Check for
updates

J. Appl. Probab. 61, 909-926 (2024)
doi:10.1017/jpr.2023.100

AN EXPONENTIAL NONUNIFORM BERRY-ESSEEN BOUND OF THE
MAXIMUM LIKELIHOOD ESTIMATOR IN A JACOBI PROCESS

HUI JIANG,* AND
QIHAO LIN,* Nanjing University of Aeronautics and Astronautics
SHAOCHEN WANG ‘& ** South China University of Technology

Abstract

We establish the exponential nonuniform Berry—Esseen bound for the maximum likeli-
hood estimator of unknown drift parameter in an ultraspherical Jacobi process using the
change of measure method and precise asymptotic analysis techniques. As applications,
the optimal uniform Berry—Esseen bound and optimal Cramér-type moderate deviation
for the corresponding maximum likelihood estimator are obtained.
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1. Introduction and main results

1.1. Introduction

Consider the following ultraspherical Jacobi process

dX, = bX;dt + /1 — X? dW,, Xo=0, t>0, (1.1)

where W = {W;: t> 0} is a standard Brownian motion with unknown drift parameters b €
(—o00, —1). This process is well defined under the assumption b < —1, i.e. we have |X;| < 1
for all > 0. The Jacobi process, also called Wright—Fisher diffusion, was originally used to
model gene frequencies [9, 16]. More recently, it has also been applied to describe financial
factors. For example, [7] models interest rates by the Jacobi process and studies moment-based
techniques for pricing bonds. Moreover, this process has also been applied to model stochastic
correlation matrices [2] and credit default swap indexes [5]. For the multivariate case, see
[1, 13].

For b € (—o0, —1), the Jacobi process (1.1) has stationary distribution Beta(—b, —b), i.e.
the Beta distribution with shape parameter —b and scale parameter —b. Here, b also represents
the mean-reverting parameter. For practical applications, it is crucial to construct the estimator
for b and study the corresponding asymptotic properties. Let P, be the probability distribution
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910 H. JIANG ET AL

of the solution of (1.1) on C(R4, R). Under Py, the maximum likelihood estimator of b is
given by

5 Jo X/ = X)X,

= . 1.2
T TR - XD dr (2

The Jacobi process was subordinated in [8] by the method of random time change, and the
corresponding semi-group density was obtained. Together with the Girsanov formula technique
[4, 12], they gave the large deviations for Z;T. For the Girsanov formula technique, see also [20].
Moreover, [14] studied the moderate deviations for ZT.

From [17], it follows that

(br — b) -5 N(O, 1),

2(1+b)

which immediately implies that

/ T ~
Pb( —m(bT —b) SX) — ®(x)

as T — oo. The Berry—Esseen bound for (1.3) bounds the global convergence speed which is
uniform in all x € R. In this paper, our motivation is to study the nonuniform convergence rate

which will depend on x as well as 7. This local bound provides more accurate information
than the Berry—Esseen bound; see Corollaries 1.1 and 1.2 and Remark 1.1. Our approach is
based on the change of measure method [19] and precise asymptotic analysis techniques [15].
The explicit calculations and estimations for the Laplace functionals of fOT X /(1 — X,z) dXx;

sup
xeR

0 (1.3)

and fOT th /(1 — th) dr play crucial roles. Moreover, the techniques used here could potentially
be used for a wider scope of diffusions that have a structure similar to our model.

1.2. Main results

We now state the main results of this paper, i.e. the exponential nonuniform Berry—Esseen
bound and its application for br.

Theorem 1.1. There exists some positive constant C > 0 depending only on b such that, for T
large enough and any p > 0 with |x| < pT'/0,

T ~
]Pb<‘/_2(1 _I_b)(br—b)SX) — P

Py(/=T/2(1 + b)) (br — b) > ) _
1 — d(x)

c
< —T(x2 + e /2, (1.4)

7

3
exp{O(l)%}, (1.5)

where the O(1) term only depends on b.
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As applications of the above nonuniform Berry—Esseen bound, we can obtain the following
optimal uniform Berry—Esseen bound and optimal Cramér-type moderate deviations for br.

Corollary 1.1. There exists some positive constant C > 0 depending only on b such that, for T
C
S —_

large enough,
T ~
Ph<,1—2(1+b)(b7—b)SX>—CD(x) N

Corollary 1.2. Let {A7, T > 0} be a family of positive numbers satisfying Ar/T'/® — 0, T —
00. Then, for any p >0,

Py(v/=T/2(1 + b))(br — b) > x) _
1—d(x)

sup
xeR

1‘—>O, T — oo.

