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Abstract

We consider the problem of controlling the drift and diffusion rate of the endowment pro-
cesses of two firms such that the joint survival probability is maximized. We assume that
the endowment processes are continuous diffusions, driven by independent Brownian
motions, and that the aggregate endowment is a Brownian motion with constant drift
and diffusion rate. Our results reveal that the maximal joint survival probability depends
only on the aggregate risk-adjusted return and on the maximal risk-adjusted return that
can be implemented in each firm. Here the risk-adjusted return is understood as the drift
rate divided by the squared diffusion rate.
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1. Introduction

Consider two insurance companies that aim to collaborate so as to maximize their joint
survival probability, or equivalently, to minimize the probability that one of the two companies
gets ruined. Assume that the two companies can commit themselves to helping the other in
case of financial distress. To assess the benefit of a collaboration, Grandits [5] has set up a
model where the endowment processes, also called surplus processes, of the two companies
are given by two independent Brownian motions with drift, and the companies can collaborate
by transfer payments. These payments are assumed to be absolutely continuous with respect
to the Lebesgue measure and to be bounded in such a way that each company keeps a minimal
positive drift rate.

The collaborations considered in [5] are assumed to have an impact only on the drift rates
of the companies’ endowment processes. There are types of collaboration, however, that also
entail a change of the diffusion rates; for example, think of mutual reinsurance agreements or
agreements to transfer high-risk subsidiaries. In this paper we address the question of how to
quantify the maximal benefit if a collaboration also has an impact on the diffusion rate of the
two endowment processes.
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370 S. ANKIRCHNER ET AL.

To measure the benefit of collaboration we introduce a control problem, where an agent
can continuously allocate a drift and diffusion rate to two diffusion processes representing
the endowment processes of the two companies. The aggregate drift and diffusion rates are
assumed to be constant and independent of the allocation plan. Moreover, we assume that the
set of implementable drift rates is bounded, and the set of implementable diffusion rates is
bounded and bounded away from zero. The agent aims at choosing an allocation plan that
maximizes the joint survival probability of the two companies. One can think of the agent as a
mediator between the companies suggesting a mutual help contract.

As in [5], the optimal control turns out to be of bang-bang type: it is optimal that the agent
implements the highest possible risk-adjusted return, defined as the ratio of the drift rate and the
volatility squared, in the endowment dynamics of the company behind. Besides, the formula
for the value function reveals that the maximal joint survival probability only depends on the
maximal implementable risk-adjusted return and on the risk-adjusted return of the aggregate
endowment process. Our assumptions entail that the latter does not depend on the allocation
strategy.

We solve the control problem via a classical verification technique. To this end we construct
an explicit solution of the associated Hamilton–Jacobi–Bellman (HJB) equation. We use the
fact that the optimal control can be characterized as a bang-bang feedback function jumping
at the line bisecting the first quadrant, where the first quadrant is interpreted as the set of non-
negative endowment pairs. Since the optimal control is of bang-bang type, the HJB is linear
below the bisector and above the bisector. The boundary conditions and a smooth fit condition
along the bisector lead to a specific solution of the HJB equation, which can be verified to
coincide with the value function. We remark that our construction of the solution of the HJB
equation and also the verification bear some similarities to the approach used in [5].

McKean and Shepp [10] and Grandits [5] both consider the problem of maximizing the
joint survival probability of two firms whose endowment processes are given by independent
Brownian motions with drift and which are allowed to collaborate by transfer payments. In
[10] these transfer payments are at most as high as the drift rates, whereas in [5] each company
keeps a given positive minimal drift rate. In both cases the value function is derived and turns
out to be a classical solution to the associated HJB equation. We emphasize that we allow for
negative drift rates in our model. Grandits and Klein [6] extend the model of [5] and [10] to
endowment processes driven by Brownian motions that are correlated. In all three articles [5,
6, 10] the derived optimal strategy is of bang-bang type and implements the highest possible
risk-adjusted return for the company behind.

Schmidli [11] deals with maximizing the survival probability of one company by choos-
ing an optimal dynamic proportional reinsurance strategy in the diffusion model. Also in this
model the optimal strategy maximizes the risk-adjusted return among all admissible strategies.

Finally, the literature also comprises several articles analyzing the ruin probability within
multidimensional Brownian risk models with non-controllable dynamics; see e.g. [4] and [7].

The paper is organized as follows. In Section 2 we introduce our model and provide the
value function and an optimal strategy. We explain how to derive the formula for the value
function in Section 3. Finally, we prove our results in Section 4.

2. Model and main results

Let σ , σ ∈ (0, ∞) with σ ≤ σ and μ, μ ∈R such that μ ≤ μ. We define

M := μ + μ and � := σ + σ
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and assume that

M > 0. (2.1)

Let D be a measurable, non-empty subset of [μ, μ] × [σ , σ ] such that

(μ, σ ) ∈ D =⇒ (M − μ, � − σ ) ∈ D. (2.2)

We interpret an element (μ, σ ) ∈ D as an implementable pair of drift and diffusion rate for the
endowment process of each company. Condition (2.2) means that the sets of implementable
drift and diffusion rate pairs for the two companies coincide. At the end of the section we
provide an explicit example for D.

