
Ergod. Th. & Dynam. Sys. (1985), 5, 449-472
Printed in Great Britain

A quantitative version of the
Kupka—Smale theorem

Y. YOMDIN

Ben Gurion University of the Negev, Beer-Sheva 84120, Israel

(Received 29 June 1984 and revised 10 December 1984)

Abstract. Let Mm be a compact, m-dimensional smooth manifold. The «-periodic
point x of a diffeomorphism f: M->M is called •y-hyperbolic, for y>0, if the
eigenvalues A, of df(x) satisfy | |A; |-1|>% j = l,...,m. We prove that any
C^-diffeomorphism f:M->M, fc>3, for any e > 0 can be e-approximated in
Cfc-norm by fE: M-* M such that for any n each n-periodic point of fe is (a(e))"°-
hyperbolic. Here a =\og2 (m

2 + mk + k-1) +1, a(e) = a0-e^m+l)lm2+mk+k~l) and
ao>0 depends on /

0. Introduction
A theorem of Kupka and Smale ([4], [7]) or, more precisely, one part of this theorem,
asserts that all the periodic points of a generic diffeomorphism (or closed orbits of
a generic flow) are hyperbolic. In many cases it is important to have more precise
information of this type. First of all, sometimes there are no periodic points at all
(or their existence is not known), while there are many recurrent trajectories. Thus
the natural question is whether one has generically some hyperbolicity of these
almost closed trajectories?

Another question, related to the first one, is the following: how does the 'hyperbo-
licity' (measured in one way or another) of periodic orbits of a typical flow depend
on the length of the period?

From the Kupka-Smale theorem it follows that given a flow v we can obtain, by
an arbitrary small perturbation, a new flow v' with all the closed orbits hyperbolic.
This property also leads to a natural quantitative question: how big a 'hyperbolicity'
of orbits of v' can we achieve, if the perturbations allowed should be bounded (in
some C^-metric) by given e>0?

The theorem of Kupka and Smale does not answer questions of this type, first
of all because the main tool in its proof- the transversality theorem (see [1], [8]) - is
essentially qualitative. In any application of transversality we obtain existence (and
genericity in one or another sense) of'non-degenerate' mappings, but no quantitative
information about the 'measure of non-degeneracy'. We find that the source of this
situation is the 'qualitativeness' of the Morse-Sard theorem (see [6]): it claims that
the set of critical values of a differentiable mapping is small, but gives no information
about the 'measure of regularity' of non-critical values.

In [10] the quantitative version of the Morse-Sard theorem was obtained. It gives
the sharp geometric restrictions on the set of 'near-critical', rather than exactly
critical, values of a differentiable mapping. Thus it allows one to describe the
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450 Y. Yomdin 

distribution of the values of this mapping with respect to the degree of their regularity. 
In [11] the corresponding general 'quantitative transversality theorem' is obtained. 

In the present paper we use this quantitative transversality theorem to obtain a 
quantitative version of (the first part of) the Kupka-Smale theorem, which, in 
particular, answers the above-stated questions. As a consequence we obtain some 
additional geometric information about closed (and almost-closed) orbits of a typical 
flow. In particular, we give a lower bound for the distance between any two closed 
trajectories of periods, not exceeding a given T, and the upper bound for the number 
of such trajectories. 

In fact, in this paper we need only the simplest case of a quantitative transversality 
theorem (and we give its simple proof in this special case in the addendum). The 
main difficulties in the proof of our version of Kupka-Smale theorem are of a 
'dynamical' nature. 

We do not touch in this paper the second part of the theorem of Kupka and 
Smale, namely, the question of transversality of stable and unstable manifolds of 
closed orbits. Here the quantitative results can be also obtained and they will appear 
separately. 

The approach to the study of closed orbits, based on quantitative transversality, 
was proposed by M. Gromov in [3]. I would like to thank M. Gromov for suggesting 
this question to me and for numerous useful discussions. I would also like to thank 
the Max-Planck-Institut fur Mathematik, where this paper was written, for its kind 
hospitality. 

1. Statement of main results and the sketch of the proof 
In this section we formulate our results only in the case of dynamical systems with 
discrete time (and the detailed proofs in §§ 2-5 below are also given only in this 
case). However, in § 6 we state the main theorems in the case of flows and describe 
the necessary (rather minor) modifications of the proofs in this case. 

Let X be a compact differentiable (C°°) manifold of dimension m. We fix some 
finite atlas (Us, s = 1 , . . . , p, on X, Vs: Us <= X, where B? is the unit ball 
in R m , such that all the derivatives of any fixed order of ^ J 1 ° ^ s , are bounded. We 
assume also that the images ^ S (B™) , s = 1 , . . . ,p of the open ball in R m of radius 
5, cover X. 

In addition, let some Riemannian metric on X be fixed. We denote by S the 
distance on X, defined by this metric. Denote by S0 the Lebesgue number of the 
covering Ą , ( 5 ™ ) , 5 = 1 , . . . , p, of X in the metric S; thus any two points xu x2 e X 
with 5(xux2)<80 belong to ^ S ( B | " ) for some s = I,...,p, and, in particular, 
x , , x 2 e Us. 

For k = 1,2,..., let Dk(X) be the space of fc-times continuously differentiable 
diffeomorphisms f:X^*X, with the metric dk defined by the atlas (U„ ^s). 

For / € Dk(X) we define the constants M , ( / ) , . . . , Mk{f) as 

M , ( / ) = max sup ° / ° * S ( ^ ; ' W ) | | , 
s,s' xe Lf„/(x)e 

M U / ) = M , ( r 1 ) . 
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Kupka-Smale theorem 451

In our quantitative version of the theorem of Kupka and Smale we consider not
only periodic, but also 'almost-periodic' points of a given diffeomorphism. In fact,
even if the final results are stated for periodic points only, in the proof we must
estimate deviations of orbits considered from a periodic behaviour. Thus we give
the following definition:

Definition (1.1). Let feDk(X), S>0 and neNbe given. The point xeX is called
(n, 8)-periodic for/ if 5(JC,/"(X))< 8.

In particular, for 5 = 0, an (n, 0)-periodic point is a periodic point of/ of period
n in the usual sense.

We also need some measure of hyperbolicity of almost periodic points. We obtain
this using the charts of the atlas (Us, ^s). Of course, for the usual periodic points
the definition below is the standard one.

Definition (1.2). For a linear mapping L:Um->Mm let y(L) = min1SjSm ||A,|-1|,
where At , . . . , Am are the eigenvalues of L.

Thus the linear mapping L is hyperbolic in the usual sense if and only if y(L)>0.

Definition (1.3). Let/e Dk{X) and let xe X be an (n, S)-periodic point of/ 8 < 80.
For y>0, the point x is called an (n, y)-hyperbolic (or simply y-hyperbolic) point
of/ if for any chart Us, containing both x and f"(x),

;1 of" > y.

Now we can formulate our main results. For m, k = 1, 2 , . . . denote by a(m, k) the
constant

a(m, k) = log2 (m
2 + mk'+k'-I) + I,

where k' = max (k, 3).

THEOREM (1.4). Let X be a compact smooth manifold of dimension m. In each space
Dk{X), k = 1,2,..., there is a dense subset Wk, such that diffeomorphisms fe Wk

have the following property:
For some constant a > 0 (depending onf) and each natural n, any (n, a"°)-periodic

point offis (n, a"")-hyperbolic, where a = a(m, k).

COROLLARY (1.5). For any fe Wk there are constants b>0 and C, depending onf,
such that:

(1) For any two periodic points x, ^ x2 off with periods < n, the distance 5(x,, x2)
is at least b"".

(2) The number of periodic points of f of period <n does not exceed C"°.