0<x<pAir
Remark 1.1. Note that, for any x > 0O,
G erafsi-ews el 1]
—_———eXpy —— — O(x expy ——¢.
27 (1 + x2) Pl 2= T V2ax P172

Hence, when x > (log T)l/z, 1—d0x) = 0(T‘1/2). Moreover, using [14, Theorem 1.1], for
x> (log T)l/z,

T ~ _
Pb( _2(1+b)(bT_b)>x>=0(T )

T ~
Ph<‘/—m(bT —b) SX) — ®(x)
P |—— L Gr—by<x)—o

b( 2(1+b)(T )_x> ()

Therefore, the uniform Berry—Esseen bound cannot characterize the error

/ T
Pb( —2(1+b)(br—b)§x)—<l>(x)

for large x depending on 7. Our nonuniform Berry—-Esseen bound (1.4) obtained in
Theorem 1.1) can fill this gap.

Then,

sup
xeR

= sup
l<(log 7)1/

Remark 1.2. When T takes values in positive integers, letting

i
X
&= d
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we have

_ S &
ST EER | Fioy)

br—b

where F; =0 (W;, t <i). Then {(§;, F;), i € N} is a sequence of martingale differences, and
{/b\T — b, T > 0} can be viewed as self-normalized martingales. The exponential nonuniform
Berry—Esseen bound in Theorem 1.1 is a parallel result to the self-normalized sum of
independent variables [19].

Moreover, it is worth noting that [11] obtained an exponential nonuniform Berry—Esseen
bound and Cramér-type moderate deviation for self-normalized martingales. However, for the
martingale differences {(§;, F;), i € N} it is difficult to verify the Bernstein condition in [11,
(A1)]. So, our results cannot be covered or deduced directly by [11]. For more details on this
topic, see [10] and the references therein.

The rest of this paper is organized as follows. In Section 2, we first give the explicit cal-
culation of Laplace functionals related to a Jacobi process, which plays an important role in
our asymptotic analysis. The proofs of the main results and their corollaries then follow in
Section 3 and Appendix A.

2. Explicit calculation of Laplace functionals related to a Jacobi process

Recall from (1.2) that we can write

Jo X/ =X2dX, — b [) X2/(1 — XP)dt

br—b
JLX2/(1 = XP) de

Observe that, for x > 0,

P T
b( T 2(1+b)

T T 2
X; 2(1+b))/ X’ )
=P 2L aX, = (b+x/— dr>0),
b(fo —x2 ( * T o 1-x2

t t

(ZT —b) > x)

and similarly for x < O:

| T

Pb< —2(1+b)(br—b)fx>
B rox, [ 20+b)\ (T Xx?
_Pb</(; 1_thdX,—<b+x B >/o 1—X,2dt50>'

G /T X, X <b+ 2(1+b)) /T x? dit T @n
= - Xy — X |- ; .
=) —x2 VooT o 1-X2 2(1+b)

Set
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then,
T ~ T
P — br —b =P — 0
b( 2(1+b)( T )>x) b(GT,x >x1/ 2(1+b)>’ x>0,
T ~ T
P — br—b)<x)=P <x |- 0.
b( 2(1~I—b)( T )_X> b(GT,x_x‘/ 2(1+b)>’ X<
Write

[ 2(b+1
hrx =X/ — (;_ ), 2.2)

and define a new probability measure Q which is absolutely continuous with respect to Py,
with Radon—-Nikodym density

@ _ exp{hr xGr x}

- . (2.3)
dP,  Ep(exp{hr xGr.x})
Now, we can obtain, for x > 0,
P d (br — b)
— —b)>
P\W 20 +p) " *
dp,
=]EQ @1{0”>x«/—T/‘(2(1+b))}
= Ep(explhr1Gr.DEQ(Xp(—hraGr. NG, ry=rraron ) CH)
and, for x <0,
P r (br —b) <
P\W T 2a gy =T
= Ep(explhr Gr. DB (exp(—hr GG, v ooy ). 25)

To prove Theorem 1.1, we need to analyze the Laplace functionals of Gt , under P, and Q
explicitly. Recall that if {X;, r > 0} is defined by (1.1), then its transition semi-group density is
given by [8, p. 526]

12 2 TQn+a+3)

Pi(y) =~27K, 1 —y?yrte 1/, vyel-1,1],
() = 27K, 7 n§4nn!r<n+a+1>( YTy * feny, (/0. ye[=1.1]
(2.6)
where * is the convolution of two functions and
. _ MNa+1) _ 1 _ — (2 )2 (k+1/2)%s
a=-b—1, Ka—m, J/O—Ol-i-z, le(S)—ge 1{s>0},
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with
221470 2k 421+ YT (k+ 20+ Y0) _(ars2nt 90725
JCriyy ) === -1 , e 1
V23T (2n+y0) 1= k!

