
TPLP: Page 1–19. c© The Author(s), 2024. Published by Cambridge University Press. This is

an Open Access article, distributed under the terms of the Creative Commons Attribution licence

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and

reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000309

1

Optimising Dynamic Traffic Distribution for Urban
Networks with Answer Set Programming∗

MATTEO CARDELLINI
University of Genova, Italy and Politecnico of Turin, Italy,

(e-mail: matteo.cardellini@edu.unige.it)

CARMINE DODARO and MARCO MARATEA
University of Calabria, Italy,

(e-mails: carmine.dodaro@unical.it, marco.maratea@unical.it)

MAURO VALLATI
University of Huddersfield, UK,

(e-mail: m.vallati@hud.ac.uk)

submitted 14 August 2024; revised xx xxxx; accepted 13 September 2024

Abstract

Answer set programming (ASP) has demonstrated its potential as an effective tool for concisely
representing and reasoning about real-world problems. In this paper, we present an application
in which ASP has been successfully used in the context of dynamic traffic distribution for urban
networks, within a more general framework devised for solving such a real-world problem. In
particular, ASP has been employed for the computation of the “optimal” routes for all the
vehicles in the network. We also provide an empirical analysis of the performance of the whole
framework, and of its part in which ASP is employed, on two European urban areas, which
shows the viability of the framework and the contribution ASP can give.

Keywords: answer set programming, optimization problems, traffic distribution

1 Introduction

Avoiding congestion and controlling traffic in urban scenarios is becoming nowadays

of utmost importance due to the rapid growth of our cities’ population and vehicles.

The effective control of urban traffic as a mean to mitigate congestion can be beneficial

in an economic, environmental and health way. At the end of the 21st century, the

∗ Carmine Dodaro and Marco Maratea were supported by Italian Ministry of Research (MUR) under
PNRR project FAIR “Future AI Research”, CUP H23C22000860006. Carmine Dodaro was supported
by Italian Ministry of Research (MUR) under PNRR project Tech4You “Technologies for climate
change adaptation and quality of life improvement”, CUP H23C22000370006; and by GNCS-INdAM.
Mauro Vallati was supported by a UKRI Future Leaders Fellowship [grant number MR/T041196/1].

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309
https://orcid.org/0000-0003-3788-9475
mailto:matteo.cardellini@edu.unige.it
https://orcid.org/0000-0002-9034-2527
mailto:carmine.dodaro@unical.it
mailto:marco.maratea@unical.it
mailto:m.vallati@hud.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000309&domain=pdf
https://doi.org/10.1017/S1471068424000309

M. Cardellini et al.2

world population is expected to increase to 10.9Billion, adding well over 3Billion people

to the current population (Max Roser and Ortiz-Ospina 2013). This massive growth,

which will directly translate in more vehicles roaming the streets of our cities, demands

improvements in the transport infrastructure and a better utilisation of our roads for

the purpose of avoiding congesting the network. Traffic jams have a negative impact on

safety and fuel consumption, which directly translates to a higher cost for drivers and

health issues for residents near highly trafficked roads, caused by bad air quality and noise

pollution (Van Mierlo et al . 2004). Artificial Intelligence techniques, based on automated

planning, have already been employed for optimising traffic flow, and more general in

transportation (see, e.g., (Cenamor et al . 2014; Chrpa et al . 2016; Vallati et al . 2016;

Ramı́rez et al . 2018; Cardellini et al . 2021; El Kouaiti et al . 2024)), with some benefits,

but they fail to scale in the presence of large number of vehicles.

In this paper, we present an application in which answer set programming (ASP)

(Gelfond and Lifschitz 1991; Niemelä 1999; Baral 2003; Brewka et al . 2011) has been suc-

cessfully used in the context of dynamic traffic distribution for urban networks, within

a more general framework devised for solving such a real-world problem. The frame-

work, which allows to efficiently optimise and simulate traffic flow in a large roads’

network with hundreds of vehicles, is composed of four phases: network analysis, domain-

independent search, route optimisation, and mobility simulation. Within the framework,

ASP is employed for representing and reasoning about the optimisation of the flow of

traffic inside a road network by finding the best combination (schedule) of routes for all

the vehicles in the network. We have performed an analysis on real-world traffic data

from two European urban areas in UK and Italy, utilising the state-of-the-art Urban

Mobility Simulator SUMO (López et al . 2018) to keep track of the state of the network:

the analysis tested the correctness of the solution, and proved the efficiency and capabil-

ities of the presented solution to reduce the metrics considered, sometimes significantly.

Moreover, it shows the contribution ASP gives in terms of performance and metrics: all

instances of Milton Keynes and Bologna up to 600 vehicles inside the network are solved,

optimally, in a short time.

The paper is structured as follows. Section 2 presents preliminaries about ASP. Then,

Section 3 introduces the problem and the solution framework. The last two phases of the

framework, that is, the optimisation via ASP and the mobility simulator, are presented

in Section 4 and Section 5, respectively, together with the experiments we performed on

real data. The paper ends in Section 6 and 7 by discussing related work and by drawing

some conclusions, respectively.

2 Background on ASP

ASP is a programming paradigm developed in the field of non-monotonic reasoning and

logic programming. In this section, we overview the language of ASP. More detailed

descriptions and a more formal account of ASP, including the features of the language

employed in this paper, can be found in Brewka et al . (2011); Calimeri et al . (2020).

Hereafter, we assume the reader is familiar with logic programming conventions.

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

Optimising dynamic traffic distribution for urban networks 3

2.1 Syntax

Variables are strings starting with an uppercase letter, and constants are non-negative

integers or strings starting with lowercase letters. A term is either a variable or a con-

stant. A standard atom is an expression p(t1, . . . , tn), where p is a predicate of arity n and

t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants. A ground

set is a set of pairs of the form 〈consts:conj〉, where consts is a list of constants and conj

is a conjunction of ground standard atoms. A symbolic set is a set specified syntactically

as {Terms1 :Conj 1; · · · ;Termst :Conj t}, where t > 0, and for all i∈ [1, t], each Termsi
is a list of terms such that |Termsi|= k > 0, and each Conj i is a conjunction of stan-

dard atoms. A set term is either a symbolic set or a ground set. Intuitively, a set term

{X:a(X, c), p(X); Y :b(Y, m)} stands for the union of two sets: the first one contains the

X-values making the conjunction a(X, c), p(X) true, and the second one contains the

Y -values making the conjunction b(Y,m) true. An aggregate function is of the form

f(S), where S is a set term, and f ∈ {#count,#sum} is an aggregate function sym-

bol . An aggregate atom is of the form f(S)≺ T , where f(S) is an aggregate function,