The set of admissible controls consists of all measurable functions (μ, σ ) : R2 → D and is
denoted by M.

We denote the endowment processes of the two companies by X = (Xt)t∈[0,∞) and
Y = (Yt)t∈[0,∞), respectively. Given a control (μ, σ ), we assume that the dynamics of the pair
(X, Y) satisfy the stochastic differential equation (SDE)

dXt = μ(Xt, Yt) dt + √
σ (Xt, Yt) dW1

t , X0 = x,

dYt = (M − μ(Xt, Yt)) dt + √
� − σ (Xt, Yt) dW2

t , Y0 = y,
(2.3)

where W = (W1, W2) denotes a two-dimensional Brownian motion and (x, y) ∈R
2. Note that

we use the notation
√

σ (Xt, Yt) for the volatility instead of the more commonly used σ (Xt, Yt)
in (2.3), as this provides some advantages in later considerations. For every (μ, σ ) ∈M and
(x, y) ∈R

2, there exists a weak solution of (2.3) satisfying the initial condition (X0, Y0) = (x, y),
and we have uniqueness in law for (2.3) (see Theorem 3 and the following comment in [9]).
Recall that a weak solution of (2.3) consists of a tuple (�,F , (Ft)t∈[0,∞), P, W, X, Y), where
the first four components build a filtered probability space, W is a two-dimensional Brownian
motion with respect to the filtration (Ft), and the processes X, Y , W satisfy the SDE (2.3) (see
e.g. Section 5.3 in [8]).

Now let x, y ∈ [0, ∞) and (μ, σ ) ∈M. Let (�,F , (Ft)t∈[0,∞), P, W, X, Y) be a weak solu-
tion of (2.3) with initial condition (X0, Y0) = (x, y). The probability that both companies
survive is given by

J(x, y, μ, σ ) := P

[
inf

t∈[0,∞)
Xt ≥ 0, inf

t∈[0,∞)
Yt ≥ 0

]
. (2.4)

We refer to J(x, y, μ, σ ) as the joint survival probability of the two companies, given initial
endowments (x, y) and a collaboration control (μ, σ ). The maximal joint survival probability
for an initial endowment (x, y) ∈ [0, ∞)2 is given by

V(x, y) := sup
(μ,σ )∈M

J(x, y, μ, σ ). (2.5)

We comment further on the model assumptions. Notice that we allow for Markov controls
only. The time-homogeneous dynamics (2.3) entail that there exists an optimal control that is
a Markov control. To simplify the outline of the model, we restrict the control set to Markov
controls upfront.

Notice that the volatilities of both processes X and Y are bounded away from zero. Hence
the probability in (2.4) does not change if we replace ≥ with the strict inequality symbol >.
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Assumption (2.1) means that the drift rate of the aggregate endowment process X + Y
is positive. If M is non-positive, then with probability one the aggregate process hits zero.
This further implies that at least one of the two companies gets ruined, and hence the
value function (2.5) is constant equal to zero. Thus the only interesting case is where (2.1)
is satisfied.

The symmetry (2.2) of D facilitates the search for the optimal strategy and a closed-form
formula of the value function that turns out to be symmetric around the line bisecting the first
quadrant.

It turns out that the maximal joint survival probability essentially depends only on the two
ratios

L := L(D) = sup
(μ,σ )∈D

μ

σ
and S := μ + μ

σ + σ
= M

�
.

Notice that L ≤ μ/σ < ∞, because D ⊆ [μ, μ] × [σ, σ ].
Our main result is as follows.

Theorem 2.1. The value function of the optimal control problem (2.5) is given by

V(x, y) =

⎧⎪⎨
⎪⎩

1 − e−2 L min{x,y} − 2 L min{x, y} e−L (x+y), L = 2S,

1 − e−2 L min{x,y} − L

L − 2 S
e−2 S (x+y)

(
1 − e−2 (L−2 S) min{x,y}), L �= 2S.

(2.6)

If L is attained in D, say by (μ̂, σ̂ ), then an optimal control is given by

(μ∗(x, y), σ ∗(x, y)) = 1{x≤y}(μ̂, σ̂ ) + 1{x>y}(M − μ̂, � − σ̂ ). (2.7)

Remark 2.1.

(a) The value function V only depends on the ratios L – the maximal implementable risk-
adjusted return – and S – the risk-adjusted return of the aggregate endowment process.

(b) One can show that the value function V is continuous and strictly increasing in L and S.
This fact is supported by the following observations. Since L is the maximal possible
risk-adjusted return which is assigned to the company behind, increasing L implies that
the joint survival probability increases, too. In addition, the higher S, the smaller is the
ruin probability of the aggregated endowment process.

