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Abstract. In the class of rank-1 transformations, there is a strong dichotomy. For
such a T, the commutant is either trivial, consisting only of the powers of T, or is
uncountable. In addition, the commutant semigroup, C{T), is in fact a group. As a
consequence, the notion of weak isomorphism between two transformations is
equivalent to isomorphism, if at least one of the transformations is rank-1. In § 2,
we show that any proper factor of a rank-1 must be rigid. Hence, neither Ornstein's
rank-1 mixing nor Chacon's transformation, can be a factor of a rank-1.

N.B. In this paper 'transformation' shall mean a measure preserving transformation
on a Lebesgue probability space. In general, we assume our measure spaces non-
atomic; however the spaces that factors live on may be atomic. A transformation T
is invertible if T"1 exists and is a transformation. All sets mentioned are assumed
measurable.

0. Suppose R:[0, l)-*[0,1) is an irrational rotation: the transformation sending
xi-+x + a (mod 1), for some fixed irrational number a. Now let S be rotation by
some amount /?. S commutes with R, i.e. RS = SR. This S can be obtained as a
certain limit of powers of R. By the irrationality of a, there exists a sequence of
integers s,-»oo such that st • a (mod l)-»/J as i-»oo. Thus RS'^>S weakly as i-»oo.
In general, for transformations S, Tt: X -» X we say that Tt-> S weakly if, for all

H(TT1(A)AS~\A))^O as
This is equivalent to saying that the operators on L2(X) associated with the T,
converge weakly (i.e. on each / e L2) to the operator associated with S. The limit,
S, need not be invertible, even if all the Tt are. It is not hard to show, however, that:

(0.1) If the Tj are invertible and they commute with each other, then S is invertible
and Tj"1 -> S"1 weakly.

In particular, S will be invertible if the Tt are various powers of a single transfor-
mation.
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In [4], Andres del Junco states that for rank-1 transformations T possessing a
certain special name structure, any transformation S commuting with T is a weak
limit of powers of T. He remarks that it is unknown whether this holds for a general
rank-1. Perhaps he was led to this question by his study of irrational rotations (in
[5] he shows them to be rank-1) since one might suspect that any transformation
commuting with a rotation must be, itself, a rotation.

The goal of this paper is to answer del Junco's question in the affirmative and to
derive several corollaries. Also, we construct two weak-mixing rank-1 transforma-
tions which exhibit behaviour showing that the limitations of the corollaries are not
vacuous.

Notations and conventions. As is customary, proofs and statements have a tacit 'a.e.'
attached. Partitions have finitely many atoms. Given a partition P, a P-name is an
infinite string of letters from P. A point x in the space has a doubly infinite T, P-name

IOO

X — ' • ' X _ J X Q X J X 2 • • * — X|_oo.

A P-word is a finite string of letters. If W is a word of length h, we index W as

W=W0Wl-- Wh.x = W\h
0.

By extension we use |Jj to denote the half-open interval of integers [a, b). W\, is a
synonym for W,.

We let Id denote the identity transformation on any space under discussion. Agree
to let a = b or b = a to mean that the expression b defines the symbol a. This is
useful for emphasis and for defining abbreviating terms in the middle of an equation.
Also, a statement like ' ( l - e ) / 5 = 3 ' means to define e so that the equation holds.

Symbols e, 5, e and a always represent small quantities in (0,1). 'V large «'
means '3iV such that Vn sJV'. The symbol • ends a proof.
Definition. Given an invertible transformation T:X->X, we use C(T) to denote
the commutant of T; the set of transformations S: X -* X which commute with T.
C(T) is automatically a semigroup and, should every SeC(T) happen to be
invertible, a group - in general, non-abelian. If C(T) turns out to be a group then
{T"}'̂ =_co is a normal subgroup and we can define the quotient group CiT)/^"}^.
We call this quotient the essential commutant of T and denote it EC(T). We say
that the commutant is trivial if C(T) = {Tn}™oo i.e. EC(T) is the trivial group.

Let WC1 (T) denote the weak closure of {T"}™x. Thus Se WC1 (T) if and only
if there exists {«,-}" s u c r i that S=w l im ,^ Ts>; WC1 (T) is an abelian group and
subset of C(T). Let WC1+ (T) denote those S obtainable by a sequence s^+oo.
We see that
(0.2) WC1 (T) non-trivial =»WC1+ (T) non-empty

(0.2)

In a moment we will see that the first implication is reversible for ergodic T (on
non-atomic X). One says an ergodic T is rigid if Ide WC1+ (T). In [7] is the handy
observation (later made by del Junco, independently) that any rigid transformation
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has uncountable commutant. All one needs is a sequence of non-identity transforma-
tions Ts> -* Id. The group of invertible transformations on X, with the weak limit
topology, becomes a metric space via the norm

where the fixed sets {Ak}f were chosen to be a generating algebra of sets. By
dropping to a subsequence of the {s,}, we may assume that for each i, |7*s'|>
Y.'jLi+i \TS'\- NOW for each binary vector b = {bxb2 • • •), where b{ e {0,1}, define the
transformation

Sb = w\imTm> where m,-^ I b},• Sj.

If i is the smallest such that b\ ^ b(, for binary vector b', then S b # Sb since

'l- z |r>|>o.
So WC1 (T), hence C(T), is uncountable.

Definition. We say that T is rank-1 if it can be built by cutting and stacking with
but one column at each stage. Specifically, we can find base sets Bn c X and heights
fcn-»oo such that for all n, the sets Bn, T(Bn),..., Th-~\B,:) are disjoint and there
is some subset E c [0, hn - /»„_]] of levels such that Bn_, = Uiee T'(Bn). Also, the
sets {T'(Bn): neN,0<i<hn} generate. For a rank-l T one can always find a
generating partition P and stacks as above where each stack has but one P- column.
This P-/in-word is called the n-block and denoted W(n). Usually the n is implicit
and we write h and W for hn and W(n). Factors of rank-l are rank-l. Rank-l is
automatically ergodic.

In the sequel, T:X-*X is a fixed rank-l transformation (on a non-atomic space).

DICHOTOMY THEOREM. The commutant ofTis trivial or uncountable. In other words,
EC(T) is the trivial group of one element or EC(T) is an uncountable group.

Proof. This follows from the weak-closure theorem, below, by (0.2) and the result
that rigid transformations have uncountable commutant. •

WEAK-CLOSURE THEOREM. WC1 (T)^C(T).

This yields several corollaries.

(A) C(T) equals WC1 (T) and is therefore an abelian group. Any factor algebra of
T is invariant under each S e C(T). Given any transformation F which is a factor of
T, we get a natural (into) group homomorphism y: C(T)-* C(F) simply by mapping
each Se C(T) to its restriction to the sub-sigma-algebra which determines F. y need
neither be injective nor surjective. However if T is non-rigid and the factor F is
non-atomic, then y is injective (contrast example (iv), below) and Tcannot be a group
extension of F.
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(B) If T is weakly isomorphic to some transformation R: Y-> Y via factor maps
<f>:X -* Y and i/>: Y -» X, then T = R and <f> and ij/ are each isomorphisms.