≺ ∈ {<,≤, >,≥, 	=,=} is an operator, and T is a term called guard. An aggregate atom

f(S)≺ T is ground if T is a constant and S is a ground set. An atom is either a standard

atom or an aggregate atom. A rule r has the following form:

a1 | . . . | an :− b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bk are atoms, bk+1, . . . , bm are standard

atoms, and n, k, m≥ 0. A literal is either a standard atom a or its negation not a. The

disjunction a1 | . . . | an is the head of r, while the conjunction b1, . . . , bk, not bk+1,

. . . , not bm is its body . Rules with empty body and with only one atom in the head (i.e.,

n= 1) are called facts . Rules with empty head are called constraints . A variable that

appears uniquely in set terms of a rule r is said to be local in r, otherwise it is a global

variable of r. An ASP program is a set of safe rules, where a rule r is safe if the following

conditions hold: (i) for each global variable X of r there is a positive standard atom � in

the body of r such that X appears in �, and (ii) each local variable of r appearing in a

symbolic set {Terms :Conj} also appears in a positive atom in Conj . A weak constraint

(Buccafurri et al . 2000) ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w@l]

where w and l are the weight and level of ω, respectively. (Intuitively, [w@l] is read as

“weight w at level l”, where the weight is the “cost” of violating the condition in the body

of w, whereas levels can be specified for defining a priority among preference criteria). An

ASP program with weak constraints is Π= 〈P,W 〉, where P is a program and W is a set

of weak constraints. A standard atom, a literal, a rule, a program or a weak constraint

is ground if no variables appear in it.

2.2 Semantics

Let P be an ASP program. The Herbrand universe UP and the Herbrand base BP of

P are defined as usual. The ground instantiation GP of P is the set of all the ground

instances of rules of P that can be obtained by substituting variables with constants from

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

M. Cardellini et al.4

UP . An interpretation I for P is a subset I of BP . A ground literal � (resp., not �) is

true w.r.t. I if �∈ I (resp., � 	∈ I), and false (resp., true) otherwise. An aggregate atom is

true w.r.t. I if the evaluation of its aggregate function (i.e., the result of the application

of f on S) w.r.t. I satisfies the guard; otherwise, it is false. A ground rule r is satisfied

by I if at least one atom in the head is true w.r.t. I whenever all conjuncts of the body

of r are true w.r.t. I. A model is an interpretation that satisfies all rules of a program.

Given a ground program GP and an interpretation I, the reduct (Faber et al . 2011) of

GP w.r.t. I is the subset GI
P of GP obtained by deleting from GP the rules in which a

body literal is false w.r.t. I. An interpretation I for P is an answer set (or stable model)

for P if I is a minimal model (under subset inclusion) of GI
P (i.e., I is a minimal model

for GI
P) (Faber et al . 2011). Given a program with weak constraints Π= 〈P,W 〉, the

semantics of Π extends from the basic case defined above. Thus, let GΠ = 〈GP , GW 〉 be
the instantiation of Π; a constraint ω ∈GW is violated by an interpretation I if all the

literals in ω are true w.r.t. I. An optimum answer set for Π is an answer set of GP that

minimises the sum of the weights of the violated weak constraints in GW in a prioritised

way.

2.3 Syntactic shortcuts

In the following, we also use choice rules of the form {p}, where p is an atom. Choice

rules can be viewed as a syntactic shortcut for the rule p | p′, where p′ is a fresh new

atom not appearing elsewhere in the program, meaning that the atom p can be chosen

as true.

3 Case study and proposed solution framework

In this section, we present our case study about dynamic traffic distribution for urban

networks, and the solution framework we propose, in two separate subsections.

3.1 Problem description

Urban traffic routing aims to mitigate traffic congestion by navigating the vehicles and

recommending less-congested routes, hence supporting a better use of the capacity of the

urban network. Recent advances in connected autonomous vehicles (CAVs) technology

provide an opportunity for routing approaches to be increasingly practicable and to

revolutionise the field, as the communication capabilities of CAVs can allow roadside

agents to collect real-time traffic information, and can support real-time communication

between the vehicle and a centralised traffic control system (Shladover 2018; Vallati and

Chrpa 2018). A centralised approach aims to provide the optimal routes for each CAV

from the perspective of the traffic management centre, with the clear benefit of having

a holistic vision of the controlled urban region. In other words, the centralised approach

allows considering both the dynamic system optimal principle (Merchant and Nemhauser

1978) and the dynamic user optimal principle (Friesz et al . 1989) when routing vehicles,

and the trade-off between the two according to traffic conditions.

In this work, we consider a centralised scenario where a controller oversees the network

in real time. The controller has knowledge of the network structure, that can possibly

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

Optimising dynamic traffic distribution for urban networks 5

Fig. 1. The solution framework.

be updated according to accidents or other unexpected events. While in operation, the

controller is provided with the list of incoming vehicles (controlled), and the position of

the vehicles already navigating the network (hereinafter referred to as simulated). On the

basis of this information, the controller provides an optimised route for controlled vehi-

cles, that aims at minimising overall congestion while considering the dynamic aspects

of traffic.

We assume that vehicles entering the controlled region communicate to the controller

their destination and their current path, via an existing Vehicular Ad-hoc Network

(VANET) (Cucor 2021), and the controller assesses the network status in terms of

expected or recorded congestion, and returns a route to the vehicle under the form of a

sequence of links to follow (Shahi et al . 2020). The vehicle then follows the given path,

and such path can be considered by the traffic controller for informing the routing of

future incoming vehicles.

It is worth highlighting that for the sake of traffic distribution and route optimisation,

traffic signals are not explicitly modelled. This is established practice in the transporta-

tion field (see, e.g., (Bliemer and Raadsen 2020; Batista et al. 2021)) for a number of

reasons. First, traffic signals can be implicitly modelled by considering the average time

needed to navigate through a link and the corresponding junction to leave it: this is a very

efficient way to reduce the complexity of the task. Second, the main driving factors of

congestion in urban areas are demand, the structure of the network, and the capacity of

links – in a sense, traffic signals are only ensuring that shared resources of the network are

accessed correctly. Further, the setting of traffic lights is often unknown, even for those

working on fixed-time mode, while reactive traffic control approaches implement algo-

rithms to react to perceived traffic conditions, so counter engineering their behaviour is

not trivial and adds significant computational complexity to the traffic distribution task.