Remark 2.2. Observe that we can change the definition of the optimal control (μ∗, σ ∗) on
the set {x = y} and obtain indistinguishable processes (X∗

t , Y∗
t ), t ∈ [0, ∞), because with prob-

ability one the set {t ∈ [0, ∞) : X∗
t − Y∗

t = 0} has Lebesgue measure zero; for details see
Appendix C in [2].

Since we have an explicit formula for the value function, we can quantify the gain of collab-
oration. To this end, we assume that in the case of no collaboration both endowment processes
have a constant drift rate of M/2 and a constant diffusion rate of

√
�/2.

The probability for a Brownian motion with drift rate M/2 and diffusion rate
√

�/2 and
starting in z ∈ (0, ∞) to hit zero is given by e−2 S z (see e.g. [1, Chapter V.5, equation (5.6)]).
Thus, in the case of no collaboration, the joint survival probability is given by

Vnc(x, y) = (
1 − e−2 S x)(1 − e−2 S y). (2.8)
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FIGURE 1. The function R for different L and S = 1.

Notice that (2.8) also follows from (2.6) by restricting D to the set containing only the element
(M/2, �/2).

In order to quantify the gain of collaboration we introduce

R(x, y) := V(x, y)

Vnc(x, y)
, x, y > 0.

Note that R is the relative increase of the maximal joint survival probability due to a
collaboration.

Corollary 2.1. R is non-increasing in both x and y,

lim
x↓0

R(x, y) = L

S
and lim

x→∞ R(x, y) = 1 − e−2 L y

1 − e−2 S y
.

Moreover, for every a > 0 we have

lim
x↓0

R(x, a x) = L

S
and lim

x→∞ R(x, a x) = 1.

Remark 2.3. For a set D of implementable drift and diffusion rate satisfying (2.2) and L > S,
the relative increase of the maximal joint survival probability also only depends on L and S.
Corollary 2.1 implies that a risk transfer is of particular interest if one company is (or both
companies are) close to ruin.

See Figure 1 for the function R for different L and S = 1.

Remark 2.4. Observe that L = L(D) ≥ S > 0. Moreover, we have L > S if and only if there
exists (μ, σ ) ∈ D with μ/σ �= S. To show the claim we distinguish three cases.

• If D contains an element (μ, σ ) with μ/σ > S, then also L = sup(μ,σ )∈D μ/σ > S.

• If there exists (μ, σ ) ∈ D with μ/σ < S, then (M − μ, � − σ ) ∈ D by assumption (2.2)
and

S = M

�
<

M − μ

� − σ
≤ L.
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FIGURE 2. The set D for μ1/σ1 < μ2/σ2 in Example 2.1.

• Finally, if μ/σ = S for all (μ, σ ) ∈ D, then L = S holds true.

We close the section with an example for the set D of implementable drift and diffusion
rate.

Example 2.1. Suppose that the firms can divide among them two assets, where the first asset
has a return with drift rate μ1 ∈R and diffusion rate σ1 ∈ (0, ∞) and the second asset has
drift rate μ2 ∈R and diffusion rate σ2 ∈ (0, ∞). Suppose that μ1 + μ2 > 0 with μ1 < μ2,
σ1 < σ2 and that each firm wants to possess at least δ ∈ (0, 1) assets shares. Then the set of
implementable drift and diffusion pairs consists of

D = {α(μ1, σ1) + β(μ2, σ2) : α, β ∈ [0, 1], δ ≤ α + β ≤ 2 − δ}.

Notice that the smallest rectangle containing D is [μ, μ] × [σ, σ ] with

μ = δμ1, μ = (1 − δ)μ1 + μ2,

σ = δσ1, σ = (1 − δ)σ1 + σ2.

In the case μ1/σ1 < μ2/σ2, the set D is a hexagon (see Figure 2). The bold borderline of
the hexagon consists of all drift and diffusion pairs with maximal ratio L. Hence any optimal
control assigns to the firm with smaller endowment a pair from the bold line, i.e. a share of the
second asset but not of the first one. The example reveals, in particular, that the optimal control
is not unique in general.

