.12)

then we set

ei(z)h
±
j (w) = h±

j (w)ei(z)
ζij

(
z
w

)
ζji

(
w
z

) (2.13)

3It is possible to enlarge A by introducing a central element which measures the failure of the
h+s and the h−s to commute, but we will not need it.
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fi(z)h
±
j (w) = h±

j (w)fi(z)
ζji

(
w
z

)
ζij

(
z
w

) (2.14)

(the rational functions in the right-hand sides of these expressions are expanded as power

series in w∓1) and

[ei,d,fj,k] = δij ·γi

⎧⎪⎨⎪⎩
−hi,d+k if d+k > 0,

hi,−0−hi,+0 if d+k = 0,

hi,d+k if d+k < 0,

(2.15)

where4

γi =

∏
e=

−→
ii

[(
1
te
−1

)(
1− te

q

)]
1− 1

q

. (2.16)

It is easy to see that the grading of equations (2.5) and (2.9) extends to the whole of A
by setting

deghi,±d = (0,±d)

for all i ∈ I,d≥ 0. The shift automorphisms (2.8) and (2.10) extend to automorphisms

τk :A→A (2.17)

by setting τk (hi,±d) = hi,±d for all i ∈ I and d ∈ N.

2.6. To write down the (topological) coproduct on A, consider the subalgebras

A+ = S and A− = Sop

and the extended subalgebras

A≥ =A+⊗F
[
h±1
i,+0,hi,1,hi,2, . . .

]
i∈I

A≤ =A−⊗F
[
h±1
i,−0,hi,−1,hi,−2, . . .

]
i∈I

.

The reason for these extended subalgebras is that A+ (resp., A−) does not admit a

coproduct, but A≥ (resp., A≤) does, according to the formulas

Δ
(
h±
i (z)

)
= h±

i (z)⊗h±
i (z) (2.18)

Δ(ei(z)) = ei(z)⊗1+h+
i (z)⊗ ei(z) (2.19)

Δ(fi(z)) = fi(z)⊗h−
i (z)+1⊗fi(z). (2.20)

There are unique antipode maps S :A≥ →A≥ and S :A≤ →A≤ which are determined by

these topological coproducts, and so we leave their computation to the interested reader

(the antipode will not feature in this paper).

4This differs slightly from the conventions of [31], where the constant γi did not appear in
the analogue of equation (2.15); this can be explained by simply rescaling the generators fi,d
by γi.
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2.7. It is straightforward to show that the Hopf algebra structures on A≥ and A≤

defined extend to the entire A. An alternative way to see this is to note that A is the

Drinfeld double of A≥ and A≤. Indeed, consider the Hopf pairing

〈·,·〉 :A≥⊗A≤ −→ F, (2.21)

which is defined by the formulas〈
h+
i (z),h

−
j (w)

〉
=

ζij
(
z
w

)
ζji

(
w
z

) (2.22)

(the right-hand side is expanded as |z| � |w|) and
〈ei,d,fj,k〉= δijγiδ

0
d+k. (2.23)

All other pairings between the es, f s, and hs vanish, from which we deduce that the
pairing (2.21) only pairs nontrivially elements of opposite degrees. From equations (2.22)

and (2.23), one can then deduce the pairing on any elements by applying the properties

〈a,b1b2〉= 〈Δ(a),b1⊗ b2〉 (2.24)

〈a1a2,b〉= 〈a1⊗a2,Δ
op(b)〉 (2.25)

for all a,a1,a2 ∈ A≥ and b,b1,b2 ∈ A≤. We remark that the pairing also satisfies the
property

〈S(a),S(b)〉= 〈a,b〉
with respect to the antipode for all a ∈ A≥ and b ∈ A≤, but we will not need this fact.

The pairing (2.21) was shown to be nondegenerate in [31, Proposition 3.3], although this
is also easily seen from our formulas (2.37) and (2.38). Therefore, one can make the vector

space

A=A≥⊗A≤ (2.26)

into a Hopf algebra using the well-known Drinfeld double construction, as follows. First,

make equation (2.26) into an algebra by requiring that A≥ = A≥ ⊗ 1 ⊂ A and A≤ =
1⊗A≤ ⊂A be algebra homomorphisms and the multiplication of elements coming from

the two tensor factors in the equation be governed by the relation

a1b1〈a2,b2〉= b2a2〈a1,b1〉 (2.27)

for any a ∈A≥ ⊂A,b ∈A≤ ⊂A.5 It is straightforward to show that the resulting algebra
structure on A of equation (2.26) matches the one introduced in §2.5. As for the coalgebra
structure and antipode on equation (2.26), they are uniquely determined by the respective

structures on the two tensor factors A≥ and A≤, and multiplicativity.

5We use the Sweedler notation Δ(a) = a1⊗a2 and Δ(b) = b1⊗ b2 for the coproduct, with the
summation sign implied.
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2.8. Since the Hopf algebra A is a Drinfeld double, it has a universal R-matrix

R∈A≥ ⊗̂A≤ ⊂A⊗̂A
(the completion is necessary because our coproduct is topological). Specifically, R is the

canonical tensor of the pairing (2.21), and it takes the form6

R=R′ · [a sum of products involving the hi,±d], (2.28)

where R′ is the canonical tensor of the restriction of the pairing (2.21) to

〈·,·〉 :A+⊗A− −→ F. (2.29)

In other words, we have

R′ = 1+
∑
i∈I

∑
d∈Z

ei,d⊗fi,−d

γi
+ · · · , (2.30)

where the ellipsis denotes terms which are quadratic, cubic, etc., in the es and the f s. In
what follows, we will construct a factorization of R′ as an infinite product of R-matrices

arising from ‘slope subalgebras’, generalizing the treatment of cyclic quivers in [27, 26].

Such factorizations are inspired by the analogous constructions pertaining to quantum
groups from [6, 14, 13, 16, 17, 37] (which coincide with our construction for simply

laced quantum affine groups) and with the constructions of geometric R-matrices from

[1, 18, 32, 33, 34] (see §4).

2.9. In what follows, we will need to present the bialgebra structure of §§2.5–2.7
in shuffle-algebra language. More precisely, Theorem 2.3 implies that formulas (2.13),

(2.14), (2.19), (2.20), and (2.23) extend from the generators ei,d (resp., fi,d) to the

entire shuffle algebra S = A+ (resp., Sop = A−). All the statements in this subsection

are straightforward, and left as exercises to the interested reader (equivalently, they were
proved in [31, §§3 and 4]). Formulas (2.13) and (2.14) imply that

Fh±
j (w) = h±

j (w)F

i∈I∏
1≤a≤ni

ζij
(
zia
w

)
ζji

(
w
zia

) (2.31)

Gh±
j (w) = h±

j (w)G

i∈I∏
1≤a≤ni

ζji

(
w
zia

)
ζij

(
zia
w

) (2.32)

for any F ∈ Sn and any G ∈ Sop
n (the rational functions in the right-hand sides are

expanded as power series in w∓1). In particular, by extracting the coefficient of w0 from

these formulas, we obtain the following:

Fhj,+0 = hj,+0F ·
∏
i∈I

⎛⎝qδ
i
j

∏
e=

−→
ij

1

te

∏
e=

−→
ji

te
q

⎞⎠ni

(2.33)

6For a survey of this formula in the particular case of the Jordan quiver, we refer the reader to
[30], where we recall the standard difficulties in properly defining this product.
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Ghj,−0 = hj,−0G ·
∏
i∈I

⎛⎝ 1

qδ
i
j

∏
e=

−→
ij

q

te

∏
e=

−→
ji

te

⎞⎠ni

. (2.34)

As for formulas (2.19) and (2.20), they imply the following for any F ∈ Sn and G ∈ Sop
n :

Δ(F ) =
∑

{0≤ki≤ni}i∈I

∏j∈I
kj<b≤nj

h+
j (zjb)F (. . . ,zi1, . . . ,ziki

⊗ zi,ki+1, . . . ,zini
, . . . )∏i∈I

1≤a≤ki

∏j∈I
kj<b≤nj

ζji

(
zjb
zia

) (2.35)

Δ(G) =
∑

{0≤ki≤ni}i∈I

G(. . . ,zi1, . . . ,ziki
⊗ zi,ki+1, . . . ,zini

, . . . )
∏i∈I

1≤a≤ki
h−
i (zia)∏i∈I

1≤a≤ki

∏i∈I
kj<b≤nj

ζij

(
zia
zjb

) . (2.36)

To make sense of the right-hand side of these equations, we expand the denominators as

power series in the range |zia| |zjb| and place all the powers of zia to the left of the ⊗ sign

and all the powers of zjb to the right of the ⊗ sign (for all i,j ∈ I,1≤ a≤ ki,kj < b≤ nj).
Finally, formulas (2.22) and (2.23) together with the defining properties (2.24) and

(2.25) of a bialgebra pairing imply (see [31, formulas (3.2) and (3.30)], respectively) that

〈F,fi1,d1
∗ · · · ∗fin,dn

〉=
∫
|z1|
···
|zn|

zd1
1 · · ·zdn

n F (z1, . . . ,zn)∏
1≤a<b≤n ζiaib

(
za
zb

) n∏
a=1

dza
2πiza

(2.37)

〈ei1,d1
∗ · · · ∗ein,dn

,G〉=
∫
|z1|�···�|zn|

zd1
1 · · ·zdn

n G(z1, . . . ,zn)∏
1≤a<b≤n ζibia

(
zb
za

) n∏
a=1

dza
2πiza

(2.38)

for any F ∈ S (resp., G ∈ Sop) and any i1, . . . ,in ∈ I,d1, . . . ,dn ∈ Z such that the shuffle
elements being paired in any 〈·,·〉 of these equations have opposite degrees. In order for

formula (2.37) to make sense, one needs to plug the variable za into a variable of the form

zia• of F, where the choice of • does not matter due to the symmetry of F. The analogous
remark applies to formula (2.38).

