
2

Gearing Up

For this book, we rely on a number of different software tools, and with
the exception of Microsoft Excel, all of them are available free of charge
and for all major operating systems (Windows, macOS, or Linux). The
most important one is R, a free, open-source statistical toolkit that comes
with its own programming language. As stated in the previous chapter,
it is required that readers have some experience in R, as the book does
not include a basic introduction. The best way to work with R is to use
RStudio, a powerful interface to the R engine.Youwill be able to complete
Parts I and II of the book with R and RStudio only; if you also cover
the more advanced chapters in Parts III and IV, you will also need the
PostgreSQL database management system.
In this chapter, we go through the software required for the book.

Detailed installation steps, as well as the sample datasets discussed in the
book, are provided as part of the book’s companion website at

https://dmbook.org

where you will always find up-to-date instructions and data. You do not
have to install all the software tools below at once. It is perfectly possible
to start with R and RStudio, and later return to this setup as you begin
exploring the more advanced chapters on database systems, starting with
Chapter 8.

2.1 r and rstudio

Please follow the installation instructions on the book’s website to install
the R statistical toolkit on your system. The R software includes the main

14

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://dmbook.org
https://doi.org/10.1017/9781108990424.004


2.1 R and RStudio 15

figure 2.1. The RStudio interface.

engine that does most of the work: It executes the commands you enter,
reads datasets, runs statistical models, and generates plots. The commands
for doing this must be specified in the R programming language. While
it is possible to work with R out of the box, I recommend that you
also install a much more powerful development interface for R: RStudio.
Instructions for this are also provided on the book’s companion website.
After the installation, start RStudio, and click on File New File R Script .
Your RStudio window should now look like Figure 2.1.
Let us go through some of the main elements of RStudio. At the bottom

left, you see the R console. This is where you see the output produced by
R (unless this output is graphical). You can also use the console to send
short commands to R. For example, if you type

Sys.Date()

on the console and hit Return , R will show you the current date.While you
could do all the work for this book via the console by entering commands
one by one, this is generally not a good idea since all this work would be
lost when you close RStudio. This is why we typically work with files of R
code, such as the one you created (which, at the moment, is still empty).

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004


16 2 Gearing Up

The files are displayed in the editor window of RStudio, at the top left
just above the console. You can enter the aforementioned command in
this window and save the file with File Save under a specific name. This
will preserve your R code such that you can later open and modify it. The
green arrow at the top of the code editor allows you to run the currently
selected part of code. It is absolutely essential for reasons of transparency
and replicability that you properly store your code in files, so always use
the code editor unless you are testing short commands!
On the right of the RStudio interface you can see two sets of panels,

one with different panels called “Environment,” “History,” etc, the other
with “Files,” “Plots,” etc. These panels become active once you continue
to work with your R project. For example, if you load a dataset into R
(which we will do in later chapters), you will see a new entry in the “Envi-
ronment” panel that allows you to view the new dataset. Also, you can
view graphics created by R in the “Plots” panel at the bottom. RStudio is
an extremely powerful and versatile development environment for R, and
we cannot go into more details here. There are a number of introductions
available online, which you should consult if you want to learn more
about RStudio’s features.
Nevertheless, I want to make one recommendation: Resist the temp-

tation to use the different menu-based features in RStudio. For exam-
ple, it is possible to read data using RStudio’s import feature under
File Import Dataset . This will internally execute one of R’s import func-
tions for you. However, unless you save the corresponding R code
displayed on the console explicitly as part of your R file, it will be
lost when you close RStudio, making replication and error correction
impossible. This is why I recommend that, wherever possible, you rely
entirely on R code written by yourself, which you can properly save in
your R file. This way, you later have a complete record of the individuals
steps you carried out, which makes it possible to correct/extend your
analysis when necessary, or share it with others so that they can replicate
exactly what you did.

2.2 setting up the project environment for your work

The examples in the book cover many files and datasets, and they require
a number of R packages. This setup has been prepared as a pre-configured
RStudio project, to make it as easy as possible for you to get started. Go
to the companion website for this book, which includes a link to this
material. The download comes as a single zip file. Unpack the archive by

