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Abstract

The population-based structural health monitoring paradigm has recently emerged as a promising approach to
enhance data-driven assessment of engineering structures by facilitating transfer learning between structures with
some degree of similarity. In this work, we apply this concept to the automated modal identification of structural
systems. We introduce a graph neural network (GNN)-based deep learning scheme to identify modal properties,
including natural frequencies, damping ratios, andmode shapes of engineering structures based on the power spectral
density of spatially sparse vibration measurements. Systematic numerical experiments are conducted to evaluate the
proposed model, employing two distinct truss populations that possess similar topological characteristics but varying
geometric (size and shape) andmaterial (stiffness) properties. The results demonstrate that, once trained, the proposed
GNN-basedmodel can identifymodal properties of unseen structures within the same structural populationwith good
efficiency and acceptable accuracy, even in the presence of measurement noise and sparse measurement locations.
The GNN-based model exhibits advantages over the classic frequency domain decomposition method in terms of
identification speed, as well as against an alternate multilayer perceptron architecture in terms of identification
accuracy, rendering this a promising tool for PBSHM purposes.

Impact Statement

We have developed a graph neural network (GNN)-based scheme for automated operational modal analysis.
Numerical experiments demonstrate that the proposed model can efficiently and effectively identify natural
frequencies, damping ratios, and mode shapes of different engineering structures that belong to a population.
Notably, the GNN-basedmodel outperforms the traditional frequency domain decompositionmethod in terms of
efficiency and surpasses a multilayer perceptron in accuracy, positioning it as a promising tool for population-
based structural health monitoring.
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1. Introduction

Structural healthmonitoring (SHM) has evolved into a useful tool for engineering practice, showcasing its
importance through various applications in the management and maintenance of engineering structures
(Farrar andWorden, 2012; An et al., 2019; Kamariotis et al., 2022). Although further steps are needed for
standardization of SHM schemes, which are often bespoke to the structure at hand, the overall practice has
matured, with the primary methods for extracting valuable information from SHM data categorized into
physics-based and data-driven approaches (Avendaño-Valencia et al., 2017; Karakostas et al., 2024). The
notable rise of data-driven approaches in recent years can be attributed not only to advancements in
powerful deep learning (DL) tools, which favor computation, but also to the apparent robustness of
schemes that capitalize on data against discrepancies between physical models and real-world structures
(Haywood-Alexander et al., 2023; Cicirello, 2024). However, these approaches face challenges in
interpretability and generalization, especially in civil engineering, where structures such as bridges are
often uniquely designed to meet site-specific requirements (Lei et al., 2023). Training data-driven models
with large datasets that represent a variety of structures can enhance their generalization capabilities.
However, data from real structures is often lacking in quantity and diversity, as SHM has predominantly
been applied to specific high-priority case studies due to budgetary and labor constraints. Consequently,
the rich and diverse datasets necessary for training learning (data-driven) models are generally unavail-
able (Sun et al., 2020). To address this challenge, new sensing technologies, such as mobile sensing
schemes (Jian et al., 2022, 2024; Stoura et al., 2023), are being developed to gather more measurement
data from a greater number of structures. Additionally, advanced analysis methods can be used to more
efficiently extract deeper insights from the available data. Treating structures as a population of shared
features could enable learning and knowledge transfer among group members. For instance, although
bridges are often unique, they can be categorized into broader typologies, such as truss or girder bridges.
This approach is embodied in the recently introduced concept of population-based SHM (PBSHM)
(Gosliga et al., 2022; Tsialiamanis et al., 2023, 2024; Bunce et al., 2024).

According to structural analysis theory, a population of structures can be represented by graphs that
share certain morphological or topological characteristics, despite each instance comprising unique
geometric or material properties. Following the logic of graph representations as suggested by Gosliga
et al. (2021), graph neural networks (GNNs) can work as efficient representations for PBSHM.GNNs are
a type of DL model that is specifically designed to operate on graph-structured data, comprising a set of
nodes and edges that capture interrelations among elements of the network. Comparedwith traditional DL
models, GNNs present several unique advantages (Sanchez-Lengeling et al., 2021) as follows:
(1) Flexibility: The flexibility of the GNN architecture allows it to handle graphs with varying node
counts and diverse connectivity patterns. This characteristic makes them particularly suitable forPBSHM-
related datasets, where structures within a population share similarities but also possess individual
differences. (2) Accuracy: GNNs are explicitly designed to handle data that is structured as graphs,
which can process data in three different spatial levels: node level, edge level, and graph level. The
message passing function of GNNs ensures more effective utilization of spatial information hidden in the
data, consequently enhancing accuracy in processing graph-structured data. (3) Interpretability: We can
naturally correlate data within a given dataset with the node-, edge-, and graph-level features of a GNN.
This characteristic facilitates a more straightforward interpretation of both the model itself and the
resulting outcomes.

Due to the above-mentioned advantages of GNNs, a number of studies have already attempted to
integrate GNNswith forward analysis tasks. Examples include the use of GNNs to predict the shear stress
inwall structures (Dupuy et al., 2023, 2024), airflow ofwind energy systems (Mylonas, 2021;Duthé et al.,
2023; Duthé et al., 2023), and estimating the main natural frequencies of truss structures given specific
environmental conditions (temperature) and different member types (Tsialiamanis et al., 2022). For SHM,
however, inverse problems play a more critical role, where the goal is to identify structural parameters
from measurements of structures and, thus, evaluate the condition of a monitored structure (Gallet et al.,
2022). To date, a paucity of studies involving GNNs for inverse problem solutions is noted. In this study,
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we take this task on by introducingGNNs for a fundamental SHM task, namelyOperationModalAnalysis
(OMA), aiming to identify modal properties of a structure based solely on measured vibration response
data (Reynders, 2012; Brincker and Ventura, 2015). As typically conducted within an OMA setting, the
identified modal properties can be used for downstream tasks, such as damage identification (Hou and
Xia, 2021;Gres et al., 2022;Greś et al., 2023) or response prediction (Lai et al., 2022).While conventional
automated OMA methods have been shown to be effective for individual structures, they are typically
applied independently and do not leverage population-level knowledge. The use of GNN for OMA could
generalize across a population of structures, enabling rapid modal parameter inference with minimal
additional computation. This makes it particularly advantageous for future big data applications, such as
monitoring large-scale infrastructure networks.

Given the background introduced above, this study proposes a novel DL architecture, with the GNN
serving as the pivotal building block, aimed at automatically performing output-only modal identification
for structures within a population. The key contributions of this study include the below:

• Wedesign the architecture of a GNN-based DLmodel, in which the structural population is modeled
by aGNN. Thismodel is trained to capture themeta behavior of the structural population, enabling it
to output natural frequencies, damping ratios, and mode shapes from the input, which is the power
spectral density (PSD) of the vibration acceleration on the structure nodes.

• We adopt the feature propagation (FP) algorithm to reconstruct the full-field acceleration PSD using
partial measurements of a small subset of structure nodes, in an effort to reflect a realistic SHM
context where only sparse dynamic responsemeasurements are available. The proposedGNN-based
model can then be used for modal identification based on the reconstructed PSD.

• We conduct a comprehensive set of numerical experiments using simulation data to evaluate the
proposed GNN-based model. The study examines multiple GNN architectures, incorporates abla-
tion studies, and evaluates performance under incomplete measurement conditions. Comparative
analyses are carried out against established modal identification methods. Furthermore, we inves-
tigate themodel’s sensitivity to power spectrum resolution, training set size, andmeasurement noise,
and assess its generalization capability across different structural populations. Both the accuracy and
computational efficiency of the model are rigorously analyzed.