3. Slope subalgebras and factorizations of R-matrices

3.1. We will consider NI ⊂ ZI ⊂QI . Recall that NI includes the element 0= (0, . . . ,0),

according to our convention that 0 ∈ N, as well as the elements

ςi = (0, . . . ,0,1,0, . . . ,0︸ ︷︷ ︸
1 on ith position

), ∀i ∈ I.

We will consider two operations on NI ⊂ ZI ⊂QI , namely the dot product

k · l=
∑
i∈I

kili (3.1)
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and the bilinear form

〈k,l〉=
∑
i,j∈I

kilj#−→
ij

(3.2)

for any k = (ki)i∈I and l= (li)i∈I , where

#−→
ij
= the number of arrows

−→
ij in Q. (3.3)

For any k = (ki)i∈I and n= (ni)i∈I , we will write

0≤ k ≤ n (3.4)

if 0≤ ki ≤ ni for all i∈ I (we will use the notation 0< k<n if we wish to further indicate
that k �= 0 and k �= n). Finally, let

|n|=
∑
i∈I

ni. (3.5)

3.2. The following is the key notion of this section:

Definition 3.3. Set m ∈QI . We will say that F ∈ A+ has slope ≤m if

lim
ξ→∞

F (. . . ,ξzi1, . . . ,ξziki
,zi,ki+1, . . . ,zini

, . . . )

ξm·k+〈k,n−k〉 (3.6)

is finite for all 0≤ k ≤ n. Similarly, we will say that G ∈ A− has slope ≤m if

lim
ξ→0

G(. . . ,ξzi1, . . . ,ξziki
,zi,ki+1, . . . ,zini

, . . . )

ξ−m·k−〈n−k,k〉 (3.7)

is finite for all 0≤ k ≤ n.

We will also say that F ∈ A+ and G ∈ A− have naive slope ≤m if

vdegF ≤m ·hdegF (3.8)

vdegG≥m ·hdegG. (3.9)

The k = n case of formulas (3.6) and (3.7) shows that having slope ≤m implies having
naive slope ≤m. This fact can also be seen as a particular case of the following:

Proposition 3.4. An element F ∈ A+ has slope ≤m if and only if

Δ(F ) = (anything)⊗ (naive slope≤m). (3.10)

Similarly, an element G ∈ A− has slope ≤m if and only if

Δ(G) = (naive slope≤m)⊗ (anything). (3.11)

The meaning of the right-hand side of these equations is that Δ(F ) (resp., Δ(G)) is an

infinite sum of tensors, all of whose second (resp., first) factors have naive slope ≤m.

Moreover, these statements would remain true if we replaced ‘naive slope’ with ‘slope’.
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Proof. Let us prove the statements pertaining to F, and leave the analogous case of G
as an exercise for the interested reader. We will write

F =
∑

{dia}i∈I
1≤a≤ni

coefficient ·
i∈I∏

1≤a≤ni

zdia
ia

for various coefficients. Note that

ζji

(
1

x

)−1

∈ x#−→
jiF[[x]]×.

Then, as a consequence of equation (2.35), we have

Δ(F ) =
∑

0≤k≤n

∑
{dia}i∈I

1≤a≤ni

∑
{pjb≥0}j∈I

kj<b≤nj{
eiajb≥#−→

ji

}i,j∈I

1≤a≤ki,kj<b≤nj

coefficient·

j∈I∏
kj<b≤nj

hj,+pjb

i∈I∏
1≤a≤ki

z
dia+

∑j∈I
kj<b≤nj

eiajb

ia ⊗
j∈I∏

kj<b≤nj

z
djb−pjb−

∑i∈I
1≤a≤ki

eiajb
jb︸ ︷︷ ︸
call this F2

. (3.12)

The homogeneous degree of any second tensor factor in this formula satisfies

vdegF2 ≤
j∈I∑

kj<b≤nj

⎛⎝djb−
i∈I∑

1≤a≤ki

#−→
ji

⎞⎠=

j∈I∑
kj<b≤nj

djb−〈n−k,k〉 .

By the assumption (3.6), the right-hand side of this expression is

≤m · (n−k) =m ·hdegF2,

which implies that F2 has naive slope ≤m. Conversely, the terms F2 in equation (3.12)

with maximal naive slope are the ones corresponding to pjb = 0 and eiajb = #−→
ji
. If these

F2s have naive slope ≤m, then the chain of inequalities implies precisely

j∈I∑
kj<b≤nj

djb ≤m · (n−k)+ 〈n−k,k〉 .

Since this holds for all 0≤ k ≤ n, we obtain precisely expression (3.6).

It remains to show that we can replace the weaker notion of ‘naive slope’ with the

stronger ‘slope’ in equation (3.10). To this end, we will explicitly show that if we write

Δ(F ) =
∑
s∈S

F1,s⊗F2,s,

where {F1,s}s∈S is an arbitrary linear basis of A≥, then every F2,s has slope ≤m. The
key to proving this fact is the coassociativity of the coproduct

(Id⊗Δ)◦Δ(F ) = (Δ⊗ Id)◦Δ(F ).
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The left-hand side of this expression is precisely∑
s∈S

F1,s⊗Δ(F2,s),

and the right-hand side is of the form

(anything)⊗ (anything)⊗ (naive slope≤m)

by equation (3.10). For any given s ∈ S, identifying the coefficients of F1,s⊗−⊗− in the

two expressions here implies that Δ(F2,s) = (anything)⊗ (naive slope≤m). By equation
(3.10), this precisely means that F2,s has slope ≤m, as we needed to prove.

Let us denote the subspaces of shuffle elements of slope ≤m by

A±
≤m ⊂A±. (3.13)

Proposition 3.4 and the multiplicativity of Δ show that A±
≤m are algebras.

3.5. It is easy to see that the graded pieces of A±
≤m, namely

A≤m|±n,±d =A±n,±d∩A±
≤m,

are finite-dimensional for any (n,d) ∈ NI ×Z. This is because expression (3.6) (resp.,

(3.7)) imposes upper (resp., lower) bounds on the exponents of the variables that make

up the Laurent polynomials F (resp., G). If we also fix the total homogeneous degree of

such a polynomial, then there are finitely many choices for the monomials which make
up F (resp., G).

Definition 3.6. For any m ∈QI , we will write

B±
m ⊂A± (3.14)

for the subalgebras consisting of elements of slope ≤m and naive slope =m.7

We will denote the graded pieces of B±
m by

B±
m =

⊕
n∈NI

Bm|±n, (3.15)

where Bm|±n = A≤m|±n,±m·n. If m ·n /∈ Z for some n ∈ NI , the respective direct

summand in equation (3.15) is zero. As for the nonzero direct summands, they are all

finite-dimensional, as was explained in the beginning of this subsection.

3.7. We can make the algebras B±
m into Hopf algebras if we first extend them:

B≥
m = B+

m⊗F
[
h±1
i,+0

]
i∈I

/
relation (2.33) (3.16)

B≤
m = B−

m⊗F
[
h±1
i,−0

]
i∈I

/
relation (2.34). (3.17)

7Having naive slope =m means having equality in formulas (3.8) and (3.9). This terminology
is slightly ambiguous, as there may be infinitely many values of m for which equality holds,
but in what follows this ambiguity will be clarified by the context.
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There is a coproduct Δm on the subalgebras (3.16) and (3.17), determined by

Δm (hi,±0) = hi,±0⊗hi,±0

and the following formulas for any F ∈ Bm|n and G ∈ Bm|−n:

Δm(F ) =
∑

0≤k≤n

lim
ξ→∞

hn−kF (. . . ,zi1, . . . ,ziki
⊗ ξzi,ki+1, . . . ,ξzini

, . . . )

ξm·(n−k) · lead
[∏i∈I

1≤a≤ki

∏j∈I
kj<b≤nj

ζji

(
ξzjb
zia

)] (3.18)

Δm(G) =
∑

0≤k≤n

lim
ξ→0

G(. . . ,ξzi1, . . . ,ξziki
⊗ zi,ki+1, . . . ,zini

, . . . )h−k

ξ−m·k · lead
[∏i∈I

1≤a≤ki

∏j∈I
kj<b≤nj

ζij

(
ξzia
zjb

)] , (3.19)

where ‘lead [. . . ]’ refers to the leading-order term in ξ of the expression marked by the

ellipsis (expanded as ξ →∞ or as ξ → 0, depending on the situation) and

h±n =
∏
i∈I

hni
i,±0 (3.20)

for all n ∈ NI . By its very definition, Δm consists of the leading naive slope terms in

formulas (2.35) and (2.36), in the sense that

Δm(F ) = component of Δ(F ) in
⊕

n=n1+n2

hn2An1,m·n1
⊗An2,m·n2

Δm(G) = component of Δ(G) in
⊕

n=n1+n2

A−n1,−m·n1
⊗A−n2,−m·n2

h−n1

for all F ∈ B+
m,G ∈ B−

m. Thus, the fact that Δm makes B≥
m and B≤

m into bialgebras is

induced by the fact that Δ makes A≥ and A≤ into bialgebras.