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004


2.2 Setting Up the Project Environment for Your Work 17

double-clicking, and move the entire content of the archive to a newly
created folder that you would like to use as your main directory for the
exercises, for example, dmbook.
R uses a given folder as a working directory, which is where it looks

first when you open a file, or where it saves a file unless you specify
a different path. For example, if the dmbook folder is placed in your
Documents folder, then Documents/dmbook should be your main working
directory (or “project” directory) for the book. Note that the directory
paths provided here use the notation on macOS and Linux systems (with
a forward slash / separating the different folder levels). On Windows
systems, directory paths are specified using backslashes, for example
C:\Documents\dmbook, so the paths will look slightly different.
Inside your main project directory, you will find a number of files and

directories, which were originally contained in the archive you down-
loaded. This is roughly what your project directory looks like:

/Users/nils/Documents/dmbook/

ch04/

ch05/

...

ch13/

dmbook.Rproj

ex04/

...

ex13/

renv/

renv.lock

Let us quickly go through the most important folders and files. The
data used in the code examples of the book is contained in the sub-
folders (ch04, ch05, etc) for each chapter. If you follow the code examples
in the book, you will need the files in these folders. Similarly, additional
data for the exercises is contained in the sub-folders ex04, ex05, etc, again
ordered by chapter. The file dmbook.Rproj is a project configuration file for
RStudio. It is good practice to use these project files when working with
RStudio. When you double-click this file (don’t do this yet!), RStudio will
open a new session and switch to the directory containing the file as the
working directory. The renv folder and lockfile contain the project setup
for the book, which we introduce below.
R will treat all file names as relative to the working directory, that is,

the location of this project file. There is one issue, however, that arises due

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004


18 2 Gearing Up

to the differences in how operating systems denote file paths. I mentioned
earlier that macOS and Linux use forward slashes, and Windows uses
backslashes. In our code examples, we often access files, for example,
when importing data into R for further processing. To avoid including
separate code examples for macOS/Linux and Windows, I rely on the
built-in file.path() function that adjusts file paths depending on the
underlying operating system. For example, if we want to access the file
csv-example.csv in the ch04 subfolder, we can simply refer to this file with

file.path("ch04", "csv-example.csv")

in our code, and Rwill automatically convert this to ch04/csv- example.csv
for macOS or Linux, and to ch04\csv-example.csv if you use Win-
dows. This file path is relative to the working directory, so we can
omit the path to this directory (e.g., /Users/nils/Documents/ dmbook or
C:\Documents\dmbook).

2.2.1 R’s Extension Libraries

One of the core strengths of the R system is its extensibility. There are
thousands of packages for R that extend R’s functionality in different
ways. In this book, we rely on a number of these packages. Before you
can load a package in an R session to use it, you must install it on your
system. The standard way of doing this is via R’s command line with

install.packages("tidyverse", dependencies = T)

This will make sure that apart from the new package itself, R will also
install other packages that the new package depends on. Alternatively,
you can use RStudio for installing packages, using Tools Install Packages

in the menu bar.
Along with the code of the installed packages, you get the documenta-

tion of the functions it contains. It is absolutely essential that you learn
to use this documentation, as it contains all the necessary information
for you to use the package correctly and efficiently. In many cases, these
documentations are not written as accessible introductions and may be
difficult to read. This is why I give many pointers to useful functions
and parameters, which you can then look up yourself if you need more
details about how they work. The simplest way to display the reference
for a function is the ? operator, followed by the name of a package or a
function. For example,

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004


2.2 Setting Up the Project Environment for Your Work 19

?install.packages

shows you the documentation for the install.packages() function in
RStudio’s help window on the bottom right.
Many users do not worry too much about package management and

simply install packages in their main local library when they need them.
This is R’s default behavior, and it works just fine for most applications.
However, I prefer a more sophisticated approach to package manage-
ment: the use of different R environments. An environment is simply the
set of all packages used for a particular project, such that each project
keeps a separate list of packages (and their versions) it requires, without
interfering with others. This also has the advantage of us being able to
distribute a project along with a list of required packages, such that R
can automatically install all of them.
We use the renv package to enable package management within an

environment specifically for this book. The R project environment you
downloaded above has renv enabled by default. If you double-click
the dmbook.Rproj file that was distributed with the online material for
the book, RStudio opens a new session and initializes the environment.
It first downloads renv and does a check if all required packages (as
specified in the renv.lock file) are installed. If packages are missing or
are not available in the specified version, a warning appears. You can
now type

renv::restore()

on the R console, and renv shows you a list of all required packages.
After you confirm with y , it downloads and installs them. Note that
the packages are installed in the respective version that was tested for the
book,which is probably not the latest one.However, this is not a problem;
in line with renv’s approach to compartmentalize installed packages into
different environments, these package will be available only in the project
environment we use for the book. This means that they are not available
for your other projects unless you install them there as well. Under Win-
dows, some package installations can fail, in particular for those where
renv cannot find the pre-compiled version and instead relies on a source
package. If you encounter this problem, I recommend that you do a

renv::equip()

and then try renv::restore() again.