3.2 The solution framework

Figure 1 presents our solution framework and its four components. In the following,

we describe the first two components, that is, the Network Analyser and the Domain-

Independent Search, while the last two components will be presented in Sections 4

and 5, respectively. The implemented framework, tailored to be used with the considered

simulation and scenarios, is available at: https://github.com/matteocarde/tplp-traffic

3.3 Network analyser

The purpose of the Network Analyser component is to simplify the topology of the

network. It takes several inputs, including the network structure represented as a XML

file, the list of incoming new vehicles, and the positions of vehicles that already have

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

M. Cardellini et al.6

a route within the network. For the sake of this implementation of the framework, all

input files are in the format used by the SUMO simulator. The Network Analyser then

generates a simplified logical representation that describes the network, creating a model

of the search space where viable solutions can be found in the next phase.

To achieve this, the Network Analyser employs a preprocessor that is specifically

designed to build an internal model of the road network. The preprocessor performs

various tasks to simplify the network, for instance, (i) joining small streets together, (ii)

simplifying intersections in roundabouts, and (iii) removing streets from the network

that cannot be used by vehicles, such as no-traffic zones or streets reserved for public

transportation. Regarding (i) and (ii), it is important to highlight a technical detail

implemented by the processor. The output of the Network Analyser serves as input for

the Domain-Independent Search component and, subsequently, to the ASP Optimiser

component. Since these components need to capture the complete flow of traffic, they

must be time-dependent. To achieve accurate time-dependent analysis, it is crucial to

discretise time into steps that are the right trade-off: being small enough to capture real

traffic nuances but large enough to allow for efficient planning. The problem of finding

the right discretisation step when planning in temporal scenarios is a well-known prob-

lem in planning (see, e.g., (Gigante et al . 2022; Cardellini et al . 2024b)). In our case, a

large discretisation step could greatly impact on the quality of the produced plan. To

exemplify this, let us suppose that a vehicle is about to navigate two streets, s1 and

s2, with s1 leading to s2. The time to navigate s1, at a speed of 45km/h is of 14s, and

the time for s2 is of 12s. In an ideal settings with constant speed and continuous time,

it would take a vehicle 26s in total to cross the 2 streets. If instead we account for a

discretisation step of 10s, both s1 and s2 will take 2 discretisation steps to cross, that

is, 20s, with a total time of 40s. It is evident that large discretisation steps can lead to

significantly misleading navigation times being considered. Further, with large discreti-

sation steps, the times needed to cross streets tend to be the same, and thus the ASP

Optimiser component could opt for solutions where the vehicles take routes with the less

number of streets possible, but which in reality would amount to greater running times.

Having a smaller discretisation step, like of 1s, could guarantee that the solution is more

cogent to the reality, but this would greatly increase the complexity of the optimisation

problem and negatively affect the total solving time.

Moreover, this discretisation step has an impact on the network’s topology. For exam-

ple, in most of the existing traffic simulation tools, a roundabout comprises multiple small

streets that connect all incoming and outgoing streets at various intersections. However,

representing each small street individually during the optimisation phase would not be

accurate, as each of these small streets would need to be run in a time equal to the dis-

cretisation step, resulting in a large simulated running time not representative of the real

running time. To address this, the preprocessor combines the small streets that connect

the incoming and outgoing streets of the roundabout, creating one longer street for each

enter/exit combination of the roundabout, which can more realistically model the flow

of traffic within the discretised time steps. As a result of this grouping, a single street is

represented multiple times in the network. Ensuring that the total capacity of the round-

about is respected becomes the responsibility of the optimiser, which will ensure that the

maximum number of vehicles inside the roundabout will be respected. Moreover, having

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

Optimising dynamic traffic distribution for urban networks 7

removed any streets from the network that cannot be used by vehicles, such as no-traffic

zones or streets reserved for public transportation, we might be left with intersections

with only two intersecting streets and which can thus be joined to better deal with the

discretisation step. In our experimental settings, after having performed the aforemen-

tioned simplifications, we performed a simulation analysis on how different discretisation

steps would have affected the running times of a vehicle that needed to run through

several runs and choose the one that allowed for a total running time as close as possible

to the real running time. We thus chose the discretisation step of 5s.

3.4 Domain-Independent Search

The Domain-Independent Search component receives the simplified network representa-

tion generated by the Network Analyser as input. Its main purpose is to identify and

output suitable routes for vehicles entering the network and determine the time ranges

in which these vehicles will enter or exit each street along their routes.

The origin and destination of each approaching vehicle are known in advance, and the

framework aims to find high-quality routes that connect these two points. To achieve

this, the search phase computes all possible (acyclic) paths in the network graph that

connect the source and target streets for each entering vehicle. However, in large and

complex maps, this would result in an unmanageable number of routes. To tackle this,

for each vehicle approaching the network, we firstly employ a Dijkstra search algorithm

to explore the network graph. Starting from the source street, for each adjacent street,

we define a new route, composed of the source street and the adjacent street, labelled

with the sum of their length. We insert all the generated routes into a priority queue,

we select the route with the smallest length and, by concatenating each adjacent street

of the final street of the route with the route itself, we keep iterating the procedure,

exploring the network. When the target street is reached, due to the properties of the

Dijkstra algorithm, we know to have found the shortest route between the source and

the target street. However, differently from the standard Dijkstra approach, we don’t

conclude the search when the target street is found, but we simply save the route, not

putting it back in the priority queue and keep exploring the network, saving a new route

every time the target street is reached. A loop detection mechanism is put in place to

detect when the concatenation of a new street would cause a cycle and simply discard

the generated route. We stop the procedure when a desired number of (acyclic) routes is

reached (in our experimental setting, 60 routes, appropriate for the sizes of the networks

considered). These routes are guaranteed, by the Dijkstra algorithm, to be the shortest

among all the possible routes but are not guaranteed to be the fastest, since congestion

could change the running times of a street.

