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Abstract. In this short and elementary note, we study some ergodic optimization problems
for circle expanding maps. We first make an observation that if a function is not far from
being convex, then its calibrated sub-actions are closer to convex functions in a certain
effective way. As an application of this simple observation, for a circle doubling map, we
generalize a result of Bousch saying that translations of the cosine function are uniquely
optimized by Sturmian measures. Our argument follows the mainline of Bousch’s original
proof, while some technical part is simplified by the observation mentioned above, and no
numerical calculation is needed.
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1. Introduction
Let X be a compact metric space and let C(X) denote the collection of real-valued
continuous functions on X. Let T : X → X be a continuous map. For the topological
dynamical system (X, T ), let M(X, T ) denote the collection of T-invariant Borel prob-
ability measures on X. The ergodic optimization problem of (X, T ) is concerned about,
for given f ∈ C(X), the extreme values (maximum or minimum) of μ �→ ∫

X
f dμ for

μ ∈M(X, T ), and which measures attain the maximum or minimum. For an overview
of the research topic of ergodic optimization, one may refer to Jenkinson’s survey papers
[10, 11] and Bochi’s survey paper [2]. See also Contreras, Lopes, and Thieullen [6], and
Garibaldi [9].

Since

min
μ∈M(X,T )

∫
X

f dμ = − max
μ∈M(X,T )

∫
X

(−f ) dμ,

to be definite, we shall mainly focus on the maximum problem and denote
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β(f ) := max
μ∈M(X,T )

∫
X

f dμ,

Mmax(f ) :=
{
μ ∈M(X, T ) :

∫
X

f dμ = β(f )

}
.

Measures contained inMmax(f ) are called maximizing measures of f for (X, T ). Given
f ∈ C(X), a basic tool to study maximizing measures is usually referred to as Mañé’s
lemma, which aims at establishing the existence of g ∈ C(X), called a sub-action of f,
such that

f̃ := f + g − g ◦ T ≤ β(f )

holds. One of its advantages is based on a simple observation as follows. Once such g
exists, then β(f ) = β(f̃ ) and Mmax(f ) =Mmax(f̃ ); moreover, for any μ ∈Mmax(f ),
f̃ = β(f ) holds on the support of μ. For a review of results on the existence or
construction of sub-actions, one may refer to [11, §6]; see also [6, Remark 12].

Given f ∈ C(X), a particular way to construct sub-action g of f is to solve the equation
below:

g(x) + β(f ) = max
Ty=x

(f (y) + g(y)) for all x ∈ X. (1)

A solution g ∈ C(X) to equation (1) is automatically a sub-action of f, and it is called a
calibrated sub-action of f. It is well known that when (X, T ) is expanding and f is Hölder
continuous, for the one-parameter family of potentials (tf )t>0, the zero-temperature limit
points (as t → +∞) of their equilibrium states are contained in Mmax(f ); see, for
example, [11, Theorem 4.1] and references therein. Calibrated sub-actions arise naturally
in this limit process; see, for example, [6, Proposition 29]. For expanding (X, T ) and
Hölder continuous f, the first proofs on the existence of calibrated sub-actions were given
by, among others, Savchenko [12] and Bousch [3] with different approaches. Savchenko’s
proof is based on a zero-temperature limit argument mentioned above; while Bousch’s
proof is to treat equation (1) as a fixed point problem and to apply the Schauder–Tychonoff
fixed point theorem.

In the first half of this paper, for a smooth expanding system (X, T ), given an observable
in C(X) with certain smoothness, we are interested in the regularity (or smoothness) of
its calibrated sub-actions. For simplicity, let us focus on the simplest case that T : X → X

is a linear circle expanding map; more precisely, X = T := R/Z is the unit circle, and
T x = dx for x ∈ T, where d ≥ 2 is an integer. Our main results in this part are
Theorem 2.3 and Corollary 2.4, and they roughly read as follows.

