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Abstract. We study the existence of positive solutions for equations of the form

u(4)(t) − ω4u(t) = f (t, u(t)), a.e. t ∈ (0, 1),

where 0 < ω < π , subject to various non-local boundary conditions defined in terms
of the Riemann–Stieltjes integrals. We prove the existence and multiplicity of positive
solutions for these boundary value problems in both resonant and non-resonant cases.
We discuss the resonant case by making a shift and considering an equivalent non-
resonant problem.
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34B18.

1. Introduction. In the paper we are interested in the existence of positive
solutions of some non-local boundary value problems (BVPs) for fourth-order
equations of the form

u(4)(t) − ω4u(t) = f (t, u(t)), a.e. t ∈ (0, 1), (1.1)

for some constant ω ∈ (0, π ), subject to the following non-local boundary conditions
(BCs),

u(0) = β1[u], u′′(0) + β2[u] = 0, u(1) = β3[u], u′′(1) + β4[u] = 0, (1.2)

where each βi[u] is a linear functional on C[0, 1], that is it is given by a Riemann–Stieltjes
integral,

βi[u] =
∫ 1

0
u(s) dBi(s). (1.3)

Since some of the βi can be zero, while others are not, this covers many BCs.
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For (1.1) we consider cases where f (t, u) is not positive for all positive u but is
such that f (t, u) + k4u ≥ 0 for u ≥ 0 for a suitable constant k ∈ (0, ω). One important
motivation is that the original problem (1.1) with the BCs (1.2) may be at resonance,
that is, λ = 0 is an eigenvalue of the linear problem u(4) − ω4u = λu with the given BCs.
In such a case we can consider the equivalent problem, which is of the same type as
the original one,

u(4)(t) − ω̃4u(t) = f̃ (t, u(t)), (1.4)

where ω̃4 := ω4 − k4, f̃ (t, u) := f (t, u) + k4u, with same BCs. We will show that, under
natural conditions, this perturbed problem is non-resonant.

The fact that we consider BCs involving functions of bounded variation,
equivalently signed measures, with no extra effort, is one of the features of our work.
Some kind of positivity on the functionals βi is needed in order to have positive
solutions, a solution u will satisfy βi[u] ≥ 0 but we do not suppose that βi[u] ≥ 0 for all
u ≥ 0. Most other works have considered only special cases with positivity conditions
assumed, our results are also new even for the positive case.

These type of BCs, linear functionals on C[0, 1], are quite natural and have the
advantage of including multipoint BCs, where βi[u] := ∑m

j=1 βij u(ηj), 0 < η1 < η2 <

· · · < ηm < 1 and integral BCs, where βi[u] := ∫ 1
0 bi(s)u(s) ds, and sum of these, in a

single framework.
Multipoint BCs for second-order equations have been extensively studied in recent

years when all the coefficients βij are positive or have the same sign (see for example
[1, 5, 6, 10, 17]). There are also works on fourth- and higher order problems, see for
example [2–4, 8, 28, 29]. Our work covers more general BCs, and for the special case
of multipoint BCs some coefficients of both signs are allowed.

We use fixed point index theory, based on the methods developed in [26, 28]. The
fourth-order equation when ω = 0 with a variety of BCs, and with one BC of the
non-local type that we study here, has been studied, with similar methods, in detail in
[29] in the non-resonant case.

Many papers dealing with resonant problems use Mawhin’s coincidence degree
theory [20], for example [5, 11, 12, 16, 19] or an extension of this [10, 21]. A paper
using global bifurcation is by Ma and Chen [18]. Using a shift argument was done
for second-order problems in [7, 31], some other work where using a shift argument
proved useful is [9]. An advantage of using a shift is that we can prove existence of
multiple positive solutions in the resonance case. An example possessing one positive
solution and an example with two positive solutions are given at the end of the paper.

Our study begins with the well-known case where βi ≡ 0, we call this the local
problem. This problem is a model of the steady states of a deflected elastic beam
with simply supported ends, also called hinged ends; the displacement and bending
moments at each end are zero. The interpretation of the non-local BCs are as feedback
controls, measurements of the displacement are made along parts of the beam and
controllers at the endpoints make adjustments according to these measurements.

The local problem with both possible signs

u(4)(t) ± ω4u(t) = f (t, u(t)), u(0) = 0, u′′(0) = 0, u(1) = 0, u′′(1) = 0,

has been studied in detail in [2], using an anti-maximum principle and utilising upper
and lower solutions. The corresponding problem with clamped end BCs is similarly
studied in [3]; non-local BCs are not treated in those papers.
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A standard approach to studying positive solutions of (1.1) and (1.2) in the non-
resonant case is to find the corresponding Green’s function G and seek solutions as
fixed points of the integral operator

Su(t) :=
∫ 1

0
G(t, s)f (s, u(s)) ds (1.5)

in the cone P = {u ∈ C[0, 1] : u ≥ 0} of non-negative functions in the space C[0, 1] of
continuous functions with the usual supremum norm. Certain properties of the Green’s
function are needed to give a good existence theory, a useful one, essentially as used
by Lan and Webb [15], is that there exist positive functions �, c such that

c(t)�(s) ≤ G(t, s) ≤ �(s), for 0 ≤ t, s ≤ 1. (1.6)

The Green’s function for the local problem is well known; we will give it and some of
its properties later in the paper, in particular we will show that it satisfies (1.6). Our
approach to the problem with several BCs of non-local type uses the theory developed
in [28]. The non-local problem, (1.1) and (1.2), is regarded as a perturbation of the local
problem. That paper gave a simple derivation of an explicit formula for the Green’s
function of the non-local problem once the Green’s function for the local problem is
known. In particular, a simple method, which avoids long calculations, shows that (1.6)
also holds for the non-local Green’s function.