Unfortunately, these routes, computed for each approaching vehicle, could still be too

many to be considered by the solver. Moreover, most of the routes could only differ slightly

by a few streets and thus quite interchangeable in distributing the traffic. Instead, we

are interested in having a smaller number of routes but “most different” between each

other, that is, sharing the least number of streets possible. This way, the ASP solver could

decide to direct a vehicle to a longer route, but which is less congested and actually faster

to run through. To compute these “most different” routes for each pair of routes r1 and

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

M. Cardellini et al.8

r2 we compute a similarity score through a function σ(r1, r2)∈ [0, 1]. In our experimental

setting, the function σ is computed as

σ(r1, r2) =
|streets(r1)∩ streets(r2)|

min(|streets(r1)|, |streets(r2)|) ,

where streets(r) is the set of the streets of a route r. Then, we create a set R=

{R1, . . . , Rq} where each Ri ∈R is a set of routes such that for each pair of routes r1, r2
we have r1, r2 ∈Ri if σ(r1, r2) <σT and r1 ∈Ri, r2 ∈Rj with i 	= j if σ(r1, r2)≥ σT , with

σT ∈ [0, 1] being a similarity threshold (in our experimental setting, σT = 0.5). The size

q of the set R depends on the instance but, usually, it is not greater than 3, since for

every source street being at the edge of the network, there are usually three cardinal

directions in which the vehicles can go, and thus three possible sets of “most different”

routes. From each of the set Ri, we then select the top k routes inside Ri, ordered by

length (in our experimental setting, k= 5, thus usually having 15 final routes to choose

for each approaching vehicle). It is worth noting that the ASP Optimiser can therefore

find the optimal route, according to the destination of the vehicle and the network con-

dition, out of the identified k final routes. In principle, the optimal route selected by the

ASP Optimiser can be different from the global optimal route: this is not deemed to be

an issue in urban areas, where the highly dynamic nature of traffic plays a major role.

We will see in the encoding of the ASP Optimiser in the following section that, to

deal with the temporal dimension, we will discretise time by a quantum (in our setting

5s) and then emulate the evolution of the movement of each vehicle running its route,

where vehicles can enter or exit a street only on times multiple of this quantum. For the

rapid execution of the ASP Optimiser component, we compute in advance time ranges

for when vehicles could enter and exit the streets along their routes. This computation

serves two purposes: speeding up the simulation of traffic flow and reducing overall com-

putation time. By utilising the knowledge of all the vehicles’ routes within the network

(as determined when the vehicles are approaching the network), it becomes possible to

compute time ranges for the entrance and exit timings in every street of a potential route

run by an approaching vehicle by solving two relaxed simulations for each vehicle:

1. the first simulation is performed assuming that no other vehicle is present in the

network, that is, there is no congestion, and thus the vehicle can run at its maximum

speed (45 km/h),

2. the other simulation is performed assuming that all other vehicles in the map

occupy all the streets of their routes at the same moment, thus obtaining, for

each street, the maximum amount of congestion possible. For each street, we then

compute the speed of the vehicles, proportional to the level of congestion, and from

that speed we get the time to traverse the street.

These two relaxed simulations provide an estimate of the minimum and maximum entry

and exit time for each vehicle. Computing the speed proportional to the congestion can

be done in several ways, in our experimental setting we perform it this way. We firstly

compute the capacity of the street, which is the number of possible vehicles which could

occupy the street. This number is proportional to the length of the street and the number

of lines of the street. In our experimental settings, we make the assumption that a car

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

Optimising dynamic traffic distribution for urban networks 9

occupies 8m, that is, the sum of the length of a standard car, usually 5m, and the safety

distance of 3m in the front. In a real scenario, the safety distance depends on the speed of

the car, which is, however, what we want to compute. Nevertheless, in an urban scenario,

where vehicles are not allowed high speed, the safety distance of 3m was validated by

traffic operators. We compute the capacity of a street s as:

capacity(s) =

⌈
lines(s)× length(s)

8m

⌉
. (1)

We select the rounded up value to avoid small streets to have a capacity of 0. We can now

estimate the speed of the cars in the street s. Let vehicles(s) be the number of vehicles

in the street s, that is, its congestion. The speed of a street s is estimated as:

speed(s) =

⎧⎪⎨
⎪⎩
45km/h if 0≤ vehicles(s) < 0.4× capacity(s),

30km/h if 0.4× capacity(s)≤ vehicles(s) < 0.7× capacity(s),

15km/h if 0.7× capacity(s)≤ vehicles(s).

(2)

While this approach is only an estimation, it was validated, together with the thresholds

(i.e., 0.4 and 0.7), by traffic operators and gave good results in the experimental setting.

The selected routes for each approaching vehicle together with the minimum and max-

imum entry and exit times are then passed to the third component of the architecture,

the ASP Optimiser, dealing with optimisation of the routes.

4 ASP for the optimisation phase

In the section, we detail the third component of the solution framework, referred to as

ASP Optimiser, which has the role to select the best route for each vehicle entering the

network. Specifically, the input of the component is a set of ASP facts, referred to, in

the following, as Data Model, and it uses an ASP encoding to compute the best route

for every vehicle approaching the network.

4.1 Data model

The data model consists of the following atoms:

• streetOnRoute(S,R,MIN,MAX) represents the relationship between street S and

route R. The variables MIN and MAX, computed by the Search component, define

the expected time range for a vehicle starting at t= 0 to traverse route R and enter

street S.

• link(S1,S2) indicates that there is a connection from street S1 to street S2.

• vehicle(V,T) defines the presence of a vehicle V of type T on the map. T can

be either con (controlled vehicle) or sim (simulated vehicle). We remind that a

controlled vehicle is a new vehicle entering the region for which a route has to be

identified, while a simulated vehicle already has a set route, and the system only

needs to track its presence on the map.

• origin(V,FROM) designates street FROM as the starting point of vehicle V during the

planning process. For controlled vehicles, the origin represents the street where the

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

M. Cardellini et al.10

vehicle first enters the map. Similarly, destination(V,TO) specifies street TO as the

final destination that will take the vehicle V outside the map.

• possibleRouteOfVehicle(V,R) indicates that vehicle V can follow route R to move

from its origin to its destination. For simulated vehicles, there will be only one possi-

ble route available, determined when the vehicle entered the network. For controlled

vehicles, this atom represents a subset of all possible routes from the origin to the

destination (as discussed in the previous section).

• time(T) represents the time unit used for scheduling, ranging from 0 to the

maximum horizon when all vehicles have left the network.

• capacity(S,N) denotes the capacity of street S, with N indicating the capacity

value, as computed by Eq. (1).

• trafficTravelTime(K,S,T) represents the time required to traverse street S under

different traffic conditions. The variable K can take values of heavy, medium, or

low, indicating the traffic amount. These amounts are correlated to the speeds of

15 km/h, 30 km/h, or 45 km/h, respectively, as computed by Eq. (2). The time T is

simply computed by dividing the length of the street with the relative speed.

• maxTrafficTravelTime(S,T) models the time it would take to clear the street in

case of congestion when it reaches its maximum capacity.

• trafficThreshold(K,S,MIN,MAX) defines the range between MIN and MAX of vehi-

cles in street S that categorise K∈ {heavy, medium, low} traffic, corresponding to the

traffic levels mentioned in Eq. (2) (e.g., if K is medium then MIN= 0.4× capacity(s)

and MAX= 0.7× capacity(s)).

• roundabout(R,C) indicates the existence of a roundabout R with a maximum

capacity of C, computed as the sum of all capacities of the streets of the roundabout.