2. Methodology

2.1. Problem formulation

Modal identification of structural systems plays a fundamental role in the context of SHM. In general, the
identification task aims at ascertaining the natural frequencies, damping ratios, and mode shapes of the
monitored structure by processingmeasurements relating to dynamic response (structural output), such as
accelerations, from a finite- and typically sparse set of degrees of freedom (DOFs). OMA schemes rely on
the use of output-only information under the assumption of broadband and random unmeasured
excitation. In keeping true to this requirement, this study employs Gaussian white noise to model the
excitation sources of the simulated structures.

To further define the problem, let us denote the available acceleration measurements as X tð Þ∈ℝN ×P,
where t represents the time components, N denotes the number of monitored DOFs, and P denotes the
number of available time samples per signal. In this study, we aim to learn a function func �ð Þ that can
identify natural frequencies, damping ratios, and mode shapes of the first k structural modes based on the
measured signals, X tð Þ. Then, the identification process can be expressed as:

F̂,Ẑ,Φ̂
� �

= func X tð Þð Þ (2.1)

where F̂∈ℝ1× k
> 0 , Ẑ∈ℝ1× k

> 0 , and Φ̂∈ℝN × k denote identified natural frequencies (in Hz), damping ratios,
and mode shapes, respectively.
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Within an OMA context, P is usually chosen to reflect a large number of time samples, since typically
long time series are required for the construction of the appropriate spectra. As a consequence, the input of
the DL model, X tð Þ, will comprise a high dimensionality, which is often undesirable as it compromises
efficiency (Van Der Maaten et al., 2009). Therefore, in this study, we reduce the dimension of X tð Þ by
employing the frequency domain representation of the measured signals, that is, the PSD. The converted
PSD is denoted asS fð Þ∈ℝN ×M

≥ 0 , where f denotes the frequency components andM is the dimension of the
PSD representation. Since the PSD contains only amplitude and not phase information of the time-history

signals, only absolute mode shapes Φ̂
�� ��∈ℝN × k

≥ 0 can be identified from the proposed approach, which are
nonetheless still meaningful for SHM tasks. Thus, the problem in this study can be reduced to learn a
function func �ð Þ that can be expressed as:

F̂, Ẑ, Φ̂
�� ��� �

= func S fð Þð Þ (2.2)

2.2. Model architecture

To obtain the modal identification function func �ð Þ shown in Equation (2.2), we design a DL model to

learn the mapping between S fð Þ and F̂,Ẑ, Φ̂
�� ��� �

. The architecture of the proposed model is visualized in
Figure 1.

As indicated in Figure 1, five DL blocks (marked in blue) are employed in the proposed model. Their
description is as follows:

• MLP1: Themultilayer perceptron (MLP) 1 block serves as an encoder that compresses the input data
S (M-dimensional) into more compact hidden featuresH1 (D-dimensional). This encoding process
is widely adopted in the design of DL models (Goodfellow et al., 2016). The ablation study
(Section 3.3) demonstrates that the usage of this block helps to improve the accuracy of the proposed
model.

• GNN: The main building block in the proposed architecture is the GNN, which is constructed on the
basis of engineering intuition. More specifically, as illustrated in Figure 2, we can reasonably
designate the joint locations of a structure as the nodes of the GNN and the structural elements
connecting those nodes (e.g., beams and truss bars) to correspond to the GNN edges. Unlike
common DL models, such as MLPs or convolutional neural networks (GNNs), where the number
of neurons is fixed, GNNs can process graphs of various configurations, corresponding to varying
numbers of nodes and edges (Zhou et al., 2020), which is particularly beneficial for PBSHM tasks,
since each structure usually comprises a different number of nodes and elements. The flexibility of
GNNs comes from their message passing mechanism, which aggregates information from neigh-
boring nodes rather than a fixed set of neurons, with the model parameters being shared across all
nodes and edges. Once the skeleton of theGNN is built, the input quantities need to be determined on
the basis of available measurements from the monitored systems. For the framework we propose, as

Figure 1. Architecture of the proposed model, in which the model input and output are marked in red,
hidden features are marked in yellow, and deep learning blocks are marked in blue.
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shown in Figure 2, this involves computation of the PSDs of vibration acceleration signals S, as well
as the absolute mode shapes Φ̂

�� �� as the node-level features of theGNN,while the natural frequencies
F̂ and damping ratios Ẑ serve as the graph-level features of the GNN. This study adopts an encoder-
decoder architecture, which implies that the GNN does not directly process S as the input to produce
Φ̂
�� ��, F̂, and Ẑ as the output. Instead, the GNN takes the encoded featuresH1 as the nodal input and
executes two individual tasks, which in Figure 1 are correspondingly indicated as the graph-level
task and the node-level task. The graph-level task corresponds to the “readout” operation, which is
essential for graph-level downstream tasks (Gilmer et al., 2017), and serves for generating a single
hidden feature H2 by aggregating node features. In parallel, the node-level task performs the
message passing operation, which is the GNN’s fundamental mechanism that allows nodes in a
graph to exchange informationwith their neighbors in order to exploit the interrelations that lie latent
in the graph-structured data (Wu et al., 2020). The product of the node-level task is the hidden feature
H3 on each node.

• MLP 2–4: Finally, three MLPs are employed as the decoder architecture in order to project the D-
dimensional hidden features back to the physical domain, yielding the modal properties of the first k
modes. TheMLP 2 andMLP 3 blocks decode the graph-level hidden featureH2, and thus output the
graph-level modal properties, which are natural frequencies F̂ and damping ratios Ẑ, respectively.
The MLP 4 block decodes the node-level hidden feature H3 and outputs the mode shapes Φ̂

�� �� of
every node.

2.3. Loss function

To train our model, we employ an objective function based on the mean squared error MSE:

L =
λ1
kN

XN
i = 1

Xk
j = 1

Φj ji,j� Φj ji,j
� �2

+
λ2
k

Xk
j = 1

F̂j

Fj
�1

� �2

+
λ3
k

Xk
j = 1

Ẑj

Zj
�1

� �2

(2.3)

where F, Z, and Φj j are the target natural frequencies, damping ratios, and absolute mode shapes,
respectively. These quantities are known during training, and the methods for deriving them will be
elaborated in Section 2.4. λ1, λ2, and λ3 are coefficients that are adopted to balance the contribution of the
individual components related to F,Z, and Φj j to the loss function. In this study, we determine λ1, λ2, and
λ3 by trial and error.

It is also noteworthy that, in this study, the PSDs (model input) and absolute mode shapes (model
output) are normalized by scaling their amplitudes to a maximum of 1 unit before training to boost the
generalization ability of the DL model. However, natural frequencies and damping ratios cannot be
normalized by max normalization because their original values matter, and this can cause imbalance
during model training. For instance, natural frequencies are generally much larger than damping ratios, so
the loss term regarding natural frequencieswill outweigh the damping ratio loss if they are not normalized.
To diminish this possible imbalance, as shown in the loss function, we normalize natural frequencies and

Figure 2.An example of the graph dataset used in this study. A truss structure can be naturally modeled as
a graph. See the text about the GNN block for more details.
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damping ratios by dividing the estimated values (model output, which are F̂, Ẑ) by their corresponding
target values (F, Z).

2.4. Framework

Based on the abovementioned problem formulation, model architecture, and loss function, the proposed
GNN-based PBSHM framework for modal identification is summarized in Figure 3, which shows that the
framework is divided into two stages, namely model training and model implementation.