The following lemma plays an important role in our analysis.

Lemma 2.1. For any u € R and hr x as defined in (2.2),
Ep exp{ <th + Nii )GTX}

_ A ui T T b T R 27
—CXP{< T,x‘Fﬁ)(x —m—5>—( _CT’X(M))E+ T,x(u)} 2.7)

holds for all T > 0. Here, 1= +/—1 and

i 2(1+b
CT,x(u):_l_\/(b+1)2+2<h7',x+%)<b+1+x _ (;_ ))’

iu
(pT,x(u) = hT,x +—=+b- CT,X(M)s

JT
R (1) = log (@Kal

eViT/2 2 (2n — ot x(u) + %)
VT = 4"l (n = crx(w)

1 1
X B(n —cr x(u) — E(PT,x(M), 5))

Proof. From the definition of Gr  (2.1), it follows that

le *szner] (1/T)

IEb CXP{ <hT,x + %)GT,X}
. " ui T
_eXpK Tt TT) <x o +b)>}
x Ep exp{)»r (1) / }

where A7 (1) and 7 x(u) are defined by

M a) = by + ()—(h ”_1>(b 2(1+b))
Tx(1) = T,x+ﬁ, M (1) = T,x+ﬁ +x,/— T .

Let us define the joint log-Laplace transformation

T X2
gr(Ar x(u), pr x(u)) =log Ey GXP{AT (1) / dX; — pur () /0 1 th d }
M

—X2

https://doi.org/10.1017/jpr.2023.100 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2023.100

915

Exponential nonuniform Berry—Esseen MLE bound in a Jacobi process

Denote the Brownian filtration by F; =o (W, s <t); then, by virtue of the Girsanov

theorem, we have, for any Re(bg) < —1,
(b — bo) / FX5 dx, 1(b2
=ex — —_— — =" =
Py |z~ T O f T—x2 T 2

Now, choose bg = —1 — \/(b + 12 + 2(A7 () + ur <)) := cr(u) := c; then

d } t>0.

exp{gr(Arx(u), pr (1))}

= }>
dr
1-Xx?

dP,
=E, dIP exp ATx(u)
T Xt X
1-x2

=E. exp{()“T,x(”) + b —crx(u) /
0
2
X dt}

1 T
- (m,xw) + 50 = c%,x(u») /O e
2

T Xt
dX; + 2dt .
o 1—X;

T
=E, exp{(?»T,x(M) +b— CT,X(”))< /0 1 _lth

2

X ax +/T XT 4
4 2
0o 1—-X

Applying Itd’s formula,
! log (1 — X3) T / !
—_— 0 —_ _—— =
2 BT TRT ) 1ok —X:

and, as a consequence,

T
exp{gr (A7 x(u), ()} = exp{ —Se7.x) }Ecu — X7) vt
Using the transition density function of X7 [8], see also (2.6), we obtain

E.(1 — X%)_V’T,x(u)/z
2
e’ 1/2 & T'(2n — e (u) + Ly
L *fC2n+yl(1/T)B(n = er.2w) = S 7.2, )

= V27K,
TR TIT 4l — er ()

where B stands for the Beta function and
Mo +1 1
( 1 ) i =a + - O

= — — 1, ==
= e YT T + Dot 2
Recalling the definition of R7 («) in the above lemma we can write

I *fey,, (1/T)

_1)k
= Z —5= Uka®) / exp

k,£>0

{——[(Zn—i—Zk—H/l) s+ (Z—i— ;)2(S;ST>“5”;,
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where

CQn+k+ )22 Q20+ 2k + y1)

U —
o KT 2n+ 1)

In order to derive the precise estimation of Rr x(u), the following expansion of Gamma
functions plays a crucial role.