THEOREM A. For f ∈ C(T) identified as a function on R of period 1, if f can be written
as a sum of a convex function and a quadratic function, then any calibrated sub-action g
of f for the x �→ dx system can be written in the same form. In particular, both one-sided
derivatives of g exist everywhere and only allow at most countably many discontinuities,
and the set of points where g is not differentiable is also at most countable.
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It might be interesting to compare the statement above with the following result of
Bousch and Jenkinson [4, Theorem B]: for the x �→ 2x system, there exists a real-analytic
function such that any sub-action of it fails to be C1.

In the second half of this paper, as an application of Theorem 2.3, we shall generalize a
classic result of Bousch [3] roughly stated below with a simpler proof.

Theorem. (Bousch [3, Théorème A]) For each ω ∈ T, the function x �→ cos 2π(x − ω)

has a unique maximizing measure for the x �→ 2x system; moreover, the maximizing
measure is Sturmian, that is, supported on a semi-circle.

Our main technical result in the second half of this paper is Theorem 3.5. As a corollary
of it, we can easily prove Theorem 3.8 as a generalization of [3, Théorème A]. A slightly
weaker and easier to read version of Theorem 3.8 is as follows.

THEOREM B. Let f : T → R be a C2 function with the following properties, where f is
identified as a function on R of period 1:
• f (x + 1

2 ) = −f (x);
• f (x) = f (−x);
• f ′′ ≤ 0 on [− 1

4 , 1
4 ];

• f (0) > 1/40 · maxx∈T f ′′(x).
Then for each ω ∈ T, the function x �→ f (x − ω) has a unique maximizing measure for
the x �→ 2x system; moreover, the maximizing measure is Sturmian.

To prove Theorem 3.5, we follow Bousch’s proof of [3, Théorème A], while
Theorem 2.3 is used to simplify some technical steps in Bousch’s argument, especially
[3, Lemme Technique 2]. No numerical calculation is needed in our argument.

The paper is organized as follows. In §2, we mainly prove Theorem 2.3. The statements
are given in §2.1 and the proof is given in §2.2. In §3, we try to generalize [3, Théorème A];
the main results are Theorem 3.5 and its corollary Theorem 3.8. In §3.1, we recall Bousch’s
ideas in his proof of [3, Théorème A] that will be used for preparation. In §3.2, with the
help of Theorem 2.3, we prove Theorem 3.5. Finally, Theorem 3.8 is proved in §3.3.

The following notation or conventions are used throughout the paper.
• For a topological space X, C(X) denotes the collection of real-valued continuous

functions on X.
• For a metric space X, Lip(X) denotes the collection of real-valued Lipschitz functions

on X.
• For a (one-dimensional) smooth manifold (possibly with boundary) X, Ck(X) denotes

the collection of real-valued functions that are continuously differentiable up to
order k, where k ≥ 1 is an integer.

• T := R/Z denotes the unit circle. The following notation will be used when there is
no ambiguity.
– For x ∈ T and y ∈ R, x + (y mod 1) ∈ T will be denoted by x + y for short.
– For a ∈ R and b ∈ (a, a + 1), the arc {x mod 1 : x ∈ [a, b]} ⊂ T will be denoted

by [a, b] for short.
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• A function f : T → R will be frequently identified as a function on R of period 1.
• ‘Lebesgue almost everywhere’ is abbreviated as ‘a.e.’.

2. Regularity of calibrated sub-actions
Throughout this section, the dynamical system is fixed to be

Td : T → T, x �→ dx,

where d ≥ 2 is an integer. We focus on the regularity of calibrated sub-actions for this
system. Let us begin with introducing the following notation to express equation (1) of
calibrated sub-action in a more convenient way. Define Md : C(T) → C(T) as follows:

Mdf (x) := max
Tdy=x

f (y) = max
0≤k<d

f

(
x + k

d

)
for all f ∈ C(T), (2)

where, in the expression f ((x + k)/d), f is considered as a function on R of period 1.
Note that by definition, for f ∈ C(T),

g is a calibrated sub-action of f ⇐⇒ g ∈ C(T) and g + β(f ) = Md(f + g).