We give results on the existence of multiple positive solutions and also results on
the non-existence of a positive solution, which shows that some of our hypotheses are
sharp.

2. Integral operators. We will study the existence of positive solutions of the
fourth-order nonlinear BVP

u(4)(t) − ω4u(t) = f (t, u(t)), (2.1)

with 0 < ω < π , subject to the BCs

u(0) = β1[u], u′′(0) + β2[u] = 0, u(1) = β3[u], u′′(1) + β4[u] = 0, (2.2)

where βi[u] are linear functionals on the space C[0, 1], that is these are given by the
Riemann–Stieltjes integrals,

βi[u] =
∫ 1

0
u(s) dBi(s) (2.3)

with signed measures, that is Bi are functions of bounded variation. Although we do not
suppose that βi[u] ≥ 0 for all u ∈ P, we write BCs in the form given above because we
will find positive solutions that satisfy βi[u] ≥ 0. Here u is called positive if u ∈ P \ {0}.

We use the theory developed by Webb and Infante in [28] to study the existence
of positive solutions for (2.1) and (2.2) in the non-resonant case. We seek solutions as
fixed points of the integral operator

Su(t) :=
∫ 1

0
G(t, s)f (s, u(s)) ds, (2.4)
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where G is the Green’s function. This integral equation was studied in [28] under the
following conditions imposed on G and f :

(C1) G ≥ 0 is measurable, and for every τ ∈ [0, 1] we have

lim
t→τ

|G(t, s) − G(τ, s)| = 0 for a.e. s ∈ [0, 1].

(C2) There exists a subinterval [a, b] ⊆ [0, 1], a non-negative function � ∈ L1(0, 1),
with

∫ b
a �(s)ds > 0, and a constant c0 = c0(a, b) ∈ (0, 1] such that

G(t, s) ≤ �(s) for t ∈ [0, 1] and a.e. s ∈ [0, 1],

G(t, s) ≥ c0�(s) for t ∈ [a, b] and a.e. s ∈ [0, 1].

(C3) f : [0, 1] × [0,∞) → [0,∞) satisfies the Carathéodory conditions, that is f (·, u)
is measurable for each fixed u ∈ [0,∞) and f (t, ·) is continuous for almost every
t ∈ [0, 1], and for each r > 0, there exists φr ∈ L∞[0, 1] such that

f (t, u) ≤ φr(t) for all u ∈ [0, r] and almost all t ∈ [0, 1].

It is often convenient to prove the following type of inequality:

(C′
2) c(t)�(s) ≤ G(t, s) ≤ �(s), for 0 ≤ t, s ≤ 1,

for a function c ∈ P \ {0}, which establishes the inequality in (C2) when c(t) ≥ c0 > 0
on [a, b]. When c(t) > 0 on (0, 1), [a, b] may be an arbitrary subset of (0, 1), so can
be chosen to suit the problem and can give weaker conditions. In particular, often the
interval can be chosen to minimise a constant called M = M(a, b) that occurs in the
theory.

In [28] Webb and Infante gave a new method of determining the Green’s function
for many non-local BVPs of arbitrary order that avoids long calculations.

The idea used in [26, 28] is to consider solution of the non-local problem as
perturbations from the non-local problem and to seek fixed points of the following
operator

Tu(t) = Bu(t) + S0u(t) :=
4∑

i=1

βi[u]γi(t) +
∫ 1

0
G0(t, s)f (s, u(s)) ds, (2.5)

where G0 is the Green’s function for the local problem (when all βi are 0), and γi are
solutions of γ (4)(t) − ω4γ (t) = 0 with a simple non-zero BC. In our case, these are
solutions of

γ (4)(t) − ω4γ (t) = 0 (2.6)

under each of the local BCs:

γ (0) = 1, γ ′′(0) = 0, γ (1) = 0, γ ′′(1) = 0, (2.7)

γ (0) = 0, γ ′′(0) = −1, γ (1) = 0, γ ′′(1) = 0, (2.8)

γ (0) = 0, γ ′′(0) = 0, γ (1) = 1, γ ′′(1) = 0, (2.9)

γ (0) = 0, γ ′′(0) = 0, γ (1) = 0, γ ′′(1) = −1. (2.10)
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The solutions are readily found and are

γ1(t) = sin(ω(1 − t))/(2 sin(ω)) + sinh(ω(1 − t))/(2 sinh(ω)),

γ2(t) = sin(ω(1 − t))/(2ω2 sin(ω)) − sinh(ω(1 − t))/(2ω2 sinh(ω)),

γ3(t) = sin(ωt)/(2 sin(ω)) + sinh(ωt)/(2 sinh(ω)),

γ4(t) = sin(ωt)/(2ω2 sin(ω)) − sinh(ωt)/(2ω2 sinh(ω)),

(2.11)

for (2.6) and (2.7), (2.6)–(2.8), (2.6)–(2.9) and (2.6)–(2.10), respectively. Clearly,
the functions γi are continuous, positive on (0, 1) (since ω ∈ (0, π )) and linearly
independent.