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004


20 2 Gearing Up

2.3 the postgresql database system

We discussed in the introductory chapter that for certain applications, it
is useful to keep your data in a specific system optimized for data storage
and processing, a database management system (DBMS). There are dif-
ferent DBMS for different kinds of data, and in this book we will examine
one of them in particular: The PostgreSQL database management system,
which we use in Chapter 8 and the following ones. PostgreSQL is a rela-
tional DBMS designed for databases that contain tables, but it can also
deal with more complex types of data. The installation process differs
slightly between operating systems, which is why you should once again
refer to the online repository to obtain more information required for
the precise steps required (see the link at the beginning of this chap-
ter). Before proceeding, it is necessary that you complete the individ-
ual steps for your operating system described on the book’s companion
website.
PostgreSQL is a multi-user system, and each user must identify with

a username and a password. PostgreSQL installations under different
operating systems use different approaches here. The default usernames
differ, and some allow you to set your own password while others do
not require a password (just a username). This is why after installing
PostgreSQL, make sure to memorize the username and the password to
access PostgreSQL on your system. The online installation instructions
for this book contain more information about this.
With PostgreSQL set up on your computer, it is a good idea to

test whether the connection works. In R, make sure that you have
the RPostgres package installed along with all the other packages it
depends on (if you use the pre-configured R environment described earlier,
this is done automatically). The following code should then output the
PostgreSQL version you are running. Make sure to adjust the username
and password to match your setup (see the online instructions). postgres
and pgpasswd are just placeholders, which we use here and later in the
book – they may not work on your system.

library(RPostgres)
db <- dbConnect(Postgres(),
user = "postgres",
password = "pgpasswd")

dbGetQuery(db, "SELECT version()")
dbDisconnect(db)

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004


2.3 The PostgreSQL Database System 21

2.3.1 Setting Up a New PostgreSQL Database

A database server can work with multiple databases, each of which is a
collection of data that belong to one project. In this book, I follow the
convention to use a new database for each chapter of the book, such that
the examples and exercises for each of the chapters do not interfere with
each other. The code below shows how to create a new database dbintro,
which we use in Chapter 8 of the book. Again, make sure to adjust your
username and password! You can use this code to create more databases
for the subsequent chapters – just replace dbintro with the name of the
database you would like to create. The code is presented here without
much further explanation; in Chapter 8, we go through the process of
connecting to the server step by step.

library(RPostgres)
db <- dbConnect(Postgres(),
user = "postgres",
password = "pgpasswd")

dbExecute(db, "CREATE DATABASE dbintro")
dbDisconnect(db)

2.3.2 Code Examples and Style

R allows you to be quite flexible in how you write your code, within
the limits of the R syntax. To be consistent in the code I present in this
book, I followHadleyWickham’s tidyverse Style Guide (Wickham, 2021).
Although it is designed for R code within the tidyverse framework (see
Chapter 7), much of the recommendations also apply to code outside this
framework. Here are some conventions used throughout this book:

• All file and directory names are lowercase. Different parts of the file
name will be separated with a hyphen. Example: csv-example.csv

• R objects have lowercase names, and different parts of the object name
are separated with an underscore. Example: dataset_new

• We use the .R ending for R code files.

For readers with an electronic copy of this book, it may be tempting
to simply copy and paste the code examples into RStudio. Try not to do
this. Rather, I strongly recommend that you type the code yourself and
make modifications to it. This allows you to become more independent
and experienced as an R user, but also to find out what does not work
and why.

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004


22 2 Gearing Up

2.4 summary and outlook

Data management requires a number of different tools, and in this chapter
we covered those required for this book. Most importantly, we rely on
the R statistical toolkit and the RStudio environment for most of the
exercises. When you work in R, you mostly rely on data stored in files.
This works for many applications, but sometimes our datasets become
bigger and more complex. In these cases, it is useful to store data in
specialized DBMS. These systems allow you to quickly search and filter
large datasets, to check your data for consistency, or to manage access
to the data by multiple users. We use the DBMS later to perform various
operations, such as creating a database or loading data into it. With the
technical preparations out of the way, we can now proceed to lay some
theoretical groundwork.Chapter 3 discusses some general concepts about
data, and introduces the most important data structure for the social
sciences: tables.

https://doi.org/10.1017/9781108990424.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.004