(C) T is not a cartesian square; consequently, if T is of the form i?, x R2 then Rt and
R2 must be relatively prime i.e. no factor of Rt is isomorphic to any factor of R2.
Moreover, ifTis non-rigid, T cannot be a cartesian product. (Contrast example (vi).)

(D) For any k>2: if Tk is rank-1 then C(Tk) = C(T). Hence if Tis non-rigid then
the rank ofTk is at least 2. (Contrast example (v).)

Proof of (A). If & is a T-invariant sub-sigma-algebra then 3? is invariant under any
power of T and hence any weak limit of powers of T; thus the group homomorphism
y, where -y(S) = S|y, is well defined.

The stated injectivity of y is seen as follows: since F is ergodic on a non-atomic
space, Id = F s =note y(Ts) implies s = 0. So the kernel of y is trivial. Suppose T
were a group extension of F by some group G acting by, say, left multiplication.
By letting G act on the fibres over 3> by right multiplication, we get a copy of G
in C(T) and this copy is in the kernel of y. So G is the trivial group and F=T.

Proof of (B). Every SeC(T) is invertible so T cannot be a proper factor of itself
and therefore </> ° <j> is an automorphism.

Proof of (C). Suppose we could find a transformation R: Y -* Y and an isomorphism
X=YxY such that T = Rx R. Any power of T, then, is a cartesian square and
consequently so are weak limits of such. Were the coordinate-flip map (y, y')<-+(y', y)
a cartesian square, Y would be a one point space.

That T cannot be a cartesian square implies that, if T has a factor of the form
Ri x R2> then /?, and R2 are relatively prime. For if Rt has a factor, call it R, which
is isomorphic to a factor of R2, then R, x R2 has a factor of the form Rx R. Thus
T has a factor RxR. By a coding argument one can show that factors of rank-1
are themselves rank-1. Hence this RxR is rank-1, contradicting the previous
paragraph.

Now suppose C(T) is trivial and T is isomorphic to some non-trivial cartesian
product #i x R2. Then ld1xR2eC(T) so there exists s, # 0 such that Idi x R2 = 7"\
Thus (/?,)*• = Id!. Similarly, there exists s2*0 such that (R2Y

2 =ld2. Then s,s25^0
yet r ^ = Id.

Proof of (D). Fix fc>2. For any transformation T we automatically have the three
solid inclusions shown below:

C(T) c C(Tk)
U f:

WC1(T)3WC1(T'C)

If Tk is rank-1, the dashed inclusion holds and therefore C(Tk) = C(T). But
TeC(Tk) so C(Tk) is uncountable. Since C(T) is uncountable, T is rigid. •

Remark. The referee mentions that the first half of corollary (C) follows from known
spectral results: A rank-1 must have simple spectrum (Baxter). A cartesian square
has spectral multiplicity at least two. Hence a rank-1 cannot be a cartesian square.
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More generally, no transformation of the form R1 X Rk can be rank-l. If it were,
then since RxRe C(RlxRk) there is a sequence {nj such that

(R')"-^R and (Rk)"<-> R.

Hence R'"'k -> Rk and K1"1*' -> R' SO Rk = Rl. But a cartesian square cannot be rank-l.

Examples. Non-rigid rank-l transformations are not well understood. The only types
of examples known to the author are the following:

(i) Ornstein's (or any) rank-l mixing [9].
(ii) Friedman and Ornstein's partial mixing transformation [2] but done in

rank-l.
(iii) Chacon's weak mixing transformation [6].
(iv) The following skew product T. Let F : X - > X b e a rotation of some discrete

space X = {0, l , . . . , i t - l } . LetS: Y-> Fbeany non-rigid rank-l. Define T:Xx Y^
XxYby

\{Fx,Sy) i f x = 'O';

l(Fx,y) otherwise.

Transformations (i) and (iii) have minimal self-joinings, see [8] and [6], respectively.
Transformation (iv) does not, possessing a discrete rotation as factor. Can more
complex factors appear?

Turning our attention in the other direction, we give two examples of the kind
of behaviour one can obtain by building-in rigidity.

(v) A weak mixing transformation T whose non-zero powers are rank-1: The weak
mixing is the issue - otherwise an irrational rotation would serve. Define the function
/:N^N by /(n)=n ! - l . Then / h a s the property:

For each n: Vdel. 3 s e { 0 , 1 , . . . , /(«)} such that d + s is relatively prime to
each of 2, 3 , . . . ,« .

We build T by cutting and stacking. At a fixed stage n, let W and W denote the
«-block and the (n + 1)-block, respectively, of heights h and h'. We build W as a
concatenation of copies of W and spacers.

WW- • • W WW- • • W | WW- • W | | • • • |

/ copies / copies spacer / copies s spacers

Length d

Let d be the length 3 Ih +1. We pick / so that / > nh and also so that (/(n) +1)/ d < \".
By (*) we can pick an s < /(n) so that h'=3lh +1 + s is relatively prime to 2 ,3 , . . . , « .
The amount of mass we add as spacer at stage n, is (s +1)//»'. Since this is less than
\", a summable function of n, our cutting and stacking indeed does define a
transformation on a probability space. T is seen to be weak-mixing by the standard
argument showing Chacon's transformation weak-mixing.

Why is each Tk rank-l ? We use the following criterion, equivalent to the definition
given previously, to show a transformation is rank-l: Given any e and any partition
Q there is a Rohlin stack such that Q is e-refined by the partition whose atoms are
the stack's column levels and the stack complement.
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Let B denote the base of the n-stack. From the preceding figure, fJ.(B~ ThB) <
l/l<l/nh. Let

A^Bn(T~h)(B)n • • • n (T~h)k-\B).

Then n(B~ A)^ (k — 1) • / A ( B ~ ThB) and we can have chosen n large enough that
this latter is less than e/2h. Also, f J ( A ) c B for any 0<j<fc. Thus Tj(A) is
contained in the B-stack UjJo T >̂ f°r e a c n 0—./ < ^k We may assume n > fc and
so fc is relatively prime to h. Consequently the sets A, Tk(A),..., (Tk)h~l(A) are
disjoint (since they are contained in different levels of the B-stack) and hence form
a Rohlin stack for Tk. The partition distance from the column-level partition of this
stack to that of the B-stack is less than 2 • h • ix{B ~ A) < 2h • s/2h = e.

Question. A special case of a result in [8] is that for any rank-l mixing T,
rank(Tk) = k. Is this true for Chacon's transformation or, more generally, for any
weak-mixing rank-l transformation which is non-rigid? Under what circumstances
(one can ask this for a general finite rank T) must the function k<-*rank(Tk) be
monotonic on those values k for which Tk is ergodic?