In fact, we can consider

Tu(t) = Bu(t) + S0u(t) =
N∑

i=1

βi[u]γi(t) +
∫ 1

0
G0(t, s)f (s, u(s)) ds, (2.12)

where N may be any integer number between 0 and 4, that is we can, and should, omit
in the calculations those βi[u] that are identically zero. Then a non-zero fixed point of
(2.12) in the cone P is a positive solution of the BVP (2.1) and (2.2).
Let [B] denote the N × N matrix [B] := [bij], where bij = βi[γj], and let

Gi(s) :=
∫ 1

0
G0(t, s) dBi(t), (2.13)

where G0 is the Green’s function for the local problem (when all βi are 0), which is
given explicitly in (2.21). When we need to stress the dependence on ω we will write
[Bω].

To study positive fixed points we make the following additional assumptions:

(C4) For each i, Bi is a function of bounded variation and Gi(s) ≥ 0 for a.e. s ∈ [0, 1].
(C5) The N × N matrix [B] := [bij] with bij = βi[γj] is non-negative, that is bij ≥ 0,

and the spectral radius of [B], denoted by r([B]), satisfies r([B]) < 1.

It is shown in [28] that the operator B and the matrix [B] are closely related, for example
B and [B] have equal spectral radii, r(B) = r([B]), in particular r(B) can be calculated.

Using the form (2.12), it is shown in [28] that if r(B) < 1 then the Green’s function
for S can be written as

G(t, s) := 〈(I − [B])−1G(s), γ (t)〉 + G0(t, s), (2.14)

where G(s) and γ (t) denote vector functions with components Gi(s) and γi(t),
respectively and 〈·, ·〉 stands for the inner product in �N .

It is also shown in [28] that if f ≥ 0 then positive solutions do not exist if B satisfies
a positivity assumption, called u0-positive (see for example [14]), and also r([B]) > 1.
The case r([B]) = 1 is the resonant case.

Since γi(t) > 0 on (0, 1), for an arbitrary subinterval [a, b] ⊂ (0, 1) there exist
positive constants ci such that γi(t) ≥ ci‖γi‖ for t ∈ [a, b]. As shown in [28], it follows
that if the Green’s function of the local problem satisfies

c0�0(s) ≤ G0(t, s) ≤ �0(s), t ∈ [a, b], s ∈ [0, 1],
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then the Green’s function for the non-local problem satisfies

c�(s) ≤ G(t, s) ≤ �(s), t ∈ [a, b], s ∈ [0, 1], for c = min{c0, c1, . . . , cN} > 0 (2.15)

and a suitable �. The authors of [28] were able to allow sign-changing measures by
working in the associated cone

K =
{

u ∈ P : min
t∈[a,b]

u(t) ≥ c‖u‖, βi[u] ≥ 0 for every i
}

. (2.16)

From the above, we see that we first need to obtain properties for the Green’s function
G0 of the local problem.

Thus, we begin by considering the local problem, (2.1) with the BCs

u(0) = 0, u′′(0) = 0, u(1) = 0, u′′(1) = 0. (2.17)

It is known and easy to see that the problem

u(4)(t) − ω4u(t) = f (t, u(t)), u(0) = u′′(0) = u(1) = u′′(1) = 0,

is equivalent to the following BVP for the system of two second-order equations

−u′′(t) − ω2u(t) = v(t), u(0) = 0, u(1) = 0;

−v′′(t) + ω2v(t) = f (t, u(t)), v(0) = 0, v(1) = 0.

Therefore, the Green’s function associated with (2.1)–(2.17) can be written as

G0(t, s) =
∫ 1

0
GT (t, τ )GH(τ, s) dτ, (2.18)

where

GT (t, s) := 1
ω sin(ω)

{
sin(ω(1 − t)) sin(ωs), 0 ≤ s ≤ t ≤ 1

sin(ωt) sin(ω(1 − s)), 0 ≤ t < s ≤ 1
, (2.19)

and

GH(t, s) := 1
ω sinh(ω)

{
sinh(ω(1 − t)) sinh(ωs), 0 ≤ s ≤ t ≤ 1

sinh(ωt) sinh(ω(1 − s)), 0 ≤ t < s ≤ 1
. (2.20)

The subscripts T, H indicate the involvement of trigonometric and hyperbolic
functions. The Green’s function can also be found by other calculations, the explicit
expression is (see also [2])

G0(t, s) =

⎧⎪⎪⎨⎪⎪⎩
G1(t, s) := sin(ωs) sin(ω(1 − t))

2ω3 sin(ω)
− sinh(ωs) sinh(ω(1 − t))

2ω3 sinh(ω)
, s ≤ t

G2(t, s) := sin(ωt) sin(ω(1 − s))
2ω3 sin(ω)

− sinh(ωt) sinh(ω(1 − s))
2ω3 sinh(ω)

, s > t
.

