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Abstract. We study the moduli space of pluriregular threefolds of general type
with K3

X ¼ 8; 10; 12 and pgðXÞ ¼ 5 and whose canonical map is a finite morphism
onto a smooth quadric Q � P4

C.

2000 Mathematics Subject Classification. 14J30, 14E20, 14J15.

1. Introduction. The classical method of classification of surfaces of general
type goes through the study of the canonical map. Although the extension of this
approach to higher dimensions fails to fill up the classification of varieties by means
of their birational invariants, a partial investigation may be done. In particular, one
can study the case in which the canonical map is generically finite.

If X is any algebraic n-fold of general type over the complex field C whose
canonical sheaf is nef and whose canonical map ’ is generically finite of degree d,
then Kn

X � dðpgðXÞ � nÞ. In [14] it is proved that if equality holds and KXj j has no
fixed components then it is base point free. In particular ’ is a morphism whose
image is a variety of minimal degree. If there are no exceptional curves, then ’ is also
flat and finite. Briefly, we call ’ a cover of degree d.

In this paper, we apply the theory of covers of degree d, developed in [6], [4] and
[5] to the case n ¼ 3 and d ¼ 4; 5; 6. (See [14] for the case n ¼ d ¼ 3, [10] for the
case n ¼ d ¼ 2 and [4] for the case n ¼ 2 and pgðXÞ ¼ 3.) In particular we prove the
following result.

Theorem. There exists an explicit construction for smooth, minimal, pluriregular
(this means h1

�
X;OX

�
¼ h2

�
X;OX

�
¼ 0), threefolds of general type X with pgðXÞ ¼ 5,

K 3
X ¼ 2d ¼ 8; 10; 12, whose canonical map is a cover %:X ! Q of degree d onto a

smooth quadric Q � P4
C.

In the cases K 3
X ¼ 8; 10 (resp. K 3

X ¼ 12) this is (resp. is not) the only possible
way to obtain every threefold with those invariants and with such a canonical map.
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Moreover, in the case d ¼ 4, we also give a rough description of the locus
Mquadric

8;5 of such kind of threefolds, inside the moduli space M8;5 of smooth, plur-
iregular threefolds of general type X with pgðXÞ ¼ 5, K3

X ¼ 8: (See Section 5 for the
existence of M8;5.) More precisely we prove the following result.

=Theorem.Mquadric
8;5 is unirational of dimension 126. The unique component of M8;5

containing Mquadric
8;5 has dimension 128.

The general deformation of each threefold corresponding to a point of Mquadric
8;5 has

birational canonical morphism onto a hypersurface of degree 8 of P4
C with ordinary

singularities.

In Section 6 we give some partial results about covers of degree d ¼ 5; 6 of
smooth quadrics, whereas in the last section we give some examples of threefolds
of general type X with h1

�
X;OX

�
¼ h2

�
X;OX

�
¼ 0, K3

X ¼ dðpgðXÞ � 3Þ and odd
pgðXÞ � 7, as covers of threefolds of minimal degree in P

pgðXÞ�1

C
.

2. A result on covers. The aim of the following section is to list some results
regarding covers which will be helpful in the following sections (see [6], [4], [5]). We
begin by recalling the definition of cover. (See [9].)

Definition 2.1. Let Y be an integral scheme i.e. a noetherian scheme which is
separated and of finite type over C. Let X be another scheme with dim(X)=dim(Y).
A cover %:X ! Y is a flat and infinite morphism. Its degree deg(%) is the rank of the
locally free OY-sheaf %
OX.

If Y is smooth and X is Cohen-Macaulay, then every finite surjective morphism
is a cover.

If %:X ! Y is a cover of degree d, then we have the trace map %#:OY ! %
OX.
The locally free OY-sheaf �EE ¼ coker%# is called the Tschirnhausen module of % (see
[11]) and we have %
OX ffi OY 
 �EE. (Generalize the proof of Lemma 2.2 in [11].)

A cover %:X ! Y is called Gorenstein if the scheme-theoretic fibre %�1ðyÞ is
Gorenstein for every y 2 Y: this is equivalent to the invertibility of the relative
dualizing sheaf !XjY. If Y is Gorenstein, then % is Gorenstein if and only if X is also
Gorenstein. Relative duality yields %
 !XjY ffi OY 
 E.

Let %:X ! Y be a Gorenstein cover of degree d with Y integral and Tschirn-
hausen module �EE. It is shown in [6] that % factors through an embedding
i:X,!P :¼ PðEÞ followed by the canonical projection �:P ! Y.

In any case X is the zero locus D0ð�Þ of a section � 2 H0
�
P; �
 �FFð2Þ

�
, where F is a

locally free OY-sheaf of rank N :¼ dðd � 3Þ=2. E and F are called the invariants of %.
If ’:U ! V is a morphism between locally free OY-sheaves, Drð’Þ � Y denotes

the subscheme locally defined by the vanishing of the ðr þ 1Þ � ðr þ 1Þ-minors of a
local matrix of ’.

Let %:X ! Y be a Gorenstein cover of degree d � 3, where both X and Y are
Gorenstein. Since !X ffi !XjY �%
!Y the following proposition allows us to choose
the invariants E and F so as to ensure that % is the canonical map.

Proposition 2.2. Let both X and Y be integral, %:X ! Y be a Gorenstein cover
of degree d � 3, L 2 PicðYÞ and assume that E:¼ L


d�2

 L

2.
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The following assertions are equivalent:
(i) F :¼

�
L
2
�
N

, N:¼ dðd � 3Þ=2;
(ii) !XjY ffi %
L

2.