Also note that Lip(T) is Md -invariant. The following is well known.

LEMMA 2.1. For every f ∈ Lip(T), there exists g ∈ Lip(T) such that g is a calibrated
sub-action of f. Moreover, if f has a unique maximizing measure, then g is uniquely
determined by f up to an additive constant.

For the existence of g, see, for example [6, Proposition 29(iii)]. For the uniqueness part,
see, for example [3, Lemme C], which is stated for d = 2, but the proof there is easily
adapted to arbitrary d ≥ 2 or more general systems; see also [9, Proposition 6.7].

2.1. Statement of results. To characterize the regularity of calibrated sub-actions and
to state Theorem 2.3 later on, we need the following quantity η(·) to measure how far a
continuous function is away from being convex.

Definition 2.1. Given f ∈ C(R), let η(f ) be the infimum of a ∈ R (we adopt the
convention that inf ∅ = +∞) such that the following holds:

f (x + δ) + f (x − δ) − 2f (x) ≥ −aδ2 for all x, δ ∈ R.

By definition, the following is evident.

LEMMA 2.2. Given f ∈ C(R) and a ∈ R, η(f ) ≤ a if and only if x �→ f (x) + (a/2)x2

is convex on R.

It will be useful to introduce the following notation closely related to η(·). Given δ > 0,
x ∈ R, and f ∈ C(R), denote

ξx
δ (f ) := 2f (x) − f (x + δ) − f (x − δ), (3)

ξ∗
δ (f ) := sup

x∈R
ξx
δ (f ). (4)
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Note that by definition,

η(f ) = sup
δ>0

δ−2ξ∗
δ (f ) for all f ∈ C(R). (5)

Also note that η(f ), ξx
δ (f ), and ξ∗

δ (f ) are well defined for f ∈ C(T) considered as a
function on R of period 1. It might be mentioned that when f ∈ C(T), ξ∗

δ (f ) ≥ 0 for any
δ > 0, and therefore η(f ) ≥ 0, although we shall not use these facts. To see ξ∗

δ (f ) ≥ 0, let
us consider f as a continuous function on R of period 1. Then f attains its maximum on R

at some x, and hence ξ∗
δ (f ) ≥ ξx

δ (f ) ≥ 0.
Now we are ready to state our main result in this section.

THEOREM 2.3. Given d ≥ 2, let f ∈ C(T) and suppose that there exists a calibrated
sub-action g ∈ C(T) of f for the x �→ dx system. Then we have

ξ∗
δ (g) ≤ ξ∗

d−1δ
(f ) + ξ∗

d−1δ
(g) for all δ > 0, (6)

η(g) ≤ (d2 − 1)−1 · η(f ). (7)

The proof of Theorem 2.3 will be given in the next subsection. Let us state a corollary
of it first, which indicates, under the regularity condition η(f ) < +∞, how regular a
calibrated sub-action of f could be. It should be mentioned that, as the referee pointed
out to the author, in [3, Lemme B], Bousch already showed that for any f ∈ Lip(T)

and any calibrated sub-action g ∈ C(T) of f, g is automatically Lipschitz and lip(g) ≤
lip(f )/(d − 1) holds, where lip(·) denotes the Lipschitz constant of a function (although
Bousch only focused on d = 2, his argument works equally well for general d ≥ 2). The
corollary below asserts that, under the additional assumption η(f ) < +∞, we can say
something more about the regularity of g.