Lemma 2.2. Let I'(z) be the Gamma function defined on the complex plane C. Then

Fz) _z - - jz1 — 22
F(Zl)_22eXp=(Zl Z”( Zk(k+zz)> 0( 22 )}

k=1

where 71, 72 € C, Re(z1), Re(z) > 0, and y = 0.5772 . . . is the Euler constant. Moreover, when
721 —22=c€ Ry andRe(zp) > 1,

‘ [e)l eXP{CV}

F(Zl)

Proof. By Euler’s formula [3, p. 199] we have, for all z € C,

L =ze¥? 10_0[ <1 4 E)e—Z/k
I'(2) h k ’
=1
where y =0.5772 . . . is the Euler constant. As a consequence,

['(z2) _ % eV (@—22) l_[ k+zi e—(@1—)/k
Fz) = k—l—zz

oo
21
= —expyy(z —Z2)+Z—

+Zlog <1+ k+j2>}

22 k=1 k=1
21 S~ [a—zaf
:Z—zexp Y@ —22)+ (@@ — Zz)zk(k+12) O(}; k+2 )}
z1 o~ |21 — 22l
= e @ - Zz)(V T M) * O(W) }

Moreover, when z; — zp = ¢ € R4 and Re(z2) > 0, we have

(et e
2

k=1

Thus, we obtain the desired estimate,

‘ F(zz)
F(Zl)

eXP{CV} O
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Define the Laplace functional of Gr  under QQ as
(prGT,x(u) =Eg exp{iuGr 1}, uelR.

In the following propositions, we give explicit asymptotic expansions of ¢g,G; ,(u/ VT) for
different ranges of u.

Proposition 2.1. For any constant p > 0, and |u| < pT/®, |x| < pT/°,

2
Eyp exp{hr »Gr 2} = exp{ % + 0<x3T“/2>}, (2.8)
u . —
PQ.Gr.x (ﬁ) =expl{ A r4ui + Ay 7 u* + OWPT™/2)), (2.9)

where

/ 1 1
Alre=x|— 0G>T~ 1%, A= —— + 0T V).
LT x=X 20 1D) + O(x ) 2.Tx TR + O(x )

Proof. By using (2.3) and (2.7), we can write

T T T
Ep expihr «Gr .} = eXp{hT,x (x‘ / 301D E) — (b —crx0)5 + RT,X(O)} (2.10)

and

u E dQ iu G
gD(QsGT,,\ ﬁ b d]P)b p \/T T,X
_ Epexp{(hrx +iu/vT)Gr.}
Ep exp {h1 G712}

. ui T T 0 T R R (0
—exp{ﬁ(x _2(l+b) - 5) — (e x( )_CT,x(u))§+ T.x(U) — Ry x( )}

2.11)

On the one hand, by Taylor’s expansion, straightforward but tedious calculations will give

iu 1 X 2(1 + b) —1/2
cr,x(u)=_1+(b+1)(1+2(hm+ﬁ><b+1 + oo >>
2
= <b+x /_Z(b;— D x? +0(x3T_3/2)) F (T2 4 02T i

+0GT 2)) W+ 0w’ T3?), (2.12)

+ <2T(b+ 1)

20b+1 2
crx(0)=b+x,/ —% — x? + 03T, (2.13)
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Consequently, we find that

T 1/2
~(er.2(0) = er (W) 5 = (T + O(sz‘/%) ui
—1/24 Y, 2 3—1/2
+<4(b+1)+0(xT ))u + 0T~ 1/%), (2.14)
r_«x 2 3m—1/2
—(b— cT,x(O))E = E\/—ZT(b +1)— 5 +OWT 2y, (2.15)

On the other hand, by Proposition A.1,
Rrx() — Rrx(0) = OT Vi 4+ 0G>T~ ")+ 0’ T/?), Ry (0)=0GT/?).

Therefore, combining (2.10), (2.15), and (A.1), we get (2.8). Moreover, (2.9) can be obtained
via (2.11), (2.14), and (A.1). O

Proposition 2.2. For any constant p > 0, and |u| < (|b|/32)T'/?, |x| < pT"/5,

M2 Y
54(ﬁ+1)ﬁeXP{— +—},

u
“pQ’GT*”(ﬁ> 82| 2

where y is the Euler constant.