• streetInRoundabout(SS,R) indicates that the simplified (result of original street’s

grouping) street SS is part of the roundabout R.

The output of the ASP Optimiser consists of the following atoms:

• solutionRoute(V,R) assigns a route R to the vehicle V.

• enter(V,S,IN) and exit(V,S,OUT) specify the times when a simulated vehicle

V enters and exits street S. We remind that an upper and lower bound of these

values is determined in the Search phase and provided as input through the atom

streetOnRoute(.,.,.,.).

4.2 ASP encoding

Figure 2 presents the rules utilised in the ASP encoding. Rule r1 defines the atom

solutionRoute, which, for every controlled vehicle, selects exactly one route among the

different selected routes (computed during the Search phase) that transport the vehicle

from its origin to its destination. On the other hand, rule r2 assigns the solutionRoute

for simulated vehicles to be the route they are already following. Rule r3 computes

an entry time within the minimum and maximum range for each controlled vehicle, as

determined in the Search phase. For the first street of origin, rule r4 enforces an entry

time of zero. Similarly, rule r5 determines the exit time for vehicles at each street in

their route. The atom nVehicleOnStreet(S,T,N) is defined by rule r6 to count the

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

Optimising dynamic traffic distribution for urban networks 11

1 {solutionRoute(V,R): possibleRouteOfVehicle(V,R)} = 1 :- vehicle(V,con).
2 solutionRoute(V,R) :- possibleRouteOfVehicle(V,R), vehicle(V,sim).
3 {enter(V,S,T) : time(T), T=MIN..MAX} = 1 :- vehicle(V,con), solutionRoute(V,R),

streetOnRoute(S,R,MIN,MAX), not origin(V,S).
4 enter(V,S,0) :- origin(V,S).
5 {exit(V,S,T) : time(T), T=IN+1..IN+MAX} = 1 :- vehicle(V,con), enter(V,S,IN),

maxTrafficTravelTime(S,MAX).
6 nVehicleOnStreet(S,T,N) :- enter(_,S,T), N = #sum{1,V: enter(V,S,IN), IN <= T; -1,V: exit(V,S,OUT),

OUT <= T}.
7 travelTime(S,T,X) :- enter(_,S,T), nVehicleOnStreet(S,T,N), trafficThreshold(heavy,S,A,_), N >= A,

trafficTravelTime(heavy,S,X).
8 travelTime(S,T,X) :- enter(_,S,T), nVehicleOnStreet(S,T,N), trafficThreshold(medium,S,A,B), N >= A, N

< B, trafficTravelTime(medium,S,X).
9 travelTime(S,T,X) :- enter(_,S,T), nVehicleOnStreet(S,T,N), trafficThreshold(low,S,_,B), N < B,

trafficTravelTime(low,S,X).
10 :- vehicle(V,con), exit(V,S,OUT), enter(V,S,IN), travelTime(S,IN,X), OUT < IN + X.
11 :- vehicle(V,con), exit(V,S1,OUT1), enter(V,S2,IN2), link(S1,S2), IN2 != OUT1.
12 :- enter(V,S,T), vehicle(V,con), capacity(S,MAX), nVehicleOnStreet(S,T,N), N > MAX.
13 :- enter(V,SR,T), streetInRoundabout(SR,R), vehicle(V,_), roundabout(R,MAX), #sum{X,S:

nVehicleOnStreet(S,T,X), streetInRoundabout(S,R)} > MAX.
14 :∼ nVehicleOnStreet(S,T,N). [N@2,S,T]
15 :∼ destination(V,S), exit(V,S,T). [T@1]

Fig. 2. ASP encoding used during optimisation.

number of vehicles on street S at time T. This atom is then used in rules r7 to r9 to

compute the travelTime(S,T,X) atom, representing the time (X) required for a vehi-

cle to traverse the entire length of street S under different traffic conditions: heavy,

medium, or low. These computations assume that the vehicle enters street S at time

T. Constraint r10 enforces that once a vehicle enters a street, it must remain on it for

at least the amount of time specified by the travelTime(.,.,.) atom. This constraint

serves as a lower-bound restriction, as the vehicle may remain congested and depart

later. Constraint r11 establishes an order among the streets within a route. Constraints

r12 and r13 ensure that vehicles adhere to street capacities and roundabout restric-

tions, respectively. The weak constraint r14 optimises the number of vehicles on the

street. Then, as the second optimisation criteria, weak constraint r15 imposes a pref-

erence for the solution that enables vehicles to reach their destinations more quickly.

The ASP encoding and some solution examples can be found in the following repository:

https://github.com/matteocarde/asp-traffic.

5 Experiments, monitoring, and execution

For the last phase of the framework (Mobility Simulator), we have employed SUMO

(López et al . 2018), which is a state-of-the-art Urban Mobility Simulator to monitor

the state of the network, execute the computed optimal solution plan, and verify its

quality through the computation of Key Performance Indicators (KPIs), such as Total

Duration (i.e., the time the last vehicle exits the network), Average Route Length, Speed,

Duration, Waiting Time (i.e., the time vehicles spend in queues) and Depart Delay (i.e.,

the time vehicles spend waiting for the road to free to enter the network). This phase

takes the responsibility for executing the optimal plan found by the ASP Optimiser and

to account for all the real-world (microscopic) nuances not modelled in the previous

phases. For example, we leave to this component the job of simulating the flow of traffic

light at intersections, cadenced by the switching phases of traffic lights. The overtakes

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

M. Cardellini et al.12

among vehicles, the use of lanes, and the order in which vehicles are queued in traffic,

are other aspects overlooked in the previous phases, in which the streets are considered

as buckets with no particular order between them and the managed aspect is how much

each vehicle will occupy (on average) the single street.

Given the fact that the previous steps reason with an abstracted representation of the

problem to solve, it is possible that the execution of the plan leads to a state of the world

that is significantly different from the expected one. For instance, some roads expected

to have free flows of vehicles can be very congested, and there can be vehicles queuing

at junctions because of traffic not leaving the controlled region at the expected rate.

These discrepancies can be provided as feedback to the Domain-Independent Search,

that can take them into account to define the current state of the network. Further,

there may be disruptions that are modifying the viability of part of the network. For

instance, a car accident can happen (they can be simulated in SUMO by modifying

the behaviour of drivers), unexpected road works may be required, or extreme weather

conditions can affect the area: this kind of events can reduce the capacity of roads,

or completely block portions of the network, according to severity. This information

about unexpected or unplanned events can be fed back to the Network Analyser to

update its internal representation of the network and of the links, hence ensuring that

the subsequent modules are reasoning upon a more accurate representation of reality.