Proof. Choose linearly independent sections u1; . . . ; ud�2 2 H0
�
Y; E � L

�1
�

ffi

H0
�
P;OPð1Þ � �
L

�1
�
and ud�1 2 H0

�
Y; E � L

�2
�

ffi H0
�
P;OPð1Þ � �
L

�2
�
, where

P ¼ PðEÞ. Then each section � 2 H0
�
P; �
 �FFð2Þ

�
decomposes as

� ¼
Xd�2

i;j¼1

ai;juiuj þ 2
Xd�2

i¼1

biuiud�1 þ cu2d�1;

where ai;j 2 H0
�
Y; �FF � L

2
�
, bi 2 H0

�
Y; �FF � L

3
�
, c 2 H0

�
Y; �FF � L

4
�
.

If (i) holds, then the splitting type of F yields ai;j 2 H0
�
Y;OY

�N
, bi 2 H0

�
Y;L

�N
,

c 2 H0
�
Y;L2

�N
. In particular, X � P is the scheme-theoretic intersection of the N

hypersurfaces Qh of equations

qhðuÞ:¼
Xd�2

i;j¼1

a
ðhÞ

i;j uiuj þ 2
Xd�2

i¼1

b
ðhÞ

i uiud�1 þ cðhÞu2d�1; ð2:2:1Þ

where a
ðhÞ

i;j 2 H0
�
Y;OY

�
, b

ðhÞ

i 2 H0
�
Y;L

�
, cðhÞ 2 H0

�
Y;L2

�
. If U:¼ fud�1 ¼ 0g, then

X \ U is defined in U by the equations

bqhqhðuÞ:¼
Xd�2

i;j¼1

a
ðhÞ

i;j uiuj;

which do not depend on the point y 2 Y. Since U 6� X, there is y 2 Y such that
%�1ðyÞ \ U ¼ ; and hence X \ U ¼ ;. It follows that OX ffi OPðUÞjX ffi�
OPð1Þ � �
L

�2
�

jX
ffi !XjY �%
L

�2, i.e. !XjY ffi %
L
2.

Conversely assume (ii). By Proposition 5.1 of [6], we have the exact sequence

0�!F�! S
2

E �!
 
%
!

2
XjY�!0;

where %
!
2
XjY ffi L

2



�
L
3
�
d�2


 L
4 and S

2
E ffi

�
L
2
�
m



�
L
3
�
d�2


 L
4 (m:¼ d�1

2

� �
).

The matrix of  is

M :¼
a 0 0
D B 0
e f c

0@ 1A;
where a ¼ ða1; . . . ; amÞ, D ¼ di;j

� �
i¼1;...;d�2;j¼1;...;m

, e ¼ ðe1; . . . ; emÞ, B ¼ bi;j

� �
i;j¼1;...;d�2

,

f ¼ ð f1; . . . ; fd�2Þ and ai; bi;j; c 2 H0
�
Y;OY

�
, di;j; fi 2 H0

�
Y;L

�
and ei 2 H0

�
Y;L2

�
.

Since rk ¼ d, we have a 6¼ 0. Let

rk
B 0
f c

	 

� d � 2:
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Then the system M x ¼ 0 has a non-trivial solution x:¼ ð0; . . . ; 0; �1; . . . ; �d�2; qÞ,
where �i 2 C, q 2 H0

�
Y;L

�
; hence X � Q, where Q � P:¼ PðEÞ is the subscheme

defined by the global equation u0
�Pd�1

i¼1 �iui þ qu0
�

¼ 0.
If ð�1; . . . ; �d�2Þ 6¼ 0, then there are distinct subbundles Pi � P (i ¼ 1; 2) such

that Q ¼ P1 [ P2. Hence X ¼ ðX \ P1Þ [ ðX \ P2Þ. Since X \ Pi is an arithmetically
Gorenstein subscheme of Pd�2

C , its ideal is generated by quadrics so that X 6� Pi and
X would be reducible.

If ð�1; . . . ; �d�2Þ ¼ 0 then q 6¼ 0: hence the reduced scheme ðXÞred � fu0 ¼ 0g,
which is absurd since % is generically smooth, so that

rk
B 0
f c

	 

¼ d � 1:

Hence we may consider the morphism ’: %
!
2
XjY ! S

2
E associated to the matrix

M’:¼
a0 0 0
P B�1 0
Q R c�1

0@ 1A;
where a0 ¼ t ð0; . . . ; 0; 1Þ and P;Q;R are matrices uniquely determined by the con-
ditions Da0 þ BP ¼ ea0 þ fP þ cQ ¼ fB�1 þ cR ¼ 0. Since M � M’ ¼ I, it follows
that F ffi S

2
E=imð’Þ ffi

�
L
2
�
N

, where N:¼ m � d ¼ dðd � 3Þ=2. &

3. Existence results in dimension three. From now on let L 2 PicðYÞ,
E:¼ L


d�2

 L

2, P :¼ PðEÞ and F :¼
�
L
2
�
N

, N:¼ dðd � 3Þ=2. We list some Bertini
theorems which will be helpful in the following sections.

Proposition 3.1. Let Y be an integral threefold, d ¼ 4, L, E and F be as above.
The general section � of �
 �FFð2Þ defines a Gorenstein cover %:X :¼ D0ð�Þ ! Y of
degree 4 with invariants E and F .

If Y is smooth and projective and L is globally generated, then X is smooth and
connected.

Proof. The statement is a particular case of Theorem 4.5 of [6]. &

If d � 5 the general section � 2 H0
�
P; �
 �FFð2Þ

�
cannot define a cover of degree d,

since the codimension of D0ð�Þ inside P is N > d � 2. In [4] it is proved that for each
Gorenstein cover %:X ! Y of degree d ¼ 5 with invariants E and F , there exists a
skew-symmetric map �:�
Fð�1Þ ! �
 �FF � det E

�1 whose pfaffian locus inside P

(i.e. the subscheme locally defined by the 4 � 4-pfaffians of a local matrix of �)
coincides with X. We have the following result.