These results are implied by the following more precise statement:

THEOREM (1.6). Let fc>3 and let fe Dk(X) be given. Then there exist constants
ao>0 and eo>0, depending only on M, on the atlas (US,WS) and on
M,(/ ) , . . . , Mk(f), M'i(f), such that for any e > 0, e < e0, one can find fe Dk(X),
dk(f,f)^ e, with the following property: for each natural n, any (n, a(e)"°)-periodic
point offis (n, a(e)n°) -hyperbolic. Here a(e) = a0 • eS(«+t)('»I+'-*+fc-i)> a = a(m^ k)_
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Thus theorem 1.4, corollary 1.5 and theorem 1.6 answer the above stated questions, 
concerning the measure of hyperbolicity of periodic and almost periodic points of 
a typical, in some sense, diffeomorphism. 

The main open question concerning the results above is related to the following 
fact: the order of decrease of the hyperbolicity with the growth of the period, we 
obtain, is overexponential. In particular, our bound C" for the number of periodic 
points of periods < n increases overexponentially with n. (Our a = a (m, k) is greater 
than 1 for any m, k = 1, 2, The first values of a(m, k) are the following: 

On the other hand, the theorem of Artin and Masur [ 2 ] guarantees the exponential 
growth of the number of periodic points with the period for a dense set of 
diffeomorphisms. 

(Notice, however, that in the case of flows no bound seems to be known for the 
number of periodic orbits of period < T ; thus the bound of the form CT°, which 
we obtain in § 6 for a dense set of vector fields, seems to be new.) 

In some points of the proof, given in this paper, we use, for the sake of simplicity, 
rather rough estimates. This concerns, first of all, the variant of the quantitative 
transversality theorem we use: it takes into account only three times differentiability 
of the diffeomorphism / 

Thus the value of the 'overexponentiality index' a{m,k) can essentially be 
improved, at least for big k. However, our method does not allow one to get a = 1, 
i.e. the exponential rate, even if we use the best a priori possible estimates on each 
step. The technical reason is that we use some variant of the so-called Peixoto 
induction on the length of the period, and computations at this point lead to 
overexponentiality. 

In more geometric terms we can say, that overexponentiality in our estimates 
appears as a result of the same difficulty as in many other questions in dynamical 
systems: it is difficult to control the influence of perturbations on recurrent trajec­
tories. 

In the case X = S 1 and for the space D ^ S 1 ) of orientation-preserving diffeomorph­
isms this difficulty can be settled, and we obtain the following result (which is given 
here, as well as theorem 6.5, only to illustrate the above discussion; of course, in the 
one-dimensional case, much stronger results can be obtained). 

T H E O R E M (1.7). In each D£(S ' ) , k = 1 , 2 , . . . , there is a dense subset Wk, such that 
diffeomorphisms f e Wk have the following property: for some a>0, depending on f 
any (n, a")-periodic point of f is (n, a")-hyperbolic. 

Also in the general situation there is a possibility of controlling the influence of 
perturbations on some special kind of recurrent trajectories. This allows us to 
improve significantly our bounds and, presumably, to get exponential rate of the 
decreasing of hyperbolicity, in some additional situations. We hope to publish these 
results separately. 

a ( l , l ) = a ( l , 2 ) = a ( l , 3 ) = 3.585, 

a ( 2 , l ) = a ( 2 , 2 ) = a ( 2 , 3 ) = 4.585, 

a ( l , 4 ) = 4 , . . . 

a (2, 4) = 4 .907 , . . . ) . 
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Another important remark concerns the notion of genericity, appropriate for the
quantitative results above. If we consider the periodic points with periods not
exceeding some given number, then the set of diffeomorphisms, satisfying
inequalities of theorem 1.4 with some fixed a>0 (and with signs <, > instead of
<, >) is open, but not dense. Hence we cannot expect the set of'good' diffeomorph-
isms to be the countable intersection of everywhere dense open sets. In this paper
we prove only that the set of 'good' diffeomorphisms is dense. However, a much
more precise description of the geometry of this set is possible. This description
requires the infinite-dimensional version of the quantitative transversality theorem,
as well as some new notions concerning the geometry of infinite-dimensional spaces,
and it will appear separately.

In §§2-5 below we prove theorem 1.6, and then at the end of § 5 we obtain, as
easy consequences, theorem 1.4 and corollary 1.5. We do not prove in this paper
theorem 1.7 and the corresponding result for flows - theorem 6.5.

Since the proof of theorem 1.6 is rather long, we give here a short sketch of the
main steps.

First of all, we consider the family of perturbations f, of a given diffeomorphism
/ : X -* X. Here p > 0 is a real parameter and t is a collection of affine transformations
of Rm. Roughly, to obtain f,, we cover X by some family of balls of radius p,
perform on each ball the diffeomorphism, which is identical near the boundary and
coincides with the corresponding component of t on some smaller ball. Then we
take a composition of / with these diffeomorphisms.

The main property of these perturbations is the following: assume that xeX
belongs to one of the balls of the family above, while f(x), f2(x),... ,f~\x) lie
outside of it.

Let tj be the component of t, corresponding to our ball. Then ts acts non-
degenerately on/"(x), df"(x), and the measure of this non-degeneracy decreases
exponentially with n (see lemma 2.3 below).

Now the proof of theorem 1.6 goes through the induction on the length of the
period, similar to the Peixoto induction (see [1], [5]). Assume that for a given
diffeomorphism fe Dk(X), we can find / , e Dk{X), with dk(fuf) < e/2, such that
the property of theorem 1.6 is satisfied for all the almost periodic points of/! with
periods :£n.

Now we want to perturb/, slightly into/26 Dk(X), such that dk{fuf2)<e/4, the
'good' behaviour of points with periods s n is preserved, and all the almost periodic
points of f2 with periods between n and In satisfy the required conditions.

To do this we subdivide all the almost periodic points of fx with periods between
n and 2M into two parts: those which are 'simple', i.e. their 'intermediate' iterations
do not return too close to the initial point, and those whose orbits are 'almost
iterations' of shorter almost-closed orbits. Now the perturbations act non-degener-
ately on the points of the first type, and by transversality arguments we can find a
perturbation, making them hyperbolic. The points of the second type are hyperbolic
a priori, as iterations of points with shorter period, which are hyperbolic by the
induction assumption.
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This is the main step of the proof, where all the estimates come together and
where the rate of a hyperbolicity decrease is determined, so we describe it more
accurately.

For 17 > 0 we call the point x e X (q, r))-simple, if S(x,f(x)) > 17, j = 1 , . . . , q - 1 .
The main 'dynamical' ingredient in our proof is the following statement (see lemma
3.1 below): if the almost periodic point of period q is not (q, TJ)-simple (for
sufficiently small rj), it is an 'almost iteration' of an almost periodic point with
period l<q, dividing q, and the 'accuracy' of this almost iteration is of order C17.

Now denote the hyperbolicity of almost periodic points with periods <n of/, by
y,. If we want almost iterations of these points to be hyperbolic, the accuracy C2n-q
should be sufficiently small with respect to y,. This condition determines the value
of the parameter rj as a function of -y,. Fixing this 17, we obtain the hyperbolicity
of all the points with periods between n and 2n, which are not 77-simple.

If we want our perturbations f, to act non-degenerately on the 77-simple points,
we should have p sufficiently small with respect to 77, and this condition determines
the value of p as a function of yx.

Now the maximal value v of the parameter t in our perturbations/? is determined
by the condition dk(f2,fi)^e/4, which transforms into i><C\"pk- e (the smaller
value is the radius p of the balls, on which the perturbation is concentrated, the
smaller value should be t to keep the Ck norm e/4 of the perturbation). Thus in
turn we obtain v as a function of -y, and e.

Here we apply the quantitative transversality theorem (theorem 4.2 and its con-
clusion in our situation: lemma 4.4 below). We obtain the existence of the value t0

of the parameter t, such that | |/0 | | s v, and all the (q, -y2)-periodic and (q, i7)-simple
points of/2 =/?,«„ are y2-hyperbolic, for n < q < 2« where y2 is given as an expression
in terms of the maximal size v of the allowed perturbations. Thus we obtain at last
y2 as a function of y, and e.