(vi) A rank-l weak mixing T which is a countable cortesian product /?, x R2x • • •:
First let us address building a weak-mixing rank-l product R,x R2. It is well known
that one can build such a beast and A. del Junco remarks to this effect, in [4].
Having not seen a construction in print, we sketch one way to proceed. Pick a
sequence en -» 0. We build R} and R2 simultaneously by cutting and stacking much
as in example (v). For i = 1,2 let B,(n) denote the base of the n-stack, of Rh with
height hj(n). We can arrange that for each n and i:

(*) ht(n) and h2(n) are relatively prime;

where p(n) = hi(n) • h2(n). On the product space we can find, for each n, a set
A <= B, x B2 satisfying

(0.3) fMlxfi2([BlxB2]~A)<e/p.

Here, the terms A, Bt, e, and p denote A(n), B,(n), en, and p(n) respectively.
We make A as follows. Let A = At x A2 where

Thus, by (**), /x^Bi — A^< h2 • e/p2<(e/2)/p. Now define A2 by reversing the
roles of T and '2'. Hence A a BtxB2 and (0.3) holds.

For any k, 0<fc</>, notice that (Rtx R2)
k(A)c Rki(Bt)x R2

2{B2) where
k, = k (mod ht). So, by (*), the first p iterates of A are disjoint. Moreover, these p
iterates fill up most of the first p iterates of B^xB2.

But, letting n range over M, the first p(n) iterates of B1(rt)xB2(n) generate the
product space's sigma-algebra. Consequently, so do the first p(n) iterates of A(n).
Hence i?, x R2 is indeed rank-l.

It is worth remarking that we built rigidity into the /?,, and the weak-closure
theorem, corollary (C), comforts us in that we had no choice. But it also implies
something which is less apparent from the construction; that R^R2.
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In general, construct Rx, R2, R3,... simultaneously so that at each stage n:
^n),... ,hn(n) are relatively prime and (**) holds for i=l,...,n where

)—n"=i kin). Thus each Rt x • • • x Rn is rank-1 weak-mixing.
The countable product RlxR2x- • • is weak mixing and seen to be rank-1 as

follows. Suppose ^ <= ^ 2
 c ' ' " is a sequence of factor algebras of a transformation

T such that VT «̂n is t n e whole sigma-algebra. If T\^n is rank-1 for each n, then
the 'e- refining' definition of rank-1, given in example (v), shows that T is rank-1:
Any partition Q can be approximated as well as desired by some Q' living in
some SFn.

Remark. By corollary (C) of the weak-closure theorem, R^ x R3 x Rs x • • • must be
relatively prime to R2x RAx • • •. The {/?,-}" have the curious property that for any
set / of indices, the transformations

II R, and n Rj

are relatively prime.

1. To prepare for the proof of the weak closure theorem, we establish a few lemmas.

(1.1) Definition. Let T:X-*X be 'cutting and stacking' rank-1 with generating
partition P. Denote the n-block by W(n) and its height by hn. Thus W= W|J is a
P-/i-word where, as will be usual, we have suppressed the subscript.

Given SeC(T) we can approximate S by a finite code <€. That is, given e we
can find / such that

(1.1.1) V T'P=>eS-\P).
i = - l

Our code is a map from P-[—l, /]-words to the alphabet P. Let CodeLen (<£) mean
the quantity 2/+1. (1.1.1) and the ergodic theorem say that for a.e. xeX,
d(<e(x), Sx) < e. Define ErrorRate (<£)=2e. We say that a substring x\j+b codes well
(under %) if

d ( « ( x | f ) , ( S x ) | f )< ErrorRate («).

Following the usual convention, the writing of c€(x\j+b) shall tacitly imply that
b » CodeLen (<€). Consequently, we can view c€(x\J

j
+b) as a string of length b by

harmlessly absorbing the end effects of the code into its error rate.
Because we gave ourselves a bit of room by defining the error rate to be twice e,

an application of the ever-popular ergodic theorem yields the:

(1.2) STANDARD CODING LEMMA. Fix some code <€. For a set ofx e X of full measure,
V5', V large h: Cover, in any way, at least (1 — S')-percent ofx\^ by disjoint substrings
of length h. Then at least (1— 25')-percent of x^ is covered by those, of the above
substrings, which code well under c€.

Proof Standard.

Now let C = {c€j}f=l be a collection of codes such that ErrorRate (W) -*_,• 0. Let si
be the algebra of T, P-cylinder sets. The algebra si v S~^{si) is countable and so,
for a set of full measure of x e X, x|" hits each set in si v S~'( J^) with the appropriate
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frequency. We may also assume that for these same x, the standard coding lemma
works on x for each code in the countable collection C. Consequently, we can pick
a point x, then an xe S~1({x}), such that both lie in this set of full measure.

(*) For the remainder of this section we consider T, P, S, x and x as fixed. The
word code henceforth means some code in C. Also, when considering doubly infinite
T, P-names such as y, ze X, agree to interpret d{y, z) as d(y\™, z|").

(1.3) LEMMA. For any sequence of integers sy.

weakly
(1.3.1) S o •0.

Proof. The left hand side of the above is equivalent to:

For each cylinder set A:^(7""S'(A) A S

For any such A and any j , the set T~S'A A S"1A is a member of our algebra
si v S~x{s£). To prove the (<=) direction, pick / such that A is an atom of V-7 T'P
and let A\L, denote the P-word corresponding to A.

A S^A) = freq {ieN: T'xe T~S>A XOR T'xe S~*A}

r>(x)|£{ = A|!.I XOR ic|Jt{ = A|L/}

•
<2/- d{Ts>(x),x).

Now send j -» oo. The proof of the (=>) direction is similar.

Recall that we let W(n) or just W denote the word which is the n-block. Its length
is hn or just h. For an integer s measuring the length of something connected with
W, we let s% denote the number s/h.

For any y e X we say that a substring y\\+h is a W-copy if it is an n-block i.e. if
T'y is a point in the base of the n- stack.

For the sake of contradiction, assume henceforth that Si WC1 (T).

(1.4) SHIFT LEMMA. 3 constants e', er>0 such that for any code <£ with Error-
Rate(<t?) < e', V /arge n, whenever a shift value s e |!!.h is suc/i

(in f/ie case s >0):

(in the case s<0) :

then \S%\>2<T.

d{<€{W\h
0
+s),

Shifted W

overlap
FIGURE 1. If the d distance between ^(W) and the shifted W-copy is small on their overlap, then the
shift, s, measured as a fraction of the length of the n-block, must be larger than a certain constant, 2a.

Here 5 is drawn positive.
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Proof. Since S £ WC1 (T) there exists e for which

4 e < J ( r ~ X x ) , VseZ.

If the lemma is false, then we can choose a code "#, ErrorRate (c€) = e<e, and then
a large n and non-negative (without loss of generality) shift s e |J such that s% < e
and

We may assume n sufficiently large that S<e where 1 -5=/i(n-stack). Suppose
x|!+fl is a W-copy. Then

<s% • (Jerroron|;+s) + [ l -s%](Jerroron |£J)

< e - 1 + 1 • e<2e.