(2.21)
Since we restrict ω to lie in (0, π ), we have G0(t, s) ≥ 0 for t, s ∈ [0, 1], and we note that
the following symmetry properties hold:

G1(t, s) = G2(s, t), G1(t, s) = G1(1 − s, 1 − t), G2(t, s) = G2(1 − s, 1 − t).
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We will use the factored form (2.18) to show that G0 satisfies (C′
2) for an explicit

c(t).
Firstly, as is known and readily shown, since sinh(ωt) is an increasing function of

t, we have

cH(t)�H(s) ≤ GH(t, s) ≤ �H(s), for 0 ≤ s, t ≤ 1, (2.22)

where

�H(s) = 1
ω sinh(ω)

sinh(ω(1 − s)) sinh(ωs) (2.23)

and

cH(t) = min
{

sinh(ωt)
sinh ω

,
sinh(ω(1 − t))

sinh ω

}
. (2.24)

When 0 < ω ≤ π/2, a similar result holds for GT

cT (t)�T (s) ≤ GT (t, s) ≤ �T (s), for 0 ≤ s, t ≤ 1, (2.25)

where

�T (s) = 1
ω sin(ω)

sin(ω(1 − s)) sin(ωs) (2.26)

and

cT (t) = min
{

sin(ωt)
sin ω

,
sin(ω(1 − t))

sin ω

}
. (2.27)

When π/2 < ω < π the calculation is a little different, and since we have not seen
this calculation written elsewhere, we give some details here.

LEMMA 2.1. For π/2 < ω < π , the Green’s function GT satisfies

cT (t)�T (s) ≤ GT (t, s) ≤ �T (s), for 0 ≤ s, t ≤ 1,

where

�T (s) = 1
ω sin(ω)

⎧⎨⎩
sin(ωs), s < 1 − π/(2ω)
sin(ω(1 − s)) sin(ωs), 1 − π/(2ω) ≤ s ≤ π/(2ω)
sin(ω(1 − s)), s > π/(2ω)

, (2.28)

and

cT (t) = min{sin(ωt), sin(ω(1 − t))}. (2.29)

Proof. The Green’s function is

GT (t, s) :=

⎧⎪⎪⎨⎪⎪⎩
GT1(t, s) := 1

ω sin(ω)
sin(ω(1 − t)) sin(ωs), s ≤ t

GT2(t, s) := 1
ω sin(ω)

sin(ωt) sin(ω(1 − s)), s > t
. (2.30)
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When s ≤ t ≤ 1, we have

sin(ω(1 − t)) ≤
{

1, if s < 1 − π/(2ω)

sin(ω(1 − s)), if s ≥ 1 − π/(2ω)
.

This shows that

GT1(t, s) ≤ �T1(s) := 1
ω sin(ω)

{
sin(ωs), s < 1 − π/(2ω)

sin(ω(1 − s)) sin(ωs), s ≥ 1 − π/(2ω)
. (2.31)

Similarly, arguments when 0 ≤ t ≤ s give

GT2(t, s) ≤ �T2(s) := 1
ω sin(ω)

{
sin(ω(1 − s)), s > π/(2ω)

sin(ω(1 − s)) sin(ωs), s ≤ π/(2ω)
. (2.32)

Thus, we have

�T (s) :=
{

�T1(s), s ≤ 1/2

�T2(s), s > 1/2
,

= 1
ω sin(ω)

⎧⎪⎨⎪⎩
sin(ωs), s < 1 − π/(2ω)

sin(ω(1 − s)) sin(ωs), 1 − π/(2ω) ≤ s ≤ π/(2ω)

sin(ω(1 − s)), s > π/(2ω)

.

(2.33)

We now determine c(t) = cT (t) so that GT (t, s) ≥ c(t)�T (s). By the symmetry about
1/2 in this problem it suffices to consider the case t ≤ 1/2 and let c(t) := c(1 − t) for
t > 1/2.

There are then three regions to consider.

(1) t ≤ 1/2 ≤ s ≤ 1, where we want to show GT2(t, s) ≥ c(t)�T2(s).
(2) t ≤ s ≤ 1/2, where we want to show GT2(t, s) ≥ c(t)�T1(s).
(3) 0 ≤ s ≤ t ≤ 1/2, where we want to show GT1(t, s) ≥ c(t)�T1(s).

For region (1), we require c(t) so that

sin(ωt) sin(ω(1 − s)) ≥ c(t)

{
sin(ω(1 − s)) sin(ωs), s ≤ π/(2ω)

sin(ω(1 − s)), s > π/(2ω)
,

that is

c(t)
sin(ωt)

≤
{

1/ sin(ωs), s ≤ π/(2ω)
1, s > π/(2ω)

.