3. Deriving the value function

In this section we explain how one can derive a solution of the Hamilton–Jacobi–Bellman
(HJB) equation associated to (2.5) and thus obtain a candidate for the value function V . Our
approach is based on [5], where a ruin problem for two independent Brownian motions with
controllable drift is considered. In our setting this corresponds to σ = σ = 1 and μ > 0.
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First observe that the HJB equation associated to (2.5) is given by

sup
(μ,σ )∈D

{
σ

2

∂2

∂x2
v + � − σ

2

∂2

∂y2
v + μ

∂

∂x
v + (M − μ)

∂

∂y
v

}
= 0, on (0, ∞) × (0, ∞) (3.1)

with boundary conditions

v(x, 0) = v(0, y) = 0, x, y ∈ [0, ∞), (3.2)

lim
y→∞ v(x, y) = 1 − e−2 L x, x ∈ [0, ∞), (3.3)

lim
x→∞ v(x, y) = 1 − e−2 L y, y ∈ [0, ∞). (3.4)

We now comment on these boundary conditions for the HJB equation (3.1). Condition (3.2)
is due to the fact that if one endowment process is already zero, then the joint survival proba-
bility equals zero. If the endowment process of one company attains infinity, then this process
is assumed to survive forever. The smaller process obtains the highest possible risk-adjusted
return to maximize its survival probability, which is given by the right-hand side of equation
(3.3) or (3.4), respectively (see e.g. [1, Chapter V.5, equation (5.6)]).

We first consider the case where the set of implementable drift and diffusion rate is given
by the rectangle D = [μ, μ] × [σ , σ ]. In this case L = μ/σ . Moreover, the supremum over D
in (3.1) can be separated and the HJB equation is given by

sup
σ∈[σ ,σ ]

{
σ

2

∂2

∂x2
v + � − σ

2

∂2

∂y2
v

}
+ sup

μ∈[μ,μ]

{
μ

∂

∂x
v + (M − μ)

∂

∂y
v

}
= 0 (3.5)

on (0, ∞) × (0, ∞).
Note that in the HJB equation (3.5) we maximize a linear function in σ and μ, respectively,

over a compact interval. Hence each supremum is attained at the boundary of the corresponding
interval. More precisely,

sup
σ∈[σ ,σ ]

{
σ

2

∂2

∂x2
v + � − σ

2

∂2

∂y2
v

}
(x, y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ

2

∂2

∂x2
v(x, y) + σ

2

∂2

∂y2
v(x, y), if

∂2

∂x2
v(x, y) ≥ ∂2

∂y2
v(x, y),

σ

2

∂2

∂x2
v(x, y) + σ

2

∂2

∂y2
v(x, y), otherwise,

and

sup
μ∈[μ,μ]

{
μ

∂

∂x
v + (M − μ)

∂

∂y
v

}
(x, y)

=

⎧⎪⎪⎨
⎪⎪⎩

μ
∂

∂x
v(x, y) + μ

∂

∂y
v(x, y), if

∂

∂x
v(x, y) ≥ ∂

∂y
v(x, y),

μ
∂

∂x
v(x, y) + μ

∂

∂y
v(x, y), otherwise.
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In the following we make several assumptions on the solution v of the HJB equation. After
obtaining the explicit formula given on the right-hand side of (2.6) we can check that all the
assumptions are satisfied. Finally, one has to verify that v is indeed the value function of our
problem (2.5).

We assume that v is a classical solution of the HJB equation (3.5), that is,

v ∈ C2((0, ∞) × (0, ∞)) ∩ C([0, ∞) × [0, ∞))

with boundary conditions (3.2), (3.3), and (3.4). Since our control problem (2.5) is symmetric
in the initial values of the endowment processes, every candidate v for the value function
should satisfy v(x, y) = v(y, x). Due to this symmetry and the monotonicity of the maximization
problem (2.5), we impose that

{
(x, y) :

∂

∂x
v(x, y) >

∂

∂y
v(x, y)

}
=

{
(x, y) :

∂2

∂x2
v(x, y) <

∂2

∂y2
v(x, y)

}
= {(x, y) : x < y}

and{
(x, y) :

∂

∂x
v(x, y) = ∂

∂y
v(x, y)

}
=

{
(x, y) :

∂2

∂x2
v(x, y) = ∂2

∂y2
v(x, y)

}
= {(x, y) : x = y}.

Observe that this implies that the smaller endowment process is assigned the lowest possible
volatility and the highest possible drift rate to minimize the risk that this firm is ruined. In other
words, the agent chooses the maximal implementable risk-adjusted return for the company
behind.

Using v(x, y) = v(y, x), we only focus on the set

G = {(x, y) ∈ [0, ∞) × [0, ∞) : x ≤ y}.
In the interior of G it holds – under our assumptions – that v has to satisfy

σ

2

∂2

∂x2
v + σ

2

∂2

∂y2
v + μ

∂

∂x
v + μ

∂

∂y
v = 0 (3.6)

with

v(0, y) = 0,

lim
y→∞ v(x, y) = 1 − e−2 L x,

∂

∂x
v(t, t) = ∂

∂y
v(t, t), t ∈ (0, ∞),

∂2

∂x2
v(t, t) = ∂2

∂y2
v(t, t), t ∈ (0, ∞). (3.7)

We make the ansatz

v(x, y) = 1 − e−2 L x + f (x)g(y), (x, y) ∈ G.
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The function (x, y) �→ f (x)g(y) fulfills (3.6) in the interior of G. More precisely,

