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Equal-Sum-Product problem I

Maciej Zakarczemny

Abstract. In this paper, we present the results related to a problem posed by Andrzej Schinzel. Does
the number N (n) of integer solutions of the equation

X1+ X2+ + Xy SX1X2 e Xy, X1 2 X2 22X, 21

tend to infinity with n? Let a be a positive integer. We give a lower bound on the number of integer
solutions, N, (n), to the equation

X1+ X2 4+ Xy =AX1X2 .. Xy, X1 2 X2 22Xy 2 1.

We show thatif Nz (n) = 1, then the number 21 — 3 is prime. The average behavior of N () is studied.
We prove that the set {n : N2(n) < k, n > 2} has zero natural density.

1 Introduction

Let N={1,2,3,...} denote the set of all natural numbers (i.e., positive integers).
Equal-Sum-Product Problem is relatively easy to formulate but still unresolved (see
[4]). Some early research focused on estimating the number of solutions, Ny(n), to
the equation

(1.1) Xl +Xp o+ Xy S XXy e Ky X2 X2 2 > Xy 21,

which can be found in [3, 8]. Schinzel asked in papers [10, 11] if the number N;(n)
tends toward infinity with ». This conjecture is yet to be proven. In [15], it was shown
that the set {n: Ny(n) < k, n € Z, n > 2} has zero natural density for all natural k.
It is worth noting that the classical Diophantine equation x7 + x3 + x2 = 3x,x,X3
was investigated by Markoft (1879), as mentioned in [1, 7]. Additionally, Hurwitz
(see [5]) examined the family of equations x + x2 + -+ + x2 = ax;x; - ... - x,, where
a,n €N, n>3. Let us now assume that a,n €N, n > 2. In this paper, we provide
a lower bound for the number N,(n) of integer solutions (x1, x2,...,%,) of the
equation

(1.2) X1 +Xp+ o+ X, =AX1 Xy ... Xy

such that x; > x, > - > x,, > 1. Some of the results presented can be generalized to the
case of the equation

(1.3) b(xj+x+-+x,) =ax1xy ... Xn,
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Equal-Sum-Product problem IT 583

where a, b are positive integers. In the case a = 1, b = n, the equation
n(xp+ - +Xp) =X X2 e.. Xn

is called Erdds last equation (see [4, 12, 13]). Equation (1.3) is related to the problem
of finding numbers divisible by the sum and product of their digits. It is worth noting
that if equation (1.2) has solutions, then a < n.

2 Basic results

In this section, we discuss the necessary basic results. First, we will show that the
number of solutions N, (n) is finite for any fixed a and n.

Lemma 2.1 Let n be a natural number. If x1, X, ..., x, are any real numbers, then
the following formula holds:

(aijx,- —1) (axn—1) + azlz((ﬂlx —1) (Xon1 _1)) -

n n
(2.1) a*[[xi-ad.xi+a(n-2)+1
i=1 i=1

Proof Let us denote equation (2.1) as T(n). We want to show by induction
that T(n) holds for every natural number n. The cases n =1 and n =2 are triv-
ial: (a—-1)(ax; —1) = a’x;—ax;—a+1, (ax; —1)(ax; — 1) = a’x1x; — a(x; + x3) +
1. In both cases, equality is true. Therefore, the base step of the induction is satisfied,
as T(1) and T(2) hold. Let us assume now that n >3 and T(n —1) holds, i.e., the
following equality is true:

(Gﬁxi —1) (axn_l—l) +anz_: (( Sl.x,' _1) (.X'5+1 _1)) =

s=1 i=

n-1 n-1
(2.2) a?[[xi-ad xi+a(n-3)+1
i=1 i=1
In the inductive step, we will be using the equivalent form of equation (2.2):
n-3 s
ay. ((H xXi— 1) (X541 — 1)) =
s=1 i=1
n-2 n—1 n—1
(2.3) —(a Hx,- —1) (axp_1—1) + a* Hxi - azxi +a(n-3)+1.
i=1 i=1 i=1

To prove the inductive step, i.e., to show that T(n —1) implies T(n) for n > 3, we
will use the following algebraic identities that can be verified directly:
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n-1

n-1 n
(2.4) (aHxi—l)(axn—l):aznxi—aanrl—aHxi,
i=1

i=1 i=1

(2.5) a(i;fx,-—l) (xp-1-1) +a’§((ﬁx,—l) (xs+1—1)).