In the model training stage, a subset of the structural population is used as a training set. To establish
such a population, numerical simulation is necessary. This is because, for real-world datasets, it remains
impractical to monitor the dynamic response of all DOFs across many structures, whereas full-field
measurements and mode shapes are required for supervised training. To address this challenge, we
generate a synthetic dataset based on randomly sampled structural geometries and material parameters,
modeled using the finite element method. The associated modal properties and complete acceleration
PSDs are computed through numerical analysis. This simulation-derived dataset provides the basis for
pretraining the proposed GNN model, allowing it to learn generalizable modal patterns across a diverse
structural population and then perform OMA for unseen structures.

In practice, GNN models trained solely on idealized, noise-free data are expected to show reduced
performance when applied to real-world OMA data due to the presence of measurement noise and
modeling uncertainties. To address this domain gap, we adopt a “pretraining followed by fine-tuning”
strategy. The model is first pretrained on large-scale synthetic data generated through eigenvalue analysis
to capture general modal patterns across diverse structural configurations. It is then fine-tuned using a
smaller set of manually validated OMA results from real structures, with finite element model updating
employed to improve simulation fidelity. While this fine-tuning process cannot surpass the inherent error
of the OMA labels, since the Bayes error bound (Fukunaga, 2013) imposes a theoretical lower limit, the
knowledge gained during pretraining enables the model to generalize across new structures and poten-
tially achieve comparable or improved performance to conventional OMA methods, particularly in
scenarios such as sparse sensing or large-scale population monitoring. This trade-off is appropriate for
a feasibility study whose aim is to demonstrate scalability and automation rather than deliver field-ready
performance.

Identified

Modal

Properties

Accurate

Modal

Properties

Identified

Modal

Properties

Loss function

Structure population

Training set Vibration acceleration Power spectral density GNN-based model

Testing set Vibration acceleration Power spectral density

Nodes and edges

Modal analysis/identification

1: Model training

2: Model implementationNodes and edges

Trained GNN-based model

Figure 3. Framework for using the GNN-based model for population-based structural modal identifi-
cation.
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Due to the lack of a real-world PBSHM dataset, in this study, we only verify the proposed model with
pure numerical experiments, so the fine-tuning part is not involved. More details about the dataset
generation can be seen in Section 3.1 below.

After the training is completed, the trained model can be readily used to automatically identify the
modal properties of other unseen structures within the structural population, even though their config-
urationmay be different fromwhat is met in the training set, that is, corresponding to a different number of
nodes and edges and connectivity. This identification process is end-to-end, automatic, and fast,
delivering a main advantage over existing modal identification schemes. A more detailed comparison
can be found in Section 3.5.

3. Numerical validation

In this section, we validate the proposed GNN-based model using numerical simulation data, to address
the following research questions:

• Question 1: Which type of GNN is most suitable for the population-based OMA task?
• Question 2: How do the DL components in the model architecture, particularly the GNN module,
contribute to overall model performance?

• Question 3: Can the proposed model reliably perform modal identification when the measurement
data are incomplete?

• Question 4: What are the strengths and limitations of the proposed model compared to existing
modal identification methods?

3.1. Dataset description and implementation details

The extraction of datasets from real-world structural populations is nontrivial, although recent efforts in
Asia (Moreu et al., 2018) and Europe (Limongelli et al., 2024) do involve denser instrumentation of
structural populations (such as bridges). These endeavors are expected to deliver datasets that can support
PBSHM tasks. However, these datasets have not been made public yet, so in this work, we initiate from
simulated scenarios for two datasets that correspond to two different truss populations.

The first truss population consists of 2,600 trusses, assumed to be arranged within a trapezoidal
boundary that is meant to approximate the geometrical configuration of simply-supported beam struc-
tures. Each truss is generated by randomly meshing the trapezoidal area with Delaunay triangles (Persson
and Strang, 2004), which ensures that no point lies inside the circumcircle of any triangle, resulting in
well-shaped elements with geometric stability. The first 2,500 trusses are used to train the model, among
which 2,000 trusses are used as the training set and 500 trusses are used as the validation set. The last
100 trusses from the 2,600 trusses are used to test the model. The geometric boundary and some generated
truss examples are shown in Figure 4a,c, respectively. Based on the generated geometric configurations,
the corresponding finite element models are straightforwardly created using truss elements with realistic
structural parameters. The density and area of truss elements are constantly set as 8,015 kg/m3 and 0.5m2,
respectively. In order to reflect varying material properties, the Young’s modulus of the employed truss
elements is set as a randomnumber ranging from 100 to 300GPa. Figure 4a further indicates the boundary
conditions (simply-supported type) and the external excitation (Gaussianwhite noise) that are imposed on
the bottom boundary. Linear time history analyses (Newmark-βmethod) are then performed to obtain the
in-plane vertical nodal acceleration (response) time series, of 60 s duration, sampled at a time step of
0.005 s (200 Hz). Welch’s method is next applied to convert the time series into PSDs, which serve as the
input of the suggested DL architecture. The pwelch function in MATLAB is configured as follows:
“nfft” = 2,048, “noverlap” = 1,024, hamming window applied, “window length” = 512, leading to the
PSD having a resolution of 1,024 spectral lines. Moreover, in Section 4.2, the proposed model is trained
and tested under three different PSD resolutions, which are 1,024, 512, and 256, to investigate its
sensitivity to the PSD resolution. An eigenvalue analysis is further conducted on all 2,600 finite element
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models, generating the reference modal properties of the primary (first four in our study) modes for model
training and testing. The widely accepted Rayleigh damping model is employed to simulate damping
effects. In particular, the modal damping ratio of the first and fifth vibration modes of every simulated
truss is set to 0.01, which allows a subsequent calculation of the Rayleigh model coefficients (α, β). These
two modes are chosen as they cover the modal range of interest for this study, which is the first four
vibration modes. It should be noted that, for model training, the complete full-field nodal acceleration
measurements are used, whereas the trained model is tested with both the complete and incomplete
measurements. More details in this regard are offered in Section 3.4.

In order to further test the generalization ability of the proposed model, we simulate a separate
structural population comprised of 100 samples that are meant to approximate the geometry of canti-
levered trusses. This population is unseen for the learning PBSHMmodel, which is trained on the simply-
supported structural population. As illustrated in Figure 4b, the second population only differs from the
first population in the structural supports. Except for the structural supports, all the other settings,
including geometric boundaries, material properties, and excitation, are the same as those of the first
structural population. More details in this regard can be found in the following Section 4.4.

The environment we implement our model in is set up in PyTorch 2.0.1, CUDA 11.7, and DGL 1.1.1.
The Adam optimizer is adopted to train our model with the default setting (learning rate: 0.002, first
momentum decaying parameter: 0.9, second momentum decaying parameter: 0.999), and we use a
NVIDIA GeForce RTX 3060 to accelerate the batch training process. The training batch size is 400, with
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Figure 4. Visualization of the two generated datasets: (a) Geometric configuration meant to approximate
a simply-supported truss population; (b) geometric configuration serving to approximate a cantilevered
truss population; (c) some representative truss samples from the two datasets (only nodes and elements

are displayed).
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5,000 epochs deployed. The MLPs and GNNs used in our study all have three layers, and the adopted
dimension is 64 for every layer. In the loss function, we set the coefficients λ1 (regarding mode shapes), λ2
(regarding natural frequencies), and λ3 (regarding damping ratios) as 2, 1, and 1, respectively. More
implementation details can be found in our GitHub repository (Jian, 2025), which will be made public
upon publication of this work. It should be noted that this article focuses on demonstrating the feasibility
of the proposed approach rather than presenting an optimal model with the best performance. We
conducted some hyperparameter tuning, though nonexhaustive, as we aim to show functionality of the
network without requiring such refined optimization. Interested readers may perform hyperparameter
tuning using our publicly available code.