In this implementation we did not explicitly take into account these classes of events,

as they are complex to simulate with SUMO and may require domain expertise to be

properly modelled and encoded. However, the framework is designed to support this kind

of updates, with no modification to the presented modules – the implementation of the

feedback loop in a target area is left for future work.

5.1 Empirical settings and results

We assess the proposed approach using SUMO and by considering two scenarios: Bologna

and Milton Keynes. The Bologna (Bieker et al . 2014) scenario considers the 7th city in

Italy by population (approx. 400, 000). The considered area was constructed around the

“Andrea Costa” road in Bologna, in which the football stadium is located. The network,

represented in Figure 3(b), includes more than 110 junctions and more than 170 links.

The total length of the modelled links is more than 33 kilometres. The scenario includes

the demand for Bologna’s peak hour (8am – 9am) in which 8, 620 vehicles roam the

network, in some days of November 2008. The interested reader is referred to Bieker

et al . (2014) for a detailed description of how the network was constructed.

The Milton Keynes scenario considers the largest town in Buckinghamshire, United

Kingdom, with a population of approximately 230, 000. A diagram of the considered

network is shown in Figure 3(a): it covers an area of approximately 2.9 square kilometres.

The network includes more than 25 junctions and more than 50 links. The total length

of the modelled links is more than 45 kilometres. The model simulates the morning rush

hour, and has been built by considering historical traffic data collected between 8am and

9am on non-holiday weekdays. Data has been provided by the Milton Keynes Council,

and gathered by sensors distributed in the region between December 2015 and December

2016. Traffic signal control information has been provided by the Council. The model has

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

Optimising dynamic traffic distribution for urban networks 13

Fig. 3. The considered SUMO model of the central Milton Keynes (left) and Bologna (right)
urban areas. Please note that the maps are not in scale, so can not be directly compared.

been calibrated and validated. During the morning rush hour, 1, 900 vehicles are entering

the controlled region, and the main traffic flows are from North to South-East, and from

West to East. This is because large residential areas are located at the North and West

of the modelled region.

Our approach uses the TraCI interface1 (Wegener et al . 2008) to interact with

the SUMO simulation environment, to get the current network status, communicate

with approaching vehicles, and inform vehicles of re-routing. Every time a new vehicle

approaches the network, our approach is called, and a route is provided to the new enter-

ing vehicle. In both scenarios, the simulation is run until all the vehicles left the network.

For each set of experiments, the simulation is run five times and results are averaged.

All the experiments were run on a MacBook Pro with a 2.5GHz Intel Core i7 quad-core,

with 16GB of RAM.

To empirically assess the performance of the proposed framework, in this subsection

we compare actual simulated traffic data of the Milton Keynes and Bologna urban areas

with a simulation in which the same vehicles are routed using our proposed approach,

where k has been set to 5 as previously discussed. Table 1 shows a comparison between

the two approaches in terms of a number of traditionally considered KPIs, that focus on

delay, waiting time, speed, and path duration. As it can be seen from the comparison,

in the Milton Keynes urban area, the proposed approach can greatly increase the overall

performance of the network, spreading traffic and reducing congestion, increasing the

average speed of vehicles and allowing the network to free faster. In Bologna, instead,

the KPIs are only slightly increased with respect to the ones computed on actual traffic

data, but still showing how our proposed approach can capture all the nuances of urban

traffic control and to deal with the risk of congesting the network. The high differences in

improvement which can be seen in Milton Keys with respect to Bologna can be explained

1 https://sumo.dlr.de/docs/TraCI.html

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

M. Cardellini et al.14

Table 1. Performance of actual traffic data coming from the Milton Keynes and
Bologna’s urban area, and the same vehicles routed using our proposed approach

Milton Keynes Bologna

Actual Our approach Actual Our approach

Total duration [s] 15729 5065 5692 5647
Avg. route length [m] 2465 2107 1636 1678
Avg. speed [m/s] 2.49 5.28 6.37 6.58
Avg. duration [s] 3718 515 283 281
Avg. waiting time [s] 3132 259 97 95
Avg. depart delay [s] 791 55 192 188

by the two very different topologies of the networks. As it can be seen, in Milton Keynes

(Figure 3(a)) the streets form a sort of Manhattan Grid in which parallel streets are

more or less equal in terms of number of lanes, length, and intersections. For this reason,

a car entering the network has a plethora of possible routes to choose, which are more

or less of the same length, giving the possibility to better spread the traffic through the

whole map. In Bologna (Figure 3(b)), instead, it can be noted how streets in the outer

ring are more structured to deal with high volumes of traffic (with a large number of

lanes and roundabouts to reduce traffic), while streets near the centre of the map (which

constitute the residential area) have mostly one lane and many intersections. For this

reason, vehicles have a smaller number of promising routes to choose from, leaving no

choice to the planner but to let vehicles move through the streets of the outer ring.

5.2 ASP evaluation

We now evaluate the ASP encoding presented in Figure 2 in terms of capacity to rapidly

find a high-quality solution to the routing of new vehicles inside the network. Every time

one vehicle approaches the network, the Network Analyser calls the Domain-Independent

Search, and then the ASP Optimiser is invoked to find optimal routes for the approach-

ing vehicles. The discretisation step has been set to 5 s according to some preliminary

experiments. As ASP Optimiser, we employed CLINGO configured with the option

--parallel-mode= 2 which executes the task in two threads, one using the Branch and

Bound algorithm (Gebser et al . 2015), and one using the Unsatisfiable Core algorithm

(Andres et al . 2012). This approach has already been proven effective in other appli-

cation domains (Cardellini et al . 2024a). Figure 4 presents the scalability results and

dimensionality for the network of Milton Keynes and Bologna. It shows the correlation

between the solving time of CLINGO (Top) and the number of vehicles which roam the

network (Bottom). The x-axis is grouped in bins of 50, and the histogram below shows

the number of instances (i.e., each time a new vehicle enters the network) for each bin.

The instances of Milton Keynes and Bologna with less than 600 vehicles can all be solved

optimally within 30 s (actually, in the majority of cases, in less than 10 s). When the

dimensionality increases, the solver can still find optimal solutions in most of the cases

(the median of the boxplot is always under 30 s), but for some instances the cut-off time

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

Optimising dynamic traffic distribution for urban networks 15

0 250 1000
0

10

20

30
So

lv
in

g
tim

e
[s

]
Solving time

Milton Keynes
Bologna

0 250 500 750 1000
Number of vehicles in the map

0

100

200

300

400

#I
ns

ta
nc

es

500 750
Number of vehicles in the map

Distribution

Fig. 4. (Top) boxplot of the solving time of CLINGO in correlation with the number of
vehicles inside the networks. (Bottom) histogram representing the number of instances (i.e.,
each time a new vehicle enters the network) w.r.t. the number of vehicles inside the map. In

the two charts, the x-axis has been clustered in bins of 50.

is reached, and a suboptimal solution is returned. As shown in Table 1, this approach

can still improve the performances inside the networks.