Proof. Recall the calculation in (2.11); it suffices to analyze the real part of —(cr (0) —
cr x(1))T /2 and give an upper bound for | exp (Rr x(u))|. Using

1 Re(1
Re(¢1+z)=\/ 1+ - A9 ) 2.16)

4ui 20+ b)\\ 2
=cr O 1+ ———(b+14x/— , 2.17
crx( )( +c%,x(0)«/7( +1+4x T )) (2.17)

we have

x 1612 21 2\ /2
Re(CT,x(u))=CT:/%O)<1+ 1+ 46:))T<b+1+x,/— (:b)>) .

CT,x

Now, for T large enough and |u| < (|b|/32)T'/?, |x| < pT'/®,

2(1
LI S P VA
2 T 2

< lerx(0)] < 2'4p|.
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Consequently,

T
5 IRe(erx(u) = crx(0))]

ler(0)|T 4ui 201+ b)) ‘
= i+ —— (b4 141/ — -V2
= ( +' +c%’x(0)ﬁ< +14x - f)

) — 2 . -1
:4f2u (b+1+3x«/_2(1+b)/T) (‘1+ i 4ui (b+1+x _2(1~|—b)>‘+1>
|c3 ,(0)] 7. ONT r

-1
dui [ 2(1+b)
I+l +——(b+1 - V2
x< +‘+c%,x(0)«/7<+ +x - )‘+ )

2 — 2 2 2\ —3/4
Zu b+ 14+x/-2(1+b)/T) <1+ 16u <b+l+x _2(1+b)) )
C

lc7.,(0)] 7 (OT T
w2
2 —’
8v/2|b|
which immediately implies that
T 2
Rel| —(crx(0) —cr, (u))—) <- . (2.18)
( Y AT

Next, we turn to estimating | exp (Rrx(u))|. From (2.17),

b| 4ui 21+ b))\ |2
—5c,(u)=c,(0)‘1+—<b+1+x - > <2|b|.
5 = lerxl =lerx(0)] 2 OT V T ]
Together with (2.12) and (A.2)-(A.4), we have
1 1 1 1
—cr () — E(pT,x(u) + 5= (V2 + 1)bl, —cr x(u) — E‘pT,x(u) > Elbl-

By Lemma 2.2, we have

e¥/?2 <2(v2 + e/,

' L(=erx@) = A/2pr @) | _ ‘ —cr,x(u) — (1/2)@r (1) + 1/2
C(—crx(w) — (1/2)pr () +1/2) | — —crx(u) — (1/2)pr (1)

which, together with (A.8), implies that

<42+ DJme’?. (2.19)

1 1 —2T
| exp{Rr,x(w)}| = B<_CT,X(M) - Ew,x(u), 5)(1 +0( "))

Finally, by (2.11), (2.18), and (2.19), we can complete the proof of this proposition. U
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3. Proofs of the main results

In this section we give the proof of our main result, Theorem 1.1, and its two corollaries.
Recall that the definitions of Gt and the probability measure Q are given in (2.1) and (2.3)
respectively. Consider the normalized version of Gr y,

5 T N\, T
= (zarm) (0 mm)

Using the simple identity fooo exp{—xu} dd(u) = et/ 2(1 — ®(x)) and (2.4), we can write,
forx >0,

T 00 ~
Py (‘/ e ————(br—b)> X) e Ep(explhr.Gr.i)) /0 exp{—xt} dQ(Grx < 1)

= e Ep(explhr Gr. N(Jr+ (1 = 0@, (G.1)

and for x < 0, using (2.5),

T P ~
Py <\/ T2+ b) (br —b) < x) = Ep(explhrxGr (T + e~ 2 0(x)),

where hr , =x/—2(b+1)/T and

0

Tra= /O e AQGr. <1) — D), Jra= / e d(Q(Gr <1 — @(1). (3.2)

—00

Next, we need to give the estimation of Jr, and jT,x. The following lemma [18,
Theorem 2, p. 109] will play a crucial role.