Let us proceed to the proof of the inductive step. We want to show T'(n) assuming
T(n —1). Let us start by transforming the left side of T'(n) using equations (2.4) and
(2.5)

(aﬁxi —1) (axy—1)+a f((l‘[ ,-—1) (X511 —1)) =

s=1 i=1

aznxi—axn+l—aﬁxi+
(2.6) +a(H X —1) (xp-1-1D+a Z ((Hx, —1) Xsi1 —1)).

s=1

Calculating directly, we notice that the following equality holds true

n—1 n-2
—a[]xi+ a(Hxi —1) (xp1-1) =
i=1 i=1
n-1 n-1 n-2 n-2
(2.7) —a[]xi+a[[xi-axpo—a][xi+a=a-ax,.i—a[]x.
i=1 i=1 i=1 i=1

From equations (2.6) and (2.7), and then using the inductive assumption (2.3), we

obtain
o

n n-2
=a*[]xi—ax, +1+a-ax, l—anx,+a2(( x; — 1)(xs+1—1))£2'3)
i=

i=1 i=1

ZHx,—axn+1+a—axn l—anx, (aHx,—l)(axn 1—1)+

i=1 i=1

n-1 n-1 n
+a’[[xi-a) xi+a(n-3)+1= aznx;—aZx,-+a(n—2)+l.
i-1 in1 i-1 in1

Thus, assuming T'(n — 1), we have shown that T'(n) holds, completing the inductive
step and concluding the proof of the lemma. ]
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Theorem 2.2 Leta,k € N, b e Nu {0}. For any integer n > 2, the system of Diophan-
tine equations

X110+ X120+ X = axz1-X22 ... Xon +b,
Xa1+ Xa 0+ Xop = ax3;-X32...-Xzn+0b,
(2.8) .
Xj—11 + Xp—1p + -+ Xk1n =  OXk1 Xk .- Xk + D,
Xp1+ Xk + o+ Xpy = axp;-Xi2c...-Xyu+b

has only finite number of solutions x; j which are natural numbers.

Proof By adding sides of equations of the system of equations (2.8), we obtain

k
Mxij=y a]]xi;+kb.

j=1 i=1 =1

k n n
i=1

Hence,
k n n
Sla*[Ixij—ad xij+a(n-2)+1]=k(a(n-2)+1) - kab.
i=1 j=1 =1

By (2.1), we have

Zk: (( ﬁxi’j - 1) (axi’” - 1) +a rf (ﬁxi’j - 1) (xi,s+1 - 1)) =
j=1

i=1 s=1 \ j=1

(2.9) k(a(n-2)+1) - kab.

For given g, k, b, n, the number of solutions of equation (2.9) in positive integers is
bounded above. Hence, the system of equations (2.8) has only a finite number of
solutions in positive integers x; ;. u

Taking k = 1, an immediate consequence of Theorem 2.2 is the following result.
Corollary 2.3  For given a € N, b e Nu {0} and any integer n > 2, the number of
solutions of the equation
(2.10) X1 +Xy+ o +Xy,=aX "Xy ... Xy + Db
in positive integers x1 > x5 > -+ > x, > 1 is finite. In particular, in the case b = 0, the
number of solutions N, (n) is finite.

Remark 2.4 Theorem 2.2 istrue forall a,b € Q,a > 1.

Remark 2.5 In the case of b = 0, we can provide a different proof of Corollary 2.3.
n

Let z; = X1X2 oo  XiZ1Xj41 " ev. Xp = Xi [TxjeN for ie{l,2,...,n}. Notice that
i j=1

from the inequality x; > x5 > --- > x,, > 1, we get the inequality 1< z; < z; < -+ < z,,.
Then, equation (2.10) takes the form