3.2. Effects of different GNN models

Depending on the type ofmessage passing function that is adopted, different GNNmodeling instances can
be created. In this study, we compare three commonly used GNN models, namely graph convolutional
networks (GCNs, proposed by Kipf and Welling, 2016), graph attention networks (GATs, proposed by
Veličković et al., 2017), andGraphSAGE (proposed byHamilton et al., 2017). To control the comparison,
we only replace the GNN block in the model architecture shown in Figure 1 with different GNN models.
Then, different models are trained using the K-fold cross-validation, which means we evenly divide the
training set that consists of 2,500 trusses into 5 folds. In each training process, 4 folds of trusses (2,000 in
number) are used to train themodel, and the remaining 1 fold of trusses (500 in number) is used to validate
themodel.We train themodel five times, so that all the five folds can serve as the validation set in turn. The
mean values and standard deviation (SD) of the final validation loss and training time of the five training
processes are shown in Figure 5.

Based onFigure 5,we observe that theGraphSAGEmodel demonstrates superior performance, as both
its final validation loss and required training time are statistically smaller than the GCN and GATmodels.
This is because, according to Hamilton et al. (2017), GraphSAGE exhibits inductive learning capabilities,
scalability via neighborhood sampling, and flexibility in aggregation methods. These features render it
particularly suitable for large-scale and dynamic graphs, such as those employed herein within the
PBSHM context, where efficiency and the ability to handle new nodes without re-training are crucial.
GCNs are less scalable and inductive, while GATs offer sophisticated attention mechanisms at the cost of
increased computational complexity. As a result, hereafter, we choose to adopt the GraphSAGEmodel as
the GNN block, unless mentioned otherwise.

Figure 5. Comparison of different GNN models, using fivefold cross-validation during model training:
(a) Final validation loss and (b) total training time.
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Now that the particular type of GNNmodel is determined, it is necessary to elaborate on the details of
the training and testing process in order to comprehensively report on the proposedmodel. Figure 6 shows
the loss curves corresponding to one training process among the K-fold cross-validation. The total loss

(Equation 2.3), the loss terms regarding absolute mode shapes ( Φ̂
�� ��), damping ratios (Ẑ), and natural

frequencies (F̂) are all displayed.
Figure 6 allows for the following observations:

• The training loss results are smaller than the validation loss in Figure 6a, which is reasonable as the
validation loss is not used in backpropagation for updating the model weights.

• Nonetheless, the validation loss is introduced for decidingwhen to terminate the training process and
for facilitating the comparison of different GNNmodels in this subsection, as well as differentmodel
architectures in the ablation study below. Although the training loss appears to continually decrease
in Figure 6b, the validation loss appears to have converged in Figure 6c, which promoted termination
of the training process after 5,000 epochs.

After the training is completed, we first use the trained model to identify the modal properties of truss
configurations lyingwithin the simply-supported structural population. Identification results of the testing
set (100 trusses that do not occur in the training and validation set) are visualized in Figure 7, inwhich each
dot represents the identification result per individual truss per mode, and different orders of modes are
distinguished by different colors. Figure 7a shows the Modal Assurance Criterion (MAC) values of

Figure 6. Loss curves of one training process among the K-fold cross-validation: (a) Total training and
validation loss; (b) different loss terms in the training loss; and (c) different loss terms in the

validation loss.

(a) (b) (c)

Figure 7. Performance of the trained model on the testing set of truss population 1 (simply supported):
(a) Box plot of MAC values of identified mode shapes; (b) scatter plot of identified damping ratios; and

(c) scatter plot of identified natural frequencies.
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identified mode shapes, which is defined by Equation (3.1), along with their box plots. The closer the
MAC value is to 1, the higher the accuracy of the mode shape identification.

MAC jϕ̂j, jϕj
� �

=
ϕ̂
�� ��T jϕj� �2

ϕ̂
�� ��T jϕ̂j� �

ϕj jT jϕj	 
 (3.1)

where ∣ϕ̂∣ and ∣ϕ∣ are vectors of the identified and target absolute mode shapes, respectively.
The identified damping ratios and natural frequencies are shown in Figure 7b,c, respectively. In these

figures, the further a point lies from the ± 0%-error baseline, the larger the weighing error. Two extra
reference lines representing the ± 10% relative errors are also plotted in the figure to further evaluate the
identification accuracy and reliability.

Figure 7 allows for the following findings:

• The training process is deemed as successful, because the trained model generalizes well on the
testing set that consists of unseen trusses. Despite several instances of low identification accuracy,
most identifiedmode shapes demonstrateMAC values close to 1, as shown in Figure 7a. In addition,
most points plotted in Figure 7b,c are scattered near the ± 0%-error baseline. Only a few cases show
relative errors larger than 10%. This testing result is satisfactory for a purely data-driven approach,
particularly considering that the trained model can generalize to unseen structures with different
topologies andmechanical properties, and the identification process requires no human intervention.

• To quantitatively understand the performance of the model on the testing set, Table 1 presents the
statistics of the MAC values of identified mode shapes and the relative errors (%) for the identified
damping ratios and natural frequencies. As shown, the average MAC values for the identified mode
shapes for all four modes are above 0.95, and the average errors corresponding to the damping ratios
and natural frequencies are merely 1–2%. This indicates that the trainedmodel statistically performs
well in the modal identification of unseen structures among the same structural population.

• Table 1 also implies that the GNN-based model performs slightly worse when identifying modal
parameters for higher-order modes. This is expected, as higher-order modes are inherently more
challenging to identify. Another interesting observation is the remarkably high accuracy in identi-
fying the damping ratios of the first mode (Mode 1). This is reasonable, given that the damping ratio
ofMode 1 for every simulated truss in this study is consistently set at 0.01.With no variation in these
values, the DL model can easily learn to identify them with exceptional accuracy.

3.3. Ablation study

To justify the model architecture shown in Figure 1, we perform an ablation study by comparing the
following model variants:

• No encoder: Remove the encoder (MLP1) and retain the remaining blocks in themodel architecture.

Table 1. Performance indicators on the testing set from the simply-supported structural population

MAC of Φ̂
�� �� Errors (%) of Ẑ Errors (%) of F̂

Mean SD Min Mean SD Max Mean SD Max

Mode 1 0.997 0.005 0.958 0.000 0.000 0.001 1.380 2.949 7.648
Mode 2 0.979 0.042 0.677 1.874 2.124 7.141 0.045 2.521 10.024
Mode 3 0.959 0.073 0.495 �0.640 2.585 7.196 1.710 5.015 26.979
Mode 4 0.949 0.098 0.340 1.248 2.844 8.642 0.039 3.879 11.497

Note. Φ̂/Ẑ/F̂, identified mode shapes/damping ratios/natural frequencies; SD, standard deviation.
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• NoGNN formode shape identification: Replace theGNNblockwith anMLPwhen converting the
hidden featuresH1N ×D toH3N ×D in the model architecture. It should be noted that the GNN cannot
be completely removed from the architecture because the identification of damping ratios and
natural frequencies requires the graph readout operation. Without the GNN, the MLP that has fixed
input dimensions will not be able to convert the hidden features H1N ×D to H21×D, making the
architecture inapplicable to structures that possess a different number of nodes among a structural
population.

To achieve this comparison, we train the originally proposed model and the two variants five times with
the K-fold cross-validation method. The mean values and SD of the final validation loss and training time
of the five training processes are shown in Figure 8.