Proposition 3.8. The restriction of the pairing (2.21) to

〈·,·〉 : B≥
m⊗B≤

m −→ F (3.21)

satisfies properties (2.24) and (2.25) with respect to the coproduct Δm.

Proof. Let us check equation (2.24) and leave the analogous formula (2.25) as an exercise

for the interested reader. Moreover, we will consider only the case when a ∈ B+
m and

b1,b2 ∈ B−
m, as the situation when one or more of a,b1,b2 is of the form (3.20) is quite

easy, and so left as an exercise for the interested reader. Thus, let us write

Δ(a) =
∑
s∈S

a1,s⊗a2,s,
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where S is some indexing set. Formula (3.10) gives us

vdega2,s ≤m · (hdega2,s)⇔ vdega1,s ≥m · (hdega1,s) (3.22)

(the equivalence is due to the fact that vdega = m · (hdega), on account of the very

definition of B+
m � a). The definition of Δm implies that

Δm(a) =
∑
s∈S′

a1,s⊗a2,s,

where the indexing set S′ ⊂ S consists of those s ∈ S for which equality holds in formula
(3.22). The fact that equation (2.24) holds with respect to Δ means that

〈a,b1b2〉=
∑
s∈S

〈a1,s,b1〉〈a2,s,b2〉 .

However, because vdegb1,2 =m · (hdegb1,2), the pairings in this formula are nonzero only
if we have equality in formula (3.22) – that is, only if s ∈ S′. Therefore,

〈a,b1b2〉=
∑
s∈S′

〈a1,s,b1〉〈a2,s,b2〉,

which precisely states that equation (2.24) also holds with respect to the coproduct
Δm.

3.9. The pairing (3.21) is nondegenerate,8 as we will show in Proposition 3.18. This
will allow us to define the Drinfeld double

Bm = B≥
m⊗B≤

m (3.23)

as in §2.7, which has a universal R-matrix as in §2.8:

Rm ∈ B≥
m ⊗̂B≤

m ⊂ Bm ⊗̂Bm.

Explicitly, Rm is the canonical tensor of the pairing (3.21). As in equation (2.28), we

have

Rm =R′
m · [a sum of products involving the hi,±0], (3.24)

where R′
m is the canonical tensor of the restriction of the pairing (3.21) to

〈·,·〉 : B+
m⊗B−

m −→ F. (3.25)

Although they look similar, we emphasize the fact that the Drinfeld doubles A and Bm

are defined with respect to the different coproducts Δ and Δm, respectively. Since the

product in a Drinfeld double (namely relation (2.27)) is controlled by the coproduct that
is used to define the double, the following result is nontrivial:

Proposition 3.10. The inclusion map Bm ⊂ A (obtained by tensoring together the

natural inclusion maps B≥
m ⊂A≥ and B≤

m ⊂A≤) is an algebra homomorphism.

8As usual in the theory of quantum groups, this statement is true as stated for the restricted
pairing (3.25) to the ± subalgebras. To have the statement hold for the ≥ , ≤ subalgebras, one
needs to work instead over the power series ring in log(q), log(te) instead of over F=Q(q,te)e∈E .
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Proof. Consider any a ∈ B≥
m and b ∈ B≤

m, and let us write

Δ(a) =
∑
s∈S

a1,s⊗a2,s and Δ(b) =
∑
t∈T

b1,t⊗ b2,t

for some sets S and T. By the definition of Δm, we have

Δm(a) =
∑
s∈S′

a1,s⊗a2,s and Δm(b) =
∑
t∈T ′

b1,t⊗ b2,t,

where the indexing sets S′ ⊂ S,T ′ ⊂ T consist of those s ∈ S,t ∈ T such that

vdega1,s =m · (hdega1,s)⇔ vdega2,s =m · (hdega2,s)
vdegb1,t =m · (hdegb1,t)⇔ vdegb2,t =m · (hdegb2,t) .

Formula (2.27) implies that the following relation holds in A:∑
s∈S,t∈T

a1,sb1,t 〈a2,s,b2,t〉=
∑

s∈S,t∈T

b2,ta2,s 〈a1,s,b1,t〉 . (3.26)

However, formulas (3.10) and (3.11) imply that a2,s and b1,t have naive slope ≤m, for

all s ∈ S and t ∈ T . This implies that

vdega2,s ≤m · (hdega2,s)⇒ vdega1,s ≥m · (hdega1,s)
vdegb1,t ≥m · (hdegb1,t)⇒ vdegb2,t ≤m · (hdegb2,t),

where in both cases, the implication is due to our assumption that vdega =m · (hdega)
and vdegb =m · (hdegb). Therefore, the only way for the pairings in the left- and right-
hand sides of equation (3.26) to be nonzero is to have equality in all these inequalities,

which would imply s ∈ S′ and t ∈ T ′. We therefore have∑
s∈S′,t∈T ′

a1,sb1,t 〈a2,s,b2,t〉=
∑

s∈S′,t∈T ′
b2,ta2,s 〈a1,s,b1,t〉 .

However, this is simply equation (2.27) in the double Bm, which implies that the same

multiplicative relations hold in A as in Bm.

3.11. Let us now fix m ∈QI and θ ∈QI
+, and consider the subalgebras {Bm+rθ}r∈Q.

Proposition 3.12. For any m ∈QI and θ ∈QI
+, we have〈 →∏

r∈Q

ar,
→∏
r∈Q

br

〉
=

→∏
r∈Q

〈ar,br〉 (3.27)

for all elements
{
ar ∈ B+

m+rθ,br ∈ B−
m+rθ

}
r∈Q

, almost all of which are equal to 1.

Proof. Let r ∈Q be maximal such that ar �=1 or br �=1, and let us assume that |hdegar| ≥
−|hdegbr| (the opposite case is treated analogously, so we leave it as an exercise for the

https://doi.org/10.1017/S1474748022000184 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000184


Shuffle Algebras for Quivers and R-Matrices 2597

interested reader). Then formula (2.25) implies〈∏
r′<r

ar′ ·ar,
∏
r′≤r

br′

〉
=

〈∏
r′<r

ar′,
∏
r′≤r

br′,2

〉〈
ar,

∏
r′≤r

br′,1

〉
, (3.28)

where we use the Sweedler notation Δ(br) = br,1⊗ br,2. Because of equation (3.11), all of
br′,1 with r′ < r have slope strictly smaller than m+ rθ. Therefore, the only term in the

right-hand side of this expression which could pair nontrivially with ar ∈ B+
m+rθ is br,1.

However, because of the assumption that |hdegar| ≥ −|hdegbr|, such a nontrivial pairing
is possible only if all three of the following properties hold:

• hdegar =−hdeg br;
• br,1 is the first tensor factor in the first summand of

Δ(br) = br⊗h−hdegbr + · · · ;
• br′,1 is the first tensor factor in the first summand of

Δ(br′) = 1⊗ br′ + · · ·
for all r′ < r.

Therefore, equation (3.28) implies〈∏
r′≤r

ar′,
∏
r′≤r

br′

〉
=

〈∏
r′<r

ar′,
∏
r′<r

br′ ·h−hdegbr

〉
〈ar,br〉. (3.29)

Since equation (2.24) implies the identity

〈a,b ·h−n〉= 〈a,b〉〈1,h−n〉= 〈a,b〉
for any a∈A+,b∈A− and any n∈NI , the right-hand side of equation (3.29) is unchanged

if we remove h−hdegbr . Iterating identity (3.29) for the various r′ for which ar′ �= 1 or
br′ �= 1, one obtains identity (3.27).

3.13. Still fixing m ∈QI and θ ∈QI
+ as before, our main goal in the next subsections

(see Corollary 3.20) is to prove that multiplication yields isomorphisms

→⊗
r∈Q

B±
m+rθ

∼−→A±. (3.30)

If we write B±
m+∞θ = F

[
h±1
i,±0,hi,±1, . . .

]
i∈I

, then formula (3.30) leads to isomorphisms

→⊗
r∈Q�∞

B+
m+rθ

∼−→A≥ and

→⊗
r∈Q�∞

B−
m+rθ

∼−→A≤. (3.31)

Thus, the entire A=A≥⊗A≤ factors as the tensor product of the
{B±

m+rθ

}
r∈Q�∞.
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Proposition 3.14. For any m ∈QI , θ ∈QI
+, and p ∈Q, the multiplication map

→⊗
r∈Q≤p

B±
m+rθ �A±

≤m+pθ (3.32)

is surjective (here, Q≤p denotes the set of rational numbers ≤ p).

Since any element of A+ has slope ≤ m+ rθ for r ∈ Q large enough (this is because
θ ∈QI

+), the surjectivity of formula (3.32) implies that the multiplication map

→⊗
r∈Q

B±
m+rθ �A± (3.33)

is also surjective.