Since (1 -5)-percent of x|" is covered by W-copies,

d(T~sx, <&c)<5- l + ( l - 5 ) - 2 e < 3 e .

So d(^x, x) < e < e produces d(T~sx, x) < 4e and a contradiction. •

Agree to regard a as a primordial constant, 'known in advance'. In the sequel, code
means a code with error rate less than e'. We now can forget the existence of e'
and restate the lemma informally as:

For any code and for all large n: If the n-block Wcodes well on the overlap to a shift
of itself, then this shift must exceed an a priori percentage of W.

(1.5) Definition. For a fixed implicit n, W= W\o represents the n-block. For any
i, peZ let i@p mean the number i + p (mod h). Let W@p mean the /i-word
defined by

(W®p)\^W\^p for each ie |S.

For any e we say that W is e-periodic (of period p) if d(W, W®p)<e. Saying W
has periodicity p will mean W is e-periodic for some as yet unspecified e.

Let N denote the integer constant for which N+1 > l/ tr> N.

(1.6) PERIODICITY EXTENSION LEMMA. Given e, there exists e' and codes {%}f such
that V large h: Suppose we have an h-word W, a peZ, and an reN with r% scr.
Suppose that when r'=r (or r'=-r) these two conditions hold:

(i) d(W\r
0,(W®p)\r

0)<e';
(ii) for each i, d(%(W), W®r')<ErrorRate (%).

Thend(W, W®p)<s/2.
Remark Informally, this says that periodicity on a sufficiently long piece of W can
be extended to all of W. Although the error rate will get worse, we will not lose
control of it.

Proof. There is no loss of generality in assuming r' = r. Setting eo=e/2 we inductively
pick the codes as i = 1,2,..., N.

At stage i: Pick a positive e, < e,_i/2. Then choose a code % with error rate less
than aet. Set fc,=CodeLen C#j). Finally, pick an e, so small that fc,e, + 2eI <e,_,.
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The induction done, set e'=eN. Suppose, now, we are given an h sufficiently
enormous that ah » max, fcj and, consequently, we may absorb the 'end effects' of
our codes into their rates. First, we copy the periodicity on |J to |2r using code <€,?•.

d C M W|S), %v( W®p\'o)) < kN • d( W\r
0, W@p\'o) < kNeN.

From (ii) we get d(W\2/, %N(W\r
0))<eN and 3(<€N(W®p\r

0), W®p\2r)<eN. By
the triangle inequality

d( W\2/, W®p\2r) <eN + kNeN + eN< £„_,.

We can inductively continue to show for each i\— 1 , . . . , N that

d( W|J;+1)r, W@p\\i+l)r) < eN-, < e0.

This says that d{ W, W@p) < e0 - or rather, it does if r divides h. To handle a general
r, we choose the et inductively as before but with e0 replaced by (eo/2)2. This yields,
for each i
(1-6.1) d( W\^i)r, W©p||;+ 1 ) r)<(EO/2)2.

Let M be the integer Mr < h < (M + l)r. Either (h - Mr)% exceeds eo/2 or not. In
either case (by Fubini, in the former)

(1-6.2) [h-Mr]- d(W\h
Mr, W®p\h

Mr)<h-—.
2

Since (eo/2)2 is less than eo/2, (1.6.1) implies

This together with (1.6.2) yields the desired d(W, W®p)<eo= e/2. •

(1.7) Proof of weak-closure theorem. Using an e to be specified later, the periodicity
extension lemma hands us a collection of N codes and the number e'. Let ^ be an
even better code having error rate e where 2e/cr<e'.

Pick positive S and y to be specified later. Lastly, choose an n so that h=hn is
sufficiently large to work for the periodicity extension lemma. Suppose that x|j+;i

and x|I+*+|+'1 are two successive W-copies on x Suppose there is a VV-copy X\}j+h

'lying below' i.e. with i^j< i + h + g. Say that W-copy x\]+h is good if:

(1.7.1) g% < y and each of the words x | T \ x||+ft+|+fc, and x\j+h code well under
our N+1 codes.

i + h i + h + g i + h + g + h

x i 1 f
i j , j + h
i i
1 shift s '

FIGURE 2. Picture of a good W-copy x | j + \ We call s=j-i the shift associated with x\\+h and g the
associated gap. We call x||+Jj+|+'1 its successor W-copy (which may or may not be good). (A W-copy is

shown as a thick bar with a large dot indicating its first coordinate.)
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One may have chosen n sufficiently large that:

(1.7.2) At least (1 -8)-percent of x | " is covered by good W-copies.

For we can have chosen n large enough that ( l -S ')-percent of x\™ and x | " are
covered by W-copies, where 8' is some number 8'« 5 and 8'« y2. Thus most
W-copies on x |" have a W-copy 'lying below' on x and, by a Fubini argument,
have a gap less than y. Moreover, we can have insisted h ( = hn) be so large that
the standard coding lemma works (for our chosen 8) for all JV + 1 codes
simultaneously. Thus (1.7.2) holds.

Since the good x|j+/ l of figure 2 codes well, the shift lemma says that 5% >2<r.
Because its successor codes well, 1 - s% + g% > 2a. We may assume y < a. Therefore

Periodicity suffices. We make a simplifying assumption to be removed later: Suppose
there is a good W-copy with gap zero. Pick one such, henceforth called the reference
(W-copy), and denote its associated shift by r. That the reference is good tells us
that d(<€(W), W@(-r))<e (this is shown pictorially in figures 4 and 5). Our
theorem is proved, should one be able to insure that:

(1.7.3) For each g, the gap associated to a good W-copy: The n-block, W, has
e -periodicity of period g.

Proof of sufficiency of (1.7.3). Let Os i ,< i2< • • • be the first coordinates of the
successive W-copies, good or not, on x|™. Let g( denote the gap between x|,j+ and
its successor. If x\'i'

+h is good we say, by abuse of notation, that I is good. We

Reference
picture:

no gap

or equivalently

Hi"

tail head

FIGURE 3. The reference says that W codes well to a rotation of itself. Thus we can split W, into a tail
W\o~', and a head, W\^_T. Restated, W codes well to itself with the head and tail transposed. We
construct a name y, J-close to ^(X), simply by taking x and transposing the head, and tail of each
W-copy on x.

To make z, take y and pull each head back over the gap behind it and glue it to the preceding tail.
For most heads this shift in position makes only a small d-change; for most gap lengths, the word
W - hence the head of W, is d-periodic of that length.
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synthesize a half-infinite P-name y = y\^. For 1=1,2,... define

Set y equal to %x elsewhere i.e. >'|-|t)!+g'='^(JC)l!jtl!+8'- Then

d(y, %(x)) < d{ W@-r, <<?( W)) < e.