COROLLARY 2.4. Given d ≥ 2, let f ∈ Lip(T) be with η(f ) < +∞ and let g ∈ C(T) be
a calibrated sub-action of f for the x �→ dx system. Then the following hold.
• Both of the one-sided derivatives g′±(x) := lim�↘0((g(x ± �) − g(x))/±�) of g

exist at each x ∈ T.
• g′± are of bounded variation on T; that is to say, identifying g′± as functions on R of

period 1, g′± are of bounded variation on finite subintervals of R.
• Given x ∈ T, g′(x) does not exist if and only if g′+(x) > g′−(x); the set {x ∈ T :

g′(x) does not exist} is at most countable.

Proof. By equation (7) in Theorem 2.3, η(g) < +∞. Then, according to Lemma 2.2,
identifying g as a function on R of period 1, x �→ g(x) + (η(g)/2)x2 is convex on R. All
the statements follow from basic properties of convex functions.

2.2. Proof of Theorem 2.3. This subsection is devoted to the proof of Theorem 2.3. Let
us begin with some common elementary properties shared by η(·) and functionals defined
in equations (4) and (4).

LEMMA 2.5. Let X be a topological space and recall that C(X) denotes the vector
space of real-valued continuous functions on X. Let 	 denote the collection of γ :
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C(X) → (−∞, +∞] satisfying the following assumptions (we adopt the convention
0 · (+∞) = 0 below):
• γ (f + g) ≤ γ (f ) + γ (g);
• γ (max{f , g}) ≤ max{γ (f ), γ (g)};
• γ (af + b) = aγ (f ) for a ≥ 0, b ∈ R.
Then 	 has the following properties:
• if a, b ≥ 0 and α, β ∈ 	, then aα + bβ ∈ 	;
• if � ⊂ 	, then supγ∈� γ ∈ 	.
Moreover, for X = R, ξx

δ ∈ 	 for any δ > 0, x ∈ R. As a result, ξ∗
δ ∈ 	 for any δ > 0 and

hence η ∈ 	.

Proof. All the statements are more or less evident and can be easily proved by checking
the definition directly. Let us only verify the relatively less obvious fact that

ξx
δ (max{f , g}) ≤ max{ξx

δ (f ), ξx
δ (g)},

and the rest is left to the reader. To prove the inequality above, denote h := max{f , g}. If
h(x) = f (x), then

ξx
δ (h) = 2f (x) − h(x − δ) − h(x + δ) ≤ ξx

δ (f ),

where the ‘≤’ is due to f ≤ h; otherwise, h(x) = g(x) and the same argument shows that
ξx
δ (h) ≤ ξx

δ (g). The proof is done.

The key ingredient to Theorem 2.3 is the simple fact below. Recall the operator Md

defined in equation (2).

PROPOSITION 2.6. Given d ≥ 2 and f ∈ C(T), the following hold:

ξ∗
δ (Mdf ) ≤ ξ∗

d−1δ
(f ) for all δ > 0; (8)

η(Mdf ) ≤ d−2 · η(f ). (9)

Proof. Identify f as a function on R of period 1. For 0 ≤ k < d, let fk ∈ C(R) be defined
by fk(x) := f ((x + k)/d). By definition, Mdf = max0≤k<d fk , and

ξ∗
δ (fk) = ξ∗

d−1δ
(f ) for all 0 ≤ k < d, δ > 0.

It follows that

ξ∗
δ (Mdf ) = ξ∗

δ ( max
0≤k<d

fk) ≤ max
0≤k<d

ξ∗
δ (fk) = ξ∗

d−1δ
(f ),

where the ‘≤’ is due to Lemma 2.5. This completes the proof of equation (8). Equation (9)
follows from equations (8) and (5) immediately.

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Since g + β(f ) = Md(f + g), equation (6) follows from
equation (8) in Proposition 2.6 and Lemma 2.5 directly. To prove equation (7), first
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note that by equations (6) and (5), the following holds for any δ > 0:

ξ∗
δ (g) ≤ ξ∗

d−1δ
(f ) + ξ∗

d−1δ
(g) ≤ (d−1δ)2 · η(f ) + ξ∗

d−1δ
(g).