Based on Figure 8, we can draw the following conclusions:
•The final validation loss indicates that the original model, whose architecture is illustrated in Figure 1,

performs best among the tested variants because it exhibits the lowest validation loss, which justifies the
design of the proposedmodel. The validation loss for the case of “NoGNN”model is not only higher than
the other two models in this ablation study but also higher than GCN and GATmodels shown in Figure 5,
confirming that the GNN does have an advantage in processing graph-structured data over the MLP.

• Removing the encoder and the GNN from the architecture increases the training time. Without the
encoder to compress themodel inputs, theGNN’s dimensionmustmatch the node PSD,making themodel
more complex and slower to train. Moreover, the absence of the encoder results in higher validation loss,
indicating poorer model performance. Therefore, the original architecture is preferable.

3.4. Effects of incomplete measurements

In practice, the DOFs of civil engineering structures usually significantly outnumber the measurement
points, so it is essential to investigate whether the proposed model can identify complete mode shapes
from incomplete measurements. As stated previously, we construct the GNN corresponding to the
analytical model of a structure. For those structural nodes that have no measurements, their node features
are unknown, and the GNN model used in this study cannot work with unknown node features. To make
the proposed model work in the case of unknown node features, we introduce the FP algorithm (Rossi
et al., 2022) to fill the unknown features, which are nodal acceleration PSD, on the basis of known features
and the graph structure. Applying FP transforms the incomplete measurements into complete ones,
enabling our GNN-based model to conduct modal identification.

Figure 8. Comparison of different model architectures, using fivefold cross-validation during model
training: (a) Final validation loss and (b) total training time.
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To evaluate the “FP + GNN” approach under reduced sensor availability, we modify the test dataset
from truss population 1 by evenly removing PSD data from 82% of the nodes in each truss. The reason for
evenly selecting nodes for removal, rather than randomly, is that sensors are typically evenly distributed
on monitored structures in practice. The FP algorithm is then applied to the remaining 18% of nodes to
estimate and fill the “unknown” features for the omitted 82% of nodes, generating filled, complete test
datasets. The model, trained on the original complete training dataset (comprising 2,500 trusses from
population 1), is subsequently tested on the filled complete test dataset (containing 100 trusses from
population 1). Figure 9 compares the mode shape identification results for a truss example from the
original complete test dataset and the filled complete test dataset.

For further evaluation, the top two sections of Table 2 offers statistics of the MAC values of GNN-
identified mode shapes and the relative errors (%) of identified damping ratios and natural frequencies,
under 82% unknown node features. By comparing the statistics in Table 2, we can conclude that:

• When there are 82% node features unknown, the identification accuracy drops, which is naturally
expected. Moreover, the accuracy of identifying high-order mode shapes drops more than low-order
mode shapes due to the greater complexity of high-order mode shapes.

• Compared with the identification of mode shapes, the identification of natural frequencies and
damping ratios is much less influenced by the increase of unknown node measurements. This is
reasonable because, in theory, natural frequencies and damping ratios can be successfully identified

Figure 9.Mode shape identification results of one truss example with incomplete measurements: (a) 0%
node features are unknown and (b) 82% node features are unknown.
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Table 2. Performance indicators on the testing set from the simply-supported structural population

MAC of Φ̂
�� �� MAE of Φ̂

�� �� Errors (%) of Ẑ Errors (%) of F̂

Mean SD Min Mean SD Max Mean SD Max Mean SD Max

GNN-based model + 0% unknown node PSD
Mode 1 0.997 0.005 0.958 0.031 0.017 0.132 0.000 0.000 0.001 1.380 2.949 7.648
Mode 2 0.979 0.042 0.677 0.061 0.035 0.238 1.874 2.124 7.141 0.045 2.521 10.024
Mode 3 0.959 0.073 0.495 0.077 0.048 0.292 �0.640 2.585 7.196 1.710 5.015 26.979
Mode 4 0.949 0.098 0.340 0.086 0.063 0.344 1.248 2.844 8.642 0.039 3.879 11.497
GNN-based model + 82% unknown node PSD
Mode 1 0.967 0.019 0.876 0.106 0.036 0.217 �0.245 0.030 0.300 0.528 7.918 28.884
Mode 2 0.893 0.088 0.483 0.149 0.049 0.283 0.754 5.094 12.861 �2.551 5.852 24.777
Mode 3 0.834 0.105 0.354 0.183 0.067 0.453 0.292 6.092 17.982 �1.945 6.440 22.572
Mode 4 0.816 0.151 0.138 0.181 0.082 0.502 2.033 5.409 16.238 �2.723 7.902 23.424
EFDD + 0% unknown node acceleration
Mode 1 1.000 0.000 1.000 0.000 0.000 0.003 206.770 105.065 413.323 �0.839 1.225 1.829
Mode 2 1.000 0.000 0.999 0.003 0.002 0.010 105.439 85.972 294.845 �0.519 0.423 0.434
Mode 3 0.989 0.085 0.156 0.014 0.028 0.269 55.312 51.222 200.788 �0.532 2.083 19.754
Mode 4 0.930 0.245 0.000 0.029 0.080 0.380 11.773 55.302 338.909 �1.713 10.125 59.839
EFDD + 82% unknown node acceleration
Mode 1 0.982 0.025 0.852 0.055 0.026 0.165 209.714 105.521 393.802 �0.839 1.225 1.829
Mode 2 0.877 0.063 0.689 0.161 0.050 0.317 89.443 87.765 257.719 �0.519 0.423 0.434
Mode 3 0.781 0.110 0.492 0.204 0.074 0.417 56.103 52.826 211.309 �0.537 2.084 19.754
Mode 4 0.674 0.118 0.288 0.256 0.084 0.491 16.021 60.612 336.612 �1.661 10.565 59.839

Note. Φ̂/Ẑ/F̂, identified mode shapes/damping ratios/natural frequencies; SD, standard deviation.
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with only a few node measurements, whereas accurate identification of mode shapes requires
measurements on more structural nodes. This observation implies that the trained model success-
fully learns the mechanism of modal identification.

• The modal identification accuracy is statistically acceptable despite being as high as 82% unknown
node features, which manifests the robustness of the proposed model.

Finally, one might question whether a dataset with incomplete measurements should be used to train
the proposed model to evaluate its learning and generalization abilities. However, this is unnecessary. As
explained in Section 2.4, numerical simulation of a structural population is essential for training the
proposed model. The measurements, which are required as input for the use of this scheme on real-world
structures, can be readily obtained as a result of a dynamic analysis under assumed ambient loads.

3.5. Comparison against existing modal identification methods

To thoroughly evaluate our model with respect to modal identification, we compare it against one of the
most widely adopted modal identification methods, namely the enhanced frequency domain decompos-
ition (EFDD) method (Brincker et al., 2000, 2001), which also operates in the frequency domain. The
original EFDD method requires a manual peak-picking process to determine the modes that will be
identified. For the population-based modal identification, however, manually picking peaks would be too
time-consuming given the high number of trusses in our testing set. To tackle this problem, we adopt the
automated EFDD algorithm proposed by Cheynet et al. (2017) to automatically identify mode shapes,
damping ratios, and natural frequencies of the first four vibration modes for every simulated truss. The
MATLAB codes of this automated EFDD algorithmwill be made public in a dedicated GitHub repository
(Jian, 2025) once this work is published. The bottom two sections of Table 2 outline the statistical
indicators of EFDD’s modal identification performance on the testing set of the simply-supported
structural population. Particularly, the last section shows EFDD’s performance with incomplete meas-
urements where acceleration on 82% structural nodes is evenly removed. In this scenario, mode shapes are
initially identified using the 18% known node acceleration, followed by natural cubic spline interpolation
and extrapolation to estimate themode shapes for the remaining 82% of nodes with unknown acceleration
data. We did not integrate the FP algorithm with EFDD for two key reasons. First, FP is inherently
designed within the GNN framework, relying on graph-based representations to propagate information,
whereas EFDD does not utilize any graph structure in its modal identification procedure. Second, the
EFDD operates directly on raw time series data, which, in this study, comprises high-dimensional signals
(60 s × 200 Hz = 12,000 data points per node). Applying FP to such high-dimensional inputs risks
introducing substantial imputation errors, which could ultimately degrade the performance of EFDD.