So

d(y, x)< d(y, c€x)Jrd(c€x,x)<e + e<2e.

Fix some / and let i, g, I denote i,, g,, i, + h respectively. Recall that y|{tf+r = ^|»I-r-
If our chosen / is good then (1.7.3) gives d( W, W®g) < e and consequently

_ , . WLOG

d(W|h_r,y|^ r) < (e + g°/o)/r% < (e + y)/o~ < 2e/o~.
We construct a P-name z = z\™. For each good I, define z |^h

+ r= W|J|_r. Elsewhere,
let z equal y. Then

d(z,y)<(2e/a) • r%<2e/a.

But a glance at figure 3 shows that for good /

Thus d(T~rx, z)<8, by (1.7.2). Consequently

- WLOG

But we could have initially chosen e sufficiently small that

5e/cr<inf d(T~sx,x).
ssZ

This gives a contradiction, and hence (1.7.3) suffices.

Obtaining partial periodicity. For the remainder of this discussion, fix some good
W-copy, henceforth called the object W-copy, and let g and s denote its associated
gap and shift, respectively. We will obtain the desired periodicity d( W, W@g) < e
by comparing the constraints placed on W by the object and reference W- copies.
Let k denote the odd number CodeLen (<£). We now wrap both pictures into circles.
For the reference picture, we simply identify the two W-copies in the upper line.

Reference picture

Code
arrow

Object picture

g

Code
arrow

FIGURE 4. In both pictures the upper line codes well under % to the lower line. For each position in
the lower line (of either picture), the code 'guesses' what letter is there by looking at the fc-word above
centred over that position. The 'guess' disagrees with what is actually in the lower line, with frequency

less than e.
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Reference circle Object circle

375

FIGURE 5. The reference and object pictures are each wrapped into circles of circumference h. The
reference circle has caliper length r. The object circle has a large asterisk replacing the gap. Its caliper
has varying length; s — g when the caliper straddles * and length s when it does not straddle *. As drawn
here, the caliper is not straddling the *, that is, its code end and its arrow end are not on opposite sides

of the *. So, as drawn here, the caliper length is 5.

Since the lower line is also a W-copy, <€ now maps the circle to itself and the code
arrow gets bent into a sort of code 'caliper' which maps a fc-word to a letter r
positioned clockwise around the circle. The caliper has a 'code end', of length k,
and an 'arrow end', of length 1. If we slide the code end once around the circle,
one position at a time, then the letter the arrow end writes down agrees with the
letter the arrow is pointing to, at least (1-e)-percent of the time i.e. J(<£(W0,
W@-r)<e.

We wrap the object picture into a circle by identifying the two W- copies in the
upper line of figure 4, discarding the gap. Without the presence of the gap, the
caliper has length s-g or s, depending on whether or not it straddles the spot where
the gap used to be. If we slide this caliper around its circle, we see errors at the
arrow end with frequency less than e. (Actually, there are additional errors due to
'end effects' as the code end of the caliper slides over the asterisk. The frequency
of these errors is of the order of 2k% + 2g% <2k%+2y. Both k% and y can have
been made arbitrarily small by having picked n, hence h, sufficiently large. Con-
sequently, we can harmlessly absorb these end effects into the code error rate.)

Agree to refer to the calipers of the reference and object pictures as the r-caliper
and s- caliper, respectively. We now superimpose the two circles. The calipers are

FIGURE 6. The calipers of the previous figure have been superimposed. Therefore, the two letters in W,
pointed at by the two arrowheads, can fail to agree with frequency at most 2e.
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ganged at the code end. We slide this once around the circle. Since the arrows
usually point to equal letters - with frequency better than l -2e , we see that the
circle, W, has two complementary intervals of periodicity. These two intervals are,
respectively, the set of positions of the s- arrow when the s-caliper straddles/
does-not-straddle, the asterisk. So their percentage lengths are s% and 1—5%.
Their periods are (measuring counterclockwise) p and p-g, respectively, where
p=-(s-g-r). The quantity p may be positive, negative, or zero.

Extending, then comparing, periodicity. What will be important is the length of the
two complementary intervals of periodicity, not their locations on the circle. For
notational convenience, let W\s

0 denote the interval with periodicity p and W\h
s the

interval with periodicity p — g.
Recall that, in figure 6, the letters in the positions indicated by the two arrows

disagree with frequency less than 2e, as we slide the ganged calipers once around
the circle. Suppose we know that r% < s%. Then

d(W\r
0, W®p\r

0)<2e/r%<2e/(T<e'.

Since the reference W-copy is good, the N codes we chose using the periodicity
extension lemma each work well for the reference picture of figure 5. Hence we
may appeal to this lemma, with r'=-r, and conclude that d{W, W@p)< e/2.
Similarly, if r % < l - s % , we could pick a subinterval of W\l_s of length r and
extend its periodicity to obtain

e/2> d(W®(p~g), W)"=e d(W®p, W®g).

Beating one period against the other yields the desired

d(W, W@g)s d(W, W®p) + d(W®p, W®g)<e.

Final details. The above argument lives if r% < s% and r% < 1 - s%. Or, if 1 - r% <
s% and l - r % < l - s % , the argument persists by using r'=r in the periodicity
extension lemma. In order to choose the reference copy so that one of these cases
always holds, let sx, s2, • • • denote the shifts, a la figure 2, associated with the good
W- copies along x|*. Let / be an index such that

min(s(%, l - s ,%)= inf (min (sL%, 1 -
l<i<a

We choose this good W-copy, x\'f , to be our reference and set r=s,.
But the associated gap, g;, need not be zero. However, we can do all our previous

arguments with W and h replaced by W and h' where h'=h + g, and W'=x||j+ .
We can still draw the reference and object pictures of figure 4 - but now the 'gap
length', g, of the object picture may be negative. Nonetheless, we still have |g%| < y
and so we can do the arguments of Obtaining partial periodicity and Extending, then
comparing, periodicity as before. The argument in Periodicity suffices also persists,
modulo minor notational changes (in figure 3, for example, 'heads' of W-copies
will be pushed forward over negative gaps, in going from y to z). This completes
the proof of the weak-closure theorem. •

Remark. This theorem is not true, in general, for finite rank mixing transformations;
for instance, if S is rank-1 mixing and we set T=Sk for some fc>2. Since T is
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mixing, WC1 (T) = { 7 " } ^ . Thus Se C ( T ) ~ WC1 (T). One can easily show (e.g.
[8]) that T is rank-fc and C(T) = { 5 " } ^ .

2. In this section we show that any proper factor of a rank-1 transformation is rigid;
hence, each non-atomic factor has uncountable commutant. (I am indebted to Dan
Rudolph for several conversations on this result. Chris Bose, a doctoral student of
M. Akcoglu at the University of Toronto, was able to prove this same result, using
the techniques of our § 1.)