Iterating this inequality repeatedly and noting that ξ∗
d−nδ

(g) → 0 as n → ∞, we obtain
that

ξ∗
δ (g) ≤

∞∑
n=1

(d−nδ)2 · η(f ) = δ2 · (d2 − 1)−1 · η(f ).

Since δ > 0 is arbitrary, equation (7) follows.

3. Sturmian optimization
In this section, we fix d = 2 and denote T x = 2x, x ∈ T. For this system, we shall show
that certain functions are uniquely maximized by Sturmian measures, which generalizes
the result of Bousch [3, Théorème A]. The results are stated in Theorem 3.5 and its
consequences in Corollary 3.6 and Theorem 3.8. Recall that for any closed semicircle
S ⊂ T (that is, S = [γ , γ + 1

2 ] for some γ ∈ R), there exists a unique T-invariant Borel
probability measure supported on S, called the Sturmian measure on S. Bullett and
Sentenac [5] studied Sturmian measures systematically. See also [8, §6] for connection
of Sturmian measures with symbolic dynamics.

3.1. Bousch’s criterion of Sturmian condition. This subsection is devoted to reviewing
the basic ideas of Bousch for his proof of [3, Théorème A].

Definition 3.1. (Bousch [3, p. 497]) Let f ∈ Lip(T) and let g ∈ Lip(T) be a calibrated
sub-action of f for the x �→ 2x system. Denote

R(x) = Rf ,g(x) := f (x) + g(x) − f
(
x + 1

2

) − g
(
x + 1

2

)
, x ∈ T. (10)

If {x ∈ T : R(x) = 0} consists of a single pair of antipodal points, then we say that (f , g)

satisfies the Sturmian condition. We also say that f satisfies the Sturmian condition if
(f , g) satisfies the Sturmian condition for some g.

By definition, it is easy to see the following holds, which is a combination of the
Proposition in of [3, p. 497] and [3, Lemme C].

LEMMA 3.1. (Bousch [3]) If f ∈ Lip(T) satisfies the Sturmian condition, then f admits a
unique maximizing measure. Moreover, this measure is a Sturmian measure, and up to an
additive constant, there exists a unique calibrated sub-action of f.

Remark. As a corollary, if f ∈ Lip(T) satisfies the Sturmian condition, then for the
equilibrium state of tf (t > 0), its zero-temperature limit (as t → +∞) exists. See, for
example, [11, Theorem 4.1] for details.

The basic idea of Bousch [3] to verify the Sturmian condition is summarized below.
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LEMMA 3.2. Let f ∈ Lip(T) and let g ∈ Lip(T) be a calibrated sub-action of f. Assume
that for R defined by equation (10), there exist a ∈ R and b ∈ (a, a + 1

2 ) with the following
properties:
(S1) R > 0 on [a, b];
(S2) R is strictly decreasing on [b, a + 1

2 ].
Then (f , g) satisfies the Sturmian condition.

Let us provide a proof for completeness.

Proof. By definition, R(x + 1
2 ) = −R(x), so that {x ∈ T : R(x) = 0} is non-empty and

consists of pairs of antipodal points. However, the assumptions (S1) and (S2) imply that
{x ∈ T : R(x) = 0} ∩ [a, a + 1

2 ] contains at most one point. The conclusion follows.

To get an effective test for assumption (S1) in Lemma 3.2, Bousch made the following
observation in his proof of [3, Lemme Technique 1]. Recall the notation introduced in
equations (3) and (4).

LEMMA 3.3. Let f ∈ Lip(T) and let g ∈ Lip(T) be a calibrated sub-action of f. Then for
any n ≥ 2 and any x ∈ T, we have

−2
(

g(x) − g

(
x + 1

2

))
≤ max

y∈T −(n−1)(x+1/2)

n∑
k=2

ξ
T n−ky

2−k (f ) + ξ∗
2−n(g). (11)

Let us reproduce Bousch’s proof for completeness.