Proposition 3.2. Let Y be an integral threefold, d ¼ 5, L, E and F be as above.
The general skew-symmetric map �:�
Fð�1Þ ! �
 �FF � det E

�1 defines a Gorenstein
cover %:X ! Y of degree 5 with invariants E and F .

If Y is smooth and projective and L is globally generated, then X is smooth and
connected.
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Proof. Choose independent sections u; v;w 2 H0
�
Y; E � L

�1
�

ffi H0
�
P;OPð1Þ�

�
L
�1
�
and t 2 H0

�
Y; E � L

�2
�

ffi H0
�
P;OPð1Þ � �
L

�2
�
.

There is a decomposition � ¼ �tt þ �uu þ �vv þ �ww, where �u, �v and �w (resp. �t)
are 5 � 5 alternating matrices whose entries belong to H0

�
Y;OY

�
(resp. to

H0
�
Y;L

�
). Let Pf4ð�Þ be the ideal generated by the 4 � 4 pfaffians of a matrix of �

and set X:¼ VþðPf4ð�ÞÞ (for each ideal I, VþðIÞ denotes the variety associated to I ).
Let �0:¼ �uu þ �vv þ �ww and T :¼ ft ¼ 0g. If �0 6¼ 0, then there is y 2 P2

C such
that Py \ X \ T ¼ ;. Hence Py \ X is Gorenstein by [3]. It follows that Pf4ð�

0Þ is a
homogeneous, Gorenstein ideal and C½u; v;w!=Pf4ð�

0Þ is local and artinian. Since
Pf4ð�

0Þ does not depend on y it follows that X is fibrewise Gorenstein and X \ T ¼ ;.
In particular dimðX \ PyÞ ¼ 0 and degðX \ PyÞ ¼ dimCðC½u; v;w!=Pf4ð�

0ÞÞ is con-
stant. Hence %:¼ �jX is a cover. OX has a resolution of the form

0 ! OPð�5Þ � �
L
5

!
�
OPð�3Þ � �
L

3
�
5

�!
�

!
�
OPð�2Þ � �
L

2
�
5

! OP ! OX ! 0:
ð3:2:1Þ

Thus the invariants of % are E, F (by Theorem 2.1 of [6])) and deg % ¼ 5 (by (3.2.1)
and direct computation).

If L is globally generated, then H0
�
Y; �EE

�
¼ 0 and VþðPf4ð�ÞÞ is non-singular in

codimension 6. (See Section 6 of [3].) &

If d � 6 a description of covers of degree d is missing. In [5] a particular kind of
cover of degree d ¼ 6 called scandinavian is defined. Take two locally free OY-
sheaves A and B, both of rank 3. For each map �:�
Að�1Þ ! �
B we can consider
the locus X :¼ D1ð�Þ � P. If dimðYÞ � 2, it is proved in [5] that % :¼ �jX:X ! Y is a
cover of degree 6 with invariants E and F :¼ S

2
A � S

2 �BB under suitable hypotheses
on Y and the sheaves A, B and E. In the case dimðY Þ ¼ 3 we have the following result.

Proposition 3.3. Let Y be an integral threefold, d ¼ 6, and L, E, F be as above.
Define A:¼ OY


3, B:¼
�
L

�1
�
3

. The general map �:�
Að�1Þ ! �
B defines a scan-
dinavian cover %:X ! Y of degree 6 with invariants E and F .

If Y is smooth and projective and L is globally generated, then X is smooth and
connected.

Proof. We choose independent sections t; u; v;w 2 H0
�
Y; E � L

�1
�

ffi

H0
�
P;OP� �
L

�1
�
and s 2 H0

�
Y; E � L

�2
�

ffi H0
�
P;OP � �
L

�2
�
.

There is a decomposition � ¼ �ss þ �tt þ �uu þ �vv þ �ww, where �t; �u; �v; �w
(resp. �s) are defined by 3 � 3 matrices whose entries are in H0

�
Y;OY

�
(resp.

H0
�
Y;L

�
). Let X:¼ D1ð�Þ.

Let �0:¼ �tt þ �uu þ �vv þ �ww and S :¼ fs ¼ 0g. If �0 6¼ 0, as in the proof of the
previous proposition there is y 2 Y such that X \ Py is Gorenstein. (See [8].)
Moreover the ideal I2ð�

0Þ generated by the 2 � 2-minors of a matrix of �0 is homo-
geneous and Gorenstein. Also C½t; u; v;w!=I2ð�

0Þ is local and artinian, and
dimðX \ PyÞ ¼ 0, degðX \ PyÞ ¼ dimCðC½t; u; v;w!=I2ð�

0ÞÞ is constant, so that %:¼ �jX

is a cover. OX has a resolution as an OP-module of the form

0 ! OPð�6Þ � �
L
6

!
�
OPð�4Þ � �
L

4
�
9

!

!
�
OPð�3Þ � �
L

3
�
16

!
�
OPð�2Þ � �
L

2
�
9

! OP ! OX ! 0:
ð3:3:1Þ
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(See [8].) Hence the invariants of % are E, F , by Theorem 2.1 of [6], and deg % ¼ 6, by
(3.3.1) and direct computation.

If L is globally generated, then H0
�
Y; �EE

�
¼ 0 and D1ð�Þ is non-singular in co-

dimension 8. &

4. Pluriregular threefolds with pg=5. Let X be a smooth threefold. Recall that
the Riemann-Roch theorem for 2KX implies that K3

X ¼ 6
ðOXÞ þ 2
ð!2XÞ; thus, in
any case, K3

X is even, say K3
X ¼ 2d.

Assume pgðXÞ ¼ 5 and that X is pluriregular; i.e. h1
�
X;OX

�
¼ h2

�
X;OX

�
¼ 0. If

the canonical map ’X:X ! P4
C is finite, then X lies in finitely many families. In

particular if d � 4 (for the case d ¼ 3 see [14]) we have two interesting extremal
cases; i.e. X is either a double cover of a threefold of degree d or a d-fold cover of a
quadric. In this section we study this second case.