Lemma 3.1. Assume F and G are probability distribution functions, and that G has bounded
derivative. Define ¢(u) = fR e" dF(x) and (1) = fR e"™ dG(x). Then, for any M > 0,

= G
Ut SUP |G ()]

xeR

M
sup [F(x) — G| <~ / 'M
T J-M u

xeR

Proof of Theorem 1.1. Without of loss of generality, we assume that x > 0; the proof for
x < 0 is similar. Jr 4, as defined by (3.2), can be estimated as follows. By using Lemma 3.1,

we have
2
~ 1 pUBIBAT? (g0 & (u) —e /2 763
sup |Q(Grx <1) — ®(1)| < — / 0Crs + T2,
1eR —(|b|/32)T/2 u |blr /27
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Moreover, we have

/<|b/3z>rlf2 0.6, ) —e/?
— : du
(Ibl/32)T1/2 u
~ —u? _T1/6 ~ —i2)2
1™ g, W) —e/? 1 T 905, W) —e
S _ / QaGT,X du + _ / QaGT,X du
T J_T1/6 u T J—(|b|/32)T!/? u
2
1T g = () — e/
— du.
T1/6 u
From Proposition 2.1, it follows that, for |u| < Tl/0,
i 2(b+1)
= e (o )
— e /2 exp{uiOGAT™V2) + 2OGT V%) + 03T~ V2)).
Together with Proposition 2.2, we have
| f<|b|/32>T'/2 0.5, ) —e /2
— - du
T J-(bl/32)11/2 u
1T,
<— / e 20T V) + uoGeT V%) + 0T~ "%)) du
T Tl/6
2 (BT oo 6 (/=20 + D)/T)| 4 e/
+ — du
T1/6 u
= 0> + DT~ '/?).
Therefore, we obtain
|Jr.x| < sup |Q(Grx < 1) — B()| = O((x* + DT/, (3.3)

teR

Applying (2.7), (2.8), (3.1), and (3.3),

/ T ~ T
]P’b< —2(1 ~|—b)(bT_b)>x) =]P’b<GT,X > X _2(b+ 1))

=(1— ®®))(1 + O + )T~ /%))

Therefore, we get
P T Gr-b 1—@
b( _2(1+b)( T — )>X)—( — ®(x)

which completes the proof of (1.4).

= (1 — @(x)O(x(x* + DT~ 1/?)

—e 202 + DTV,
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Note that
¥ {—x—z}<1—q>(x)< ex {—x—z} x>0 (3.4)
V27 (1 +x2) Pl 2= T 2mx 72 ) )
Together with (1.4), we can get (1.5), i.e.
Py(v=T/Q(A+D)br —b) <x) _ x 0
) _exp{O(l)ﬁ}.

Proof of Corollary 1.1. According to Theorem 1.1, for any p > 0,

T ~
Pb<‘/—2(l +b)(br—b)EX> — D)

Moreover, using [14, Theorem 1.1] and (3.4), we have

T ~
Pb<‘/—2(1 +b)(bT—b)§x> — ®(x)

<cr V2, (3.5)

sup
x<pTl/6

sup
x>pT/6
T ~
< sup Pb( — (br—b)>x> + sup (1—@@)<CT 2. (3.6)
x>pT1/6 2(1+b) x=pT1/6
By (3.5) and (3.6), we can complete the proof of Corollary 1.1. U

Proof of Corollary 1.2. Finally, Corollary 1.2 can be obtained immediately from (1.5) in
Theorem 1.1. O

Appendix A. Estimations of Rz (u) and Rz, (0)

In this appendix, we give precise estimates of Rr (1) and R (0), which play crucial roles
in the proof of Proposition 2.1.

Proposition A.1. For any constant p > 0, and |u| < pT/®, |x| < pT/,

Rr2) — R7(0)= 0T Pui+ 0T~ + 0’ T™?),  Rp(0)=0GT'/?).

(A.1)
Proof. From (2.12) and (2.13), we have

o1 x) = 02T~ 4+ OGP T?yui + 0T~ ) + 03 T3/2), (A.2)

cr.(0) —b=0GT /), (A3)

cr () — er(0) = O(T~ V)i + 0T~ + 0GP T—3/2). (A.4)
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By Lemma 2.2, we have the following asymptotic results:

L(—crx(w) — (1/2) @71 x (1)) —cr,x(u)
, ; _ \ 007+
T(—cr () era@) — (12 () S PIO@r]
=1+ O(gpr (),
C(—cr ) +1/2) _ —cr () — (1/2)pr x(w) + 1/2 exp{O(¢r ()}
C(—crx(w) — (1/2)pr x(u) + 1/2) —crx(u)+1/2 T
=1+ O(¢pr (),
B(_C W — 1¢ W l) _ C(—crx(w) — (1/2)pr x(u)I'(1/2)
TP 2 ) T T (Ceraw) — (1/2r ) + 1/2)
= B<_CT x(u), )(1 + O(or x(W)). (A.5)
Similarly, we also have
B(—crx(w), 1/2) B B(—cr x(0), 1/2) _
m =1+ O(CT,x(u) CT,x(O)), —B(—b, 1/2) =1+ O(cr,x(0) — D).
(A.6)