We start with rank-1 transformation R: (Q, si, /z)->(fl, si, fj,) with 'cutting and
stacking' generating partition Q. Suppose we are given a partition P on fl. This
determines the factor sigma-algebra ^ = V ! L R'P- Let T denote the factor transfor-
mation R\& and let X denote the factor space. We can view P, 2F and fu. as living
on X and so T: (X, 9, fj,)-*(X, 9, /J.). We get the commutative diagram

x
where <p represents the factor homomorphism.

To show T rigid it is enough to show:

(2.1) 3 a never-zero sequence {«,}" such that Ts-»Id.

Proof (sketch). The goal of this sketch is to define terms x, x, <€, and good W-copy
which, in our factor context, will play analogous roles to the terms of the same
name in § 1. We then will be able to appeal to the machinery of (1.7).

Without loss of generality, every z e X is typical for the T, P-process. So, emulating
lemma 1.3, we can choose some T, P-name z e X and reduce the problem to showing:
Given e, 3s # 0 such that d(Tsz, z) < lOOe. It suffices, then, to show:

, . Ve, 3 P-names x and x and a n s ^ O such that
d(z, x)<e and d(z, x)<e and d( Tsx, x) < e.

So, for the sake of contradiction, we assume there is some positive number <r' such
that: For any sufficiently small e and any P-names x and x such that d(z, x)<e
and d(z, x)< e, then
(2.2) infimum d( Tsx, x) > &'.

seZ~{0}

Choosing w and d>. For the R,Q-process, let W'n and h'n denote the n-block and its
length, respectively. Usually we suppress the subscript and write W and h'. For
any u>eH, say that u>\\+h is a W'-copy if R'(OJ) is in the base of the n-stack.

It is convenient to defer the proof of the following fact: We can choose and fix
two points a>, w efl for which <p(w) = <p(w) and the following holds.

, . V5, Vlarge n: At most 5-percent of io\?? is covered by
W'-copies co\\+h such that co\)+h' is also a W-copy.

In other words, rarely do W'-copies along <u line up perfectly with W'-copies along
co. We will prove this fact in § 3 using the idea of self-joinings.
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Making the names x and x and the code <€. Henceforth the points w and a>, in fl,
and the point z=<p(w) = (p(ai),inX, are viewed as fixed. The factor homomorphism
<p is a map from R,Q-names to T, P-names. It can be approximated arbitrarily well
by finite codes. We will call such a code, a <p-code. There are but countably many
<p-codes so we may assume that each <p-code codes well on every R,Q-name in 0 .

Given a positive number e less than e, we can pick a <p-code <& with
ErrorRate (4>) < e/4. Set x = # ( co) and x=<I>(a>). Then d(z, x) < e/4 and d (z, x) < e/4
and therefore
(2.4) d(x,x)<e/2.
Recall that, in (1.7), the symbol % denoted a code mapping the P-name x to x,
with error rate less than e. In our present context, in light of (2.4), we can just let
% be the identity code (codelength= 1) which maps the alphabet P to itself via the
identity map.

Emulating the setup in figure 2. Let 2/+1 denote CodeLen (3>) and choose n
sufficiently large that h'» I, where h' means h'n. The Q-h'-word W codes, under <J>,
to a P-(fc'-2/)-word which we denote by W. Let h denote h'-21. Agree to call
x|I+(i a W-copy if it is the image of a W'-copy i.e. if wll*?"1"' is a W'-copy. Similarly,
say that x\j+h is a W-copy if <o\jl^1 is a W-copy.

Now that we have defined the term W-copy, we can use figure 2 to define the
gap between a W-copy and its successor W-copy, as well as the shift of a W-copy
on x relative to the W-copy 'lying below' it on x. We can have chosen n sufficiently
large that most W-copies on x have a shifted W-copy 'lying below'. Moreover, (2.3)
implies that for most W-copies on x, the associated shift (as in figure 2) is non-zero
(hence positive).

Now (2.2) implies there is a constant cr > 0 such that the following version of the
shift lemma, (1.4) holds. For any x and x obtained from a <1> of sufficiently small
error rate, and for any sufficiently large n: Suppose x\\+h is a W-copy with positive
shift, say s. Then s% > o~.

Mimicking the proof of (1.7). Given e, use the periodicity extension lemma to get
e'. In our factor context, this lemma is, in fact, easier to prove than in § 1. This is
because our N codes will all be the same code - the identity code % which has a
code length of 1. Pick some e so that 2e /cr<e ' . Then choose a <p-code $ with
ErrorRate(<!>) < e/4 and set x=®(a>) and x=<fr(w); the role of the 'JV + 1 codes'
from x to x will be played by the code %. Pick S and y and then choose n sufficiently
large that hn »CodeLen (3>). Finally, say that a W-copy x\\+h is a good W-copy if
its shift is positive and if it satisfies the definition of good we used in (1.7.1).

Now we can replay the idea of the proof of (1.7) to conclude that d( T~rx, x) < e
where r is the shift associated to some good W-copy and hence, r ̂  0. •

3. Given the two points <o, wed and a S > 0 , say that the pair {u>, w) S-match if,
for infinitely many values of n: At least 5-percent of a»|" is covered by W'-copies
w|S+l1 for which w|[+'1 is also a W'-copy. In other words, the set of natural numbers

{i: /?"'(«>), £ ' ( £ ) e (base of n-stack)}

has lower density exceeding S/h'.
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Our unproved fact of (2.3) was the existence of a pair (a>, a>) which does not
5-match (for any 5, no matter how small) and such that <p(o>) = <p(w). In order to
state how to choose such a pair, we need the notion of the relative independent
joining over a factor &. So as to be self-contained, we will review the necessary
facts about joinings.

We first need to recall a standard consequence of the ergodic theorem (lemma
3.2, below). We introduce some notation.

(3.1) Definition. Fix some invertible transformation R on the space (ft, stf, v) with
partition Q; denote the resulting stationary stochastic process by (R, Q; v).

Suppose 17 and q are two R, Q- words of length / and k, respectively, where l> k.
Index TJ from zero i.e. 17 = T7I0- Define the symbol freq (q on 17) to be the number

'-(fc-1)
<i< i + fc=s/and 17

Let Qk denote Vo ' R'Q- The partition Qk is an ordered tuple of atoms, say

Define the symbol freq {Qk on 77) to be the probability vector (an M-tuple) whose
/nth component is freq(gm on 77).

We write dv(Q
k), the 'distribution of the measure v on Qk\ for the vector

(v{qx),..., v(qM)). We remark in passing that this vector depends on v, whereas
the previous vector does not.

Given two probability M-vectors a and c, let \a-c\ denote the distance,

Zm=i \am — cm\, between them.

The lemma below is proved essentially as is the standard coding lemma (1.2).
(3.2) LEMMA. Suppose (R, Q; v) is an ergodic process. There is a set of R, Q-names
weft of full v-measure, such that for all positive 8 and e, Vfc, Vlarge h', the following
holds: Cover, in any way, at least 8-percent of a>\£ by disjoint blocks

ai '•' , a> ! 2 • • • , to\'.m , • • • .