Theorem 4.1. There exist smooth, pluriregular, threefolds of general type X with
pgðXÞ ¼ 5, K3

X ¼ 2d ¼ 8; 10; 12, whose canonical map is cover %:X ! Q of degree d
onto a smooth quadric Q � P4

C, with E ffi OQð2Þ

d�2


 OQð4Þ.

Proof. Notice that OQð2Þ is globally generated and hence we may apply Propo-
sitions 3.1, 3.2, 3.3 with Y ¼ Q and L:¼ OQð2Þ in order to build covers %:X ! Q.
The canonical map of X is % by Proposition 2.2. &

In particular in the cases d ¼ 4; 5 we can also prove the converse of the above
theorem. Let S be the spinor sheaf on Q. (See [12] for the definition and properties
of S.) We begin by proving the following result.

Proposition 4.2. Let X be a smooth, pluriregular threefold of general type with
pgðXÞ ¼ 5, K3

X ¼ 2d.
Assume that KXj j has no fixed part and that the canonical map is a cover

%:X ! Q � P4
C of degree d onto a smooth quadric.

Then there exists p � 0 such that E ffi Sð2Þ
p


 Sð3Þ
p


 OQð2Þ
d�2�4p


 OQð4Þ.

Proof. Since !X ¼ %
OQð1Þ, we have !XjQ ¼ %
OQð4Þ. Moreover the isomorphism

OQð�4Þ 
 Eð�4Þ ¼
�
%
!XjQ

�
ð�4Þ ¼ %
OX ¼ OQ 
 �EE ð4:2:1Þ

gives rise to a factorization of the identity on OQ as OQ �!
i

OQð�4Þ 
 Eð�4Þ�!
r

OQ. Since h0
�
Q;OQð�4Þ

�
¼ 0, it follows that both i and r split through Eð�4Þ. Hence

OQð4Þ is a direct summand of E.
Since !X ffi %
OQð1Þ is ample and X is pluriregular one gets

hi
�
Q; ð%


�EEÞðnÞ
�

¼ hi
�
X; ð%
OXÞðnÞ

�
¼ hi

�
X; !n

X

�
¼ 0 ði ¼ 1; 2Þ;

by the Kodaira vanishing theorem. It follows that Horrocks’ theorem (see [1, Cor-
ollary 6.8]) gives us
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E ffi
Mh

i¼1

Sð�iÞ 

Md�2

j¼2hþ1

OQð�jÞ 
 OQð4Þ; ð4:2:2Þ

where S is the spinor sheaf on Q (which is locally free of rank 2) and �j, �i are
suitable integers.

In order to compute �j and �i, we fix a general hyperplane section Q � Q. Then
both Q and X:¼ %�1ðQÞ are smooth and connected and %:¼ %

jX is a cover of degree
d. It follows that the dualized Tschirnhausen module of % is E:¼ E � OQ.

By adjunction on X we obtain !X ffi %
OQð2Þ. It follows that hi
�
X; %
OQðtÞ

�
¼ 0

for t � 3 and i � 1. Moreover 
ðOXÞ ¼ 
ð!XÞ ¼ 
ð!2XÞ � 
ð!XÞ ¼ d þ 8 by Riemann-
Roch. It follows also from Riemann-Roch for %
OQðtÞ that

h0
�
Q; �EEðtÞ

�
¼ dtðt � 2Þ þ d þ 8 � ðt þ 1Þ

2; t � 3: ð4:2:3Þ

In Theorem 1.4 and Example 1.5 of [12] it is proved that S � OQ ffi OQð�1; 0Þ


OQð0;�1Þ. Then formula (4.2.2) yields

E ffi
Mh

i¼1

OQð�i � 1; �iÞ 
 OQð�i; �i � 1Þ


 �



Md�2

j¼2hþ1

OQð�jÞ 
 OQð4Þ: ð4:2:4Þ

By (4.2.1), we get

h0
�
Q;OQð�3Þ 
 Eð�3Þ

�
¼ h0

�
Q;OQð1Þ 


�
EEð1Þ

�
¼ h0

�
X; %
OQð1Þ

�
¼ 4:

Taking into account the isomorphism (4.2.4) we finally obtain 2 � �i � 3, and
�j ¼ 2.

Let 1 � p � h be such that �i ¼ 2 for i ¼ 1; . . . ; p, �i ¼ 3 for i ¼ p þ 1; . . . ; h.
Comparing formulas (4.2.3) and (4.2.4), for any t � 3, we obtain h ¼ 2p. &

With the notations of the proof above, since 4p � d � 2, it follows that if
d ¼ 4; 5 then p ¼ 0 necessarily. Hence we have the next result. See also Proposition
2.2.

Corollary 4.3. Let X and % be as in the above statement. If d ¼ 4; 5 then
E ffi OQð2Þ


d�2

 OQð4Þ and F ffi OQð4ÞN, where N ¼ dðd � 3Þ=2. &

The results above are sharp as the following example shows.

Example 4.4. Let E� :¼ Sð2Þ on a smooth quadric Q � P4
C. Theorem 2.8 of [12]

implies that H :¼ S
3

E� � det E
�1
� is globally generated. We conclude that the general

section � 2 H0
�
Q;H

�
defines a cover �:T ! Q of degree 3 with Tschirnhausen

module �EE� , where T is smooth. (See [6, Theorem 3.6].)

Now let L :¼ !�1
T � �
OQð1Þ. We have that �
L ffi �
ð!�1

TjQ � �
OQð4ÞÞ.
Duality for finite flat morphisms (see [9, Exercise III.6.10]) then yields
�
L ffi ð�
!