Now proceeding by induction we build the sequence of diffeomorphisms
fuf2,...eDk(X), converging in the Ck-topology to s o m e / e D k ( X ) such that
dk(f,f)^e and for all i = 1,2,... and any q, 2/~'<<7<2', each (q, %) -periodic
point of / ' is %-hyperbolic. In the sequence yt each term yt is given by the
above-described expression through %_, and e. Solving this recurrent relation we
obtain the bounds for hyperbolicity, given in theorem 1.6.

The paper is organized in the following way: in § 2 we describe the perturbations
f, and their action on the diffeomorphism / and its iterations. In § 3 we prove that
the trajectory which is not 'simple' is an iteration of a shorter trajectory. In § 4 we
formulate the quantitative transversality theorem and apply it in our situation. In
§ 5 we complete the proof of the main results for the case of discrete time. In § 6
we formulate our results for the case of flows and indicate the necessary alterations
in the proofs. In the addendum we prove the special version of the quantitative
transversality theorem used in this paper.

2. Construction of perturbations and some preliminary results
First we construct some family of difleomorphisms of the Euclidean space Rm. Let
Lm be the space of linear mappings of Km with the standard norm, and let

L'm = {LeLm £
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Denote by T the direct product T = B™ x L'm, where Bf is, as above, the ball of
radius 5 centred at the origin of Rm.

Let us fix some C°°-smooth function w: [0,00) -»[0,00) such that « (x )= l for
0 < x < 1 and <u(x) = 0 for x>7 .

Now for any t = (t>, L) e T let h,: Rm -* Rm be defined by

One can choose a> in such a way that for any t e T, h,: Rm -» Um is a difieomorphism.
Now we translate diffeomorphisms fc, to the manifold X. Let some p>0, p s ^ ,

be given. Consider in BfcR"1 a regular i^p-net £, i = 1,2, Now for a given
v > 0, ^ < 1 and for i = 1, 2 , . . . , s = 1, . . . , p, define the difieomorphism h*£t :X-*X,
t € T, as follows:

for x e L/j, and /1 ££,(*) = x for x i2 L/s. (Here (Us, *f?s), s = 1 , . . . , p, is the above fixed
atlas on the manifold X.)

Thus the h^, are correctly defined diffeomorphisms, concentrated in the images
(under all the coordinate mappings ^ J of the balls of radius Ip, centred at the
points £.

The additional parameter v allows us to scale the perturbations without changing
the space of parameters.

Now let us fix some ordering /»£,", q = 1 , . . . , N(p), of all the diffeomorphisms
h<Xr- Let Tp = TNip). For any t = (*,,..., tN(p))e Tp define the diffeomorphism
h?":X->X as the composition

We perturb diffeomorphisms f:X-*X, composing them with /if". Let p and v be
fixed, 0 < p < 4 0< j 'S 1, and l e t / e Dk(X). For any ( e l p w e denote by/?1" (or,
shortly, by /,) the diffeomorphism / ° lif" e Dk(X).

The following properties of perturbations / can be proved by straightforward
computations:

LEMMA (2.1). Let p and v as above be fixed, and let fe Dk{X), k = 1,2, Then
there is a constant Ku depending only on Mi(f),..., Mk(J~), such that for any teTp

and for each natural n,

In particular, for any x e X,

where the norm is computed in any chart Us containing bothf"{x) andf{x).

(Here and below our notation is chosen in the following way: given a diffeomorphism
/ e Dk(X), we denote by Kj 'big', and by a, 'small' constants, depending only on
M\{f), M[(f),...,Mk(f), or on a part of these data, which will be used in the
course of the paper; C, and c, denote, respectively, 'big' and 'small' constants,
depending on the same data, which are used only inside the proof of some specific
estimate.)
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Now we show that our family of perturbations is big enough to act non-degener-
ately on any trajectory of f, which is sufficiently 'non-recurrent'. It is convenient to
define some auxiliary mapping to the first order jet-space, associated with/: X -» X.

Let /e Dk(X) be given and let p>0 , p < ^ , and v< 1 be fixed. Assume that for
a given subset Q<= X and for a natural n, Q and /"(<?), as well as /?((?) for any
t e Tp, are contained in the same coordinate neighbourhood Us. We fix this 5 and
define the mapping 4>s with respect to the local coordinates in Us: for xeQ,
*.(«, A; r) = (/?(*), d/T(*)).

We consider 3>s as the mapping

<i>s(n,x,-):Tp^UmxLm,

computing f"(x) in local coordinates in Us. To simplify the notation we omit indices
p, v in the notation for <1>S.

The restriction of <£s on any factor T in Tp = T"(p) is the mapping of the spaces
of the same dimension. We show that in our situation, for at least one factor T in
Tp this restriction is non-degenerate. As usual in our quantitative approach, we need
some measure of this non-degeneracy:

Definition (2.2). For a linear mapping L: IRp-» W define K(L) as the minimal
semiaxis of the ellipsoid L(B^)cUq, where Bp

x is the unit ball centred at the origin
of W.

Let S> 0 be a constant such that for any xx, x2eX, contained in some Us,

LEMMA (2.3). Letfe Dk(X), kz3. There are constants ax > 0, a2> 0, a3> 0 and K2,
depending only on M,(/), M\{f), M2(/), M3(/), with the following property:

Let p>0, p S g , be fixed, and let Q<=X be a subset of diameter < (1/10 S)p in
metric S.
Assume that for some n and for any xeQ, S(f(x), x) > 20 Sp, i = 1, 2 , . . . , n -1.
Then there exists j , 1 <_/' < N(p), such that for any v < a", JC e C? and teT,

(1) /c(d,<I)s(w, x, t))>a"vp, where Us is any chart containing Q andf",(Q) for t e 7*p.
Moreover , if viz a"p, we have in addition:

(2) Denote by $ : T-»Rm xLm the restriction of<$>s to the fth factor Tin Tp. Then
$ 15 one to one and for any r,, T2 e T,

/ First of all, we note that if we put ax = \/Ku where X, is the constant defined
in lemma 2.1, and if v< a", then for any xe Q and te T,

x),x)> 19 Sp, i = l n - 1 .

Since the diameter of Q is at most (l/10S)p, the set Wj\Q) is contained in the
ball B of radius p, centred at some point £ of the net, introduced in the definition
of the perturbations/?, while all the points ^7'(/!(x)), xe Q, te Tp, i = 1, . . . , n - 1,
lie outside the ball of radius lOp, centred at the same £.
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Now let hjf. = h?'s",. be the diffeomorphism of X corresponding to the point £
and to the chart Us. By the definition of h we obtain that hfj. acts as the affine
transformation f, e T on the initial point of any trajectory x,f,(x),... ,f"(x), xeQ,
and acts trivially on all the iterations. Straightforward computations of the differen-
tials now prove the inequality (1) of lemma 2.3.

To prove the property (2), we note that the norm of the second derivative of <I>
with respect to r e T, does not exceed Cv2 for any xeQ, teTp, where C depends
only on M,(/), M2(f), M3(/). This follows by direct computations of the derivatives

Now if the inequality Cnv2-^-^a2vp is satisfied, which is implied by the stronger
inequality v<a"p, where a3 = a2/IOC, then the second derivative of <1> does not
exceed xo of the 'non-degeneracy' of the first differential of <l>. The standard applica-
tion of the inverse function theorem now proves the second part of lemma 2.3, with
K2 = 2/a2. •

We also need some estimates concerning the behaviour of the 'hyperbolicity' of
a given mapping under perturbations. Recall that for a linear mapping L:Mm->Rm

the 'hyperbolicity' y(L) is defined as

y(L)= min ||A7-|-1|,
l<j<m

where A,,. . . , Am are the eigenvalues of L. The following two inequalities can be
proved by elementary linear algebra considerations:

LEMMA (2.4). Let LeLm, y(L)>0. Denote by M(L) the maximum of ||L||, ||L"'||.
Then for any A e Lm,

y(L+A)>y(L)-(4M(L)/r(L))||A||.