Proof. We follow the beginning part in the proof of [3, Lemme Technique 1]. Without
loss of generality, assume that β(f ) = 0 for simplicity, so that equation (1) becomes

g(x) = max
Ty=x

(f (y) + g(y)) for all x ∈ T.

To prove equation (11), fix x ∈ T, denote x1 = x + 1
2 , and for each n ≥ 2, choose xn ∈

T −1xn−1 such that

g(xn−1) = f (xn) + g(xn)

inductively on n. Noting that T (xn ± 2−n) = xn−1 ± 2−n+1, we have

g(xn−1 + 2−n+1) ≥ f (xn + 2−n) + g(xn + 2−n),

g(xn−1 − 2−n+1) ≥ f (xn − 2−n) + g(xn − 2−n).

It follows that for each n ≥ 2,

ξ
xn−1
2−(n−1) (g) ≤ ξ

xn

2−n(f ) + ξ
xn

2−n(g),

and therefore

−2
(

g(x) − g

(
x + 1

2

))
= ξ

x1
2−1(g) ≤

n∑
k=2

ξ
xk

2−k (f ) + ξ
xn

2−n(g).

The proof of equation (11) is completed.
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3.2. Sufficient conditions for the Sturmian condition. In this subsection, based on
Lemma 3.2 and Theorem 2.3, we shall prove Theorem 3.5 and Corollary 3.6, which
provide sufficient conditions for the Sturmian condition that are easy to check for specific
observable f. Let us begin with a simple fact that will be used to verify assumption (S2) in
Lemma 3.2.

LEMMA 3.4. The following holds for any f ∈ Lip(R) with η(f ) < +∞ and any δ > 0:

f ′(x) − f ′(x + δ) ≤ η(f ) · δ a.e. x ∈ R.

Proof. Let f̃ (x) := f (x) + (η(f )/2)x2. Then by Lemma 2.2, f̃ is convex on R, so that
for any δ > 0,

f ′(x) − f ′(x + δ) − η(f ) · δ = f̃ ′(x) − f̃ ′(x + δ) ≤ 0 a.e. x ∈ R.

Our main technical result in this section is the following. Its statement might look
complicated, so we shall present a simplified version in Corollary 3.6 and further deduce
another result in Theorem 3.8.

THEOREM 3.5. Let f ∈ Lip(T) be with η(f ) < +∞. Suppose that there exist a ∈ R and
b ∈ (a, a + 1

2 ) such that equations (12) and (13) below hold:

f (x) − f

(
x + 1

2

)
− 1

2
· max
y∈T −1(x+1/2)

ξ
y

1/4(f ) >
1

96
η(f ) for all x ∈ [a, b]; (12)

f ′(x) − f ′(x + 1
2

)
< − 1

6η(f ) a.e. x ∈ [
b, a + 1

2

]
. (13)

Then f satisfies the Sturmian condition.

Proof. Let g ∈ Lip(T) be a calibrated sub-action of f. Note that by equation (7), η(g) ≤
1
3η(f ). It suffices to verify the two assumptions (S1) and (S2) in Lemma 3.2.

Verifying (S1). First, taking n = 2 in equation (11) yields that

g(x) − g
(
x + 1

2

) ≥ − 1
2 · max

y∈T −1(x+1/2)
ξ

y

1/4(f ) − 1
2 · ξ∗

1/4(g).

Second, due to equation (5) and η(g) ≤ 1
3η(f ),

ξ∗
1/4(g) ≤ 1

16
η(g) ≤ 1

48
η(f ).

Combining the inequalities in the two displayed lines above with equation (12) and the
definition of R, assumption (S1) is verified.

Verifying (S2). It suffices to show that R′ < 0 a.e. on [b, a + 1
2 ]. Identify g as a function

on R of period 1. Applying Lemma 3.4 to g with δ = 1
2 , we have

g′(x) − g′(x + 1
2 ) ≤ 1

2η(g) a.e. x ∈ R.