For this to hold for each t and all appropriate s we must have c(t) ≤ sin(ωt).
For region (2) where t ≤ s ≤ 1/2, we require c(t) so that

sin(ωt) sin(ω(1 − s)) ≥ c(t)

{
sin(ωs), s ≤ 1 − π/(2ω)

sin(ω(1 − s)) sin(ωs), 1 − π/(2ω) < s ≤ 1/2
,
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that is

c(t)
sin(ωt)

≤
{

sin(ω(1 − s))/ sin(ωs), t ≤ s ≤ 1 − π/(2ω)

1/ sin(ωs), 1 − π/(2ω) < s ≤ 1/2
. (2.34)

Since ωs < π/2, both functions on the right side of (2.34) are decreasing functions
of s, which coincide at s = 1 − π/(2ω), so the minimum of the right side occurs when
s = 1/2 and so we need c(t) ≤ sin(ωt)

sin(ω/2) .
For region (3) a similar argument to that for region (1) gives c(t) ≤ sin(ω(1 − t)).
We have to take the minimum of all these possibilities, so the conclusion is

cT (t) = min{sin(ωt), sin(ω(1 − t))},

which, by symmetry, is the formula for all t ∈ [0, 1] and is equivalent to

cT (t) =
{

sin(ωt), if t ≤ 1/2

sin(ω(1 − t)), if t > 1/2
. (2.35)

�
The following result is now immediate.

LEMMA 2.2. The Green’s function for the local problem (2.1)–(2.17) satisfies

c(t)�0(s) ≤ G0(t, s) ≤ �0(s), for 0 ≤ s, t ≤ 1,

where c(t) = cT (t), �0(s) = ∫ 1
0 �T (τ )GH(τ, s) dτ and �T , cT are given by (2.26)–(2.27)

for 0 < ω ≤ π/2 and by (2.28)–(2.29) when π/2 < ω < π .

REMARK 2.3. We could also write the Green’s function as

G0(t, s) =
∫ 1

0
GH(t, τ )GT (τ, s) dτ,

and expect to be able to use cH and �(s) = ∫ 1
0 �H(τ )GT (τ, s) dτ as an alternative. Since,

all other things being equal, choosing c as large as possible so that Lemma 2.2 holds
gives better results, we have chosen the given order because cT (t) ≥ cH(t) for every
ω ∈ (0, π ).

For a function g that satisfies the Carathéodory conditions, we use the following
notations:

g(u) := sup
t∈[0,1]

g(t, u), g(u) := inf
t∈[0,1]

g(t, u),

g0 = lim sup
u→0+

g(u)/u, g∞ = lim sup
u→∞

g(u)/u,

g0 = lim inf
u→0+

g(u)/u, g∞ = lim inf
u→∞ g(u)/u.

For r > 0 we also set

g0,r = sup{g(t, u)/r : t ∈ [0, 1], u ∈ [0, r]}
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and

gr,r/c = inf{g(t, u)/r : t ∈ [a, b], u ∈ [r, r/c]}.
We employ the constants m and M = M(a, b) defined by

1
m

= sup
t∈[0,1]

∫ 1

0
G(t, s) ds,

1
M

= inf
t∈[a,b]

∫ b

a
G(t, s) ds, (2.36)

and make use of the linear operator

Lu(t) :=
∫ 1

0
G(t, s)u(s) ds, (2.37)

where G(t, s) is given by (2.14).
Since c(t)�(s) ≤ G(t, s) ≤ �(s), it follows that Lc(t) ≥ (

∫ 1
0 �(s)c(s) ds)c(t), so by

Krasnosel’skiı̆’s Theorem 2.5 [13], L has an eigenvalue λ ≥ ∫ 1
0 �(s)c(s) ds > 0, thus

r(L) > 0 and by the Krein–Rutman theorem, r(L) is an eigenvalue of L with a positive
eigenfunction, the principal eigenvalue. Let μ1 = 1/r(L) be the principal characteristic
value of L.

We recall the following theorem on the existence of multiple positive solutions for
the following equation (fixed points of S), when f ≥ 0 satisfies (C3), which is based on
fixed point index results of [30], see Theorem 6.1 in [28],

u(t) =
∫ 1

0
G(t, s)f (s, u(s)) ds, t ∈ [0, 1]. (2.38)

We write c[a,b] = min{c(t) : t ∈ [a, b]}.
THEOREM 2.4. Assume that (C1)−(C5) hold and also that, whenever we have the

condition μ1 < f∞, we suppose (C2) holds for an arbitrary [a, b] ⊂ (0, 1). Then (2.38) has
a positive solution u ∈ K if one of the following conditions holds.

(S1) 0 ≤ f 0 < μ1 and μ1 < f∞ ≤ ∞.
(S2) μ1 < f0 ≤ ∞ and 0 ≤ f ∞ < μ1.

Equation (2.38) has at least two positive solutions in K if one of the following conditions
holds.

(D1) 0 ≤ f 0 < μ1, fr,r/c[a,b] > M for some r > 0, and 0 ≤ f ∞ < μ1.
(D2) μ1 < f0 ≤ ∞, f 0,r < m for some r > 0, and μ1 < f∞ ≤ ∞.