2
TjQÞ�� OQð4Þ.

Finally Proposition 5.1 of [6] implies that �
!
2
TjQ ffi S

2
E�. Then
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�
L ffi ðS
2 Sð4ÞÞ�� OQð4Þ ffi S

2 Sð2Þ;

which is globally generated (again by Theorem 2.8 of [12]). Since � is affine then the
natural map �
�
L ! L is surjective and therefore

H0
�
S;L

�
� OS ¼ H0

�
Q;S2 Sð2Þ

�
� OS ! �
 S

2 Sð2Þ �!
'
�
�
L ! L

is surjective too. In particular L is globally generated. Let �:X ! T be the double
cover associated to a general section of L

2, so that X is smooth. (For double covers
see Section I.17 of [2].)

The map % :¼ � ( �:X ! Q is a cover of degree 6. Moreover

%
OX ¼ �
�
OX ffi �
ðOT 
 L
�1

Þ ffi

ffi OQ 
 �SSð�2Þ 
 �
ð!SjQ � �
OQð�4ÞÞ ffi

ffi OQ 
 �SSð�2Þ 
 ððOQ � Sð2ÞÞ � OQð�4ÞÞ ffi

ffi OQ 
 �SSð�2Þ 
 �SSð�3Þ 
 OQð�4Þ:

Thus the Tschirnhausen module �EE of % satisfies E ffi Sð2Þ 
 Sð3Þ 
 OQð4Þ.
In particular hi

�
X;OX

�
¼ hi

�
Q; �EE

�
¼ 0 when i ¼ 1; 2; i.e. X is pluriregular, and

pgðSÞ ¼ h3
�
X;OX

�
¼ h3

�
Q; �EE

�
¼ 5. Finally notice that !X ffi �
ð!T � LÞ ffi %
OQð1Þ;

i.e. % is the canonical map.

5. Covers of degree 4 of a smooth quadric. Let M be the moduli space of
canonically polarized, smooth threefolds with Hilbert polynomial

hðtÞ :¼ 

�
!t

X

�
¼
1

6
tð2t � 1Þðt � 1Þd þ 8t � 4:

(See [17] for the existence of such an M.)
If X is a smooth, pluriregular threefold of general type with K3

X ¼ 2d and
pgðXÞ ¼ 5, then it represents a point ½X ! 2 M. The set M2d;5 of such points is open
inside M. In particular M2d;5 is a coarse moduli space for smooth pluriregular
threefolds of general type with K3

X ¼ 2d and pgðXÞ ¼ 5.
We denote by Mquadric

2d;5 the locus in M2d;5 of points representing threefolds X
whose canonical map %:X ! Q is a morphism onto a smooth quadric Q � P4

C.
As has been previously noted, the invariants of such a cover are

E ¼ OQð2Þ 
 OQð2Þ 
 OQð4Þ and F :¼ OQð4Þ

2, and X is the zero locus in PðE Þ of a

section � 2 H0
�
P; �
 �FFð2Þ

�
. Since, by the projection formula, H0

�
P; �
 �FFð2Þ

�
ffi

H0
�
Q;S2

E � �FF
�
, they form a unirational family F which is birationally isomorphic

to H0
�
Q;S2

E � �FF
�
=AutðFÞ and hence of dimension h0

�
Q;S2

E � �FF
�

� dimðAutðFÞÞ

¼ 168, since AutðFÞ ¼ GL2.
To compute dim

�
Mquadric

8;5

�
, one has to take away the dimension of the group

of automorphisms, which splits as G :¼ AutðEÞ=C


---� AutðQÞ. Now AutðQÞ is
10-dimensional, whereas AutðEÞ is formed by the order 3 non-degenerate square
matrices
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a1 a2 0
a3 a4 0
b1 b2 a5

0@ 1A;
where the a0

is are constants and bj 2 H0
�
Q;OQð2Þ

�
. Hence dimðAutðEÞÞ ¼ 32. Finally

the stabilizer in G of each general point in F is finite, since it is isomorphic to the
automorphism group of the corresponding threefold of general type. Therefore

dim
�
Mquadric

8;5

�
¼ 168 � 10 � 32 ¼ 126: ð5:1Þ

Something more can be said about the component of M8;5 to which those
threefolds belong. In fact, the splitting of the bundle E is compatible with the bundle
associated to a bidouble cover of the smooth quadric Q; i.e. a cover with an action
of the group Z2 � Z2 on the fibers compatible with the cover. (See [7] or [13, par. 3]),
branched on a divisor B ¼ 2D1 þ 2D2, where Di 2 H0

�
Q;OQð4Þ

�
. In other words,

the cover of degree 4 may be specialized to a bidouble cover.
Let %:X ! Q be such a cover: then one has the exact sequence of the normal

sheaf to the map %, namely

0 ! �X ! %
�Q !
M2
i¼1

ODi
ð4Þ 
 ODi

ð2Þ ! 0; ð5:2Þ

where � denotes the tangent sheaf. Recall that the above sequence induces a map
@:
L2

i¼1 H0
�
Di;ODi

ð4Þ 
 ODi
ð2Þ

�
! H1

�
X;�X

�
whose image imð@Þ locally para-

metrizes the family of the first order natural deformations of the bidouble cover in
M8;5. (For the definition of natural deformation see [7] or [13, par. 5].)

We denote by Mnatural
8;5 the locus inside M8;5 of points representing natural

deformations of bidouble covers.

Proposition 5.3. Mquadric
8;5 is unirational of dimension 126 and it coincides with the

family of natural deformations of bidouble covers of Q. The component of M8;5 con-
taining Mquadric

8;5 is unique and it has dimension 128.