σ

2
f ′′(x)g(y) + σ

2
f (x)g′′(y) + μ f ′(x)g(y) + μ f (x)g′(y) = 0 (3.8)

with

f (0)g(y) = 0, y ∈ [0, ∞), (3.9)

lim
y→∞ f (x)g(y) = 0, x ∈ [0, ∞), (3.10)

f (t)g′(t) − f ′(t)g(t) = 2 L e−2 L t, t ∈ (0, ∞). (3.11)

Note that we do not impose an additional assumption on (x, y) �→ f (x)g(y) to guarantee (3.7)
because it turns out that the solution that we construct for (3.8) satisfying (3.9), (3.10), and
(3.11) directly implies that condition (3.7) for v is fulfilled; see (3.18) below.

Provided that f (x)g(y) �= 0 for all (x, y) in the interior of G, equation (3.8) can be
reformulated as (

σ

2

f ′′

f
+ μ

f ′

f

)
(x) +

(
σ

2

g′′

g
+ μ

g′

g

)
(y) = 0.

The above equation can only hold true for all (x, y) in the interior of G if(
σ

2

f ′′

f
+ μ

f ′

f

)
(x) = λ, (3.12)

(
σ

2

g′′

g
+ μ

g′

g

)
(y) = −λ (3.13)

for some λ ∈R.
First we consider the case L �= 2S . This case is a bit more involved than the case L = 2S.

We assume that

λ ∈
(

−μ2

2σ
,
μ2

2σ

)
,

which guarantees real-valued solutions to (3.12) and (3.13). Later on we have to choose λ in
an appropriate way such that the boundary condition (3.11) is fulfilled. By Theorem 1 and
Theorem 5 in [3, Chapter 2], we obtain

f (x) = C1 exp ((−L + ϑ1) x) + C2 exp ((−L − ϑ1) x),

g(y) = C3 exp

((
− μ

σ
+ ϑ2

)
y

)
+ C4 exp

((
− μ

σ
− ϑ2

)
y

)

for some C1, C2, C3, C4 ∈R, where

ϑ1 = ϑ1(λ) =
√

μ2 + 2 σ λ

σ
, ϑ2 = ϑ2(λ) =

√
μ2 − 2 σ λ

σ
.
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From (3.9) we conclude that f (0) = 0 and hence C2 = −C1. Since we are only interested in
the product f (x)g(y), we can assume that C1 = 1 without loss of generality. Note that for
λ ∈ (− μ2/(2σ ), 0] condition (3.10) yields C3 = 0. Unfortunately, for λ ∈ (0, μ2 /(2σ )) this
does not hold true. Nevertheless, we set C3 = 0 and hope to obtain a solution. In addition,
condition (3.11) on the diagonal results in

2 L exp (−2 L t) = C4

[
L − ϑ1 − μ

σ
− ϑ2

]
exp

((
−L + ϑ1 − μ

σ
− ϑ2

)
t

)

+ C4

[
−L − ϑ1 + μ

σ
+ ϑ2

]
exp

((
−L − ϑ1 − μ

σ
− ϑ2

)
t

)
, (3.14)

which has to be satisfied for all t ∈ (0, ∞). Therefore it is necessary that the exponent of one
summand coincides with −2 L t. This directly implies that the coefficient of the other summand
vanishes. More precisely, we determine λ such that

L − ϑ1 + μ

σ
+ ϑ2 = 2 L (3.15)

or

L + ϑ1 + μ

σ
+ ϑ2 = 2 L. (3.16)

Some standard but lengthy computations show that

λ∗ = −2 S
μ σ − μ σ

σ + σ

is the unique

λ ∈
(

− μ2

2σ
,

μ2

2σ

)
satisfying either (3.15) or (3.16). More precisely, if L < 2S then (3.15) holds, and (3.16) is
fulfilled if L > 2S.

For λ = λ∗ and L < 2S equation (3.14) is given by

2 L exp(−2 L t) = 2 C4[L − 2 S] exp(−2 L t).

Thus

C4 = L

L − 2 S
.

Similarly, for L > 2 S we conclude that

C4 = − L

L − 2 S
.

To sum up, we have

f (x)g(y) = L

L − 2 S
e−2 S y(e2 (S−L) x − e−2 S x)

= − L

L − 2 S
e−2 S (x+y)(1 − e−2 (L−2 S) x). (3.17)
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Now we use the symmetry of our problem and obtain v on [0, ∞) × [0, ∞) by just mirroring
1 − e−2 L x + f (x)g(y), where (x, y) �→ f (x)g(y) is given by (3.17) at the line bisecting the first
quadrant, which yields that v is given by the right-hand side of (2.6).