Now let Zm c Lm be the set of non-hyperbolic mappings, Zm={Le Lm: y(L) = 0}.
Clearly, Zm is a(semi-algebraic subset in Lm of codimension 1.

LEMMA (2.5). For any Le Lm,

y(L)>dist(L,Zm),

where dist (L,Zm) is the distance from L to the set Zm in the usual norm in Lm.

We return to diffeomorphisms f:X^X. If a closed orbit of/ is hyperbolic, then
all the iterations of this orbit are also hyperbolic. The following lemma gives
conditions under which 'almost iterations' of a hyperbolic almost closed orbit remain
hyperbolic.

LEMMA (2.6). Let feDk(X), (c>2, and let xeX be an (I, S)-periodic point off,
which is (/, y)-hyperbolic, 5>0, y>0.

For some n=pl and for any i, 0s i '<n , i = ql+ r, r<l, let the following inequality
be satisfied: S(fi(x),f(x)) < S. (I.e. the trajectory x,f(x),... ,f"{x) is thepth 'almost
iteration' of the trajectory x,f(x),... ,f'(x).)

Then the point x, which is, by assumption, (n, S)-periodicforf is (n, y')-hyperbolic,
with y'= y-K"8/y, where K3 depends only on M,(/), M2(/). In particular, for
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Proof. It is sufficient to make the computations in a fixed coordinate neighbourhood
t/j, containing all the points

xq=f"'(x), q = 0,l,...,p, xo = x.

We have: d/"(*) = #'(*„_,) ° df\xp^2) <>•••<> df'(x). Since | |d2/| | < C', where the
constant C depends only on M,(/), M2(/), and since, by assumption, S(x^ x)< 8,
q = 1,... ,p, we obtain:

II <*/'(*,)-<//'(*) l i fe's,

and we can write df'(xq) = d/'(x) + A^ where ||A4|| < C'& Hence

where

||

with C, =2C- M,(/). But

and ||[d/'(x)]p||<M;i(/), therefore by lemma 2.4,

where K3 = 4M, (/) C,. Substituting 5 = f • y2/ X 3", we obtain y' = (1 - £) y. •

3. Lemma on iterated almost periodic trajectories
This result, although elementary, is the main 'dynamical' ingredient of our proof.

The following statement is evident for usual periodic trajectories: iff"(x) = x and
if fix) =fj(x) for some 0< i<j<n, (i,j) # (0, n), then for some /< n, dividing n,
f{x) = x, and for any i, 0< i < M, i = ql+r, r<l, f'(x) =f{x); in other words, the
orbit x,f(x),... ,f"(x) is the «//'th iteration of the orbit x,f(x),... ,f'(x).

But in the case of almost periodic trajectory and 'almost closing' on some
intermediate step, we cannot expect a priori the behaviour similar to that described
above. Clearly there can be recurrent trajectories, which are not 'almost iterations'
of some shorter trajectory.

The following lemma shows that if the 'closing' of our trajectory at the end and
in the 'middle' is exponentially small with respect to the length of the trajectory,
then it behaves, essentially, as in the case of exactly closed trajectories, described
above.

LEMMA (3.1). Let fe Dk(X), fca 1. There exists a constant K4, depending only on
A î(/)> M\(f), such that the following alternative is satisfied:

For 8 > 0 and n e N, let x e X be an (n, 8) -periodic point off. Then for any ij > 8, either
(a) 8(f(x),fi(x))^r, for any 0</<;<«, (/,j)* (0, «); or
(b) there is l<n, dividing n, such that x is an (/, K^v)-periodic point off, and

for any i, 0 s i s « , i = ql+r, r<l,
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Proof. Let the assumption (a) be false. Then there are i <j, (i,j) ^ (0, n), such that
S(xh Xj) < T). (We write JC, for /'(*).) We find / < n, dividing n, such that S(x0, x,) <
K!}rj, using the Euclidean division algorithm. Denote j — i by b and let n = qb + r,
r<b.

LEMMA (3.2). In the situation considered,

8(xo,x,)<Cn
v,

where C depends only on M^f), M\{f).

Proof. First of all, we note that if 8{xt, *,)< a, then for any s, positive or negative,
8(xt+n xj+s) < MMa, where M = max (M,(/), M\(f)). Substituting s = -i, we get

Now, for any p^n/b,

Indeed, we have

$(xo,xb)<M"r},
8(xb,x2b)<Mn71,

Adding these inequalities we obtain

Now,

8(xqb, xn) < 8(xqb, xo) + 8(x0, xn) < (2Af )"ij + 5 < (3M)n7j,

since, by assumption, S < 17.
Finally, applying f~qb, we obtain 8(xO)xr)sM"(3M)"i), and the inequalities of

lemma 3.2 follow, if we put C = 3Af2. •

Now we apply the Euclidean algorithm to find the greatest common divisor of
numbers n and b:

n = qb + r,
b = qtr+ru

r = q2rt + r2,

rs-\ = <ls+\rS-

Here rs is the gcd of n and b. Put / = rs. By lemma 3.2,

8{xo,xb)<Cn
v,
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Applying lemma 3.2 once more to the orbit x 0 , . . . , x^ with = (0, r), we obtain 

8(x0,xr)^C"v, 

S(x0,xri)^Cb- C"v, 
and then, successively, 

8(x0,xri)<C+b

v, 

8(x0,xrJ^Cn+b+r+-+r-'V. 

Since the sum of the remainders r + r, + • • • + r s _ 2 in the Euclidean algorithm does 
not exceed n, we obtain 

£(*„,*/) ^ C 3 n 7 7 . 

Hence for any j , 8(xj, xj+l) < M"C 3 n 7), and for the same reason as above, 8(xj, xj+pl) < 
(2M)"C3nri, for any p, j such that 0 < j , j+pl^n. 

If we put K4 = 2MC3, we have 8(x0, x,)^K2v, S(xh xr)<K2-n for any «', 0 < i < n, 
i = ql+r, r<l. 

Lemma 3.1 is proved. •

4. Hyperbolization of simple trajectories 
In this section we show how to perturb a given diffeomorphism / : X -» X in order 
to obtain a new one y with all the 'simple' almost periodic points, up to some fixed 
period, hyperbolic. 

To get the required perturbation we apply the quantitative transversality theorem 
in its simplest form, concerning the case of 'empty intersections'. So first of all we 
state this theorem here. 

Although in our applications of quantitative transversality we work with the usual 
Lebesgue measure, it is convenient to formulate (and to prove) the theorem, using 
another geometric tool: the metric entropy (or capacity). 
Definition (4.1). Let A c R J be a bounded subset. For any £ > 0 define M ( £ A) as 
the minimal number of balls of radius f covering A. {H({A) = log 2 M ( £ A) is called 
the entropy of A ) 
Let QcR™ be a closed domain with the following property: 

for any xux2e Q there is a curve in Q, connecting x, and x2, of length < Sx || x2 - x, ||. 
Let F:QxBq-*U'' be a continuously differentiable mapping (where B" is the 

unit ball in Ή ) , satisfying the following conditions: 
(1) For any (x, t)eQxB", 

K F ( x , f ) N K , . 

(2) For any x e Q the mapping F(x, • ) :B '*^IR 9 i sone tooneandforany f,, t2e Bq, 

h2-ti^R2\\F{x,t2)-F(x,tl)l 

Let the bounded subsets AcQ and A'<= Ή be given. Define A F ( A ; A')<= Bq as the 
set of all te Bq such that for some x e A, F(x, t) e A'. 
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THEOREM (4.2). For any £>0 andfor £' =

£ A').
The proof of this theorem is given in the addendum. Roughly, theorem 4.2 is related
to the usual transversality theorem in the following way: in the above situation the
usual transversality results assert that if dim A + dim A' < q, then we can find t e Bq

such that F( •, t)(A) nA' = 0, while theorem 4.2 allows us to find £> 0, such that
for some teBq the image under F(-,t) of the $-neighbourhood of A does not
intersect the £-neighbourhood of A'.