(2.11) Zil+i+---+zi:a21.
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Equation (2.11) has finitely many solutions in positive integers, as we can find upper
bounds on z;. The bounds we will find are not optimal, but they are sufficient for our

purposes. If n > 2, then axyx, - ... - Xy = X1+ X2 + -+ X 2 X1 + X2 2 X1 +1> X1, and
hence ax, - ...-x, > 2. From here, we can deduce
(n-Dxy2xy++x, =x1(axy-...-x, = 1) 2 x.
Therefore, nx, > x; and nz; > z,. We also have for k € {2,3,...,n — 1}, that
n
nzizy ... 2k 2222 2 [ [ X0 > Zka
i=1
Thus, forall k € {1,2,...,n—1},wehave z;,; < nz; -z, - ... - zr. Now we can proceed
k k p
i—1
with the inductive proof of the upper bound: z; < a™'n* ', where i € {1,2,...,n}.

Base step, as the z; are increasing, we can use equation (2.11) to obtain an inequality:

2114 Log>1 hencez < aln.
z1 z1 2z Zn

i—1
If we now make the assumption that z; < a~'n* foralli € {1,2,..., k}, where k < n,
nz°+21+22+m+2k’1

2k
then zp, < nzizy - ..oz < = “—; this establishes the inductive step.

The proof of Theorem 2.2 can be modified in the specific case of a, n to create an
efficient algorithm for finding solutions to equation (2.10).

Kurlandchik and Nowicki [6, Theorem 3] had earlier shown that Ny (n) is finite for
any n > 2.

Schinzel’s question can be generalized. For given a € N, does the number N, (n)
tend to infinity with n? We can show with the elementary method the following
theorems.

Theorem 2.6 Ifa,n €N, then limsup N,(n) = oo.

n—oo

Proof = We shall consider two cases. Let a € {1,2}. If t € {0,1,..., [%J}, where sis a
nonnegative integer, then

La+1) "+ D)+ L((a+1) + 1)+ 1+1+-41 =
%((aﬂ)‘—l) times

a-3((a+)7"+1)-((@a+)f+1)- 1-1-...-1
%((cﬂl)‘—l) times

We have s —t > t and 1((a +1)" +1) € N, where i is a nonnegative integer. Hence,
N(i((a+1)*+2a-1)) > [%J + L. Therefore, lim sup N, (n) = oo.
n—oo
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Leta>3.Ifte {1,...,[%J},wheres e N, then
1 25-2t+41 1 2t-1 _
s((a-1)~ +D)+2((@-D"+1)+ I+1+-+1 =

% ((a-1)%-1) times

a-L((a-F?" 4 L((a-)* 1) 11
N——

%((u—l)zs—l) times
We have 25 -2t +12> 2t —1and 2 ((a-1)*"+1), 2 ((a —1)* -1) € N, where i ¢ N.

Hence, N(1((a-1)* +2a-1)) > |2].
Therefore, lim sup N, (n) = . |

n—oo

Remark 2.7 Let a > 3. Depending on the choice of a < n, equation (1.2) may not
have solutions. The simplest example is a = 3 and # = 4. In this case, equation (1.2) is
equivalent to

(3x1302%3 = 1)(Bxa = 1) +3(1x2 = 1) (x5 = 1) +3(x1 — 1) (x2 - 1) = 7,

but the corresponding equation has no integer solutions x; > x, > x3 > x4 > 1. This
gives N3(4) = 0.

Remark 2.8 Due to the solutions (2, 2, ...,1), (m, 1, ...,1), where m € N and

4a-2 times ma—m-+1 times
certain technical computations based on the method from Remark 2.5, we can prove

that:

(1) N,(a)=N,(2a-1)=N,(3a-2)=N,(4a-3) =1, where a > 2,

(2) N(6) =2, N,(4a-2) =1, wherea >3,

(3) Ny(n)=0ifne((a,2a-1)u(2a-1,3a-2)u(3a-2,4a-3))nN,
(4) Ny(ma-m+1)>1, where m e N.

Points (1)-(3) partially explain the basic structure of the right side of Table 1.
It has been proven in [15] that in the case of a = 1, the following theorem holds.