Combining this with η(g) ≤ 1
3η(f ), equation (13), and the definition of R, the conclusion

follows.
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To simplify the expressions in equations (12) and (13), let us add certain symmetry
((A0) in Definition 3.2) to f and introduce the following families of functions. Then the
statement of Theorem 3.5 can be reduced to Corollary 3.6 below.

Definition 3.2. Given a ∈ R, b ∈ (a, a + 1
2 ) and v ∈ R, let Av

a,b denote the collection of
f ∈ Lip(T) such that the assumptions (A0), (A1), (A2) below hold.
(A0) f (x) + f (x + 1

2 ) = 2v for x ∈ T.
(A1) 2f (x) − v − maxy∈T f (y) > (1/96)η(f ) for x ∈ [a, b].
(A2) f ′(x) < −(1/12)η(f ) for a.e. x ∈ [b, a + 1

2 ].
Moreover, denoteAa,b := ⋃

v∈R Av
a,b.

Remark. By definition, if f ∈ Av
a,b, then for fω(x) := f (x − ω), fω ∈ Av

a+ω,b+ω for
any ω ∈ R. Moreover, Aa,b is a ‘cone’ in the sense that if f , g ∈ Aa,b and t > 0, then
tf , f + g ∈ Aa,b. This can be easily checked by definition and Lemma 2.5.

In the statement below, by saying that a T-invariant measure is a minimizing measure of
f ∈ C(T), we mean that it is a maximizing measure of −f .

COROLLARY 3.6. For Aa,b defined in Definition 3.2, let f ∈ Aa,b. Then for any
ω ∈ R, fω(x) := f (x − ω) satisfies the Sturmian condition. As a result, fω admits a
unique maximizing measure and a unique minimizing measure, and both of them are
Sturmian measures.

Remark. Results in [1, Theorem 1] and [7, Theorem 4.1] are of the same style as
Corollary 3.6 but cannot be recovered by it.

Proof. Let f ∈ Av
a,b for some v ∈ R. According to the remark ahead of the corollary, to

show fω satisfies the Sturmian condition, it suffices to prove that f satisfies the Sturmian
condition. First, since f satisfies (A0),

f (x) − f
(
x + 1

2

) − 1
2 · ξ

y

1/4(f ) = 2f (x) − v − f (y) for all x, y ∈ T.

Combining this with assumption (A1), equation (12) holds. Second, combining assump-
tions (A0) with (A2), equation (13) holds. Therefore, by Theorem 3.5, f satisfies the
Sturmian condition.

Finally, since fω satisfies the Sturmian condition, by Lemma 3.1, it admits a unique
maximizing measure which is Sturmian; since fω = 2v − fω+1/2, the minimizing measure
of fω is also unique and Sturmian.

3.3. A family of functions looking like cosine. As a concrete application of
Corollary 3.6, we can recover the result of Bousch [3, Théorème A]: for f (x) = cos 2πx,
η(f ) = 4π2 and it is easy to check that f ∈ A−1/8,1/8 (or f ∈ A−1/10,1/10).

To give a sufficient condition for the Sturmian condition more explicit than
Corollary 3.6, by mimicking behaviors of the cosine function, we add more properties
to the observable f and introduce the following family of functions. A sufficient condition
will be given in Theorem 3.8.

https://doi.org/10.1017/etds.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.32


Regularity of calibrated sub-actions for circle 1919

Definition 3.3. LetB denote the collection of f ∈ Lip(T) with the following properties.
• x �→ f (x) + f (x + 1

2 ) is constant on T.
• f (−x) = f (x) for x ∈ T.
• η(f ) < +∞.
• f is concave on [− 1

4 , 1
4 ].

By definition, the following is evident, where esssup (essinf) means the essential
supremum (infimum) relative to Lebesgue measure.