Definition (4.3). For TJ>0 the point xeX is called an (n,-q)-simple point of a
diffeomorphism / : X -> X, if S(f(x), x) > 77 for j = 1, 2 , . . . , n - 1.

Below we fix some/e Dk{X), fc>3. Let T?>0 , T / < S be given. We fix p = TJ/IOOS.

(Here S is the transfer constant from metric 8 to metrics in coordinate neighbour-
hoods Us, defined in § 2.)

For any v, 0< v< 1, and for any f e Tp, let f, =/",'" be the perturbation of /
defined in § 2.

LEMMA (4.4). Let 17, ( X T J S S , be git;e«, and let p = TJ/IOOS. 77iere is a constant
a4> 0, depending only on M,(/), M',(/), M2(f), M3{f), such that for any natural N
andfor any v, 0<v<a™p (where a3 is the constant defined in lemma 2.3), there
exists toe Tpfor which the diffeomorphism f = f"0 has the following property:

for y = a™vm+xpm +m, and for any «<7V, each (n, r])-simple and (n, y)-periodic
point off is (n, y)-hyperbolic.

Proof. First, let us fix some n<N. Let Cl'n c X be the set of (n, 577)-simple points
off.

Consider the covering of X by the sets Q, of the following form: we subdivide
Rm into regular cubes with the edge r)v/l00(hfm S3M"(f), take the images of those
cubes which are contained in B™ under all the coordinate mappings ^ and fix
some ordering Q, of these images. (We assume that v>0, v<a"p, is fixed.)

Let fln be the union of those Q, which intersect O'n. Thus any (n, ^ - s imple
point of/ belongs to On. On the other hand, since \\df\\ s M,(fy < M,(/)n, by the
choice of the diameter of sets Qt we obtain that any point of £!„ is (n, |7j)-simple
for /

Let us consider the measure »< inRm xLm, proportional to the usual Lebesgue
measure and such that m( T) = 1, where T, as above, is the direct product of the
balls of radius 5 in Rm and Lm, respectively. By the same symbol m we denote the
corresponding product measure in Tp = TNip). Thus m. (Tp) = 1. We also denote by
/A the Lebesgue measure on X, associated with the above fixed Riemannian metric.

Let us fix some Q, <= £ln.
LEMMA (4.5). For A > 0, A < a"pv, let A,(A) c Tp denote the set of t e Tp, for which
there is some x e Qh such that x is an (n, A)-periodic but not an (n, A)-hyperbolicpoint
off",. Then

^(A1(A))sX5
n(l/^) '"+ 1(l/p) '"2 +Xa) • A,

where the constants a$ and K5 depend on the same parameters off as above.
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Proof. First we note that the conditions of lemma 2.3 are satisfied for / and any set
Qi as above. Indeed, by construction, the diameter of each Q, in the metric 8 does
not exceed TJ/100052 = P /10S . On the other hand, each point of <?, belongs to fin

and hence is (n,577)-simple, and 577 = (100/3)Sp>20 Sp.

Lemma 2.3 now guarantees the existence of the index j , such that the/th component
tj€ T of the parameter te Tp acts non-degenerately on the n'th iteration of/ at
points x € Qh

Let us fix this j and represent each t e Tp as t = {t', (,). Clearly, it is sufficient to
prove that for any t' the measure m{^,{\)) in T does not exceed the required
value, where A,,,.(A)c: T is the set of r= t,e T, for which (<', r)e A,(A).

Let us fix some t' and for a given T = (, e T denote by/T: X -* X the diffeomorphism
fr=fr,t = (t',T).

The following computations are made in some fixed coordinate neighbourhood
Un containing <?, and f"(Qi), TET.

Define the mapping * : Qi x T-> Rm x Lm by

We want to apply theorem 4.2 to the mapping 4>. We have:
(1) ||dx*|| < C , where the constant C depends only on M,(/), M2(f).
For any xeQ, the mapping 4>(x, • ) : T-»IRm xLm coincides, up to a parallel

translation, with the mapping $, defined in lemma 2.3(2). Since the condition
v< a"p of lemma 2.3 is also satisfied by our assumptions, this lemma gives us the
following:

(2) $(x, • ): T-*Um xLm is one to one and for any T,, T2€ T,

\\r2- T,|| s KXl/vp)\\*(x, r2) -1>(x, T,)||.

Thus the assumptions of theorem 4.2 are satisfied for 4> with constants Rt = C" and
R2 = K^l/jsp). The constant S,, characterizing the geometry of Qh in our case,
clearly, does not exceed S4.

As the set A we take all the <?,, Clearly, M(£ <?,)s C,/t(Q,) • (l/f)m, assuming
that ^<diam(?i, which is implied by the stronger inequality £<a"pv, a5 =
l/10S2M,(/). Here C, depends only on m and S.

As the set A' c Rm xLm we take some part of the 2A'-neighbourhood of OxZm,
where Zm is the set of non-hyperbolic linear mappings, defined in lemma 2.5, and
A' = SA.

The image <P(Qi*T) is contained in some ball B in UmxLm of radius
C • diam Qt + K"v^ C"v. Indeed, | |dx* | |sC", and, on the other hand, for each
reT,

by lemma 2.1. Finally, the diameter of any <?,, by construction, does not exceed v.
So we take as A' the 2A'-neighbourhood of (OxZm)nB in Rm xLm.
0 x Zm <= Um x Lm is a semialgebraic set of dimension m2 - 1, defined by a fixed

number of polynomial equations and inequalities of fixed degrees, depending only
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on m. Hence for the metric entropy of 0 x Zm we have the following inequality (see
e.g. [9], [10]):

LEMMA (4.6). For any ball B of radius r in Rm x Lm, and for any £> 0, f s r ,

where the constant C3 depends only on m.

COROLLARY (4.7). M(3A',A')sCJ(i'/A')m2-1.

Proof. Take a covering of (0 xZm) n B by balls of radius A'. Since the radius of the
ball B is equal to C"v, and since, by assumption, k'<Sa"pv< C"v, we can find
such a covering with the number of balls not exceeding

where C4=C3Cr2~'.
But then the balls of radius 3A', centred at the same points, cover the 2k'-

neighbourhood A' of (0 x Zm) n B.
Now we are ready to apply theorem 4.2. Put £ in this theorem equal to 3A'. We

obtain:

where

Now let C7 be the measure of the unit ball in Rm x Lm. The measure of the ball of
radius £' is hence equal to

Therefore we obtain:

To prove lemma 4.5 it remains to note that the set A^,(A), introduced above, is
contained in A*(A, A'). Indeed, reT belongs to AM.(A) if and only if there exists
xeQ, which is («, A)-periodic but not (n, A)-hyperbolic for/^ This means that
£(/?(*), x)< A or ||/?(x) -x | | < SA = A' in our fixed coordinate neighbourhood Us

and that the hyperbolicity y(dfl(x))< A <A', and by lemma 2.5 the distance of
df"T{x) to Zm in Lm does not exceed A'.

Hence <t>(x, T) = (/!J(x) - x, df\{x)) belongs to the 2A'-neighbourhood A' of 0 x Zm

in Rm x Lm, and by definition of A*(A, A'), r belongs to this set.
Lemma 4.5 is proved. •

COROLLARY (4.8). Let A"(A) be the set ofteTp for which there exists a point x e flm

which is (n, X)-periodic but not (n, A)-hyperbolic for fv Then, for A s a"pv,
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Proof. A"(A) = Uie/ A,(A), where / is the set of those i for which Qt<=£ln. Hence

since by definition of the covering Qh £ i e / fi(Qi) does not exceed some constant,
depending only on the compact manifold X and the atlas (Un ¥ , ) . •

COROLLARY (4.9). The measure of the set AJV(A), consisting of those t€ Tpfor which
there is at least one n^N and an (n, A) -periodic point ^efiB off, which is not
(n, A)-hyperbolic, does not exceed K?(l/i>)m+l(l/P)m2+m\.