Proof of Proposition 3.14. Let us consider the restriction of the multiplication map

(3.32) to the subspaces of given degree (n,d) ∈ NI ×Z:

⊕
∑

r∈Q≤p
nr=n∑

r∈Q≤p
(m+rθ)·nr=d

⎡⎣ →⊗
r∈Q≤p

Bm+rθ|±nr

⎤⎦ φ±n,±d−−−−−→A≤m+pθ|±n,±d (3.34)

(the indexing set goes over all sequences (nr)r∈Q≤p
of elements of NI , almost all of which

are 0). We will prove that φ±n,±d is surjective by induction on n, with respect to the
ordering (3.4) (the base case, when n = ςi for some i ∈ I, is trivial). To streamline the

subsequent explanation, if a certain element of the shuffle algebra has slope (or naive

slope) m+ rθ, we will refer to the number r ∈ Q as its slope (or naive slope). This also
has the added benefit of making the notion ‘naive slope = r’ unambiguous, as the fact

that θ ∈QI
+ means that for any (n,d) ∈NI ×Z, there exists exactly one rational number

r for which (m+ rθ) ·n= d.
So let us show that any element F ∈A≤m+pθ|n,d lies in the image of the map φn,d (we

will discuss only the case ± = +, as the ± = − case is analogous). Let r ≤ p denote the

naive slope of F, and let us call hinges those

(k,e) ∈ NI ×Z (3.35)

such that Δ(F ) has a nonzero component in

An−k,d−e⊗Ak,e. (3.36)

Clearly, a hinge would need to satisfy formula (3.4), and by equation (3.10) also the

inequality

e≤ (m+pθ) ·k. (3.37)

We will call a hinge bad if

e > (m+ rθ) ·k. (3.38)
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It is easy to see that F has finitely many bad hinges, as there are only finitely many
values of k satisfying formula (3.4), and for any such k, finitely many integers e that

satisfy the inequalities (3.37) and (3.38). If F has no bad hinges, then by equation (3.10),

it lies in B+
m+rθ and we are done. Thus our strategy will be to successively subtract from

F elements in the image of φn,d so as to ‘kill’ all its bad hinges.

The slope of a bad hinge (3.35) is that rational number ρ ∈ (r,p] such that

e= (m+ρθ) ·k. (3.39)

Let us consider the partial order on the set of bad hinges, given primarily by slope, and

then by |k| break ties between hinges of the same slope. Let us write (k,e) for a maximal

bad hinge of F. The number ρ from equation (3.39) is minimal such that

F ∈ A+
≤m+ρθ. (3.40)

By the maximality of (k,e), the component of Δ(F ) in degree (3.36) is given by

Δ(n−k,d−e),(k,e)(F ) =

top

⎡⎢⎣hkF (. . . ,zi1, . . . ,zi,ni−ki
⊗ ξzi,ni−ki+1, . . . ,ξzini

, . . . )

γ ·∏i∈I
1≤a≤ni−ki

∏j∈I
nj−kj<b≤nj

(
ξzjb
zia

)#−→
ji

⎤⎥⎦, (3.41)

where ‘top [. . . ]’ refers to the top coefficient in ξ of the expression marked by the ellipsis,

and γ ∈ F×. The reason for this formula is that the maximality of (k,e) implies that only

the leading term of the h power series in the numerator (resp., the ζ rational functions
in the denominator) of equation (2.35) can contribute (see equation (3.12)). By writing

F as a linear combination of monomials, we have

Δ(n−k,d−e),(k,e)(F ) =
∑
s∈S

hkF1,s⊗F2,s, (3.42)

where S is some indexing set and F1,s,F2,s denote various elements in A+ that one obtains
by summing up the various top coefficients in ξ of equation (3.41).

Claim 3.15. The element

G=
∑
s∈S

F1,sF2,s (3.43)

lies in the image of φn,d. All its bad hinges are less than or equal to (k,e), and

Δ(n−k,d−e),(k,e)(F ) = γ′ ·Δ(n−k,d−e),(k,e)(G) (3.44)

for some γ′ ∈ F×.

Let us complete the induction step of the surjectivity of φn,d. Claim 3.15 allows us to
reduce the fact that F lies in the image of φn,d to the analogous fact for F −γ′G, where γ′

is the constant that features in equation (3.44). Moreover, the claim implies that F −γ′G
does not in fact have a bad hinge at (k,e). Thus, repeating this argument finitely many
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times allows us to reduce F to an element without any bad hinges, which as we have seen
must lie in Bm+rθ|n. This concludes the induction step.

Proof of Claim 3.15. To eliminate redundancy in the sum (3.42), we will assume the

various F1,s which appear are part of a fixed linear basis of An−k,d−e. Then expression
(3.40) together with the last sentence of Proposition 3.4 imply that F2,s has slope ≤ ρ for

all s ∈ S. Because F2,s has naive slope = ρ by equation (3.39), we conclude that

F2,s ∈ Bm+ρθ|k (3.45)

for all s ∈ S. Let us now express every F2,s in terms of a fixed linear basis

{F2,t}t∈T of Bm+ρθ|k

and then re-express equation (3.42) in this new basis:

Δ(n−k,d−e),(k,e)(F ) =
∑
t∈T

hkF1,t⊗F2,t. (3.46)

Claim 3.16. Every F1,t which appears in equation (3.46) has slope < ρ.

By Claim 3.16 and the induction hypothesis of the surjectitivity of the map (3.34),

G=
∑
t∈T

F1,tF2,t

is a sum of products of elements of {Bm+rθ}r≤ρ in increasing order of r. This implies

that G ∈ Imφn,d. To compute the bad hinges of G, we note that

Δ(G) =
∑
t∈T

Δ(F1,t)︸ ︷︷ ︸
X1⊗X2

Δ(F2,t)︸ ︷︷ ︸
Y1⊗Y2

.

Since every F1,t has slope < ρ and every F2,t has slope = ρ, then every X2 that appears
in this formula has naive slope < ρ and every Y2 has naive slope ≤ ρ. But unless X2 = 1

and Y2 = F2,t, either the product X2Y2 has naive slope < ρ or it has naive slope = ρ but

smaller |hdeg| than |k|, and thus cannot contribute to the component of Δ(G) in degree
(3.36). Thus, we have

Δ(n−k,d−e),(k,e)(G) =
∑
t∈T

(F1,t⊗1)(hk⊗F2,t) .

This matches equation (3.42) up to an overall constant that one obtains when commuting

hk past the various F1,t (this constant can be read off from equation (2.33), and depends
only on k and the horizontal degree of the F1,ts, which is equal to n−k for all t ∈ T ).

Proof of Claim 3.16. By expression (3.6) and the fact that F has slope ≤ ρ (see

expression (3.40)), we have

total degree of F in {zi1, . . . ,zili}i∈I ≤ (m+ρθ) · l+ 〈l,n− l〉 (3.47)

for all 0≤ l ≤ n. The inequality is strict if |k|< |l|, on account of the maximality of the

hinge (k,e). By the symmetry of the Laurent polynomial F, the same inequality holds if we
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replace the set of variables zi1, . . . ,zili by any other subset of li of the variables zi1, . . . ,zini
.

Let us zoom in on a certain monomial μ that appears in the Laurent polynomial F, and

write for all 0< k′ ≤ n−k

α= total degree of μ in
{
zi1, . . . ,zik′

i

}
i∈I

β = total degree of μ in {zi,ni−ki+1, . . . ,zini
}i∈I .

By applying formula (3.47) for l= k+k′, we conclude that

α+β < (m+ρθ) · (k+k′)+ 〈k+k′,n−k−k′〉. (3.48)

On the other hand, if the monomial μ survives in the limit (3.41), this implies

β = (m+ρθ) ·k+ 〈k,n−k〉. (3.49)

Subtracting equation (3.49) from formula (3.48) yields

α < (m+ρθ) ·k′+ 〈k′,n−k−k′〉−〈k,k′〉. (3.50)

However, the homogeneous degree of the first tensor factor of equation (3.41) in the
variables

{
zi1, . . . ,zik′

i

}
i∈I

is equal to α+ 〈k,k′〉. By inequality (3.50), this quantity is

< (m+ρθ) ·k′+ 〈k′,n−k−k′〉.
According to expression (3.6), this precisely means that F1,t has slope <ρ for all t∈ T .

3.17. We are now ready to prove that the pairing (3.25) is nondegenerate, which is a

necessary hypothesis when constructing the Drinfeld double (3.23).

Proposition 3.18. For any m ∈QI , the pairing (3.25) is nondegenerate.

Proof. Because the pairing (2.29) is nondegenerate, we have

〈F,A−〉= 0⇒ F = 0.

However, the surjectivity of the map (3.33) allows us to write〈
F,

→⊗
r∈Q

B−
m+rθ

〉
= 0⇒ F = 0

if F ∈B+
m, then Proposition 3.12 implies that F pairs trivially with all ordered products of

elements from different B−
m+rθs, and pairs nontrivially only with B−

m itself. We conclude

that 〈
F,B−

m

〉
= 0⇒ F = 0,

which is precisely the nondegeneracy of formula (3.25) in the first factor. The case of

nondegeneracy in the second factor is completely analogous.

Proposition 3.19. For any m ∈QI and θ ∈QI
+, the map (3.33) is injective.
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In particular, the proposition implies that the maps (3.32) are injective for all p ∈Q.