6 Related Work

One of the most common methods in the literature to optimise traffic flow in road net-

works is to schedule traffic signal switching phases, or signal phase plans , with the aim

of minimising vehicles’ delay (Papageorgiou et al . 2003; Dotoli et al . 2006). The well-

known real-time adaptive traffic control system SCOOT (Bretherton 1990), for example,

makes use of this methodology and is used extensively throughout Europe and the United

Kingdom. Unfortunately, managing only the switching phases of traffic lights has some

limitations: the only metric which is controllable and optimisable is the waiting time

at intersections (which has a direct impact on the total travel time of vehicles) but

is not straightforwardly expandable to consider other metrics (e.g., fuel consumption).

Moreover, the (macroscopic) point of view of traffic lights, which manages the flow of

traffic modelling incoming and outgoing lanes as queues of vehicles, does not allow for a

more detailed (microscopic) consideration of the single vehicles and their routes inside

the network. Microscopic simulation models have been largely discarded in the literature

due to their high complexity and low scalability. In this paper, we leverage ASP, coupled

with domain-dependent optimisations, to model the traffic flow of hundreds of vehicles

inside large European cities from a microscopic perspective.

The use of AI techniques in road transportation was shown to be effective in opti-

mising traffic flows (Miles and Walker 2006; Abduljabbar et al . 2019). For instance,

Vallati et al. (2016) introduced a mixed discrete-continuous planning (Fox and Long

2006) approach for reducing congestion through traffic signal optimisation, that was

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

M. Cardellini et al.16

subsequently improved to be deployed in urban areas of the United Kingdom (McCluskey

and Vallati 2017; El Kouaiti et al . 2024). Chrpa et al . (2016), instead, used a temporal

planning approach for managing traffic, through a microscopic perspective, intending to

reduce air pollution and respect air quality limitations. Other instances of urban traffic

problems solved with automated planning technologies can be found in Cenamor et al .

(2014). Even if automated planning has been beneficial in efficiently solving several real-

world problems in transportation (Cardellini et al . 2021; Ramı́rez et al . 2018), the main

point of failure is the ability to scale in the presence of large number of vehicles and the

limited capabilities of generating optimised solutions, which are instead not issues for

our approach.

Noteworthy, ASP has already been used in this context. Eiter et al . (2020) improve

SCOOT for dynamically adjusting traffic signals via ASP. They employ SUMO for sim-

ulation, but do not rely on historical data. Our works focus on different aspects of traffic

control, that is, the distribution of connected vehicles. Cardellini et al . (2023) proposed

a framework to reason upon risks and their mitigation in the distribution of vehicles in

urban areas. In railway, Abels et al . (2021) deal with the train scheduling problem, with

a hybrid solution as done by Ramı́rez et al . (2018), which integrates ASP and difference

logic, tested on real-world instances crafted by domain experts at Swiss Federal Railways.

Beck et al . (2012) use ASP to address the management of inconsistent traffic regulations,

such as incorrect sign postings or software errors during data acquisition.

7 Conclusion

In this paper, we presented a framework for dealing with the problem of dynamic traffic

distribution for urban networks. The framework is composed of four phases: Network

Analyser, Domain-Independent Search, ASP Optimiser and Mobility Simulator. The

third phase of the approach relies on ASP for the computation of the optimal routes.

The whole framework has been assessed on real-world data from two urban areas of the

UK (Milton Keynes) and Italy (Bologna). Results show that the framework can signifi-

cantly improve the considered traffic KPIs, and that the advantages depend also on the

topology of the networks. Further, the contribution ASP can give is evaluated in terms of

performance and metrics: results outline that all instances of Milton Keynes and Bologna

up to 600 vehicles inside the network are solved, optimally, in a short time.

We see several avenues for future work. First, we are interested in assessing the frame-

work in different urban areas, and in enhancing the feedback capabilities by considering

a number of critical failures and their impact. Second, we plan to extend the proposed

approach to deal with vehicles that do not follow the provided instructions. Finally, we

are interested in integrating the proposed framework into the larger urban traffic con-

trol infrastructure, so that information about calculated traffic flows can be exploited to

inform traffic authorities policies and actions.

References

Abduljabbar, R., Dia, H., Liyanage, S. and Bagloee, S. A. 2019. Applications of artificial
intelligence in transport: An overview. Sustainability 11, 1, 189.

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

Optimising dynamic traffic distribution for urban networks 17

Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A. and Wanko, P. 2021. Train
scheduling with hybrid answer set programming. Theory and Practice of Logic Programming
21, 3, 317–347.

Andres, B., Kaufmann, B., Matheis, O. and Schaub, T. 2012. Unsatisfiability-based opti-
mization in clasp. In Proc. of ICLP Technical Communications, volume 17 of LIPIcs, 211–221,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press.

Batista, S., Leclercq, L. and Menendez, M. 2021. Dynamic traffic assignment for regional
networks with traffic-dependent trip lengths and regional paths. Transportation Research Part
C: Emerging Technologies 127, 103076.

Beck, H., Eiter, T. and Krennwallner, T. 2012. Inconsistency management for traffic reg-
ulations: Formalization and complexity results. In Proc. of JELIA, volume 7519 of LNCS,
Springer, 7519, 80–93, LNCS

Bieker, L., Krajzewicz, D., Morra, A. P., Michelacci, C. and Cartolano, F. 2014. Traffic
simulation for all: a real world traffic scenario from the city of Bologna. Modeling Mobility
with Open Data: 2nd SUMO Conference 2014.

Bliemer, M. C. and Raadsen, M. P. 2020. Static traffic assignment with residual queues and
spillback. Transportation Research Part B: Methodological 132, 303–319.

Bretherton, R. 1990. SCOOT urban traffic control system – philosophy and evaluation. IFAC
Proceedings Volumes 23, 2, 237–239.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Buccafurri, F., Leone, N. and Rullo, P. 2000. Enhancing Disjunctive Datalog by
Constraints. IEEE Transactions on Knowledge and Data Engineering 12, 5, 845–860.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,
N., Maratea, M., Ricca, F. and Schaub, T. 2020. ASP-Core-2 input language format.
Theory and Practice of Logic Programming 20, 2, 294–309.