Proof. AN(A) is the union of A"(A), n = 1,2,..., N. The additional factor N, which
appears in the bound for the measure of this union, enters in K?. •

Now we can complete the proof of lemma 4.4. By definition of our measure m on
T, m{Tp) = 1. Hence if we take y so small that the measure of the 'bad' set AN(y)
is strictly less than 1, we find the required t0.

Thus we put y = a^vm+xpml+m, where aA = ^K7, and take some toe Tp\A
N(y).

Then, by definition of AN(y), any (n, -y)-periodic point of f =fl0, belonging to
nn, is (n, y)-hyperbolic for / ' . It remains to observe that if xe X is (n, 7j)-simple
for/1, then (since, by assumption, v < a"p) lemma 2.1 implies that x is (n, ^-simple
for f and hence x e iln. Lemma 4.4 is proved. •

We can summarize our application of quantitative transversality as follows: the set
W of periodic and non-hyperbolic points in the first jet space has codimension
m + 1. Since dim X = m, the usual transversality theorem asserts that the measure
of those f € Tp, for which f,(X) intersects W, is zero. (Here / is the first jet extension
off)

The quantitative transversality theorem gives an upper bound for the measure of
those te Tp for which the distance between f,{X) and W is at most y. The main
point is that in this bound the factor y appears in the first power (which corresponds
to codim W - dim X = 1), and in particular, for y = 0 we once more obtain measure
zero. But we can find exactly the biggest y = y, for which the measure of the 'bad'
set of t is still strictly less than *n(Tp). Then taking some 'good' t0, we obtain fh

with distance between fh(X) and W at least y.

5. Proof of main results
In this section we prove first theorem 1.6 and then, as easy consequences, theorem
1.4 and corollary 1.5.

Let/eDf c(X), fc>3, be given. Define eo>0 as eo=ai, where the constant a3,
depending on M,(/), M',(/), M2(f), M3(f) was defined above.

Now let £>0, £<£0 be given. We define inductively the sequence yr(e), r =
0, 1, . . . , as follows:

yo(e) = a6e-+1; yr+l(e) = af'em+ly?(e),

where /3 = 2(m2+ mk+k- 1) and
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with the constants a3, a4, Ku K2, K3, KA and S, depending on X, Mx(f), M\(f),
M2(f), • • •, Mk{f), as defined above. (Below we shall shortly write yr instead of
yM.)

We subdivide all the periods of almost periodic points considered into the parts
between 2r~' and 2', r = 0 , 1 , . . . , and prove theorem 1.6 by induction on r. The
following lemma forms the initial step of our induction:

LEMMA (5.1). There exists/oe Dk(X), such that:
(1) dk(f0,f)^e/2;
(2) any (1, 2y0)-periodic (or, in other words, almost fixed) point off0 is (l,2y0)-

hyperbolic.

The proof will be given below. The next lemma forms the main step of the induction:
passing from r to r+ 1 (or from periods <2r to periods s2 r + l ) :

LEMMA (5.2). Let fre Dk(X) be given, satisfying the following conditions:
(1) dk(fnf)<e;
(2) for any i, 0< i < r, and for any n, 2'~l < n < 2', each (n, ^-periodic point off,

is (n, &)-hyperbolic, for some f, > y,, i = 0, 1 , . . . , r.
Then there exists a diffeomorphism / r + , e Dk{X) with the following properties:
(a) *( / ,+„ / , ) =se/2'+2;
(b) for any i, 0< i< r, and for any n, 21"1 < n<2' , each (n, (i -2~r~2) £•) -periodic

point offr+l is (n, (1 -2~r~2)£)-hyperbolic;
(c) for any n, 2 r < n < 2 r + l , each {n,2yr+i)-periodic point of fr+x is (n,2yr+,)-

hyperbolic.

The proof of lemma 5.2 is also given below. Now we complete the proof of theorem
1.6.

First let us take /0, whose existence is provided by lemma 5.1. Then we build,
starting from/0, and repeatedly applying lemma 5.2, the sequence of diffeomorphisms

This is possible, since at each step the conditions of lemma 5.2 are satisfied.
Indeed, assume that fo,---,f, can be built. By the property (a)

dk(fnf)^dk(fnfr_l) + -- • + dk(f0,f)^(2'r'1 + -- •+2-2)s<e.

So the condition (1) of lemma 5.2 is satisfied for/ r

Now fix some i, 0< i< r. By the property (c) of lemma 5.2, applied on the i'th
step, for any n, 2'~l < n < 2', each (n, 2y,)-periodic point of f is (n, 2y,)-hyperbolic.
In turn, by property (b), any (n, |j)-periodic point of fr is (n, fi)-hyperbolic, where

Hence the condition (2) of lemma 5.2 is also satisfied for /„ and, applying this
lemma, we can find / r + 1 with the required properties.

Now, by property (a) of lemma 5.2, the sequence fo,f\, . . . , / „ . . . converges in
Dk(X) to some diffeomorphism/'e Dk(X) with dk{f'J)<e.
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By the estimates above, for any i = 0 , 1 , 2 , . . . and for any n, 2' 1 < n < 2', each 
(«, | , )-periodic point of y is («, £)-hyperbolic, where 

6 = 2y, n ( i - 2 - ^ - 2 ) > r , 

It remains only to estimate yn defined by the recurrent equation above, and to pass 
from the representation of the period n as 2 r to the usual one. 

Denote e m + 1 by b and write a6 as a. We have 

7o= ab, yr+l = a2'+'byf. 
Hence 

-y, = a 2 &(ab)" = a ^ V ^ 
y2 = a22b(a2+pbl+p)p = af+w+e'bi+w1 

Since B = 2 ( m 2 + mk + k — 1) > 12 for m > 1, fc>3, we can write the expression for 
yr as follows: 

y = aPr(l+2/P+-+(2/P)r)^r(l + l/P + --+(l/P)'')> a$'bf' 

where a 7 = a | , b{ = b" = e " ( m + 1 ) . 
Now for any natural n each (n, y [ l o g 2 n ] + 1 ) -per iod ic point of f is

("> r [ i o g 2 n ] + i ) - h y p e r b o l i c , and we obtain: 

where a = log 2 B = log 2 ( m 2 + mfc + fc — 1) + 1 = a(m, k), and a(e) = {a1bl)p =

Theorem 1.6 is proved. •
Proof of lemma (5.1). We apply lemma 4.4 in the case N =1. Clearly, each point 
xeX is (1, 7})-simple for any 77>0, so we fix the maximal possible value of the 
parameter 77 = 5 and put p = p 0 = t j / 1005 = tss-

Now we choose the value of the parameter v. The first restriction is given by 
lemma 4.4: v<a3p0. Another restriction is given by the condition dk(f0,f)^e/2.
If we want this condition to be satisfied for any /?•", teTp, then, by lemma 2.1, we 
must have 

X , K l / p ) f c - 1 < e / 2 or v<(l/2Kl)pk-le. 

Since by assumption e s e 0 and fc a 3, this last inequality is stronger than the first 
one, so we put 

v0=(l/2Kt)pk-le. 

By lemma 4.4, there is t0e T^, such that any (1, y)-periodic point of f0= istt
(1, y)-hyperbolic, where 

„ , m+1 m2+m „ f i / ̂  is l)(m+l)„m + l m2+m-_^„ -i 
y = aAv0 p 0 = a 4 ( l / 2 X , ) v 'e p 0 & 2 a 6 e =2"y0-

Lemma 5.1 is proved. •
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Proof of lemma (5.2). Let the diffeomorphism fr e Dk(X), satisfying conditions (1)
and (2) of lemma 5.2, be given.

We shall find / r + 1 in the form / r + , = (/,)?'* for some values of real parameters p
and v and t € Tp. Let us describe the choice of parameters p and v.