Theorem 2.9 IfneN, n>2, then

(2.12) NI(H)Z[d(”—1)+1J+ld(2n—1)+1J_L

2 2

where d(j) is the number of positive divisors of j. Moreover,
Ni(n) > ld(” -1) +1J N ld(Zn 1)+ 1J ;)
2 2
(2.13) +V2(3"”) “J N V3(4”+1) +1J N {d3(4n+s) HJ

2 2 2
-0(2ln+1)-8(3jn+1)-8(3|n+2)
-0(5|n+2,n>8)-8(7|n+3, n>11) - 8(1n +4, n >29),

where d;(m) is the number of positive divisors of m which lie in the arithmetic
progression i(mod i +1). The function § is the Dirac delta function.
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Table 1: The table shows values of N,(n) for small natural
numbers a < n < 10. The bold numbers are N, (#n), such that

n>4a-1
m\a|1(2[3|4|5|6[7|8]9[10|11]|12|13(14[15|16
2 (1|1

3 (1|11

4 [1(1]|0]1

5 (3|1({1({0]|1

6 [1|12({0(0|0]1

7 (2|1]1[1(|0]|0f1

8 [2|1{0[{0(0|0(0]|1

9 (2|2(1({0|1]{0(0]|0|1

10 [2|1{1({1|0[{0|0|0(O]|1

1 ({3(1(1{0(0|1{0(0|0[O0]|1

12 (212{0({0(0|0[0|0[0|0]|0O]|1

13 14(2(1(1]1{0|1]|0(0|0[0|O0]|1

14 (212{0({1|0{0|0]|0{0|O0|0O[0]|0O]|1
1512(2(2(0{0(0|0|1|0|0(0O|0[0]|0]|1
16 [2|1{0f{1(0[1[{0|0{O|O|O|0O]|O|O 1

Remark 2.10  In the case a = 2, equation (1.2) has at least one typical solution in the
form (n—-1,1,1,...,1). Therefore, N;(n) > 1 for all integers n > 2.
—_——

n—1 times
3 Main results

We give a lower bound on the number of solutions N,(n) of equation (1.2).

Theorem 3.1 Ifa,neN, n>2, then

(1) Na(n) > [da,l(a(nz—z)+1)+1J N {dZu,l(Za(;—l)+l)+1J ~8(2a-1n),

where d;(m) is the number of positive divisors of m which lie in the arithmetic
progression i(mod i + 1). The function § is the Dirac delta function.

Proof In the set N”, we have the following pairwise disjoint families of pairwise
different (x1,x3,...,x,) solutions of equation (1.2). Note that in each case x; is an
integer and x; > x, > - > x,, > 1. We define

d+1
n—2+——
a

Ar(n) = (e dn gy
n—2 times

a(n—-2)+1=0 (modd),d=-1 (mod a),

1<d<+/a(n-2)+1,deN}.
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We also define
n—1+@
Ay(n) = {(—32,22,2,1,1,...,1):
[ ——

> 2a

n—3 times

2a(n-1)+1=0 (modd),d=-1 (mod 2a),
4a—1£dS\/m,deN}, when n > 3.
We have A,(2) = @. Moreover,
|[Aj(n)|=|{d: a(n-2)+1=0 (modd),d=-1 (mod a),
1gdsm,deN}|:[MJ.
In the case of the set A,(n), we have d + 2a — 1; thus,
|Az(n)|=|{d: 2a(n-1)+1=0 (modd),d=-1 (mod 2a),

4a-1<d<\2a(n-1)+1,d eN}| =

=|{d: 2a(n-1)+1=0 (modd),d=-1 (mod 2a),
1<d<+\/2a(n-1)+1,d eN}|

-{d:2a(n-1)+1=0 (modd),d=2a-1}=
[d;a,l(Za(n—1)+l)+1J - 8(2a - 1|n).

2

The sets A1(n), Ay(n) are disjoint. Hence, N,(n) > |A1(n)| + |A2(n)]. Thus, we get
immediately (3.1). u

Corollary 3.2 IfneN, n > 2, then

(3.2) Nz(n) > [d(Zn;3)+1J n [d3(4n2—3)+1J _ 6(3|n).

The following corollary is almost immediate.
Corollary 3.3 IfneN, n > 2, then
(3.3) Ny(n) > 1d(2n -3).
Proof Formula (3.3) follows at once from Corollary 3.2 and inequalities
[WJ > 48(3|n), [XT“J > 1x, where x € Z. ]

For the convenience of the reader, values of N,(n) for small values of n are
presented in Table 2.