Proof. By the projection formula hi
�
X; %
�Q

�
¼ hi

�
Q;�Q � %
OX

�
. With the

help of standard exact sequences it is not difficult to prove that

hi
�
X; %
�Q

�
¼

10 i ¼ 0;
2 i ¼ 1;
0 i � 2:

(

Moreover, since the Di’s are complete intersection surfaces in P4
C,

hi
�
Di;ODi

ð4Þ 
 ODi
ð2Þ

�
¼

54 þ 14 ¼ 68 i ¼ 0;
0 i � 1:

�
Finally H0

�
X;�X

�
¼ 0, because X is of general type. On the one hand it follows that

imð@Þ and hence Mnatural
8;5 has dimension 126. On the other hand Mnatural

8;5 � Mquadric
8;5

has dimension 126 too, by (5.1). We conclude that they must coincide.
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The cohomology of the sequence (5.2) therefore gives

hi
�
X;�X

�
¼

128 i ¼ 1;
0 i 6¼ 1:

�
Since a neighborhood of ½X! in M8;5 is the quotient of the base of the Kuranishi
family B ffi H1

�
X;�X

�
by AutðXÞ, it follows that Mquadric

8;5 is contained in a unique
component of M8;5. &

It is known that the locus Mbirational
8;5 � M8;5 of pluriregular threefolds X with

K3
X ¼ 8, pgðXÞ ¼ 5, having birational canonical morphism is irreducible of dimen-

sion 128. (See [15, Theorem 2.6].) The canonical images are hypersurfaces of degree
8 of P4

C, with a surface of degree 8 as locus of double points; (see [15, Example 2.4]).
The equation can be given as f4q

2 þ f2�q � �2 ¼ 0, where fi are general polynomials
of degree i, for i ¼ 2; 4, and q, � are the generators of the ideal of the surface of
double points, of degree 2 and 4 respectively.

One can observe that the graded canonical ring 
m2ZH0
�
X; !m

X

�
of such an X

has 5 generators in degree 1, one generator in degree 2 and 2 relations in degree 4
(Riemann-Roch for the plurigenera). This means that X may be thought of as the
complete intersection of two hypersurfaces of degree 4 in the weighted projective
space Pð1; 1; 1; 1; 1; 2Þ.

Let x0; ::; x4 be a system of generators of degree 1 and let y be a generator of
degree 2 for the canonical ring of X. One can suppose, without loss of generality, that
the equations defining X in Pð1; 1; 1; 1; 1; 2Þ (or equivalently, in PðOP4

C

 OP4

C
ð2ÞÞ; in

which case y is thought of as an affine variable), are

y2 þ �1ðxÞy þ �1ðxÞ ¼ y2 þ �2ðxÞy þ �2ðxÞ ¼ 0;

where �h 2 H0
�
P4

C;OP4
C
ð2Þ

�
and �h 2 H0

�
P4

C;OP4
C
ð4Þ

�
. The equation of X � P4

C

given above can be recovered by eliminating the y coordinate.

Proposition 5.4. For each threefold X representing a point in Mquadric
8;5 there exists

a 1-parameter family whose general point lies in Mbirational
8;5 .

Proof. Consider a threefold X in Mquadric
8;5 and its equations (2.2.1) in P :¼ PðEÞ.

We can embed P � P :¼ PðOP4
C


 OP4
C


 OP4
C
ð2ÞÞ.

With this in mind, up to a suitable linear transformation of u1; u2; u3, we can
assume that the equations of X in the open subset U :¼ fu3 6¼ 0g � P are

y21 þ a1ðxÞy2 þ b1ðxÞ ¼ y22 þ a2ðxÞy2 þ b2ðxÞ ¼ qðxÞ ¼ 0;

where yi ¼ ui=u3, ah 2 H0
�
P4

C;OP4
C
ð2Þ

�
, bh 2 H0

�
P4

C;OP4
C
ð4Þ

�
and Q ¼ fq ¼ 0g.

Consider Xt � P given by

y21 þ a1ðxÞy2 þ b1ðxÞ ¼ y22 þ a2ðxÞy2 þ b2ðxÞ ¼ ty2 þ qðxÞ ¼ 0:

(Notice that fty2 þ qðxÞ ¼ 0g ffi PðOP4
C


 OP4
C
ð2ÞÞ.) Then X0 ffi X, whereas if t 6¼ 0 we

can eliminate y2 from the third equation, thus obtaining a general threefold in
Mbirational

8;5 . &
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Corollary 5.5. The closure of Mbirational
8;5 in M8;5 is the unique component

containing Mquadric
8;5 .

Proof. It is an immediate consequence of Propositions 5.3 and 5.4. &

Remark 5.6. Consider the locus Mquartic
8;5 � M8;5 of points representing three-

folds X whose canonical map is a finite morphism of degree 2 onto a smooth quartic
F � P4

C. Then dim
�
Mquartic

8;5

�
¼ 113 and, as above, it can be proved that the unique

component of M8;5 is again the closure of Mbirational
8;5 . (See Remark 2.2 of [14].)

6. Covers of degree 5,6 of a smooth quadric. In this section we give some
information about the dimension of Mquadric

2d;5 , when d ¼ 5; 6.

6.1. d=5. Each cover of degree 5 of a smooth quadric of P4
C is the pfaffian

locus in PðEÞ of a section � 2 H0
�
P; �
�2F � �
 det E

�1
ð1Þ

�
, where E :¼ OQð2Þ


OQð2Þ 
 OQð2Þ 
 OQð4Þ and F :¼ OQð4Þ

5.

Since, by the projection formula, H0
�
H0

�
P; �
�2F � �
 det E

�1
ð1Þ

�
ffi

H0
�
Q;�2F � det E

�1
� E

�
, they form a unirational family given by

H0
�
Q;�2F � E � det E

�1
�
=AutðFÞ, which is thus of dimension

h0
�
Q;�2F � E � det E

�1
�

� dimðAutðFÞÞ ¼ 170 � 25 ¼ 145;

since AutðFÞ ¼ GL5.