Proof. By Proposition 3.18, we may fix dual linear bases

{ar,s}s∈N
⊂ B+

m+rθ and {br,s}s∈N
⊂ B−

m+rθ (3.51)

for all r ∈Q. We will assume ar,0 = br,0 = 1 is an element in our bases. If the map (3.33)
(we assume ± = +, as the case of ± = − is analogous) failed to be injective, then there

would exist a nontrivial linear relation∑
{sr}r∈Q

γ{sr}
→∏
r∈Q

ar,sr = 0 ∈ A+ (3.52)

(the sum goes over all collections of indices sr, almost all of which are equal to 0). For

any fixed collection of indices {tr}r∈Q, almost all of which are equal to 0, this relation

implies ∑
{sr}r∈Q

γ{sr}

〈 →∏
r∈Q

ar,sr,

→∏
r∈Q

br,tr

〉
= 0 ∈ A+.

By Proposition 3.12, the only pairing which survives in this formula is the one for sr =

tr,∀r ∈ Q, thus implying that γ{tr} = 0. Since this holds for all collections of indices
{tr}r∈Q, this precludes the existence of a nontrivial relation (3.52) and establishes the

injectivity of the map (3.33).

Corollary 3.20. For any m ∈ QI , θ ∈ QI
+, and p ∈ Q, the maps (3.32) and (3.33) are

isomorphisms.

We have completed the construction of the isomorphisms (3.30). As these isomorphisms

preserve the pairing in the sense of Proposition 3.12, we have the following:

Corollary 3.21. For any m ∈QI and θ ∈QI
+, we have

R′ =
→∏
r∈Q

R′
m+rθ, (3.53)

where R′ is defined in equation (2.28), and R′
m is defined in equation (3.24).

Proof. Let us consider dual bases (3.51). The canonical tensor of the pairing (3.25) (for
m replaced by m+ rθ) is

R′
m+rθ =

∑
s∈N

ar,s⊗ br,s. (3.54)

Meanwhile, by formulas (3.27) and (3.30), we have⎧⎨⎩
→∏
r∈Q

ar,sr

⎫⎬⎭⊂A+ and

⎧⎨⎩
→∏
r∈Q

br,sr

⎫⎬⎭⊂A−
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(as {sr}r∈Q goes over all collections of natural numbers, almost all of which are 0) are

dual bases. Therefore, the canonical tensor of the pairing (2.29) is

R′ =
∑
{sr}

→∏
r∈Q

ar,sr ⊗
→∏
r∈Q

br,sr . (3.55)

Comparing formulas (3.54) and (3.55) yields equation (3.53).

3.22. The universal R-matrix intertwines the coproduct with its opposite

Δop(a) =R·Δ(a) ·R−1

for all a ∈ A. However, we now have the factorization

R=
→∏

r∈Q�{∞}
R′

m+rθ,

where R′
m+∞θ denotes the factor in square brackets in equation (2.28). Therefore,

Δ(m)(a) =

⎡⎣ →∏
r∈Q>0�{∞}

R′
m+rθ

⎤⎦ ·Δ(a) ·
⎡⎣ →∏
r∈Q>0�{∞}

R′
m+rθ

⎤⎦−1

(3.56)

defines another coproduct on the algebra A, for all m ∈QI . We expect the restriction of

Δ(m) to the subalgebra Bm to match the coproduct Δm of §3.7.
The existence of many coproducts on quantum groups is a well-known phenomenon in

representation theory. For example, when Q is of finite type and A is the corresponding

quantum affine algebra, Δ is the Drinfeld new coproduct and Δ(0) is the Drinfeld–

Jimbo coproduct. When Q is the cyclic quiver and A is the corresponding quantum
toroidal algebra, we expect Δ(0) to match the coproduct defined in [29]. For general

quivers, Conjecture 4.22 suggests that the coproducts (3.56) match the ones defined by

[1, 18, 32, 33, 34] using the theory of stable bases.

Remark 3.23. All the results in this paper would continue to hold if the equivariant
parameters {q,te}e∈E were not generic but specialized in any way which satisfies [31,

Assumption Ъ] – for example,

te = q
1
2 , ∀e ∈ E.

Indeed, as explained in §5 there, this assumption allows us to define A as a Drinfeld
double, and then all the notions of the current section would carry through. The main

caveat is that the wheel conditions (2.4) are no longer enough to define S ⊂ V; one needs

to impose the stronger conditions [31, formula (5.2)] instead.

4. Connections to geometry

4.1. We think of formula (3.30) as a PBW theorem for the shuffle algebras A±: it says
that a linear basis of A± is given by ordered products of linear bases of the subalgebras

{Bm+rθ}r∈Q, for any fixed m∈QI and θ ∈QI
+. Moreover, by equation (3.27), these linear
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bases can be chosen to be dual to each other under the pairing (2.29). Formula (3.53) also

emphasizes the role the subalgebras B±
m play in understanding the universal R-matrix of

A. This motivates our interest in understanding the subalgebras Bm. For starters, it is
easy to see that the automorphisms (2.17) send

τk : Bm
∼−→Bm+k (4.1)

for any k ∈ ZI . Therefore, the classification of the algebras Bm depends only on m ∈
(Q/Z)I . A more substantial reduction would be the following:

Problem 4.2. Show that Bm for the quiver Q is isomorphic to the algebra B0 for some

other quiver Qm, and understand the dependence of the latter on m ∈ (Q/Z)I .

For example, in [27], when Q is the cyclic quiver of length n, we showed that

B(m1,...,mn) = Uq

(
ĝln1

)
⊗·· ·⊗Uq

(
ĝlnd

)
,

where the natural numbers d and n1+ · · ·+nd = n are defined by an explicit procedure

from the rational numbers m1, . . . ,mn ∈Q/Z. In particular, we have

B(0,...,0) = Uq

(
ĝln

)
.

Thus we encounter a particular instance of Problem 4.2: when Q is the cyclic quiver of

length n, the statement of the problem holds with Q(m1,...,mn) being a disjoint union of
cyclic quivers of lengths n1, . . . ,nd.

4.3. With Problem 4.2 in mind, we will now focus on the algebra B0.

Definition 4.4. The Kac polynomial of Q in dimension n ∈ NI , denoted by

AQ,n(t), (4.2)

counts the number of isomorphism classes of n-dimensional absolutely indecomposable

representations of the quiver Q over a finite field with t elements.

It was shown in [12] that the number of absolutely indecomposable representations is a

polynomial in t, and so expression (4.2) lies in Z[t]. This was further shown in [11] to lie

in N[t], thus opening the door to the notion that AQ,n(1) counts ‘something’. Before we

make a conjecture as to what this something is, let us assemble all the Kac polynomials
into a power series:

AQ(t,z) =
∑

n∈NI\0
AQ,n(t)z

n,

where zn =
∏

i∈I z
ni
i . Similarly, define

χB0(z) =
∑
n∈NI

dimB0|nzn (4.3)
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and consider the plethystic exponential

Exp

⎡⎣ ∑
n∈NI\0

dnz
n

⎤⎦ :=
∏

n∈NI\0

1

(1−zn)dn

for any collection of natural numbers {dn}n∈NI\0.

Conjecture 4.5. For any quiver Q, we have

χB0(z) = Exp[AQ(1,z)] . (4.4)

In other words, B0 is isomorphic (as a graded vector space) to the symmetric algebra of
a graded vector space of graded dimension AQ(1,z).

Conjecture 4.5 gives an elementary combinatorial formula for the Kac polynomial at

t=1, since dimB0|n is the dimension of the vector space of Laurent polynomials satisfying

the wheel conditions (2.4) and the growth conditions (3.6) for m = 0. We computed
these dimensions using mathematical software and verified Conjecture 4.5 in the following

cases:

• Q is the quiver with one vertex and g ∈ {1,2,3} loops, up to dimension n= 5;
• Q is the quiver with two vertices and d ∈ {1,2,3,4} edges between them, up to

dimension vector (n1,n2) = (3,3).

These two types of quivers are relevant because they control the various wheel conditions

(2.4). Moreover, in the particular instances g = 1, d= 1, and d= 2 of these two cases, we

have

B0 = Uq

(
ĝl1

)
, B0 = Uq (sl3), and B0 = Uq

(
ŝl2

)
,

respectively. In these cases, Conjecture 4.5 is easily verified.

Remark 4.6. We may consider the subspace Bprim
0 ⊂B0 of primitive elements – that is,

those for which the coproduct Δ0 has no intermediate terms:

Δ0(P ) = P ⊗1+hhdegP ⊗P. (4.5)

We expect dimBprim
0|n to be given by the number CQ,n(1) of [2], for all n ∈ NI .

In particular, if Q is the quiver with one vertex and g ≥ 2 loops (such a vertex is called

hyperbolic in the language of [2]), then the q→ 1 limit of B0 should be the free Lie algebra
on the vector space which is the q → 1 limit of Bprim

0 . We thank Andrei Okounkov and

Olivier Schiffmann for pointing out this expectation.

4.7. We will now present two more frameworks which are conjecturally related to our
constructions. The first of these is the K -theoretic Hall algebra of the quiver Q. To define

it, let us consider the stack of n-dimensional representations of Q, for any n ∈ NI :

Zn =
⊕

−→
ij=e∈E

Hom(Vi,Vj)
/∏

i∈I

GL(Vi), (4.6)
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where Vi denotes a vector space dimension ni, for every i ∈ I. The action of the product
of general linear groups in this equation is by conjugating homomorphisms Vi → Vj .