Then at least 8/2-percent of u>\£ is covered by those a>\\m satisfying

(3.2.1) |freq«?fc on d>\l£+h')-dv(Q
k)\<e.

So, in particular, there exist values m such that (3.2.1) holds.

Proof. Follows from the ergodic theorem.

Remark. Agree to call a name d> generic for the process (R, Q; v), if it is in the set
of full i'-measure of the lemma.

Joinings. Suppose (ft, si, /x) and (A, ^ , m) are Lebesgue probability spaces. A
measure v(-) on (ftxA, six 93) is called a joining of /x and m if its marginal
measures are /A and m, respectively. That is,

and

It is a technicality to check that a joining, v, of a Lebesgue measure with a Lebesgue
measure must itself be a Lebesgue measure.
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Now recall the transformation R: (ft, si, p,) -»(ft, ^ , p.) of the preceding section.
A self-joining (of R) is a joining of p. with p, which is R x R invariant. Self-joinings
were introduced in [10]. Agree to call a self-joining v ergodic if the transformation

R x R : (n x a, ^ x ^, v) -> (n x a, ^ x ^,«/)

is ergodic. We abbreviate the above transformation b y ( R x R ; Q x f l , ^ x ^ , v).
An example of a self-joining of R is diagonal measure A( •) which, like any

joining, is completely determined once defined on rectangles:

VA, Be si: A(AxB)=n{AnB).

A is called diagonal measure because its support lies on {(w, w): w e ft}, the diagonal
of ft x ft. Notice that (R x R; ft x ft, ̂  x si, A) is isomorphic to ( R ; Q , i , M ) s o A
is an ergodic self-joining.

Our factor algebra 8F gives rise to another kind of self-joining. Define p9, the
relative independent joining over &, by: VA, B e i

* f
Jn

xB) =

where P( • \3F) denotes conditional probability. Notice that p y assigns full measure
to the set {(<u, w): <p(w) = <p(w)} where <p is the factor homomorphism. Call this set
the support of p9. Depending on the factor &, the self-joining p9 may or may not
be ergodic. If it is not, it can be split into ergodic components.

(3.3) PROPOSITION. Any self-joining, v, has a decomposition of the following form:

(3.3.1) V(D)= f m,(D)d#U),
Jj

for any set D e six si. Here, each m,-( •) is an ergodic self-joining ofR, where j ranges
over the 'space of joinings' J. The measure $>{•) is a probability measure on the
space J.
Proof. Since v is a Lebesgue measure, we can apply the ergodic decomposition
theorem to the transformation (R x R; ft x ft, si x si, v). It yields the decomposition
(3.3.1) where, for each j , (Rx R; ftxft, si x si, m}) is an ergodic transformation.
So, we just need to show that each m; is a self-joining by showing that its two
marginals are each equal to p.. Applying (3.3.1) to sets D of the form Ax ft, yields

(3.3.2) VAesi:tJi(A)=\ mj(Axa)

Treating mj( • x ft) as a measure on (ft, si), we see that (3.3.2) gives a decomposition
of p., or rather, of (R; ft, si, p,), into ergodic components. But the ergodic decomposi-
tion of a measure is unique and p. is already ergodic! So, by discarding from / a
set of; of ^-measure zero, we have that each m,( • xft) equals p.( •). Repeating this
argument for the other marginal yields the desired conclusion that each m, is a
self-joining. •

We can apply the above to p&. Since 9 is a proper factor, p9 is not diagonal measure.
Consequently we can find some self-joining in the ergodic decomposition of p9
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which is not diagonal measure. This self-joining assigns full measure to the support
of p9.

(3.4) PROPOSITION. 3 an ergodic self-joining p, p ^ A, such that

p({(co, a>): <p(oi) = <p(w)}) = 1.

(3.5) LEMMA. Suppose v is an ergodic self-joining and (w, w) is generic, in the sense
of lemma 3.2, for the process (RxR,QxQ; v). If 35 > 0 such that («, w) 8-match,
then v = A.

Proof. It suffices to show that i/ = A on the algebra of rectangles of the form
R, Q-cylinder-set cross /?,Q-cylinder-set. So, given a length k and an e, we need to
show

\dv(Q
k)-dA(Qk)\<2e,

where Qk is to denote the partition VcT' (R x R)'(Q x (?)•
Since ((o,a>) S-match, the following holds for infinitely many n and hence, without

loss of generality, for all large n (by having dropped to a subsequence and renum-
bered):

3 indices 0 < it < i2 < • • • < im < • • • such that
for each m, w\\" and a>\'r+ are W'-copies.

Moreover, the blocks {(w, <u)|!™+ : m = 1, 2, . . .} cover at least 5-percent of (w, <u)|".
Consequently lemma 3.2 asserts, our having chosen n adequately large, that at least
one of these blocks is pretty typical of the measure v. But these blocks are all
identical and equal to (W'n, W'n). Thus

(3.5.1) V l a r g e / i : | f r e q « ? ' ; o n ( ^ , W'n))-dv(Q
k)\<e.

Let us now derive the same statement with v replaced by A. For any (o'eil, the
pair (a/, <u') is generic for (R x R, Q x Q; A). In particular, the pair (a), w) is generic.
The blocks {(«, w)|).™+ : m = 1,2,. . .} cover at least 5-percent of («, w)|". So, as
before, lemma 3.2 implies:

V la rge« : | f r eq ( ( ? ' c on (^ , W'n))-dA(Qk)\<e.

This together with (3.5.1) yields \dv{Qk) - dA(Qk)\ <2e as desired. •

Now we know how to pick a (w, w) that never 5-match and such that <p(a>) = <p(w).
By proposition 3.4 we can pick (w, d>) generic for the joining p and such that
<p{a>) = <p(w). Since p ^ A, lemma 3.5 ensures that (w, w) do not 5-match for any 5.

We now know how to choose the pair («, d>) that we needed in (2.3). This
completes the proof that the factor transformation is rigid.

Remark A restatement of the rigidity of factors is

(*) A non-rigid transformation cannot sit as a (proper) factor of a rank-l transfor-
mation.

In particular, this is true for the rank-1 transformations of Ornstein and of Chacon
(examples (i) and (iii) of §0) since they are non-rigid.

Ornstein's transformation, T, is prime - it has no factor. Actually, since any factor
of a rank-1 must be rank-1, it is equivalent to say that T is prime in the class rank-1,
that is, it has no rank-1 factor. In this light, (*) says that T is 'reverse' prime, in
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the class rank-1. The transformation of example (iv) in § 0, is a transformation
which is reverse prime but not (quite) prime.

Open question. For a fixed rank-1 T:(X, /A)-»(X, /J.) and for each Se C(T), one
can define a self-joining of T whose support lies on the graph of S. This 'graph
measure', vs, is defined on rectangles by

fs{Ax B)^/x(An S~\B)).