Proposition 6.1.1. Mquadric
10;5 is unirational of dimension 84.

Proof. Again to compute dim
�
Mquadric

10;5

�
, one has to take away the dimension of

the group of automorphisms AutðEÞ=C


---� AutðQÞ. Now AutðEÞ is formed by the
order 4 non-degenerate square matrices

a1 a2 a3 0
a4 a5 a6 0
a7 a8 a9 0
b1 b2 b3 a10

0BB@
1CCA;

where the a0
is are constants and bj 2 H0

�
Q;OQð2Þ

�
. Hence dimðAutðEÞÞ ¼ 52, and the

stabilizer in G of each general point in F must be finite. (It is isomorphic to the
automorphism group of the corresponding threefold.) &

Notice that the locus Mbirational
10;5 of points of M10;5 representing threefolds whose

canonical map is birational has dimension 87. (See Theorem 4.5 of [15].)
Unfortunately such covers cannot be abelian. Thus we cannot compute the

dimension of the component of M10;5 of smooth, pluriregular threefolds of general
type X with K3

X ¼ 10, pgðXÞ ¼ 5 containing them via the method used in the previous
section for Mquadric

8;5 .

6.2. d=6. Now consider the case K3
X ¼ 12. Each scandinavian cover of a

smooth quadric of P4
C is the degeneracy locus D1ð�Þ � P :¼ PðEÞ of a section

� 2 H0
�
P; �
 �AA � �
Bð1Þ

�
ffi homOP

�
�
A; �
Bð1Þ

�
, where E :¼ OQð2Þ


4

 OQð4Þ,

A :¼ O

3
Q , B :¼ OP4

C
ð�2Þ


3.
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Notice that g :¼ ða; bÞ 2 G :¼ AutðAÞ � AutðBÞ acts on the above � by
gð�Þ ¼ b�ta. Hence the action of G has generic stabilizer G� :¼ fð�I3; �

�1I3Þj� 2 C


g.

Since H0
�
P; �
 �AA � �
Bð1Þ

�
ffi H0

�
Q; �AA � B � E

�
, scandinavian covers form a

unirational family F :¼ H0
�
Q; �AA � B � E

�
=ðAutðAÞ � AutðBÞÞ, whose dimension is

dimðF Þ ¼ h0
�
Q; �AA � B � E

�
� dimðAutðAÞÞ � dimðAutðBÞÞ þ 1 ¼ 162 � 17 ¼ 145,

since AutðAÞ ¼ AutðBÞ ¼ GL3.

Proposition 6.2.1. dim
�
Mquadric

12;5

�
� 63.

Proof. Mquadric
12;5 contains the locus Mscandinavian

12;5 of threefolds whose canonical map
is a scandinavian cover of a smooth quadric. (See the description above.) For com-
puting dim

�
Mscandinavian

12;5

�
one has to take away the dimension of the group of

automorphisms AutðEÞ=C


---� AutðQÞ. Now AutðEÞ is formed by the order 5 non-
degenerate square matrices

a1 a2 a3 a4 0
a5 a6 a7 a8 0
a9 a10 a11 a12 0
a13 a14 a15 a16 0
b1 b2 b3 b4 a17

0BBBB@
1CCCCA;

where the a0
is are constants and bj 2 H0

�
Q;OQð2Þ

�
. Hence dimðAutðEÞÞ ¼ 73. The

stabilizer in G of each general point in F is finite. &

Notice that the locus Mbirational
12;5 of points of M12;5 representing threefolds whose

canonical map is birational has dimension 67. (See Theorem 5.4 of [15]: the correct
value is 67 as it follows from the proof.) It could be interesting to check that
dimðMquadric

12;5 Þ ¼ dimðMscandinavian
12;5 Þ. If this is the case

dim
�
Mbirational

2d;5

�
¼ dim

�
Mquadric

2d;5

�
þ d � 2; d ¼ 3; 4; 5; 6:

Notice that Example 4.4 assures that Mscandinavian
12;5 6¼ Mquadric

12;5 .

7. Examples of pluriregular threefolds with odd pg � 7. Let X be a smooth
threefold. Assume that X is pluriregular, with K3

X ¼ dðpgðXÞ � 3Þ for pgðXÞ � 6.
Moreover we consider only the case in which KXj j has no fixed part and the cano-
nical map ’X:X ! P

pgðXÞ�1

C
is finite of degree d. (Hence KXj j is base-point-free.)

It follows that W:¼ ’XðXÞ � P
pgðXÞ�1

C
has minimal degree pgðXÞ � 3. Hence it is

a rational normal scroll. Let eWW be a minimal resolution of the singularities of W.
There are integers 0 � a1 � a2 � a3 such that

eWW ¼ PðOP1
C
ða1Þ 
 OP1

C
ða2Þ 
 OP1

C
ða3ÞÞ �!

j
W � P

pgðXÞ�1

C
:

The triple ða1; a2; a3Þ is called the type of the scroll W and we write Wða1;a2;a3Þ instead
of W. If a1 > 0 then W ¼ eWW. Otherwise W has at most rational singularities.

In what follows we shall assume that W is smooth. The embedding W � P
pgðXÞ�1

C

is induced by the tautological bundle OWð1Þ; hence pgðXÞ � 1 ¼ a1 þ a2 þ a3 þ 2. In
this case the canonical map is a cover %:X ! W of degree d.
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Recall that PicðWÞ ¼ ZOWð1Þ 
 Zp
OP1
C
ð1Þ, where p:W ! P1

C is the natural
projection.

Theorem 7.1. For each positive integer � � 2, each d ¼ 4; 5; 6 and each triple
1 < a1 � a2 � a3 with a1 þ a2 þ a3 ¼ 2�, 3a1 þ 1 � a2 þ a3, there exist smooth, plur-
iregular, threefolds of general type X with pgðXÞ ¼ 2�þ 3, K3

X ¼ 2�d, whose canonical
map are covers %:X ! Wða1;a2;a3Þ of degree d.