Recall the Jacobi Theta function [6]:

o0 o0
®(Z) — Z e,ﬂﬁz — 1 + 2 Z efnﬁzz.
t=—00 =1
We have
o0 o0 o0
O@z) = Z e T(+1z < Z o (E+1/2)% < Z el 02).
l=—00 l=—00 {=—00

Moreover, from the fact that

ool -3 (003) (rm) | =50 (e )
= T(s+T) 2 \2TG+T7)

it follows that

2/ exp{——[(2n+2k+J/1)2(s—T)+rr <z+;)2<s_T)“ji

¢>0
. wor(vn3) (7vm) | o
—Z/ eXp{ [(2n+2k+y1) s+ <£+ > To D) m

=0

—l/mex {—1(2 2k + )2}®< i ) ds
=2), P12 P\ s+ ) JTo D)
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Recall the fact that ©(x) = (1/./x)O(1/x), which yields

l/ooex {—1(2 +2%k+n) }@( s ) ds
2 ), P2 Y E\ ot ) ) TG+ D)
2T(s+T)

1 > 12 ok 2o ds

By the asymptotic expansion of the Jacobi Theta function,

2T T
®( (s+ )> — 1420 276D 4 e 2Ty < | 42672 4 o(e=2T),
s
we obtain
1\? T d
Z/ exp{—-<(2n+2k+y1)2(s—T)+n (£+ ) (—S_ ))}—S
= 2 Ts JTs

1 _oT o0 1 2 ds
=—— (140 ))f exp{—z((2n+2k+ Y1) s)}—
0

V2r Vs
Consequently, we have
e?iT/2 1
Wfl *fc2n+]/1 <?)
Z (= 1) 7((2n+2k)2/2)T7(2n+2k)y1T
kE>O
/OO Lans 2kt mie—non(e+ 1) (S20)) 12
X expy—= - b4 = —
P2\ v 2) 'ty NG
224y (—DTQn+k+v1) _p2
— ex _2n2T_2n ]T e—2k T—4nkT— 2ky|T(1+0(e—2T))
oz i’ }Z KT+ 1)
Using Lemma 2.2,
T(n+k 2 k(2n +k k 2
Qntk+y) _ 2n+n exp{—ky—l—z_.(n—i_ +r1) 0( )}
'2n+y1) 2n+k+y ; ii+2n+k+y1) 2n+k+y

so we obtain

(D TCn+k+v1) —ser—aur—ainr

:1 72T ,
KT Qi+ 1) o)

k=0

and the small o( - ) term is hold uniformly in #; this further implies that

eVi T/2 1 22n+)’| 5 _op
Wfrl >1<fc2,,+y1 <f) = T exp{—2n"T —2ny1T}(1 + O(e™)).
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Similarly, we have

N T2 P20 — cr )+ 1/2) | . |
ﬁ = 4npIT(n — CT,x(u)) fT1 *fC2n+J/1 <?>B<}’l — CT,x(M) - E(PT,X(M), 5)

T (—=crx(u) 4+ 1/2) 1 1 _or
_ B( —cr o) — ~or o(u), = Y1+ 0
V21T (—cr A (u)) < ) = 2 9m) 2>( Toe)

2

e ¢]

8 Z I'@2n — crx(u) + 1/2)T (—cr xW)B(n — cr (1) — (1/2)@r 5 (1), 1/2) o2 T—2n T
!l (—crx(u) + 1/2)I'(n — cr x(w)B(—cr x(u) — 1/2)

n=0
_ 2T (—cr x(u) +1/2)
V27T (—cr x(u))

Applying (A.5) and (A.7), we get

1 1 _oT
B(—Cr,x(u) - Ewr,x(u), 5)(1 + 0@ ). (A7)

2
eilTl2 ST 2n— cr(u)+1/2) 1 1 1
V2K, : —|\Bln— _Z _
e T = 4!l (n — cra(u) I * e (T) (n er.x(it) = 2 er.u), 2)

! 1 —2r
=B| —crx(u) — E@T,x(u)a 5)(1 +0@ "))

1
=B <_CT,x(u)s 5) (1+ O(pr.(w))(1 + Oe ")), (A.8)
Combining this with (A.6) and (A.2)—(A.4), we have (A.1). O
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