The Kac polynomial of Definition 4.4 counts the number of (certain) points of Zn over

the field with t elements. There are also other fruitful ways to count points of the stack
(4.6), but one can obtain similarly beautiful constructions by looking at other enumerative

invariants of Zn. For example, Schiffmann and Vasserot consider the equivariant algebraic

K -theory groups of the cotangent bundle of the stack Zn,

K =
⊕
n∈NI

KT (T
∗Zn), (4.7)

where the torus T =C∗×∏
e∈EC∗ acts on T ∗Zn as follows: the first factor of C∗ scales the

cotangent fibers, and the eth C∗ in the product scales the homomorphism corresponding
to the same-named edge e in equation (4.6). As K is a module over the ring

KT (point) = Z
[
q±1,t±1

e

]
e∈E

, (4.8)

we may consider its localization with respect to the fraction field F=Q(q,te)e∈E :

Kloc =K
⊗

Z[q±1,t±1
e ]

e∈E

Q(q,te)e∈E . (4.9)

We refer to [38] for a survey of K -theoretic Hall algebras, to [31, §2] for a quick overview

in notation similar to ours, and to Remark 4.11 for an explicit presentation of T ∗Zn.
In particular, the reason for summing over all n in equation (4.7) is to make K into an

NI -graded F-algebra. Moreover, we have an F-algebra homomorphism

Kloc
ι−→V,

where V is the algebra (2.1). It was shown in [42] that ι is injective, in [44] that Imι⊆ S,
and in [31] that Imι= S. We therefore have an F-algebra isomorphism

Kloc
∼−→S. (4.10)

Problem 4.8. What is the geometric meaning of the slope subalgebras B+
m ⊂ A+ = S,

for various m ∈QI , when pulled back to Kloc via the isomorphism (4.10)?

4.9. A bridge between Conjecture 4.5 and Problem 4.8 is provided by the work of

Davison and Meinhardt [4, 5], who studied the version of equation (4.7) when equivariant

K -theory is replaced by Borel–Moore homology. The resulting object H is called the
cohomological Hall algebra of the quiver Q, and its study goes back to Kontsevich and

Soibelman in [15]. The algebra H is related to the algebra K as Yangians are related

to quantum loop groups. For a general quiver Q, Davison and Meinhardt constructed in
[4, 5] an NI -graded Lie algebra gBPS with an algebra embedding

U(gBPS)⊂H.

The Lie algebra gBPS has the following graded dimension (see equation (4.3)):

χgBPS
(z) =AQ(t,z)⇒ χU(gBPS)(z) = Exp[AQ(t,z)],
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where t keeps track of the homological degree on H. Therefore, it is natural to conjecture
that the degeneration map K � H sends B0 � U(gBPS). The homological grading,

ubiquitous on the H -side, is not readily seen on the K -side. This is why we expect

equation (4.4) to only see the value at t= 1 of the Kac polynomial AQ(t,z) ∈ N[t][[z]].

4.10. We will now recall the construction of Nakajima quiver varieties associated to
the quiver Q [20]. To define these, consider for any v,w ∈ NI the affine space

Nv,w =
⊕

−→
ij=e∈E

[Hom(Vi,Vj)⊕Hom(Vj,Vi)]
⊕
i∈I

[Hom(Wi,Vi)⊕Hom(Vi,Wi)],

where Vi (resp., Wi) are vector spaces of dimension vi (resp., wi) for all i ∈ I. Points of

this affine space will be denoted by quadruples

(Xe,Ye,Ai,Bi)e∈E,i∈I, (4.11)

where Xe,Ye,Ai,Bi denote homomorphisms in the four types of Hom spaces that enter

the definition of Nv,w. Consider the action of

Gv =
∏
i∈I

GL(Vi) (4.12)

on Nv,w by conjugating Xe,Ye, left-multiplying Ai, and right-multiplying Bi. It is easy

to see that Gv acts freely on the open locus of stable9 points

Ns
v,w ⊂Nv,w,

that is, those (4.11) such that there does not exist a collection of subspaces {V ′
i ⊆ Vi}i∈I

(other than V ′
i = Vi for all i ∈ I) which is preserved by the maps Xe and Ye, and contains

ImAi for all i ∈ I. Let us consider the quadratic moment map

Nv,w
μ−→ Lie Gv =

⊕
i∈I

Hom(Vi,Vi) (4.13)

μ((Xe,Ye,Ai,Bi)e∈E,i∈I) =
∑
e∈E

(XeYe−YeXe)+
∑
i∈I

AiBi.

If we write μ−1
v,w(0)s = μ−1

v,w(0)∩Ns
v,w, then there is a geometric quotient

Nv,w = μ−1
v,w(0)s/GLv, (4.14)

which is called the Nakajima quiver variety for the quiver Q, associated to v,w.

Remark 4.11. The v = n,w = 0 version of this construction, where instead of taking

the geometric quotient (4.14) one takes the stack quotient, is simply T ∗Zn.

4.12. The algebraic group

Tw = C∗×
∏
e∈E

C∗×
∏
i∈I

GL(Wi) (4.15)

9In general, stability conditions for quiver varieties are indexed by θ ∈ RI ; the one studied
herein corresponds to θ = (1, . . . ,1).
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acts on Nakajima quiver varieties as follows:(
q̄,t̄e,Ūi

)
e∈E,i∈I

· (Xe,Ye,Ai,Bi)e∈E,i∈I =

(
Xe

t̄e
,
t̄eYe

q̄
,AiŪ

−1
i ,

ŪiBi

q̄

)
e∈E,i∈I

.

With respect to this action, the Tw-equivariant algebraic K -theory groups of Nakajima

quiver varieties are modules over the ring

KTw(point) = Z
[
q±1,t±1

e ,u±1
ia

]sym
e∈E,i∈I,1≤a≤wi

(where ‘sym’ means symmetric in the equivariant parameters ui1, . . . ,uiwi
for each i ∈ I

separately). We will localize our K -theory groups by analogy with equation (4.9):

Kv,w =KTw (Nv,w)
⊗

Z[q±1,t±1
e ,u±1

ia ]
sym

e∈E,i∈I,1≤a≤wi

Q(q,te,uia)
sym
e∈E,i∈I,1≤a≤wi

. (4.16)

As with the K -theoretic Hall algebra, it makes sense to consider the direct sum

Kw =
⊕
v∈NI

Kv,w. (4.17)

For every i ∈ I, consider the tautological bundle Vi of rank vi, whose fiber over a point

(4.11) is the vector space Vi itself; this is a nontrivial vector bundle, because Nakajima
quiver varieties arise as quotients by the group (4.12). We formally write

[Vi] = xi1+ · · ·+xivi
∈Kv,w.

The symbols xia are not elements of Kv,w, but any symmetric Laurent polynomial in

them is (specifically, it is obtained by taking the K -theory class of an appropriate Schur

functor of the tautological vector bundle Vi). We will abbreviate

Xv = {. . . ,xi1, . . . ,xivi
, . . . }i∈I .

By the foregoing discussion, any Laurent polynomial p(. . . ,xi1, . . . ,xivi
, . . . ) which is

symmetric in the xias (for each i ∈ I separately) yields an element of K -theory

p(Xv) ∈Kv,w (4.18)

called a tautological class. By [19, Theorem 1.2], tautological classes (as p runs over all
symmetric Laurent polynomials) linearly span Kv,w for any v,w ∈ NI .

Example 4.13. Recall the function ζij(x) (2.3), and consider its close cousin

ζ̃ij(x) =
ζij(x)(

1− x
q

)δij
(
1− 1

qx

)δij
=

∏
e=

−→
ij∈E

(
1
te
−x

)∏
e=

−→
ji∈E

(
1− te

qx

)
(1−x)

δij
(
1− 1

qx

)δij
. (4.19)

Then for any n ∈ NI , let us define

ζ̃

(
Zn

Xv

)
=

i∈I∏
1≤a≤ni

j∈I∏
1≤b≤vj

∏
e=

−→
ij∈E

(
1
te
− zia

xjb

)∏
e=

−→
ji∈E

(
1− texjb

qzia

)
(
1− zia

xjb

)δij
(
1− xjb

qzia

)δij
(4.20)
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ζ̃

(
Xv

Zn

)
=

i∈I∏
1≤a≤ni

j∈I∏
1≤b≤vj

∏
e=

−→
ji∈E

(
1
te
− xjb

zia

)∏
e=

−→
ij∈E

(
1− tezia

qxjb

)
(
1− xjb

zia

)δij
(
1− zia

qxjb

)δij
(4.21)

as elements of Kv,w

[[
. . . ,z±1

i1 , . . . ,z±1
ini

, . . .
]]
.

4.14. One important reason for considering all vs together in equation (4.17) is given
by the following correspondences of Nakajima, which give operators Kv+,w � Kv−,w

whenever v+ = v−+ ςi for some i ∈ I. Explicitly, for any such v±, let the diagram

Nv+,v−,w

π+

�����
���

���
�

π−

����
���

���
��

Nv+,w Nv−,w

(4.22)

be the Hecke correspondences of [21, §5]. There is a tautological line bundle

Li ∈ Pic
(Nv+,v−,w

)
� li = [Li] ∈KTw

(Nv+,v−,w

)
.