Proof. Fix n, d and ða1; a2; a3Þ as above and define 2�:¼ a1 þ a2 þ a3. The
invertible sheaf L:¼ OWð2Þ � p
OP1

C
ð1 � �Þ is globally generated if 2a1 � �� 1; i.e. if

3a1 þ 1 � a2 þ a3. Hence we can apply Propositions 3.1, 3.2 and 3.3 above and we
get covers %:X ! W of degree d with X smooth. Moreover

hi
�
X;OX

�
¼ hi

�
W; %
OX

�
¼ hi

�
W;OW

�
þ hi

�
W; �EE

�
;

where E:¼ L

d�2


 L
2. Since W is pluriregular and hi

�
W;L�1

�
¼ hi

�
W;L�2

�
¼ 0

for i ¼ 1; 2, each such X is pluriregular too.
Finally !W ¼ OWð�3Þ � p
OP1

C
ð2�� 2Þ. Hence

!X ¼ OWð4Þ � p
OP1
C
ð2 � 2�Þ � %
!W ¼ OWð1Þ ¼ ’


XOPn�1
C
:

It follows that pgðXÞ ¼ n and % is the canonical map of X: in particular K3
X ¼ 2�d. &

As an example, we now compute the number of moduli in the case K3
X ¼ 8�,

� � 2. Recall that L :¼ OWð2Þ � p
OP1
C
ð1 � �Þ where 2� :¼ a1 þ a2 þ a3.

Lemma 7.2. Let W ) P2�þ2
C be a nonsingular scroll of degree 2�. We have

h0
�
W;L

�
¼ 2�þ 12 þ h1

�
W;L

�
;

h0
�
W;L2

�
¼ 10�þ 45 þ h1

�
W;L2

�
;

h2
�
W;Lm

�
¼ h3

�
W;Lm

�
¼ 0; for m ¼ 1; 2:

Proof. Consider the exact sequence

0 ! OWð2mÞ � p
OP1
C
ðmð1 � �ÞÞ ! OWð2mÞ ! ODm

ð2mÞ ! 0;

where Dm 2 p
OP1
C
ðmð1 � �ÞÞ

��� ���. Owing to the smoothness of W each such general Dm

is formed by mð�� 1Þ disjoint planes.
Since the scrolls are projectively Cohen-Macaulay, the dimension of the linear

system cut by the hypersurfaces of the projective space depends only on the degree.
Therefore, we compute h0

�
W;OWð2mÞ

�
on a particular scroll by means of the pro-

jection p on P1
C. One has

h0
�
W;OWð2mÞ

�
¼ h0

�
P1

C;S
2m

ðOP1
C
ða1Þ 
 OP1

C
ða2Þ 
 OP1

C
ða3ÞÞ

�
:

The computation in the 3 cases ða; a; aÞ, ða; a; a þ 1Þ, ða; a þ 1; a þ 1Þ, depending
on the class of 2� modulo 3 (those are called balanced scrolls), by projecting on P1

C

gives h0
�
W;OWð2Þ

�
¼ 8�þ 6 and h0

�
W;OWð4Þ

�
¼ 40�þ 15.
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Moreover, h0
�
D1;OD1

ð2ÞÞ ¼ 6ð�� 1Þ and h0
�
D2;OD2

ð4HÞ
�

¼ 30ð�� 1Þ. Since
one has hi

�
W;OWð2mÞ

�
¼ 0, for m � 1, it follows from the exact sequence of

restriction that

h0
�
W;Lm

�
¼ h0

�
W;OWð2mÞ

�
� h0ðDm;ODm

ð2mÞ
�

þ h1ðW;Lm
�
:

Finally for m � 1 one has hi
�
Dm;ODm

ð2mÞ
�

¼ 0. &

Consider the balanced case when ða1; a2; a3Þ coincides with either ða; a; aÞ or
ða; a; a þ 1Þ or ða; a þ 1; a þ 1Þ according to the class of 2� modulo 3. Since
h1
�
W;Lm

�
¼ 0, m ¼ 1; 2, we obtain the family F :¼ H0

�
P; �
 �FFð2Þ

�
=AutðFÞ of

dimension

h0
�
P; �
 �FFð2Þ

�
� dimðAutðFÞÞ ¼ h0

�
W; �FF � S

2
E
�

� dimðGL2Þ ¼ 28�þ 140:

The corresponding moduli spaces Mscroll
8�;2�þ3;E of isomorphism classes of nonsingular

threefolds with pg ¼ 2�þ 3, K3
X ¼ 8� and canonical map of degree 4 with Tschirn-

hausen module E onto a smooth scroll W � P2�þ2
C is obtained by quotienting out the

automorphism group of P which is G ¼ AutðEÞ=C


---� AutðWÞ. As above the stabi-
lizer in G of each general point in F is finite, since it corresponds to the auto-
morphism group of the corresponding threefold of general type.

We have dimðAutðEÞÞ ¼ 5 þ 2h0
�
W;L

�
¼ 4�þ 28. Moreover AutðWÞ ¼

AutP1
C
ðWÞ ---� AutðP1

CÞ. (AutP1
C
ðWÞ is the group of the automorphisms of W fixing the

fibers of p.) Thus in the balanced case one always has dimðAutðWÞÞ ¼ 11. Therefore
we have a family of threefolds, up to isomorphism, of dimension 24�þ 101.

We remark that this number is the biggest we can obtain with the above
construction, since h0

�
W; �FF � S

2
E
�
decreases while dimðAutP1

C
ðWÞÞ increases for

unbalanced scrolls. Therefore we have the following result.

Proposition 7.3. Mscroll
8�;2�þ3;E is unirational of dimension 24�þ 101 for � � 2.
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