It remains to check that the assumptions made on v are satisfied. Indeed, it holds that
f (x)g(y) �= 0 for all x, y ∈ (0, ∞), the function given on the right-hand side of (2.6) is in
C2((0, ∞) × (0, ∞)) ∩ C([0, ∞) × [0, ∞)), and

∂

∂x
v(x, y) − ∂

∂y
v(x, y) =

⎧⎨
⎩

2 L e−2 L x
(
1 − e−2 S (y−x)

)
, x ≤ y

−2 L e−2 L y
(
1 − e−2 S (x−y)

)
, x > y

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0, x < y,

= 0, x = y,

< 0, x > y,

∂2

∂x2
v(x, y) − ∂2

∂y2
v(x, y) =

⎧⎨
⎩

−4 L2e−2 L x
(
1 − e−2 S (y−x)

)
, x ≤ y

4 L2e−2 L y
(
1 − e−2 S (x−y)

)
, x > y

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

< 0, x < y,

= 0, x = y,

> 0, x > y.

(3.18)

Hence all assumptions made on v are satisfied.
For the case L = 2S we also use

λ∗ = −2 S
μ σ − μ σ

σ + σ
,

which in this case simplifies to λ∗ = −S μ. Then the solutions of (3.12) and (3.13) are
given by

f (x) = (C1 + C2 x) exp(−L x),

g(y) = C3 exp

(
μ

σ
y

)
+ C4 exp(−L y)

for some constants C1, C2, C3, C4 ∈R; again see Theorems 1 and 5 in [3, Chapter 2]. Using
(3.9) we conclude that C1 = 0 and (3.10) implies that C3 = 0. Thus

f (x)g(y) = C2C4 x exp(−L (x + y)).

Using (3.11) results in C2C4 = −2 L, and mirroring at the line bisecting the first quadrant
yields

v(x, y) = 1 − e−2 L min{x,y} − 2 L min{x, y} e−L (x+y). (3.19)

Finally, one can check that the function in (3.19) satisfies all our assumptions made on v.

In the next step we explain how to obtain a solution of the HJB equation (3.1) if D is a proper
subset of [μ, μ] × [σ, σ ]. As a candidate v for the value function we choose the function on
the right-hand side of (2.6), which we derived in the case where D is a rectangle, and adjust the
maximal risk-adjusted return L to L = sup(μ,σ )∈D μ/σ . Recall that the risk-adjusted return of
the aggregate endowment process equals S and does not have to be changed. Now we want to
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show that our candidate solves the HJB equation (3.1). To this end, observe that for (μ, σ ) ∈ D
we have(

σ

2

∂2

∂x2
v + � − σ

2

∂2

∂y2
v + μ

∂

∂x
v + (M − μ)

∂

∂y
v

)
(x, y)

=

⎧⎪⎪⎨
⎪⎪⎩

−2 σ L e−2 L x
(
1 − e−2 S (y−x)

)[
L − μ

σ

]
, x ≤ y,

−2 (� − σ ) L e−2 L y
(
1 − e−2 S (x−y)

)[
L − M − μ

� − σ

]
, x > y.

(3.20)

Since D satisfies (2.2), we have

L = sup
(μ,σ )∈D

μ

σ
= sup

(μ,σ )∈D

M − μ

� − σ
.

Hence, for all x, y ∈ (0, ∞),

sup
(μ,σ )∈D

{
σ

2

∂2

∂x2
v + � − σ

2

∂2

∂y2
v + μ

∂

∂x
v + (M − μ)

∂

∂y
v

}
(x, y) ≤ 0.

For simplicity we assume that L is attained in D, say by (μ̂, σ̂ ). Then L = μ̂/σ̂ and (3.20)
equals zero for (μ̂, σ̂ ) if x < y. If x > y then (3.20) is zero for (M − μ̂, � − σ̂ ). Therefore the
HJB equation (3.1) is fulfilled and v is a candidate for our value function.

Now it remains to verify that the right-hand side of (2.6) is indeed the value function of the
optimal control problem (2.5), i.e. to prove Theorem 2.1.

4. Proofs

First, we prove our main result, Theorem 2.1.

Proof of Theorem 2.1. Let v denote the function given by the right-hand side of (2.6). We
first show that v is an upper bound for the joint survival probability. For this purpose let
(μ, σ ) ∈M be an arbitrary admissible control for the drift and diffusion rate. Denote the ruin
time of the controlled process (Xt, Yt) = (

Xx,μ,σ
t , Yy,μ,σ

t
)

by

τ = inf{t ∈ [0, ∞) : Xt ≤ 0 or Yt ≤ 0}.
Using that v ∈ C2((0, ∞) × (0, ∞)), Itô’s formula implies

v(Xt, Yt) = v(x, y) +
∫ t

0

√
σ (Xs, Ys)

∂

∂x
v(Xs, Ys) dW1

s

+
∫ t

0

√
� − σ (Xs, Ys)

∂

∂y
v(Xs, Ys) dW2

s

+
∫ t

0

{
1

2
σ

∂2

∂x2
v + 1

2
(� − σ )