With this notation in mind, let us consider the endomorphisms of Kw

Kv−,w Kv+,w

Ei,d

Fi,d

and Kv,w

H±
i (z)

(for all v+ = v−+ ςi and v in NI) given by the formulas

Ei,d(α) = π+∗

⎛⎜⎜⎝ldi ·
∏j∈I

e=
−→
ij
t
−v+

j
e

∏j∈I

e=
−→
ji

(
detV +

j

)(−te
liq

)v+
j

(
detV +

i

)(−1
liq

)v+
i

·π∗
−(α)

⎞⎟⎟⎠ (4.23)

Fi,d(α) = π−∗

⎛⎜⎜⎝ldi ·
∏j∈I

e=
−→
ij
(detV −

j )
(

−q
lite

)v−
j ∏j∈I

e=
−→
ji
t
−v−

j
e

(detWi)−1 (−li)
ri
(
detV −

i

)(−q
li

)v−
i

·π∗
+(α)

⎞⎟⎟⎠ (4.24)

H±
i (zi1)(α) =

ζ̃
(

Zςi

Xv

)
ζ̃
(

Xv

Zςi

) ·
∧•

(
zi1q
Wi

)
∧•

(
zi1
Wi

) ·α (4.25)
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for all i ∈ I and d ∈ Z.10 In formulas (4.23) and (4.24), the fractions are the K -theory
classes of certain line bundles on Nv+,v−,w (built out of the determinants of the vector

bundles
{
V ±
j ,Wj

}
j∈I

, as well as the tautological line bundle) times equivariant constants.

It was shown in [21] that the operators (4.23)–(4.25) induce an action of the quantum

loop group associated to the quiver Q on Kw, in the case when the quiver has no edge

loops (see also [10, 41] for earlier work on the cyclic quiver case).

4.15. It is natural to expect the operators (4.23) to extend to an action Kloc �

Kw,∀w ∈ NI (more specifically, the operators Ei,d should correspond to the action of

the n = ςi summand of equation (4.7)). This was proved in complete generality in

[43]. As [31] showed that the localized K -theoretic Hall algebra is isomorphic to the
shuffle algebra S, it becomes natural to ask for a ‘shuffle’ version of formula (4.23), and

analogously for equation (4.24). As shown in [24], the shuffle algebra naturally arises

when we present formulas in terms of tautological classes (4.18). To this end, we have the
following generalization of [24, Theorem 4.7] (which treated the Jordan quiver case):

Theorem 4.16. The formulas

p(Xv)
F−→ 1

n!

∫ + F (Zn)

ζ̃
(

Zn

Zn

)p(Xv+n−Zn)ζ̃

(
Zn

Xv+n

)
∧•

(
Znq

W

)
(4.26)

p(Xv)
G−→ 1

n!

∫ − G(Zn)

ζ̃
(

Zn

Zn

)p(Xv−n+Zn)ζ̃

(
Xv−n

Zn

)−1

∧•
(
Zn

W

)−1

(4.27)

give actions A± �Kw for all F ∈ An,G ∈ A−n (the notation will be explained after the

statement of the theorem). Together with equation (4.25), these formulas glue to an action
A�Kw.

Let us now explain the notation in formulas (4.26) and (4.27), except for the definition
of the integrals

∫ ±
, which will be given in §4.17. We write

(F or G)(Zn) = (F or G)(. . . ,zi1, . . . ,zini
, . . . )i∈I

ζ̃

(
Zn

Zn

)
=

i,j∈I∏
1≤a≤ni,1≤b≤nj

(i,a) �=(j,b)

ζij

(
zia
zjb

)
(
1− zia

zjbq

)δij

∧•
(
Zn(1 or q)

W

)
=

i∈I∏
1≤a≤ni

∧•
(
zia(1 or q)

Wi

)
.

10The notation in equation (4.25) is such that for any variable z and any vector space S, we
set

∧•
( z

S

)
=

dimS∑
k=0

(−z)k
[
∧k (S∨)] and ∧•

(
S

z

)
=

dimS∑
k=0

(−z)−k
[
∧k(S)

]
.
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The operation

p(Xv) 	→ p(Xv−n+Zn) (4.28)

is called a plethysm, and it is defined by evaluating the Laurent polynomial p at the

collection of variables {. . . ,xi1, . . . ,xi,vi−ni
,zi1, . . . ,zini

, . . . }i∈I . The notation

p(Xv) 	→ p(Xv+n−Zn) (4.29)

would like to refer to the ‘inverse’ operation of formula (4.28), but the problem is that it

is not uniquely defined. Indeed, by the fundamental theorem of symmetric polynomials,

the Laurent polynomial p can be written as

p(Xv) =
polynomial in

{
xs
i1+ · · ·+xs

ivi

}
i∈I,s∈N∗∏

i∈I (xi1 · · ·xivi
)
N

(4.30)

in infinitely many ways, for various polynomials in the numerator and various natural
numbers N in the denominator. We define formula (4.29) by

p(Xv+n−Zn) =
polynomial in

{
xs
i1+ · · ·+xs

i,vi+ni
− zsi1−·· ·− zsini

}
i∈I,s∈N∗∏

i∈I

(
xi1···xi,vi+ni

zi1···zini

)N
. (4.31)

Of course, the right-hand side of these expressions depends on the particular polynomial

and the number N in equation (4.30), but we will show in the proof of Theorem 4.16 that
the right-hand side of formula (4.26) does not.

4.17. The integrals (4.26)–(4.27) are defined [28, Definition 3.15] by∫ +

T (. . . ,zia, . . . ) =
functions∑

σ:{(i,a)}→{±1}

∫ |q/te|±1,|te|±1>1

|zia|=rσ(i,a)

T (. . . ,zia, . . . )
∏
(i,a)

σ(i,a)dzia

2π
√−1zia

(4.32)

∫ −
T (. . . ,zia, . . . ) =

functions∑
σ:{(i,a)}→{±1}

∫ |q/te|±1,|te|±1<1

|zia|=rσ(i,a)

T (. . . ,zia, . . . )
∏
(i,a)

σ(i,a)dzia

2π
√−1zia

(4.33)

for some positive real number r  1. In each summand, each variable zia is integrated

over either a very small circle of radius r or a very large circle of radius r−1. The meaning
of the superscripts |q/te|±1,|te|±1 > 1 that adorn the integral (4.32) is the following: in

the summand corresponding to a particular σ, if

σ(i,a) = σ(j,b) = 1 (resp., σ(i,a) = σ(j,b) =−1),

then the variables zia and zjb are both integrated over the small (resp., large) circle.

The corresponding integral is computed via residues under the assumption |q/te|,|te|> 1

(resp., |q/te|−1,|te|−1 > 1). If σ(i,a) �= σ(j,b), then we do not need to assume anything
about the sizes of q and te. One defines equation (4.33) analogously.

The following proposition is precisely the motivation behind our definition of
∫ ±

, and

its proof closely follows the analogous computation in [28, Theorem 3.17]:
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Proposition 4.18. The right-hand side of formula (4.26) (resp., (4.27)) for

F = ei1,d1
∗ · · · ∗ein,dn

(resp., G= fi1,d1
∗ · · · ∗fin,dn

) (4.34)

is equal to the composition of the right-hand sides of formula (4.26) for F = ei1,d1
, . . . ,F =

ein,dn
(resp., the right-hand sides of formula (4.27) for G= fi1,d1

, . . . ,G= fin,dn
).

Indeed, it is easy to see that the composition of the right-hand sides of formulas (4.26)

and (4.27) for F = ei1,d1
, . . . ,F = ein,dn

and G= fi1,d1
, . . . ,G= fin,dn

is∫
{0,∞}�z1�···�zn

zd1
1 · · ·zdn

n∏
1≤a<b≤n ζ̃ibia

(
zb
za

)
p(Xv+n−Zn)ζ̃

(
Zn

Xv+n

)
∧•

(
Znq

W

) n∏
a=1

dza

2π
√−1za

(4.35)∫
{0,∞}�z1�···�zn

zd1
1 · · ·zdn

n∏
1≤a<b≤n ζ̃iaib

(
za
zb

)
p(Xv−n+Zn)ζ̃

(
Xv−n

Zn

)−1

∧•
(
Zn

W

)−1 n∏
a=1

dza

2π
√−1za

. (4.36)

The notation
∫
{0,∞}�z1�···�zn

means that the variable z1 is integrated over a contour in
the complex plane which surrounds 0 and ∞, the variable z2 is integrated over a contour

which surrounds the previous contour, and so on, and the contours are also far away from

each other compared to the size of the equivariant parameters q,te.
Moreover, in formulas (4.35) and (4.36), we implicitly identify the variables

{z1, . . . ,zn}↔ {. . . ,zi1, . . . ,zini
, . . . }i∈I

by mapping za in a one-to-one way to some zia• (the specific choice of • ∈ N does not

matter, due to the symmetry of all expressions involved in the variables which make up
Zn). Note that we need n= |n| in order for this notation to be consistent. We leave the

equivalence of formulas (4.26) and (4.27) for the shuffle elements (4.34) with formulas

(4.35) and (4.36) as an exercise for the interested reader (it closely follows the analogous

computation in [28, proof of Theorem 3.17], which dealt with a close relative of our
construction in the particular case when Q is the cyclic quiver).

Proof of Theorem 4.16. Our main task will be to establish the following claim:

Claim 4.19. The case F = ei,d of formula (4.26) yields the same formula as equation

(4.23), ∀i∈ I,d∈Z. Similarly, the case G= fi,d of formula (4.27) yields the same formula
as equation (4.24).