In particular, for each k e Z we get a joining vT^ called an off-diagonal joining;
denote it by Ak. The weak-closure theorem, restated, is that any graph joining vs

is a weak limit (in the sense of measures) of off-diagonal joinings. That is, we have
a sequence {n,} such that

VA, B: \A"'(AxB)- vs(A x B)\ - • 0.
i

This suggests an intriguing question: Must every ergodic self-joining be a weak limit
of off-diagonals? This is true for product measure p(Ax B)=/A(A) • /A(B) since

3{n,}: A"' -»pO3{«,-}, VA, B: fi(An T"n'B)-> /t(A)/*(B)

<=> T is weak mixing

$$p is ergodic.

TTiree remarks. (In this section, all transformations are invertible.)
With the notion of self-joinings we can elaborate a bit on corollaries (A) and

(C) of the weak-closure theorem.
Suppose S is a weak limit S = l im,^ T"' of powers of a transformation T on

space (X,S0,/J.). Then 5 inherits the commutant of T i.e. C(S)^C(T). Also, S
inherits as factor algebras, all the factor algebras of T. More generally, any self-
joining of T is a self-joining for S. For if a measure i>(•) on ( X x X , i x i ) is
T x T-invariant then it is T"< x T^-invariant; hence it is S x S-invariant since

v({S x S)-\A x B) A (Tx T)-"'(A x B))

<M(5MAA T">(A)) + (i(S-lB A T-"'(B)),

where the two latter terms go to zero as i-»<x>. (This inequality follows from the
containment relation

(AxB) A(A'xfl')c[(AA A')xX]u[Xx(B A B')],

which holds for any four sets A, B, A', B'c X.) We see thus that S inherits all of
the self-joinings of T.

It is worth noting that if 5 turns out to be rank-1, then since Te C{S) = WC1 (S),
T inherits these properties from S. Hence T and S have identical commutant, factor
algebras, and self-joinings. For example, not surprisingly, all irrational rotations on
the unit circle share these properties. As another instance, the weak mixing T of
example (v), in § 0, has all its non-zero powers rank-1; so these powers Tk have
common commutant, factor algebras, and joinings.

A comment in passing: The 'weak-limit relation' is a transitive relation i.e. for
transformations Si, S2, and S3 on the same space,

and S3e WC1 (S2)]=>S3e WC1 (S,).
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The 'commuting relation' is trivially reflexive (Si commutes with S2=$>S2 commutes
with Si). In the class of rank-1 transformations, the 'weak-limit relation' and the
'commuting relation' are the same relation; hence it is an equivalence relation. This
relation partitions the class Rank-1 into equivalence classes. Either every element
of such an equivalence class is weak mixing, or no element is; this follows because
(rotation) factors are inherited under weak limits. A 'weak mixing' equivalence class
can be uncountable - a future paper will give an example of an equivalence class
containing an uncountable abelian group (except the identity element, which is not
rank-1) of weak-mixing rank-1 transformations.

Remark 2. With the notion of relative independent joining, we can refine corollary
(C) of the weak-closure theorem. The corollary says that a rank-1 transformation -
say, on a space (X, si, p.), can have no factor which is isomorphic to a cartesian
square. In other words, if factor algebras 9y, 3F2 c si yield isomorphic factor
transformations then ^ , and 3F2 cannot sit independently (orthogonally) within si.

A bit more is true. They cannot, in fact, sit independently even relative to a
non-trivial common factor. In other words, no factor of a rank-1 transformation
can arise as a relative independent joining. Since any factor of rank-1 is itself rank-1,
it suffices to show the following.

Corollary (C) revisited. Suppose we have a transformation R: (Y, si, p.)-»(Y, si, p.)
and a factor algebra ^ c si. Let p ( = pg.) denote the relative independent joining
measure. Let T denote the transformation

Rx R:{Y x Y, six si, p)^ (Y x Y, six si, p).

Then T cannot be rank-1.

Proof. Let S be the coordinate flip map on Yx Y which sends (y, y')*-*(y', y). S is
measurable and commutes with RxR. Moreover,

A)^ P(B\&) • P(A\&) dp,=p(AxB).
JY

S preserves the measure p so SeC(T). Now if T is rank-1 then 5 must leave
invariant any factor algebra of T; in particular, the factor algebra {<f>, Y}xsi. For
any Ae si the set S~\YxA) must be in that same algebra. So there is a set YxB
in that algebra which equals Ax Y, p-a.e. Thus p.{B) = p.{A) and

p(YxB) = p([Ax Y]n[Yx B]) = p(Ax B).

Hence

= | [ 1 -
J y

Q = p(YxB)-p(AxB)= | [1-P(A|^)] • P{B\&) dp..
J y

The integrand is a product of two non-negative functions, so P(A \ SF) must be
identically 1 on the set [P(B | &) > 0}. Since P(B | &) < 1 = P(A \ 9) on this set and
p.{B) = p.(A), we see that P(A\3F) can be none other than the indicator function
of this set. Hence A e 9. We are forced to conclude that 9^ = si. •

We mention, without proof, that joint work with Dan Rudolph yields the stronger
statement that rank-1 transformations have unique factors. If T is rank-1 with factor
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algebras 9> and % then

Remark 3. This last comment also concerns corollary (C) of the weak closure
theorem. We know that if a rank-1 T is a cartesian product RtXR2, where each
(/?,; Yj, sit, /At) is a transformation, then Rt and R2 are relatively prime. Somewhat
stronger, they must be disjoint, in the sense of Furstenberg [3]. (A joining of a
transformation R, with a transformation R2 is an R, x R2-invariant measure on
(Y,x y2, .stf, x ,stf2) possessing marginals /J.I and /x2, respectively. Transformations
I?! and R2 are disjoint if the only joining of them is product measure /u,, x /x2.)

Suppose ^( •) is a joining of Ri with R2 where R^ x R2 is rank-1. The transformation
i?!Xld2 on Y^xY2 commutes with i? ,xR2; so R, x l d 2 e WC1 (i?,x/?2). Con-
sequently, by the same argument that shows that self-joinings are inherited under
weak-limits, v is -an Rx x Id2-invariant measure. This together with the ergodicity of
Rt implies that i' = /i1Xfi2, by proposition 2 of [11].

This twofold disjointness coupled with an induction argument, imply that if a
countable cartesian product RtxR2x- • • is rank-1, then the {Rt} are mutually
disjoint. This means that if v(-) is an (RlxR2x- • -)-invariant measure on the
product space, with respective marginals /AJ( •), fj,2{ ')>•••, then in fact v is product
measure

This work was done during a most pleasant stay at the University of Toronto during
the summer of 1984; I am grateful to Professor Akcoglu for giving me the opportunity
to visit. My thanks also to his doctoral student Chris Bose, for many thought-
provoking conversations and for willingly suffering early vague versions of this proof.
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