Equation (2.38) has at least three positive solutions in K if either (T1) or (T2) below holds.
(T1) There exist 0 < r1 < c[a,b]r2 < ∞, such that

0 ≤ f 0 < μ1, fr1,r1/c[a,b] > M, f 0,r2 < m, μ1 < f∞ ≤ ∞.

(T2) There exist 0 < r1 < r2 < ∞, such that

μ1 < f0 ≤ ∞, f 0,r1 < m, fr2,r2/c[a,b] > M, 0 ≤ f ∞ < μ1.

REMARK 2.5. The list of conditions is readily extended to give a result on the
existence of an arbitrary finite number of solutions under increasingly restrictive
conditions on nonlinearity. The statements of these results are easily given, hence
are omitted here.
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The restrictions on f are weaker in (D1) if [a, b] is chosen so that M = M(a, b) is
as small as possible: The height to be exceeded by the graph of f is less. Also, for a
given [a, b] the restrictions on f are weaker in (D1) and (T1) when c is chosen as large
as possible, since the length of interval on which f has to be large is reduced. There is
some interplay between these two requirements, the ‘best’ choice of [a, b] would depend
on the given nonlinearity f .

For the local problem, the ‘optimal’ interval, the one for which M(a, b) is minimal,
can be shown to be [1/4, 3/4].

There are also non-existence results, see [25, 28], which show that the hypotheses
(S1) and (S2) in Theorem 2.4 are sharp.

THEOREM 2.6. The operator S has no non-zero fixed points in the cone P if

either f (t, u) < μ1u for all u > 0, or f (t, u) > μ1u for all u > 0.

We now give some examples of the values of m, M(1/4, 3/4), μ1, c[1/4,3/4] for the
local BVP

u(4)(t) − ω4u(t) = f (t, u(t)), u(0) = 0, u′′(0) = 0, u(1) = 0, u′′(1) = 0,

using the above formulas, where c[1/4,3/4] = min{c(t) : t ∈ [1/4, 3/4]} with c as in
Lemma 2.2. These values of c are not necessarily optimal. In particular, for ω = 0
a larger value has been found in [29] (with a different �(s)) by another method.

ω = 0, m = 384/5 = 76.8, M( 1
4 , 3

4 ) = 153.6, μ1 = π4 ≈ 97.4091, c[ 1
4 , 3

4 ] = 1/4.

ω = 1, m ≈ 76.0086, M( 1
4 , 3

4 ) ≈ 152.0172, μ1 = π4 − ω4 ≈ 96.4091, c[ 1
4 , 3

4 ] ≈
0.2940.

ω = π/2, m ≈ 71.9827, M( 1
4 , 3

4 ) ≈ 143.9657, μ1 ≈ 91.3210, c[ 1
4 , 3

4 ] ≈ 0.3827.

ω = 2, m ≈ 64.1450, M( 1
4 , 3

4 ) ≈ 128.2899, μ1 ≈ 81.4091, c[ 1
4 , 3

4 ] ≈ 0.4794.

ω = 3, m ≈ 12.8961, M( 1
4 , 3

4 ) ≈ 25.7922, μ1 ≈ 16.4091, c[ 1
4 , 3

4 ] ≈ 0.6816.
It is now routine to give examples of nonlinearities f so that one, two, three or

more positive solutions exist for the local problem. For the non-local problem it is
necessary to calculate the constants, we shall give some examples later in the paper.

3. Resonant case. We now study the problem

u(4)(t) − ω4u(t) = f (t, u(t)), (3.1)

subject to the BCs

u(0) = β1[u], u′′(0) + β2[u] = 0, u(1) = β3[u], u′′(1) + β4[u] = 0, (3.2)

when it is at resonance, that is when r([Bω]) = 1. It is to be noted that now we do
not suppose that f (t, u) is positive for all u ≥ 0; see Theorem 3.4 for a good reason
to not assume this. Instead, we assume that there exists 0 < k < ω such that f̃ (t, u) :=
f (t, u) + k4u ≥ 0 for all u ≥ 0.

Let ω̃ be defined by ω̃4 = ω4 − k4. Consider the equivalent shifted equation,

u(4)(t) − ω̃4u(t) = f̃ (t, u(t)), (3.3)
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where f̃ (t, u) := f (t, u) + k4u, subject to the BCs (3.2). Let γ̃j be the solutions of

γ̃ (4)(t) − ω̃4γ̃ (t) = 0

under the respective BCs (2.7), (2.8), (2.9) and (2.10). Thus, these are given by

γ̃1(t) = sin(ω̃(1 − t))/(2 sin(ω̃)) + sinh(ω̃(1 − t))/(2 sinh(ω̃)),

γ̃2(t) = sin(ω̃(1 − t))/(2ω̃2 sin(ω̃)) − sinh(ω̃(1 − t))/(2ω̃2 sinh(ω̃)),

γ̃3(t) = sin(ω̃t)/(2 sin(ω̃)) + sinh(ω̃t)/(2 sinh(ω̃)),

γ̃4(t) = sin(ω̃t)/(2ω̃2 sin(ω̃)) − sinh(ω̃t)/(2ω̃2 sinh(ω̃)).