The comparison between the modal identification results of the GNN-based model and EFDD can
provide the following findings:

• When structural dynamic response measurements are available at all nodes, representing an
idealized (and not realistic) full-field measurement scenario, the GNN-based model achieves
performance comparable to the EFDD in identifying mode shapes and natural frequencies. The
EFDD scheme typically yields slightly higher MAC values and lower MAE for mode shapes,
particularly in the first two modes. However, it is also more prone to outliers introduced by
automated processing, leading to significantly larger maximum errors in some cases. In terms of
natural frequency identification, both methods yield similar mean errors. The EFDD exhibits lower
variability for modes 1–3 but higher SD and maximum error in mode 4. Notably, the GNN-based
model significantly outperforms the EFDD in damping ratio estimation, as EFDD is known to be less
reliable in this regard and produces large errors even under ideal conditions (Hasan et al., 2018).

• In the sparse sensing scenario, where only 18%of node features are available, theGNN-basedmodel
combined with FP demonstrates advantages over EFDD, supported by natural cubic spline inter-
polation. This is especially evident in higher-order mode shape identification, where the GNN
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maintains higher MAC values and lower MAE. While the EFDD generally provides higher mean
accuracy and lower variability in natural frequency estimation under sparse data conditions, it still
exhibits substantial variability in mode 4. Furthermore, EFDD’s damping ratio estimates remain
highly inaccurate, whereas the GNN-basedmodel delivers stable and reliable results. These findings
underscore the GNN model’s capability to effectively infer missing information by exploiting the
spatial correlations embedded in the graph-structured data.

• In terms of the processing time, our GNN-based model is much more efficient when performing
automated modal identification for a structural population. Part of the computational gain lies in the
fact that the automated EFDD requires substantial computational effort to construct the PSDmatrix,
perform singular value decomposition, and automatically identify peaks. In contrast, the GNN-
based model identifies modal parameters through a single forward pass, streamlining the entire
process. For example, in this numerical experiment, we run both the automated EFDD and our
GNN-based model on the same Central Processing Unit (CPU) under identical settings to identify
the modal properties of 100 trusses sequentially. The automated EFDD spends 640.235 s on the
dataset with 0% unknown node features and 39.947 s on the dataset with 82% unknown node
features. In contrast, our GNN-based model completes the same task in just about 2.5 s for both
datasets.

• If we count in the training time of the GNN-based model, which is on average 807.185 s as shown in
Figure 5b, our model requires more time than FDD. Considering the training time would, however,
be an unfair comparison, since the intention (and main benefit) is to deploy the GNN-based modal
identification approach in testing mode. This advantage becomes even more pronounced when
dealing with larger structural populations, rendering the proposed GNN-based model an efficient
tool for population-based modal identification.

• In conclusion, both the GNN-based model and the conventional EFDD method exhibit strong
capabilities in modal parameter identification, each with distinct strengths and limitations. While
neither approach consistently outperforms the other across all metrics, the GNN-based model
emerges as a robust and reliable alternative, particularly under conditions of sparse sensor coverage,
where its performance advantage becomes more evident.

4. Sensitivity analysis

In this section, we perform a sensitivity analysis of the proposed GNN-based model under various input
configurations to address the following research questions:

• Question 1: Can the proposed model remain robust under realistic challenges, such as low PSD
resolution, measurement noise, and a limited number of training structures?

• Question 2: Does the proposed model exhibit sufficient generalization capability across different
structural populations?

4.1. Effect of training set size

Asmentioned above, the proposed population-basedmodal identificationmethod necessitates data from a
group of structures to train the GNN-based model. Intuitively, a larger training set provides more
diversified data, which in turn enhances the performance of the trained model. While this is easier to
configure when employing a simulated dataset, where populations are artificially generated, the situation
is different when aiming to use real-world datasets for training. In real-world applications, the number of
monitored structures that can serve for model training is typically scarce, while the number of available
sensors is also limited. The latter challenge is often tackled via the use ofmobile orwide-coverage (such as
computer vision measurements) sensor setups. In accounting for the first challenge, we here investigate
the impact of the training set size on the model’s performance. In this section, we use the first 20, 200, and
500 trusses (1, 10, and 25% of the original training set size) among the simply-supported population to
train the model. Accordingly, the training batch size is changed to 4, 40, and 100 to accommodate the

e45-16 Xudong Jian et al.

https://doi.org/10.1017/dce.2025.10023 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.10023


shrinkage of the training set. Although these subsets of trusses are not particularly selected, they can still
represent the entire truss population because the randomness in generating the dataset follows a uniform
distribution, meaning the probability of each sample is equal.

The trained models are then used to identify the modal properties of 100 trusses from the testing set,
with the results shown in Table 3.

By comparing the results of different training datasets shown in Table 3, we find that:

• As anticipated, reducing the size of the training set will decrease the accuracy of modal identifica-
tion. However, even with a training set that amounts to only 20 trusses (1% of the original size), the
decrease in accuracy can be deemed barely acceptable. A training set that amounts to 500 trusses
(20% of the original size) can produce results slightly worse than those obtained with the 2,500-truss
dataset. Thus, while a larger training set improves modal identification, a smaller one can still be
effective when more data are unavailable.

• Compared against mode shapes, the decrease in the size of the training set induces higher errors in the
identificationof damping ratios and natural frequencies, especially in terms ofmaximum relative errors.
A possible explanation for this is postulated in thatmode shapes form spatial quantities, whose nature is
more graph-structured than natural frequencies and damping ratios (which are global variables). Thus,
the GNN can likely more robustly tackle mode shape identification, even at smaller training sets.

4.2. Effects of PSD resolution

The resolution of acceleration PSD may influence the GNN-based model’s performance, especially for
trusses with closely spaced modes. To evaluate this effect, we trained and tested the GNN-based model

Table 3. Performance indicators on the testing set from the simply-supported structural population—
different sizes of training datasets

MAC of Φ̂
�� �� Errors (%) of Ẑ Errors (%) of F̂

Mean SD Min Mean SD Max Mean SD Max

Training with 2,000 trusses
Mode 1 0.997 0.005 0.958 0.000 0.000 0.001 1.380 2.949 7.648
Mode 2 0.979 0.042 0.677 1.874 2.124 7.141 0.045 2.521 10.024
Mode 3 0.959 0.073 0.495 �0.640 2.585 7.196 1.710 5.015 26.979
Mode 4 0.949 0.098 0.340 1.248 2.844 8.642 0.039 3.879 11.497
Training with 500 trusses
Mode 1 0.995 0.008 0.951 0.207 0.066 0.406 0.838 7.668 56.527
Mode 2 0.967 0.058 0.645 0.941 3.576 12.637 �0.034 7.730 54.447
Mode 3 0.940 0.094 0.456 2.422 4.637 14.455 0.320 6.061 20.738
Mode 4 0.912 0.143 0.320 0.549 4.013 13.719 �1.650 8.080 27.368
Training with 200 trusses
Mode 1 0.992 0.013 0.915 �0.343 0.021 0.416 2.905 13.784 124.552
Mode 2 0.954 0.072 0.600 3.272 4.863 14.164 0.944 11.440 95.898
Mode 3 0.901 0.117 0.468 1.660 6.573 16.722 1.275 8.938 51.306
Mode 4 0.902 0.143 0.370 �1.174 5.399 17.342 0.605 11.527 82.717
Training with 20 trusses
Mode 1 0.967 0.030 0.867 0.723 0.223 1.072 14.045 20.823 72.099
Mode 2 0.893 0.114 0.421 3.759 6.131 20.756 9.486 20.574 72.704
Mode 3 0.799 0.117 0.330 0.310 7.798 22.153 2.722 13.763 35.252
Mode 4 0.809 0.161 0.321 0.557 5.448 13.336 8.814 21.963 69.904

Note. Φ̂/Ẑ/F̂, identified mode shapes/damping ratios/natural frequencies; SD, standard deviation.