First put T/ = 100S cf^y2., where Cj = X/lOOSK^K^M^f), and let p = Tj/100S =

Now we choose v. The first restriction on v is given by lemma 4.4: v < a | r p.
Another restriction is given by the condition dk(/r+,, fr) < 2~r~2e. According to lemma
2.1, this inequality is satisfied for any (/r)?'", if

or

This last inequality, in turn, is satisfied, if vsc^*ly2}k~l)e, where c2 = cSc~1(
Under the assumption e < e0 this last inequality is stronger than the first one,
i><a2'+'p, so we put

Now we apply lemma 4.4, with the parameters 77, p, p chosen as above and N = 2r+I.
Let toe Tp be the value of the parameter t given by lemma 4.4. We put/r+1 = (/r)^".

First the condition (a) of lemma 5.2 is satisfied for/r+, by the choice of v.
By lemma 4.4,/r+, has the following property: for any n < 2r+1, and, in particular,

for any n between 2r and 2r+1, each (n, i7)-simple and (n, -y)-periodic point of/r+1

is (n, y)-hyperbolic, where

y = aX*'vm+lpm2+m

_ nY+*l/,m+lx2p+1 -,2(m+l)(fc-l) m + 1/ m2+m\2'+l . 2(m2+m)
"" U 4 VL2 I Ir fc V c l ^ 7r

>2a2r+'em+17'2(m2+"1'c+fc"1)

= 2 f l r e m + 1 r f = 2yr+1,

where p = 2(m2+mk + k-\), a6 = |a4c2
n+1cr2+m.

Thus, we have already checked the required hyperbolicity for the almost periodic
points of/r+1, namely, for the («,2-yr+,)-periodic points with 2 r < n < 2 ' + l , which
are (n, 17)-simple.

Now let us show that the hyperbolicity of almost periodic points of fr with periods
<2r was not destroyed by our perturbation.

Indeed, by lemma 2.1, for any xeX,

«(/?(*),/^-i(*)) s Kf • vp < Kfcr'y2rik-l)sp s 2— 2
r , ,

by the choice of coefficients and since we can assume yr < 1.
HenceifthepointxeXis(n, (1 -2~r~2)£)-periodicfor/r+i, with some £ s %& yn

where 0< i< r, 21"1 <n<2", this point is also («, £,)-periodic for/^
By condition (2) of lemma 5.2, x is an (n, £,)-hyperbolic point for / r Now, by

lemma 2.1, in any coordinate neighbourhood containing both/"(x) and/?+i(x),

||d/7(x) - aTr+MW s x2V = xf cr'y?*-1^
<2-r-4(l/2M1(/))ry2<fc- ' ) ,

by the choice of the constants c2 and ct.
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Since ||d/"(x)|| < (2M,(/))2', we obtain, by lemma 2.4:

y{df"r+Ax)) ^ £ - (4/£)(2M,(/))2' • 2-r-4(l/2

Now £•> y,> %, and, by assumption, fc>3; therefore we have:

Thus for i = 0 , . . . , r and for any n, 2 ' " '<n<2 ' , each (n, (1 -2~r~2)£)-periodic
point of/r+, is (n, (1 -2~r~2)£,)-hyperbolic. This proves the conclusion (b) of
lemma 5.2.

It remains to check the conclusion (c) for the {n, 2yr+l)-periodic points of/r+1,
which are not («, T?)-simple, with n between 2r and 2r+l.

Let x e X be such a point. Since, by construction, -q s 2>v+i, we are in the situation
of lemma 3.1, namely, of the case (b) of this lemma. We conclude that there is /< n,
dividing n, such that x is an (/, Kl 17)-periodic point of/r+1, and for any j , 0<j'< n,

Find i such that 2'"1 < /< 2'. Since /< n and / divides n, we have /< n/2, and hence
i<r.

Now, by the choice of 17,

K 4 " ) , < K r ' i s ( i - r - 2 ) % < ( i - 2 - r - 2 ) i ,

Therefore the point x is (/, (1 -2~r~2)£,)-periodic for/r+1, and by conclusion (b) of
lemma 5.2, x is (/, (1 - 2 r"2)^,)-hyperbolic for/r+1.

Now we apply lemma 2.6. By the choice of 77,

S = K 1 V < K V - n ^ 2 - ' - \ \ - 2 - r - 2 2 2 r + ' 2

Hence, by lemma 2.6, x is an (n, f)-hyperbolic point of/r+i, where i = (1 -2"r2)2f, >
( l -2— 2 ) 2

r r >2y r + 1 .
Lemma 5.2 is proved. •

Proof of theorem (1.4). Theorem 1.4 follows immediately from theorem 1.6 if fc>3.
For k<3 the space D3(X)c Dfc(X) is dense in Dk{X) in dfc-metric. Hence the set
Wk= W3cz D3{X)<=- Dk(X) is dense in Dk(X) and has the property required in
theorem 1.4. •

Proof of corollary (1.5). We shall prove a somewhat more precise statement:

PROPOSITION (5.3). Letfe Wk c Dk(X). 77iere are constants bx >0,b2> 0, depending
on f with the following property:

For any two periodic points x, # x2 off with the shortest periods n, and «2, respectively,
n, < n2,

w/iere a = a(m, k).

Proof. Denote /"' by / By theorem 1.4, x, is a hyperbolic fixed point of / with
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Since the first and second derivatives of / are bounded by C"1, we can find a
neighbourhood U of x,, of 5-radius c"°, in which / is topologically conjugated to
a linear hyperbolic mapping. Consider the neighbourhood U' of x, of S-radius
c"°/C'"2. Then f{ [/') <= U for; = 1, 2 , . . . , n2. But since / is topologically a hyper-
bolic linear mapping in U, this implies that the only fixed point of/"2 in U' is xx.

Now x2 is a fixed point of/"2, and therefore x2£ t/'» o r

with 6i = c, b2= \/C. The proposition is proved. •

Now if n,, n2 <«, we obtain 5(x,, x2)<b"°ft"22(^1^2)"° = *"" since a = a(m, fc)>2
for w > 1, fc > 1. This proves that the distance between any two periodic points
Xi 7* x2 of / with periods s n is at least b"°.

Since the manifold X is compact, this implies immediately that the number of
periodic points of/with periods <n does not exceed C"°, where C = (K/b)m, with
K depending only on X. Corollary 1.5 is proved. •

Using deeper properties of hyperbolicity one can improve the result of proposition
5.3 and obtain additional information on the geometry of periodic trajectories of
/ e Wk. E.g. one has the following alternative: any closed trajectory of fe Wk of
period n is either iterated or (n, 77)-simple, with 77 = c"°. We do not touch on these
questions here.

6. The case of flows
In this section we formulate the quantitative Kupka-Smale theorem and its main
consequences in the case of flows and sketch the necessary alterations in proofs.

Let X be a compact m-dimensional smooth manifold, and let Vk(X), k = 1, . . . ,
be the space of fc-times continuously differentiable tangent vector fields on X.

As above, we assume that some Riemannian metric and some finite atlas on X
are fixed, and we denote by 8 and dk the distance in X and the C*-norm in Vk{X)
induced by this metric and atlas.

For v € Vk(X) we denote by <pv_,: X -» X the flow generated by the vector field v.
For the sake of simplicity we state our results only for exactly closed trajectories,

although the proofs necessarily involve consideration of almost-closed trajectories
and provide their hyperbolicity, as in the case of discrete time, considered above.

Definition (6.1). Let ve Vk(X) be given. For any xeX such that v(x) = 0, the
hyperbolicity y(x) of v at x is defined as y(x) = y(d<pv i(x)).

Let 10 be a closed trajectory of a period T>0 of v. The hyperbolicity y(u>) of v
on a> is defined as

where ^'tu:IRm~'-»Rm~1 is (the germ of) the Poincare mapping associated with the
closed trajectory w of v.