(3.4)

The shifted problem (3.3)–(3.2) is not at resonance when r([Bω̃]) < 1, where [Bω̃] is the
N × N matrix with entries βi[γ̃j], and we suppose that βi[γ̃j] ≥ 0.

In order to show that the shifted problem is not at resonance the following result
will be useful.

LEMMA 3.1. Each γi is a strictly increasing function of ω.

Proof. Let ω ∈ (0, π ) and let G0 be the Green’s function for the problem

u(4)(t) − ω4u(t) = y(t), u(0) = 0, u′′(0) = 0, u(1) = 0, u′′(1) = 0,

as in (2.18) or (2.21). Then G0(t, s) > 0 for t, s ∈ (0, 1).
Let γ1(ω) be the solution of

γ (4)(t) − ω4γ (t) = 0 (3.5)

satisfying the BCs

γ (0) = 1, γ ′′(0) = 0, γ (1) = 0, γ ′′(1) = 0. (3.6)

Then, see (2.11), γ1(ω) > 0 is strictly positive on (0, 1). Let v1 = γ1(ω1) and v2 = γ1(ω2)
denote the solutions of (3.5) and (3.6) with ω = ω1 and ω = ω2, respectively. Assume
ω2 > ω1. Then v := v2 − v1 satisfies the equation

v(4)(t) − ω4
1v(t) = (

ω4
2 − ω4

1

)
v2(t),

with BCs

v(0) = 0, v′′(0) = 0, v(1) = 0, v′′(1) = 0.

Thus,

v(t) =
∫ 1

0
G0(t, s)

(
ω4

2 − ω4
1

)
v2(s) ds > 0, for t ∈ (0, 1).

This proves that ω2 > ω1 implies v2(t) > v1(t) for t ∈ (0, 1), that is γ1 is a strictly
increasing function of ω.

An exactly similar argument shows that the same holds for each of γ2, γ3, γ4. �
THEOREM 3.2. Suppose that for some k ∈ (0, ω) we have f̃ (t, u) := f (t, u) + k4u ≥ 0

for all u ≥ 0. Let ω̃4 = ω4 − k4 and suppose that βi[γj] ≥ 0 and r([Bω]) = 1, and that
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βi[γ̃j] ≥ 0 and r([Bω̃]) < 1. Moreover, suppose that (C4) holds. Then the resonant problem
(3.1)–(3.2) has at least one positive solution if one of (Sa) or (Sb) holds, where

(Sa) f 0 < 0 and f∞ > 0,
(Sb) f0 > 0 and f ∞ < 0.

The resonant problem (3.1)–(3.2) has at least two positive solutions if either of the
following conditions hold.

(Da) f 0 < 0, and f ∞ < 0, and there exists
r > 0 such that inf t∈[a,b] f (t, u) + k4u > rM̃ for u ∈ [r, r/̃c].

(Db) f0 > 0, and f∞ > 0, and there exists
r > 0 such that supt∈[0,1] f (t, u) + k4u < rm̃ for u ∈ [0, r].

Here c̃ = min{̃c0, c̃1, . . . , c̃N} and m̃, M̃ are the constants defined in (2.15) and (2.36),
respectively, for the shifted problem

u(4)(t) − ω̃4u(t) = f̃ (t, u(t)),

with the given BCs.

Proof. Let μ̃1 denote the principal characteristic value corresponding to (3.3)
with the BCs (3.2). Since the problem is at resonance, we have μ1 = 0. Clearly μ̃1 =
μ1 + k4 = k4. Since f̃ 0 = f 0 + k4, with similar expressions for the other terms, (Sa)
implies 0 ≤ f̃ 0 < μ̃1 and μ̃1 < f̃∞ ≤ ∞. This means that (S1) of Theorem 2.4 holds
for f̃ . Similarly (S2) holds for f̃ when (Sb) holds for f . Hence, the resonant problem
(3.1)–(3.2) has at least one positive solution. Similarly (Da) and (Db) holding for f
imply that (D1) and (D2) hold for f̃ . �

REMARK 3.3. Similarly one can state a result for three or any finite number of
positive solutions using Theorem 2.4.

When βi are positive functionals then by Lemma 3.1 we have 0 < βi[γ̃j] < βi[γj],
since ω̃ < ω. As [Bω̃], [Bω] are positive matrices, it follows that 0 < r([Bω̃]) < r([Bω]) =
1, so the perturbed problem is not at resonance in this case for any k ∈ (0, ω). In fact
this remains valid if [Bω̃] is a non-negative irreducible matrix, see, for example [22, 23].

THEOREM 3.4. The resonant problem (3.1)–(3.2) has no positive solutions if either

f (t, u) < 0 for all u > 0, or f (t, u) > 0 for all u > 0.

Proof. For example, if f (t, u) > 0 for all u > 0, then f̃ (t, u) = f (t, u) + k4u > k4u =
μ̃1u and Theorem 2.6 applies. �

This means that some change of sign is necessary to have positive solution in the
resonance case; this is usually derived as a consequence of the Fredholm alternative.
Some second-order problems were discussed in [24], where a necessary and sufficient
condition was given for the existence of a positive solution when f is non-negative (or
non-positive).