This claim establishes the fact that formulas (4.26) and (4.27) yield well-defined

operators on Kw when F = ei,d and G = fi,d, respectively. The meaning of the phrase

‘well-defined’ here is that

if p(Xv) = 0, then the right-hand side of formulas (4.26) and (4.27) is also 0
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(in particular, the right-hand side of formula (4.26) does not depend on the choices we

made in defining formula (4.29)). By Proposition 4.18, formulas (4.26) and (4.27) also

yield well-defined operators on Kw for any F and G of the form (4.34). Since by Theorem
2.3, any element of S and Sop is a linear combination of such F s and Gs, this proves that

formulas (4.26) and (4.27) are well defined for any F ∈ A+ and any G ∈ A−. Similarly,

the fact that the aforementioned formulas are multiplicative in F and G (thus implying
that formulas (4.26) and (4.27) yield actions A± �Kw) is an immediate consequence of

Proposition 4.18. To prove that the actions A± � Kw glue to an action A � Kw, one

only needs to check relations (2.13)–(2.15); this closely follows the Q= cyclic quiver case
treated in [27, Theorem II.9.].

Proof of Claim 4.19. Consider the complex of vector bundles on Nv,w

Ui =

⎡⎣Vi · q (Bi,−Xe,Ye′ )−−−−−−−−−→Wi⊕
⊕
e=

−→
ij

Vj · q
te

⊕
⊕
e′=

−→
ji

Vj · te (Ai,Ye,Xe′ )−−−−−−−→ Vi

⎤⎦ (4.37)

(which originated in [20]) with the middle term in homological degree 0. By the stability

condition, the second arrow is point-wise surjective, and thus its kernel Ki is a vector
bundle; thus Ui is quasi-isomorphic to a complex [Vi ·q→Ki] of vector bundles. For such

a complex, we may construct the projectivization

PNv,w(Ui) = ProjNv,w
(Sym•(Ui))

as a dg-scheme over Nv,w (see [25, §5.18] for our notational conventions), and analogously

for the dual complex U∨
i [1] · q = [K∨

i · q → V ∨
i ]. With this in mind, it is well known that

we have isomorphisms:

Nv+,v−,w
∼= PNv−,w

(Ui) (4.38)

Nv+,v−,w
∼= PNv+,w

(U∨
i [1] · q) (4.39)

with respect to which the line bundle Li is isomorphic to O(1) and O(−1), respectively.

A straightforward computation, which follows directly from the well-known formulas in
[25, Proposition 5.19], yields for any tautological class p as in expression (4.18)

Ei,d (p(Xv−)) =

∫ +

zdi1p(Xv+ −Zςi)

∏j∈I

e=
−→
ij
t
−vj
e

∏j∈I

e=
−→
ji
(detVj)

(
−te
zi1q

)vj

(detVi)
(

−1
zi1q

)vi
∧•

(
zi1q

Ui

)

Fi,d (p(Xv+)) =

∫ −
zdi1p(Xv− +Zςi)

∏j∈I

e=
−→
ij
(detVj)

(
−q

zi1te

)vj ∏j∈I

e=
−→
ji
t
−vj
e

(detWi)−1 (−zi1)
ri (detVi)

(
−q
zi1

)vi
∧•

(
− Ui

zi1

)
.

One can express Ui in terms of the vector bundles Vi and the trivial vector bundles
Wi using equation (4.37), and one notices that the right-hand sides of these formulas are

precisely the right-hand sides of formulas (4.26) and (4.27) when F = ei,d and G= fi,d.
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4.20. As a consequence of Theorem 4.16, we obtain an algebra homomorphism

A Ψ−→
∏

w∈NI

End(Kw). (4.40)

To make the map Ψ into a bialgebra homomorphism, one needs to place a coproduct on

the right-hand side, which interweaves the modules Kw as w varies over N. Consider any

w1,w2 ∈ NI , let w =w1+w2, and take the one-parameter subgroup

C∗ � t
τ−→

∏
i∈I

diag(1, . . . ,1︸ ︷︷ ︸
w1

i times

, t, . . . ,t︸ ︷︷ ︸
w2

i times

) ∈
∏
i∈I

GL(Wi). (4.41)

The fixed locus of τ acting on Nv,w is

NC∗
v,w

∼=
⊔

v1+v2=v

Nv1,w1 ×Nv2,w2

ι
↪→Nv,w (4.42)

consisting of quadruples (4.11) which respect fixed direct sum decompositions Vi = V 1
i ⊕

V 2
i and Wi =W 1

i ⊕W 2
i . We have a decomposition of the normal bundle

TNv,w/Nv1,w1×Nv2,w2
= T+⊕T−,

where T+ (resp., T−) consists of the attracting (resp., repelling) sub-bundles with respect

to the action of the one-parameter subgroup τ of formula (4.41). Because τ preserves the
holomorphic symplectic form on Nv,w (which we have not defined), the sub-bundles T+

and T− are dual to each other, and so have the same rank. This allows us to think of T+

as ‘half’ of the normal bundle, and set

Υ :Kv,w

∧•(−T+∨)·ι∗−−−−−−−−−→
⊕

v=v1+v2

Kv1,w1 ⊗Kv2,w2 . (4.43)

Conjugation with the (product over all v,w ∈ NI of the) map Υ yields a coproduct

∏
w∈NI

End(Kw)−→
∏

w1∈NI

End(Kw1) ⊗̂
∏

w2∈NI

End(Kw2) . (4.44)

It is straightforward to check that the map Ψ of formula (4.40) intertwines the coproduct

on A of formulas (2.18)–(2.20) with the coproduct (4.44). Explicitly, this boils down to

the commutativity of the following squares, which we leave as exercises for the interested
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reader:

Kw

Υ

��

Fi(z)

��

Ei(z)

��H±
i (z) �� Kw

Υ

��
Kw1 ⊗Kw2

Fi(z)⊗H−
i (z)+1⊗Fi(z)

��

Ei(z)⊗1+H+
i (z)⊗Ei(z)

��H±
i (z)⊗H±

i (z) �� Kw1 ⊗Kw2

,

(with Ei(z) =
∑

d∈Z

Ei,d

zd and Fi(z) =
∑

d∈Z

Fi,d

zd ) for any w =w1+w2 in NI .

4.21. The construction of the previous subsection (which is by now folklore among

experts) is quite straightforward, but unfortunately has a number of drawbacks. The

first is that it heavily uses equivariant localization. The second is that it produces only
the topological coproduct Δ, instead of the more desirable coproducts discussed in §3.22
(chief among which is the Drinfeld–Jimbo coproduct).

To remedy these issues, [22] suggested considering the attracting subvariety of the fixed-
point locus NC∗

v,w ↪→ Nv,w, as a replacement for the class ∧• (−T+∨) in formula (4.43).

Through a wide-reaching framework that pertains to conical symplectic resolutions, [18]

defined a specific class on the disjoint union of all attracting subvarieties, called the stable
basis, which gives a better analogue of the map (4.43). The K -theoretic version of this

construction was developed in [1, 32, 33, 34], yielding a map

Υm :Kv,w −→
⊕

v=v1+v2

Kv1,w1 ⊗Kv2,w2 (4.45)

for any decomposition w=w1+w2 in NI and any m∈QI . As explained in [18], applying
the FRT formalism to the maps (4.45) gives rise to a Hopf algebra

Uq

(
ĝQ

)⊂ ∏
w∈NI

End(Kw). (4.46)

A well-known conjecture in the field (see [36, Conjecture 1.2] or [40, Conjecture] for various

incarnations) posits that the integral version of the Hopf algebra (4.46) is isomorphic to
the double K -theoretic Hall algebra (4.7). As the localization (4.9) was shown to be

isomorphic to the shuffle algebra S in [31], we propose the following:

Conjecture 4.22. The map (4.40) yields an isomorphism A∼= Uq

(
ĝQ

)
.

We remark that the definition of Uq

(
ĝQ

)
relies on many choices that we do not recall

here: chambers, alcoves, polarization (see [34] for an overview). An essential precondition

to proving Conjecture 4.22 is to properly make these choices such that the map (4.40)

indeed maps A into Uq

(
ĝQ

)
, although this is straightforward.
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4.23. In comparing the maps (4.45) for m−ε and m+ε (for some ε ∈QI
+ very close

to 0), the application of the FRT formalism in [34] yields subalgebras

Uq

(
gQm

)⊂ Uq

(
ĝQ

)
(4.47)

for any m ∈ QI . We expect Conjecture 4.22 to match these subalgebras to the slope
subalgebras of §3.9 – that is, there should be a commutative diagram

A ∼ �� Uq

(
ĝQ

)

Bm

��

��

∼ �� Uq

(
gQm

)
,

��

��

where the leftmost vertical map is prescribed by Proposition 3.10. Moreover, the
factorization (3.53) should match the analogous factorization of the universal R-matrix

of Uq

(
ĝQ

)
into the universal R-matrices of the subalgebras Uq

(
gQm+rθ

)
, which is quite

tautological in the construction of [34].

Of particular interest is the case m = 0 of the subalgebra (4.47), which is a q-

deformation of the universal enveloping algebra of the Lie algebra gQ defined by [18].
Okounkov conjectured that the graded dimension of the latter Lie algebra should be

equal to the value of the Kac polynomial of the quiver Q. If we knew that B0
∼= Uq

(
gQ0

)
,

then this conjecture would be equivalent to Conjecture 4.5.
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