THEOREM (6.2). In each space Vk(X), k = 1 ,2, . . . , there is a dense subset W'k, such
that vector fields v € W'k have the following property: for some constant a > 0, depending
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on v:
(1) for each zero x of v, y(x) > a;
(2) for each closed trajectory w of v, of period T>0, y(w)>aT°, where a =

a'(m, k) = logV2(2rn(m + k'-2)), fc' = max(fc,3).

COROLLARY (6.3). For any ve W'k there are constants b>0 and C, depending on v,
such that:

(1) For any two closed orbits tu, 5̂  <u2 of v, with periods < T, the distance between
to, and a)2 (which is min S(xu x2), x, € wu x2e w2), is at least bT°;

(2) the number of closed orbits ofv with periods < T does not exceed CT°.
Here a, as above, is equal to a'{m, k).

As in the case of diffeomorphisms, theorem 6.2 is implied by the following more
precise statement:

THEOREM (6.4). Let veVk(X), fea3. There are constants eo>0, a ,>0, a2>0,
depending on v, such that for any e > 0, e < e0, one can find v'e Vk{X), dk(v', v) < e,
with the following properties:

(1) for any zero x of v', -y(x)>a,(e), where a,(e) = ale
m+1;

(2) for any closed orbit a> of v' of period T>0, y(w)>a2(e)T°, where a2(e) =
a2e^mHm+k-2),a = a'(m,k).

As in the case of difleomorphisms, overexponentiality in our bounds appears as the
result of the difficulty in controlling the behaviour of recurrent trajectories under
perturbation.

In the case of flows on compact orientable surfaces this difficulty can be settled,
and we obtain the following result, parallel to theorem 1.7 in the case of
diffeomorphisms:

THEOREM (6.5). Let X be a compact orientable surface. In each Vk(X), k = 1,2,...,
there is a dense subset W'i, such that vector fields v e W'i have the following property:

For some constant a > 0, depending on v, any zero of v is a-hyperbolic and any
closed trajectory wofv of period T is a1-hyperbolic.

The proof of theorem 6.4 goes as follows: first considering an appropriate space of
perturbations of vector fields of X and applying quantitative transversality theorem,
we obtain at once a new vector field v0, dk(v0, w)s e, with all its zeros having the
required hyperbolicity.

For this new field v0 one can easily prove that any non-constant closed trajectory
of v0 has length at least c, where c > 0 is some constant depending only on v.

We can also find a finite number of smoothly embedded m - 1 dimensional disks
Df <= X, such that any non-constant trajectory of v0 intersects transversally at least
one of the disks D,.

We can assume also that each disk D, has a neighbourhood Ut in X, diffeomorphic
to D, x [ - l , 1] and v0 under this diffeomorphism corresponds to the standard field
d/dt on A x [ - 1 , 1 ] .
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Now for any sufficiently small p > 0 and for v > 0, v < 1, we build, as in § 2, the
diffeomorphisms hf," of the disks D, into themselves, where te Tp.

By the standard construction, using the product structure of v0 near D,, we can
define the corresponding perturbations t>g;," of the vector field v0, which 'move' the
trajectory of v0 by fcf," along the disks Dt.

Now for any vector field w sufficiently close to v0, we define the mapping fw „
from the disks D, to themselves (the 'succession function' of the field w) as follows:
let xeDj and let <pWi,(x)eDf for some f, ( / i - l ) c < f < nc. Then we put/„,„(*) =
<pw,,(x)eDf.

The mappings fw„ are not everywhere defined on D,, and fwnp is not exactly the
iteration ( / , „ ) ' . But to any closed trajectory a> of the vector field w (of length T,
(n - l ) c < T < MC), there corresponds the fixed point x of/„,,„, belonging to one of
the disks D,, and the hyperbolicity of w is equal to the hyperbolicity of x.

Hence it is sufficient to prove the existence of v', with dk(v', v0) < e/2, for which
all the fixed points of /„,„, n = 1,2, . . . , have the required hyperbolicity.

But this proof goes exactly as in the case of diffeomorphisms. Indeed, our
perturbations w",'" of the vector field w, by construction, act on fw „ exactly as the
perturbations /?•" of § 2 act on a diffeomorphism / Hence all the estimates of § 2
remain valid. Lemma 3.1 on iterated almost closed trajectories also remains valid
with minor modifications.

The application of quantitative transversality and the Peixoto induction, complet-
ing the proof, actually go through without changes. The only difference is that here
we subdivide all the lengths of the periods into parts lying between (3/2)r and
(3/2)r+1 (and not between 2r and 2r+1, as in the case of diffeomorphisms), to avoid
the influence of non-integral lengths of considered almost closed trajectories. As a
result of this alteration, and since the dimension of the disks Dt is m — \, the new
value a'(m, k) of the overexponentiality index a appears.

Theorem 6.2 and corollary 6.3 follow from theorem 6.4 exactly as in the case of
discrete time.

7. Addendum
Here we prove theorem 4.2.

Let ( ?cR m b e a closed domain, such that any xu x2eQ can be joined in Q by
a curve of length < 5 , | | J C 2 - X , | | , and let F:QxBq^>Rq be the C1 mapping with
\\dxF(x, O H s R { for any (x, t)eQxB", such that for any xeQ, F(x, • ) : B " - > W is

one to one with

)ll, tut2eB«.

We fix A c Q and A' c U" and recall that AF( A, A') <= Bq is the set of all t e Bq such
that F(x, 0 £ A! for some x e A.

We want to give an upper bound for the number of balls of a given radius covering
*F(A.,A').

Consider in Q x B" the set 2 = {(x, t), xeA, F(x, t) e A'}. Then AF(A, A') = n(1),
where TT: Q X Bq -> Bq is the projection on the second factor. Since projection does
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not increase distances, for any f > 0 , 

M ( r , A f ( A , / 4 ' ) ) < M ( f , 2 ) . 

Hence it is sufficient to estimate the number of balls of a given radius covering 2 . 

Let F > 0 be given. We fix some coverings of A and A' by balls B„ i = 

1 , 2 , . . . , M ( £ A) and B'j, 7 = 1 , 2 , . . . , M ( £ A'), of radius £ 

Lemma ( 7 . 1 ) . For any i = 1 , . . . , M ( £ A) , _ / = ! , . . . , M ( £ A'), fne set 

2 1 . J = { ( x , f ) : x G B I , F ( x , 0 e B j } , 

is contained in some ball of radius £ in Qxf l" , where £ ' = 2 ( S , R 2 ( 1 + B-,) + 1 ) £ 

Proo/ Fix some point (x 0 , f 0 ) e 2 U and let (x, t) be some other point in 2 I > 7 . 

First, | | x - x 0 | | S 2 F , since x, x 0 E B,. By the conditions, we can join x and x 0 by 

some curve s in Q of length s S j x — x 0 | | S 2 S I £ 

Integrating along s and using the inequality | |d x F| | — we obtain: 

| | F ( x , f 0 ) - / r ( x 0 , t o ) N 2 S , R 1 e 
Hence 

|| F(x , 0 - F(x , t0) || < || F(x , 0 - F ( x 0 , t 0) || + II F(x, *0) - F ( x 0 , f0) || 

< 2 £ + 2 S , K , £ 

since both F(x , t) and F ( x 0 , f0) belong to Bj. 

By the conditions we obtain: 

| U - ( 0 | | < 2 R 2 ( 1 + S , J ? 1 ) ^ 

and combining this with | | x - x 0 | | S 2 ^ , 

| | ( x , t ) - ( x 0 , ï o ) | | S 2 I ? 2 ( l + S 1 J R L ) £ + 2 ^ < 2 ( / ? 2 5 1 ( l + « 1 ) + l ) f = r . 

The lemma is proved. •

Now the sets 2 , , , , i = 1 , . . . , M ( £ A), j" = 1 , . . . , M ( £ A'), cover 1, and hence 

M ( F , 2 ) < M ( £ A ) M ( £ A ' ) . 

Theorem 4 . 2 is proved. •
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