Table 2: The table lists the numbers N (n) for 2 < n < 51.

n [ No(m) [ [ Na(m) [ n [ NaGm) [0 [ NaG) [n [ Na(m) [ [ No(m) [0 [ NaG) [n [ No(m) [ [ NaC) [ | No(m)
2 1 7 1 12| 2 17 1 22 |1 27 | 3 32 1 37 1 42 | 4 47 2

3 1 8 1 13 ]2 18 2 23 1 28 | 2 33 3 38 1 43 2 48

4 1 9 2 14 | 2 19 2 24 |3 29| 2 34 |3 3913 44 | 2 49 | 2

5 1 10 1 152 20 | 2 25 (1 30| 2 35 (3 40 | 2 45 | 2 50 |1

6 2 11 1 16 | 1 21 2 26 | 2 31 2 36 | 2 41 2 46 | 1 51 3
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Corollary 3.4 Let n € N, n > 3. If the equation

(3.4) Xi+Xg+ o +X, =2X1 X3 ... Xp

has exactly one solution (n —1,1,1,...,1) in the natural numbers x; > x5 > -+ > x, > 1,
—_—
n—1 times

then 2n — 3 is a prime number.

Proof If N»(n) =1, then by Corollary 3.3 we get 2 > d(2n — 3). Since 2n - 3 > 3, it
follows that 2n — 3 is a prime number. ]

Remark 3.5 If Ni(n) =1, then n—1 must be a Sophie Germain prime number
(see [8]).

The set of exceptional values
Let E2, = {n: Ny(n) < k, n>2}, where k € N. In particular, E2, = {n: Ny(n) =1,
n>2}.

Theorem 4.1  The set EZ; has natural density 0, i.e., the ratio

0 L x]|
tends to 0 as x — oo.
Proof Let Q(m) count the total number of prime factors of m. We have Q(m) <
d(m) -1 for every natural m. Let m;(x) =|[{m: Q(m) =i, 1< m<x}| ie., the
number of 1 < m < x with i prime factors (not necessarily distinct). By Corollary 3.3,

we have Ny (n) > 3d(2n - 3). Thus, if n € E2,, then d(2n — 3) < 2k and consequently
Q(2n - 3) < 2k — 1. Therefore,

2k-1
IEZ n[Lx][< Y mi(2x -3),
i=0

where x > 2. Using the sieve of Eratosthenes, one can show that (see [2, p. 75])

1 . (Aloglogx+B)’
ﬂKX)S‘EXAAAIQZAA*

for some constants A, B > 0. There follows that

2k-1 .

Lg2 2x-3 § 1 (Aloglog (2x-3)+B)"
0< X|E§k n [l’x]| < x Z(:) il log (2x-3) .
i=
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For a fixed k, the right-hand side tends to 0, as x — oo. Thus,
tim 420 [1,5]| 0.
This completes the proof. u

The above theorem implies that the set EZ = {n: N,(n) =k, n>2} has zero
natural density for any fixed k >1. This observation might suggest that the set
E; ={n: Ny(n) =k, n > 2} isfinite for any fixed k > 1and that the number N,(n) —
oo as 1 — co. In the next theorem, we study the average behavior of N, (n).

Theorem 4.2 If € > 0, then for sufficiently large x, we have
> Na(n) > Lixlogx.

l<n<x

Proof By [9, 14], there exists constant ¢ > 0 such that

>, d(n)-*logx| <cx,
1<n<x,
n=1 (mod 2)
for sufficiently large x > x,. It follows that
Y. d(n)>$log(x) - cx

1<n<x,
n=1 (mod 2)

for x > xo. By Corollary 3.3, for n > 2, we have N;(n) > 3d(2n — 3). Therefore,

1 1 1
- > Na(n)2— > 3d(2n-3)=— > d(m)
X 1<n<x I<n<x 2 1<m<2x-3

m=1 (mod 2)

1 2x-3
2§log(2x—3)—c’2‘—x

for 2x — 3 > x¢. Let € > 0, then for sufficiently large x, we have

! > Na(n) > (l—e)élogx. |

l<n<x
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