LEMMA 3.7. B is a subset of {f ∈ C1(T) : f ′ ∈ Lip(T), f ′(0) = 0}. Moreover,

η(f ) = esssupx∈Tf ′′(x) = −essinfx∈Tf ′′(x) for all f ∈ B.

THEOREM 3.8. Denote κ := 7/96 − √
3/36 > 0. Let f ∈ B and suppose that

f (0) − f ( 1
4 ) > κ · η(f ).

Then x �→ f (x − ω) satisfies the Sturmian condition for any ω ∈ R.

Remark.
• 7/96 − √

3/36 < 0.02481 < 1/40; however,

sup
f ∈B

f (0) − f (1/4)

η(f )
= 1

32
= 0.03125,

and the supremum is attained at f ∈ B defined by f (x) = −x2, x ∈ [0, 1
4 ].

• For f (x) = cos 2πx ∈ B, (f (0) − f ( 1
4 ))/η(f ) = 1/4π2 > 0.02533.

Proof. Without loss of generality, assume that f ( 1
4 ) = 0 for simplicity. It suffices to

find c ∈ (0, 1
4 ) such that f ∈ Aa,b for a = −c, b = c. Assumption (A0) is automatically

satisfied for v = 0. Since f is decreasing on [0, 1
2 ] and since f (−x) = f (x), assumption

(A1) is reduced to 2f (c) − f (0) > (1/96)η(f ). Since f ′ is decreasing on [0, 1
4 ] and since

f ′( 1
2 − x) = f ′(x), assumption (A2) is reduced to f ′(c) < −(1/12)η(f ). Moreover, h :=

f (0) − f satisfies all the assumptions in Lemma 3.9 below, and assumptions (A1), (A2)
are further reduced to assumptions (H1), (H2) in Lemma 3.9. Then, applying Lemma 3.9
to this h, the conclusion follows.

LEMMA 3.9. Let h : [0, 1
4 ] → R satisfy the following.

• h is C1, and h′ is Lipschitz and increasing.
• h(0) = h′(0) = 0.
• h( 1

4 ) > κ · η for κ := 7/96 − √
3/36 and η := esssupx∈[0,1/4]h

′′(x).

Then there exists c ∈ (0, 1
4 ) such that

(H1) h( 1
4 ) − 2h(c) > η/96,

(H2) h′(c) > η/12.

Proof. Without loss of generality, we may assume η = 1, because all the assumptions
of h are positively homogeneous. Then h′′ ≤ 1 a.e. Let b ∈ [0, 1

4 ] be maximal such that
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h′(b) ≤ 1/12. Since h′(0) = 0 and h′′ ≤ 1 a.e., b > 1/12 and

h′(x) ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x, 0 ≤ x ≤ 1
12

,
1
12

,
1
12

< x ≤ b,

1
12

+ x − b, b < x ≤ 1
4

.

It follows that

h(b) =
∫ b

0
h′(x) dx ≤ b

12
− 1

288
,

h

(
1
4

)
= h(b) +

∫ 1/4

b

h′(x) dx ≤ 5
288

+ 1
2

·
(

1
4

− b

)2

.

Then from

7
96

−
√

3
36

< h

(
1
4

)
≤ 5

288
+ 1

2
·
(

1
4

− b

)2

,

we deduce that b < b0 := (5 − 2
√

3)/12 < 1
4 , and hence h(b) < b0/12 − 1/288. It

follows that

h

(
1
4

)
− 2h(b) >

7
96

−
√

3
36

− b0

6
+ 1

144
= 1

96
.

Then the conclusion follows by choosing c > b sufficiently close to b.

Motivated by Theorem 3.8, let us end this subsection with the following question that
might be of interest.

Question. What is the optimal lower bound of κ > 0 such that if f ∈ B and f (0) −
f ( 1

4 ) > κ · η(f ) holds, then x �→ f (x − ω) satisfies the Sturmian condition for any
ω ∈ R?
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