∂2

∂y2
v + μ

∂

∂x
v + (M − μ)

∂

∂y
v

}
(Xs, Ys) ds. (4.1)

Since v solves the HJB equation (3.1), the drift part in (4.1) is non-positive. Hence
(v(Xt, Yt))t∈[0,∞) and thus (v(Xt∧τ , Yt∧τ ))t∈[0,∞) are local supermartingales. Moreover, since
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v is bounded, (v(Xt∧τ , Yt∧τ ))t∈[0,∞) is a uniformly integrable supermartingale. Therefore the
supermartingale convergence theorem yields that

lim
t→∞ v(Xt∧τ , Yt∧τ )

exists P-a.s. By dominated convergence we conclude that

v(x, y) ≥ lim
t→∞ E[v(Xt∧τ , Yt∧τ )] =E

[
1{τ<∞}v(Xτ , Yτ ) + 1{τ=∞} lim

t→∞ v(Xt, Yt)
]
. (4.2)

On {τ < ∞} the boundary conditions (3.2) imply that v(Xτ , Yτ ) = 0. We claim that on {τ = ∞}
we have limt→∞ v(Xt, Yt) = 1.

In order to show this, first observe that

(X + Y)t = x + y + Mt + √
� Wt, (4.3)

where W is a Brownian motion. Thus we know that limt→∞ (X + Y)t = ∞, P-a.s. Moreover,
the supermartingale convergence theorem guarantees that on {τ = ∞},

lim
t→∞ v(Xt, Yt)

exists P-a.s. Combining this with the particular form of v yields that on {τ = ∞},
lim

t→∞ e−2 L min{Xt,Yt}

exists, so limt→∞ min{Xt, Yt} ∈R∪ {+∞} exists P-a.s. We now show that

P

[
lim

t→∞ min{Xt, Yt} < ∞
]
= 0.

By (4.3) and the identity

2 min{Xt, Yt} = Xt + Yt − |Xt − Yt|,
it follows that on {limt→∞ min{Xt, Yt} < ∞} we have limt→∞ |Xt − Yt| = ∞. Hence there
exists a time point t0 = t0(ω) beyond which the paths of X and Y do not intersect. Since the
paths are continuous this implies that

min{Xt, Yt} = Xt for all t ≥ t0 or min{Xt, Yt} = Yt for all t ≥ t0.

Thus we have{
lim

t→∞ min{Xt, Yt} < ∞
}

=
{

lim
t→∞ Xt < ∞

}
∪

{
lim

t→∞ Yt < ∞
}

P-a.s.

Now, to show that P[ limt→∞ Xt < ∞] = 0, recall that

Xt = x +
∫ t

0
μ(Xs, Ys) ds +

∫ t

0

√
σ (Xs, Ys) dW1

s .

Let A(t) := ∫ t
0 σ (Xt, Yt) ds. Notice that A(t) is strictly increasing, so we can introduce the time-

changed process

X̃t := XA−1(t) = x +
∫ A−1(t)

0
μ(Xs, Ys) ds +

∫ A−1(t)

0

√
σ (Xs, Ys) dW1

s .
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Note that

Bt :=
∫ A−1(t)

0

√
σ (Xs, Ys) dW1

s , t ∈ [0, ∞),

is a Brownian motion since

〈B, B〉t =
∫ A−1(t)

0
σ (Xs, Ys) ds = A(A−1(t)) = t.

Further, a simple substitution in the deterministic integral yields

X̃t = x +
∫ A−1(t)

0
μ(Xs, Ys) ds + Bt = x +

∫ t

0

μ

σ
(Xs, Ys) ds + Bt.

We know that (μ/σ )(Xs, Ys) ≤ L for all s by the definition of L. For the Brownian motion B it
is well known that

P
[{Bn+1 − Bn < −L − 1} infinitely often

] = 1.

This directly implies

P
[{X̃n+1 − X̃n < −1} infinitely often

] = 1.

Consequently, P[limt→∞ X̃t < ∞] = 0. Moreover, σ > 0 yields limt→∞ A(t) = ∞. Thus

P

[
lim

t→∞ Xt < ∞
]
= P

[
lim

t→∞ X̃t < ∞
]
= 0.

Similarly, one can show that Y does not converge with probability one. Hence we see that
P[ limt→∞ min{Xt, Yt} < ∞] = 0. Therefore it follows that on {τ = ∞} we have

P

[
lim

t→∞ min{Xt, Yt} = ∞
]
= 1

and the particular form of v implies that

P

[
lim

t→∞ v(Xt, Yt) = 1
]
= 1. (4.4)

Thus, plugging (4.4) into (4.2), we see that

v(x, y) ≥E
[
1{τ=∞}

] = P[τ = ∞] = J(x, y, μ, σ ), (4.5)

and hence v ≥ V .
Now assume that L is attained in D. Then the strategy (μ∗, σ ∗) given in (2.7) is admissible,

for (μ∗, σ ∗) the drift rate in (4.1) vanishes, and therefore the process (v(Xt∧τ , Yt∧τ ))t∈[0,∞) is
a uniformly integrable martingale. Hence equality holds in (4.5), which implies that v is the
value function of the optimal control problem (2.5) and (μ∗, σ ∗) is an optimal control.