Data-Centric Engineering e45-17

https://doi.org/10.1017/dce.2025.10023 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.10023


using datasets with PSD resolutions of 1,024, 512, and 256, respectively. The corresponding testing
results are presented in Table 4.

As shown in Table 4, reducing PSD resolution does impact the performance of the GNN-based model,
although the effect is relatively minor. The most noticeable consequence is an increase in the maximum
errors of the identified damping ratios and natural frequencies. This outcome is anticipated, as lower PSD
resolutions lead to a reduced frequency resolution and broader spectral peaks, which diminish the
accuracy of natural frequency and damping ratio identification. This effect is particularly pronounced
for closely spaced modes, causing an increase in maximum identification errors while having an
insignificant influence on the mean errors. Therefore, higher PSD resolutions are recommended for
achieving greater accuracy in modal identification.

4.3. Effects of measurement noise

In real-world applications, noise corruption is inevitable when acquiring signals that measure the
vibration acceleration of structures. To test our model’s sensitivity to measurement noise, we artificially
pollute the acceleration time series generated by the testing set by injecting white Gaussian noise of which
the rootmean square is 10%of the signal power. Then,we use theWelch’smethod to obtain the PSDof the
polluted time series and input these to the model trained with noise-free data for modal identification.
Table 5 reports the statistics of theMACvalues of GNN-identifiedmode shapes and the relative errors (%)
of identified damping ratios and natural frequencies on the noise-polluted testing set. The automated
EFDD algorithm is also tested on the noise-polluted dataset for comparison.

Results in Table 5 demonstrate that:

• The introduction ofmeasurement noise slightly reduces the accuracy of identifyingmode shapes and
damping ratios. However, the average and maximum errors for the identified natural frequencies
increase more heavily. This discrepancy may arise because mode shapes and damping ratios are
relative measures, while natural frequencies are absolute values. The addition of noise alters the

Table 4. Performance indicators on the testing set from the simply-supported structural population—
different PSD resolutions

MAC of Φ̂
�� �� Errors (%) of Ẑ Errors (%) of F̂

Mean SD Min Mean SD Max Mean SD Max

PSD resolution: 1,024
Mode 1 0.997 0.005 0.958 0.000 0.000 0.001 1.380 2.949 7.648
Mode 2 0.979 0.042 0.677 1.874 2.124 7.141 0.045 2.521 10.024
Mode 3 0.959 0.073 0.495 �0.640 2.585 7.196 1.710 5.015 26.979
Mode 4 0.949 0.098 0.340 1.248 2.844 8.642 0.039 3.879 11.497
PSD resolution: 512
Mode 1 0.997 0.003 0.974 �1.752 0.051 1.874 0.587 3.993 17.186
Mode 2 0.984 0.026 0.846 0.870 2.621 14.321 �0.053 3.509 10.138
Mode 3 0.948 0.108 0.264 �0.038 3.372 18.060 �0.323 4.818 24.537
Mode 4 0.944 0.104 0.461 1.061 3.065 11.024 �0.551 3.611 17.453
PSD resolution: 256
Mode 1 0.997 0.004 0.962 �3.089 1.696 19.816 �0.500 3.671 14.912
Mode 2 0.981 0.033 0.798 0.785 3.626 26.181 �1.529 3.522 13.984
Mode 3 0.959 0.073 0.476 �1.425 3.122 13.355 �0.578 5.150 29.304
Mode 4 0.940 0.104 0.537 0.923 4.333 32.213 �0.497 5.589 27.244

Note. Φ̂/Ẑ/F̂, identified mode shapes/damping ratios/natural frequencies; SD, standard deviation.
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Table 5. Performance indicators on the testing set from the simply-supported structural population—adding 10% white Gaussian noise

MAC of Φ̂
�� �� MAE of Φ̂

�� �� Errors (%) of Ẑ Errors (%) of F̂

Mean SD Min Mean SD Max Mean SD Max Mean SD Max

GNN + 0% noise
Mode 1 0.997 0.005 0.958 0.031 0.017 0.132 0.000 0.000 0.001 1.380 2.949 7.648
Mode 2 0.979 0.042 0.677 0.061 0.035 0.238 1.874 2.124 7.141 0.045 2.521 10.024
Mode 3 0.959 0.073 0.495 0.077 0.048 0.292 �0.640 2.585 7.196 1.710 5.015 26.979
Mode 4 0.949 0.098 0.340 0.086 0.063 0.344 1.248 2.844 8.642 0.039 3.879 11.497
GNN + 10% noise
Mode 1 0.988 0.010 0.949 0.059 0.032 0.177 0.000 0.000 0.001 �0.927 10.424 36.918
Mode 2 0.954 0.050 0.755 0.127 0.085 0.353 4.089 4.672 14.550 �3.293 8.311 34.635
Mode 3 0.841 0.100 0.438 0.195 0.065 0.410 1.629 6.093 20.907 �4.365 8.956 33.147
Mode 4 0.866 0.133 0.444 0.189 0.141 0.508 1.773 4.160 12.774 �7.026 10.149 42.899
EFDD +10% noise
Mode 1 0.999 0.002 0.976 0.016 0.007 0.037 199.054 109.329 441.823 �0.815 1.223 1.829
Mode 2 1.000 0.000 0.999 0.008 0.006 0.049 108.654 83.425 292.954 �0.519 0.415 0.434
Mode 3 0.988 0.085 0.155 0.019 0.028 0.271 50.755 50.897 146.841 �0.532 2.083 19.754
Mode 4 0.928 0.247 0.001 0.027 0.074 0.376 4.983 59.234 330.402 �1.482 10.352 59.839

Note. Φ̂/Ẑ/F̂, identified mode shapes/damping ratios/natural frequencies; SD, standard deviation.
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absolute amplitude of the resulting PSDs without perceptibly changing the relative amplitude
between the PSDs of different nodes.

• For mode shape and natural frequency identification, the automated EFDD outperforms the GNN-
basedmodel on the noise-polluted dataset. This is due to EFDD’s use of singular value decomposition
on the PSDmatrix,which effectivelymitigates the adverse effects ofmeasurement noise.However, the
damping ratio identification results from the automated EFDD still display significant errors.

4.4. Effects of different structural populations

Last but not least, we investigate the generalization capability of the proposed model on different
structural populations.We apply the model trained on the simply-supported truss population, as shown
in Figure 4a, to the cantilevered truss population, as shown in Figure 4b. As an example, Figure 10
illustrates the identified mode shapes of a truss from the cantilevered population. The modal
identification results of all (100) trusses are visualized in Figure 11, where each dot represents the
identification result for a certain mode of a truss. Table 6 statistically summarizes the identification
results illustrated in Figure 11.