Cardellini, M., De Nardi, P., Dodaro, C., Galata, G., Giardinii, A., Maratea, M. and
Porro, I. 2024a. Solving rehabilitation scheduling problems via a two-phase asp approach.
Theory and Practice of Logic Programming 24a, 344–367.

Cardellini, M., Dodaro, C., Maratea, M. and Vallati, M. 2023. A framework for risk-
aware routing of connected vehicles via artificial intelligence. In 2023 IEEE 26th International
Conference on Intelligent Transportation Systems (ITSC), IEEE, 5008–5013.

Cardellini, M., Maratea, M., Percassi, F., Scala, E. and Vallati, M. 2024b.Taming
discretised PDDL+ through multiple discretisations. Proceedings of the Thirty-Fourth
International Conference on Automated Planning and Scheduling, ICAPS , 59–67.

Cardellini, M., Maratea, M., Vallati, M., Bpleto, G. and Oneto, L. 2021. In-station
train dispatching: A PDDL+ planning approach. In Proc. of ICAPS., AAAI Press, 450–458.

Cenamor, I., Chrpa, L., Jimoh, F., Mccluskey, T. L. and Vallati, M. 2014. Planning &
scheduling applications in urban traffic management. In Proc. of PlanSIG.

Chrpa, L.,Magazzeni, D.,Mccabe, K.,Mccluskey, T. L. and Vallati, M. 2016. Automated
planning for urban traffic control: Strategic vehicle routing to respect air quality limitations.
Intelligenza Artificiale 10, 2, 113–128.

Cucor, B. 2021. Outlines of vehicular ad-hoc networks. Proc. of TRANSCOM, Transportation
Research Procedia 55, 1312–1319.

Dotoli, M., Fanti, M. P. and Meloni, C. 2006. A signal timing plan formulation for urban
traffic control. Control Engineering Practice 14, 11, 1297–1311.

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

M. Cardellini et al.18

Eiter, T., Falkner, A. A., Schneider, P. and Schüller, P. 2020. ASP-Based Signal Plan
Adjustments for Traffic Flow Optimization. In Proc. of ECAI , volume 325 of FAIA IOS Press,
325, 3026–3033

El Kouaiti, A., Percassi, F., Saetti, A., Mccluskey, T. L. and Vallati, M. 2024.
PDDL+ models for deployable yet effective traffic signal optimisation. In Proceedings of the
International Conference on Automated Planning and Scheduling , 34, 168–177.

Faber, W., Pfeifer, G. and Leone, N. 2011. Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175, 1, 278–298.

Fox, M. and Long, D. 2006. Modelling mixed discrete-continuous domains for planning. Journal
of Artificial Intelligence Research 27, 235–297.

Friesz, T. L., Luque, J., Tobin, R. L. and Wie, B.-W. 1989. Dynamic network traffic assign-
ment considered as a continuous time optimal control problem. Operations Research 37, 6,
893–901.

Gebser, M., Kaminski, R., Kaufmann, B., Romero, J. and Schaub, T. 2015. Progress in
clasp Series 3. In Proc. of LPNMR, volume 9345 of LNCS, Springer, 368–383

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Comput 3, 4, 365–386.

Gigante, N., Micheli, A., Montanari, A. and Scala, E. 2022. Decidability and complexity
of action-based temporal planning over dense time. Artificial Intelligence 307, 103686.

Lopez, P.Á., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flotterod, Y., Hilbrich, R.,
Lucken, L., Rummel, J., Wager, P. and Wiebner, E. 2018. Microscopic traffic simulation
using SUMO. In Proc. of ITSC , IEEE, 2575–2582.

Max Roser, H. R. and Ortiz-Ospina, E. 2013. World population growth.

Mccluskey, T. and Vallati, M. 2017. Embedding automated planning within urban traffic
management operations. In Proc. of ICAPS , 391–399.

Merchant, D. K. and Nemhauser, G. L. 1978. A model and an algorithm for the dynamic
traffic assignment problems. Transportation Science 12, 3, 183–199.

Miles, J. and Walker, A. J. 2006. The potential application of artificial intelligence in
transport. In IEE Proceedings-Intelligent Transport Systems, 153, 183–198, Iet.

Niemela, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 3–4,241–273.

Papageorgiou, M.,Diakaki, C.,Dinopoulou, V.,Kotsialos, A. andWang, Y. 2003. Review
of road traffic control strategies. Proceedings of the IEEE 91, 12, 2043–2067.

Ramirez, M., Papasimeon, M., Lipovetzky, N., Benke, L., Miller, T., Pearce, A. R.,
Scala, E. and Zamani, M. 2018. Integrated hybrid planning and programmed control for
real time UAV maneuvering. In Proc. of AAMAS , ACM, Richland, SC, USA, 1318–1326.

Shahi, G. S., Batth, R. S. and Egerton, S. 2020. MRGM: An adaptive mechanism for conges-
tion control in smart vehicular network. International Journal of Communication Networks
and Information Security 12, 2, 273–280.

Shladover, S. E. 2018. Connected and automated vehicle systems: Introduction and overview.
Journal of Intelligent Transportation Systems 22, 3, 190–200.

Vallati, M. and Chrpa, L. 2018. A principled analysis of the interrelation between vehicular
communication and reasoning capabilities of autonomous vehicles. In Proc. of ITSC , 3761–
3766.

Vallati, M., Magazzeni, D., Schutter, B. D., Chrpa, L. and Mccluskey, T. L. 2016.
Efficient macroscopic urban traffic models for reducing congestion: A PDDL+ planning
approach. In Proc. of AAAI , AAAI Press, 3188–3194.

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

Optimising dynamic traffic distribution for urban networks 19

Van Mierlo, J., Maggetto, G., Burgwal, E. and Gense, R. 2004. Driving style and traffic
measures - influence on vehicle emissions and fuel consumption. Institution of Mechanical
Engineers Part D Journal of Automobile Engineering 218, 1, 43–50.

Wegener, A., Piórkowski, M., Raya, M., Hellbrück, H., Fischer, S. and Haubaux, J.-P.
2008. TraCI: an interface for coupling road traffic and network simulators. In Proc. of the
Communications and Networking Simulation Symposium, 155–163.

https://doi.org/10.1017/S1471068424000309 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000309

	Introduction
	Background on ASP
	Syntax
	Semantics
	Syntactic shortcuts

	Case study and proposed solution framework
	Problem description
	The solution framework
	Network analyser
	Domain-Independent Search

	ASP for the optimisation phase
	Data model
	ASP encoding

	Experiments, monitoring, and execution
	Empirical settings and results
	ASP evaluation

	Related Work
	Conclusion
	References