So far we have shown that the value function V is given by the right-hand side of
(2.6) if L is attained in D. Now we consider the case where L is not attained in D, i.e.
arg max(μ,σ )∈D μ/σ = ∅. Then there exists a sequence (μn, σn)n∈N ⊆ D with Ln := μn/σn ↗ L
as n → ∞. Without loss of generality we can assume that Ln ≥ S (see Remark 2.4) and that

lim
n→∞ μn = μ̃ ∈ [μ, μ],

lim
n→∞ σn = σ̃ ∈ [σ , σ ],
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because D ⊆ [μ, μ] × [σ, σ ]. In particular, we have μ̃/σ̃ = L. Let

D̃ = D ∪ {(μ̃, σ̃ ), (M − μ̃, � − σ̃ )}.
Then D̃ ⊆ [μ, μ] × [σ, σ ], D̃ satisfies (2.2) and

L(D̃) = sup
(μ,σ )∈D̃

μ

σ
= max

{
sup

(μ,σ )∈D

μ

σ
,

μ̃

σ̃
,

M − μ̃

� − σ̃

}
= μ̃

σ̃
= L,

where we use L ≥ S = M/� by Remark 2.4 and thus (M − μ̃)/(� − σ̃ ) ≤ S ≤ L. In particular,
(μ̃, σ̃ ) ∈ arg max(μ,σ )∈D̃ μ/σ . Hence the value function VL(D̃) for maximizing the joint sur-
vival probability over controls taking values in D̃ is given by (2.6) with L(D̃) = L. Moreover,
V ≤ VL(D̃) = VL.

To derive a lower bound for V , let

Dn = {(μn, σn), (M − μn, � − σn)}, n ∈N.

By definition Dn satisfies (2.2). Since (μn, σn) ∈ D, it holds that Dn ⊆ D. Moreover,

L(Dn) = sup
(μ,σ )∈Dn

μ

σ
= max

{
μn

σn
,

M − μn

� − σn

}
= Ln,

since μn/σn = Ln ≥ S and therefore

M − μn

� − σn
≤ S ≤ Ln.

In particular, we have (μn, σn) ∈ arg max(μ,σ )∈Dn
μ/σ . Hence the value function VLn of (2.5)

for controls taking values in Dn is given by (2.6) and VLn ≤ V . Since the function on the
right-hand side of (2.6) is continuous in the parameter L, we conclude that for all x, y ∈ [0, ∞)

VL(x, y) = lim
n→∞ VLn ≤ V(x, y) ≤ VL(x, y).

Therefore, in this case the value function is given by (2.6), too. �

Finally, we prove Corollary 2.1.

Proof of Corollary 2.1. We only show that R is non-increasing. The other results follow by
straightforward calculations.

Since R is symmetric, we only need to consider the part of the domain where x ≤ y.
Moreover, we only consider the case L > 2S. The cases L < 2S and L = 2S can be proved
similarly.

One can show that ∂R/∂x is non-positive if and only if

e2 S xL(L − 2 S) + e2 L xL S − e4 S xL (L − S)

+ e2 S y(L − 2 S)[e2 S xL − e2 L xS − (L − S)] ≤ 0. (4.6)

Since L ≥ S, one can show by using convexity that e2 S xL − e2 L xS − (L − S) ≤ 0. Thus the left-
hand side of (4.6) is non-increasing in y. Hence (4.6) is fulfilled for all y ≥ x if and only if it is
fulfilled for y = x. Thus we need to verify that

S
[
L
(
e2 L x − e4 S x) − (L − 2 S)

(
e2 (L+S) x − e2 S x)] ≤ 0. (4.7)
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Inequality (4.7) is satisfied if and only if the term in the rectangular bracket on the left-hand
side is non-positive, which is equivalent to

e2 L x − e4 S x

L − 2 S
≤ e2 (L+S) x − e2 S x

L
,

and hence equivalent to

sinh((L − 2 S) x)

(L − 2 S) x
≤ sinh(L x)

L x
. (4.8)

Inequality (4.8) holds true, because z �→ sinh(z)/z is strictly increasing for z ≥ 0. To sum up,
we have shown that (4.6) is satisfied and thus ∂R/∂x is non-positive.

The partial derivative ∂R/∂y can be shown to be non-positive if and only if

L
(
e2 L x − e4 S x) − (L − 2 S)

(
e2 (L+S) x − e2 S x) ≤ 0.

The left-hand side coincides with the bracket terms of (4.7) and is thus non-positive. �
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