The identification results on the cantilevered structural population are clearly worse than those on the
simply-supported structural population. This disparity is expected, given the differences between the
cantilevered and simply-supported datasets, with the former not being utilized during the training of the
GNN-based model. Nonetheless, the identification results are not entirely unsatisfactory. For instance,

Figure 10. Mode shape identification results of a truss from the cantilevered population.

Figure 11. Performance of the trained model on the cantilevered truss dataset: (a) Box plot of MAC
values of identified mode shapes; (b) scatter plot of identified damping ratios; (c) and scatter plot of

identified natural frequencies.
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although the relative errors of identified natural frequencies and damping ratios are high, as shown in
Table 6, the identified values do not deviate significantly from their target values as Figure 11b,c shows.
This indicates that the GNN-based model exhibits a degree of generalization capability, enabling it to
leverage commonalities between two distinct yet similar structural populations.

To further explore how the similarity between these two truss populations affects the performance of
the trained model, Figures 12–14 present probability histograms of the sum of squared mode shapes, the
true natural frequencies, and damping ratios from the three datasets used in this study, respectively. The
following observations can be made:

• As seen in Figures 12a, 13a, and 14a, the data distributions of the training and testing datasets from
truss population 1 closely overlap. This similarity enables the trainedmodel to generalize effectively
to the testing dataset from the same population.

Table 6. Performance indicators on the testing set from different truss populations

MAC of Φ̂
�� �� Errors (%) of Ẑ Errors (%) of F̂

Mean SD Min Mean SD Max Mean SD Max

Testing set from the simply-supported truss population
Mode 1 0.997 0.005 0.958 0.000 0.000 0.001 1.380 2.949 7.648
Mode 2 0.979 0.042 0.677 1.874 2.124 7.141 0.045 2.521 10.024
Mode 3 0.959 0.073 0.495 �0.640 2.585 7.196 1.710 5.015 26.979
Mode 4 0.949 0.098 0.340 1.248 2.844 8.642 0.039 3.879 11.497
Testing set from the cantilevered truss population
Mode 1 0.766 0.050 0.642 0.000 0.000 0.001 116.734 82.943 448.017
Mode 2 0.893 0.070 0.576 49.318 12.350 92.681 16.232 28.739 117.220
Mode 3 0.641 0.168 0.291 8.064 8.174 35.931 �13.978 14.690 37.741
Mode 4 0.794 0.136 0.424 14.082 9.506 32.865 �6.207 13.775 49.250

Note. Φ̂/Ẑ/F̂, identified mode shapes/damping ratios/natural frequencies; SD, standard deviation.
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Figure 12. Probability histogram of the sum of squared mode shapes that belong to: (a) Training dataset
of truss population 1 and testing dataset of truss population 1; (b) training dataset of truss population 1

and testing dataset of truss population 2.
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• In contrast, Figures 12b, 13b, and 14b reveal significant differences between the data distributions of
the testing dataset from truss population 2 and the training dataset from truss population 1. These
discrepancies lead to poorer generalization of the model to the testing dataset of truss population 2.
Furthermore, the extent of distributional deviation correlates with performance degradation. For
instance, in Figure 13b, the damping ratio distribution ofMode 2 in truss population 2 has the largest
deviation from that of truss population 1, resulting in the highest identification errors for Mode 2’s
damping ratios, as shown in Table 6.

5. Conclusions

To exploit the information contained within a structural population for PBSHM, this study develops an
automated operational modal analysis method capable of automatically identifying modal properties of
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Figure 13. Probability histogram of true damping ratios that belong to: (a) Training dataset of truss
population 1 and testing dataset of truss population 1; (b) training dataset of truss population 1 and

testing dataset of truss population 2.
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Figure 14. Probability histogram of true natural frequencies that belong to: (a) Training dataset of truss
population 1 and testing dataset of truss population 1; (b) training dataset of truss population 1 and

testing dataset of truss population 2.

e45-22 Xudong Jian et al.

https://doi.org/10.1017/dce.2025.10023 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.10023


structures among a population by using a GNN-based DL model. A series of numerical experiments is
carried out to validate the proposed method. The main findings emerging from this study are summarized
as follows:

(1)Model architecture. The model comparison suggests that the GraphSAGE model outperforms the
GCN and GAT models. The ablation study reveals that using an MLP to encode the PSD input of the
model is beneficial. More importantly, the no-GNN model is inferior to all three GNN-based models,
confirming the superiority of GNNs in processing graph-structured data.

(2)Modal identification performance. Trained on themodal properties of structures within a simulated
structural population, the proposed GNN-based model effectively and efficiently identifies natural
frequencies, damping ratios, and mode shapes of various structures within the same population, despite
the variation of input PSD resolutions. When provided with a sufficiently large training set and tested on
the same population of structures, the GNN-based model achieves accuracy comparable to the classic
EFDD method while significantly surpassing it in computational efficiency. The performance is robust
even in the presence of measurement noise and spatially sparse measurements. To tackle the issue of
measurement sparsity, the FP algorithm is needed to reconstruct the full-field node input features,
specifically the PSD of node acceleration, before using the proposed model to process incomplete
measurements. Moreover, the “FP + GNN” approach is more accurate than the EFDD when 82% of
node features are unknown. It should be noted, however, that the robustness and efficiency of the GNN-
based model depend on effective training, so manual effort is required to prepare representative and
diverse training data.

(3) Limitations and future directions. When training data are insufficient, or the testing structure
belongs to a different population, the model’s accuracy declines, indicating limited generalization ability
unless trained with sufficient and representative data. Notably, the model’s performance is strongly
influenced by the degree of similarity between the data distributions of the training and testing sets. This is
expected due to the purely data-driven nature of the proposed approach. Future research will focus on
incorporating physical information to enhance the model’s generalization ability and evaluate uncertainty
propagation. For example, according to themodal analysis theory, the vibrationmode shapes of structures
are orthogonal with respect to the mass matrix. Such properties could be incorporated into the loss
function to train the model using a physics-informed approach. Another direction is to incorporate
structural geometric properties directly into the FP process or use them as edge attributes in the GNN,
which could further enhance mode shape identification and improve generalization across diverse
structural populations. In the current study, such properties are not explicitly provided; instead, their
effects are implicitly captured in the vibration responses (i.e., the PSDs) that form the basis for modal
identification. A further limitation is that the model can only identify absolute mode shapes, instead of
signed mode shapes, owing to the use of the auto-PSD that lacks phase information. While this is not
prohibitive for SHM purposes, additional node features, such as phase angle spectra of node acceleration,
or edge features like the cross PSD between the accelerations of two connected nodes, could be utilized to
address this issue, as the sign of mode shapes is closely associated with the phase information in
acceleration signals. It would further be valuable to validate the proposed method using real-world data,
as noisy modal identification results from conventional OMAmethods could affect the fine-tuning stage
of the proposed model. This, however, does not form part of this preliminary study. Given the inherently
incomplete nature of real-world data, the FP algorithm also requires thorough investigation to better
handle sparse measurements in practice. Lastly, the proposed method admits refinements for reliable use
within a damage detection context. Themain aim of this work is to present an approach that can be used as
a fast and reliable modal identification tool for extended bridge populations, inspired by the PBSHM
paradigm. Future research could focus on integrating GNN with PBSHM to develop more effective
approaches for damage detection.

Data availability statement. Demonstrative MATLAB and Python codes that implement the proposed method are openly
available at https://doi.org/10.5281/zenodo.16779978.
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