4. Examples. We now give some examples; because we use a shift argument, these
are examples of both the resonant and non-resonant cases at once. To see examples
with sign-changing measures for some second-order problems, see [26, 27]. Here we
could give similar examples but have concentrated on simple new examples to illustrate
the approach using a shift argument.
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EXAMPLE 4.1. An example with four point mass functionals acting at a single
point.

Consider the equation u(4)(t) − ω4u(t) = f (u(t)), that is (2.1) with 0 < ω < π ,
subject to the BCs

u(0) = β1u(η), u′′(0) + β2u(η) = 0, u(1) = β3u(η), u′′(1) + β4u(η) = 0, (4.1)

where βi > 0 and η ∈ (0, 1). The same BCs were considered in [28] in the non-resonant
case. In this case

[B] :=

⎡⎢⎢⎢⎣
β1γ1(η) β1γ2(η) β1γ3(η) β1γ4(η)

β2γ1(η) β2γ2(η) β2γ3(η) β2γ4(η)

β3γ1(η) β3γ2(η) β3γ3(η) β3γ4(η)

β4γ1(η) β4γ2(η) β4γ3(η) β4γ4(η)

⎤⎥⎥⎥⎦
and the eigenvalues are 0, 0, 0,

∑4
i=1 βiγi(η) (note that [B] has rank 1), thus

r([B]) =
4∑

i=1

βiγi(η).

If r([B]) = 1, the problem (2.1)–(4.1) is at resonance. Consider the shifted equation

u(4)(t) − ω̃4u(t) := u(4)(t) − (ω4 − k4)u(t) = f (t, u(t)) + k4u(t), (4.2)

with 0 < k < ω subject to the same BCs. Note that βiγ̃i(η) > 0 since γ̃i > 0 on (0, 1).
By Lemma 3.1, the shifted problem is non-resonant for any k with 0 < k < ω and we
can choose any such k for which f satisfies f (t, u) + k4u ≥ 0 for all u ≥ 0.

We now give a specific example. Let f (u) := u (−1+3u)
16+u1/2+4u and consider the problem

u(4)(t) − u(t) = f (u(t)), t ∈ (0, 1), (4.3)

where we have ω = 1, with the BCs

u(0) = β1u(1/2), u′′(0) + β2u(1/2) = 0, u(1) = β3u(1/2), u′′(1) + β4u(1/2) = 0,

(4.4)
and, with p = sin(1)/ sin(1/2), take β1 = p/2, β2 = p/4, β3 = p/2, β4 = 3p/4. Then, by
calculation, r([B]) = ∑4

i=1 βiγi(η) = 1.
We may choose any k ∈ [1/2, 1). Then f0 = −1/16 and f ∞ = 3/4 so by

Theorem 3.2, case (Sb), there exists one positive solution.

EXAMPLE 4.2. Consider the equation

u(4)(t) − ω4u(t) = f (u(t)), t ∈ (0, 1),

for 0 < ω < π with two local BCs and two functional BCs

u(0) = β1[u], u′′(0) = 0, u(1) = β3[u], u′′(1) = 0. (4.5)

Then

[B] :=
[

β1[γ1] β1[γ3]

β3[γ1] β3[γ3]

]
,
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where

γ1(t) = sin(ω(1 − t))/(2 sin(ω)) + sinh(ω(1 − t))/(2 sinh(ω)),

γ3(t) = sin(ωt)/(2 sin(ω)) + sinh(ωt)/(2 sinh(ω)).

For a specific example we take BCs of integral type βj[u] = βj
∫ 1

0 u(t)dt where βj ≥ 0.
For this choice of BCs, r([B]) = β1[γ1] + β3[γ3], which explicitly is

r ([B]) = (β1 + β3)(sin(ω)(cosh(ω) − 1) + sinh(ω)(1 − cos(ω)))/(2ω sin(ω) sinh(ω)).

Thus, for β1 + β3 = 2ω sin(ω) sinh(ω)/(sin(ω)(cosh(ω) − 1) + sinh(ω)(1 − cos(ω))) the
problem is at resonance. For example, when ω = 1, we can have β1 = 1, β3 ≈ 0.9833.
We now choose and fix these values of ω, β1, β3. Consider the nonlinearity defined by

f (u) = (u1/2 + u2)/3 − 3 sin(u)/4. (4.6)

Then f (u) + k4u ≥ 0 for k4 ≥ 3/4. Also, f0 = ∞, f∞ = ∞, so Theorem 3.2 (Db) will
apply if we can show there exist r and ω̃ such that f (u) + (ω4 − ω̃4)u ≤ m̃r for 0 ≤ u ≤ r.
Choose k4 = 3/4 and ω̃ = 1/

√
2, and we want

f (u) + 3u/4 ≤ m̃r, for 0 ≤ u ≤ r.

By a calculation with Maple, m̃ ≈ 0.74717. Since f (u) + 3u/4 is increasing, it suffices
to have r such that

f (r)/r + 3/4 ≤ m̃.

Recall that f takes some negative values. This is satisfied when 0.2620 < r < 0.8958, in
particular we may take r = 1/2. Thus, this problem has two positive solutions.
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