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Abstract

A number of recent papers have estimated ratios of the partition function p(n − j)/p(n), which appear in
many applications. Here, we prove an easy-to-use effective bound on these ratios. Using this, we then
study the second shifted difference of partitions, f ( j, n) := p(n) − 2p(n − j) + p(n − 2j), and give another
easy-to-use estimate of f ( j, n). As applications of these, we prove a shifted convexity property of p(n), as
well as giving new estimates of the k-rank partition function Nk(m, n) and non-k-ary partitions along with
their differences.
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1. Introduction and statement of results

The study of the values of the partition function p(n), which counts the number of
partitions of a positive integer n, has a long history. A partition λ of n is a nonincreasing
list (λ1, λ2, . . . , λs) such that

∑s
j=1 λj = n. In their famed collaboration a century ago,

Hardy and Ramanujan [8] proved the asymptotic formula

p(n) ∼ 1

4
√

3n
eπ
√

2n/3 as n→ ∞. (1.1)

Their proof gave birth to the Circle Method, which is an extremely important tool used
throughout analytic number theory today. Following their discovery, Rademacher [18]
improved Hardy and Ramanujan’s application of the Circle Method to prove an exact
formula for p(n). Over the past 100 years, there have been a plethora of investigations
into estimates and asymptotics for partitions and their extensions in the literature.
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[2] The second shifted difference of partitions 67

Here, we will study differences of partition values in detail. To this end, let Δ be the
backward difference operator defined on sequences f (n) by

Δ( f (n)) := f (n) − f (n − 1),

and its recursive counterpart

Δk( f (n)) := Δ(Δk−1( f (n))).

One of the simplest properties of p(n) is that it is convex for n ≥ 2 (see, for example,
[7]), that is,

p(n) + p(n − 2) ≥ 2p(n − 1).

Recast using the operator Δ, this is the same as proving that

Δ2(p(n)) ≥ 0

for all n ≥ 2. Gupta [7] investigated higher powers of Δ applied to p, proving that
there exist constants nr for all r > 0 such that Δr(p(n)) ≥ 0 for all n ≥ nr. Odlyzko [17]
considered a further conjecture of Gupta, proving that for each r, there is a fixed n0(r)
such that (−1)nΔr(p(n)) > 0 for all n < n0(r) and Δr(p(n)) ≥ 0 for all n ≥ n0(r), as well
as giving a beautiful philosophical discussion of why this phenomenon arises. Similar
differences of objects related to p(n) and its extensions have been studied by many
other authors (see [3, 4, 10, 11, 16] among many others).

We initiate the investigation of what we call j-shifted differences, defined for 1 ≤
j < n on sequences f (n) by

Δj( f (n)) := f (n) − f (n − j).

In analogy to Gupta, it is clear using (1.1) that there exist constants nj such that for all
n ≥ nj, one has that Δ2

j (p(n)) ≥ 0. Let N := n − 1/24. Our methods rely on a careful
study of the value of the function

f ( j, n) := Δ2
j (p(n)) = p(n) − 2p(n − j) + p(n − 2j),

and in Theorem 2.2, we prove a precise estimation of f ( j, n) with j ≤
√

N/4, in
particular providing a strict error term allowing us to closely control the precision of
the formula by taking N large enough. In doing so, we provide an easy-to-use estimate
for the ratio of partition numbers. Throughout, we use the notation f (x) = O≤(g(x)) to
mean that | f (x)| ≤ g(x) for x in the appropriate domain.

THEOREM 1.1. Let n ≥ 14 and j <
√

N/2. Then

p(n − j)
p(n)

= eπj/
√

6N
(
1 +

j
N
− πj2

4
√

6N
−
√

3
√

2π
√

N
+ O≤

(2.71
N

))

×
(
1 +

√
3

√
2Nπ

+ O≤
(1350

N

))
.
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68 K. Gomez, J. Males and L. Rolen [3]

Theorems of a similar flavour to Theorem 1.1 are abundant in the literature. Lehmer
[14, 13] used Rademacher’s exact formula for p(n) [18] to provide bounds on the value
of p(n) that have seen many applications. More recently, estimates for the ratio of
partition values have played a prominent role in proving that the associated Jensen
polynomial is eventually hyperbolic [6, 12], a problem intricately linked with variants
of the Riemann hypothesis.

Theorem 1.1 thus applies to many interesting situations. In the remainder of the
introduction, we will highlight a few of particular interest. Our first main result using
Theorem 2.2 gives an explicit formula for nj for ranges of j.

THEOREM 1.2. Let n ≥ 2 and j ≤
√

N/4. Then Δ2
j (p(n)) ≥ 0. Equivalently, p(n) satis-

fies the extended convexity result p(n) + p(n − 2j) ≥ 2p(n − j).

REMARK 1.3. The methods here should extend to finding formulae for nr,j such that
for all n ≥ nr,j, one has Δr

j (p(n)) ≥ 0; however, this would quickly become very lengthy
and so we do not pursue it here. The referee has kindly pointed out more elementary
methods for proving Theorem 1.2 which we elucidate at the end of the paper.

Our results also apply outside of proving new properties of the partition function
itself. We consider the k-rank function Nk(m, n) which counts the number of partitions
of n into at least (k − 1) successive Durfee squares with k-rank equal to m [5]. When
k = 1, we recover the number of partitions of n whose Andrews–Garvan crank equals
m, and when k = 2, we recover Dyson’s partition rank function. Then for m > n/2 (see,
for example, [15, page 6]),

Nk(m, n) = p(n − k − m + 1) − p(n − k − m),
Nk(m, n) − Nk(m + 1, n) = f (1, n − k − m).

We give precise formulae both for Nk(m, n) and for the differences of k-ranks in certain
ranges of m in the following theorems, improving on [15, Theorem 1.4] in this range.
The proof follows from a direct application of Theorem 1.1.

THEOREM 1.4. Let m > n/2 and � := n − k − m + 23/24 > 16. Then

Nk(m, n)
p(n − k − m + 1)

= 1 − eπ/
√

6�
(
1 −

√
3

√
2π�
+ O≤

(4.04
�

))(
1 +

√
3

√
2�π
+ O≤

(1350
�

))
.

We then turn to obtaining a precise estimate for the differences of k-ranks, with the
proof following from a direct application of Theorem 2.2.

THEOREM 1.5. Let m > n/2 and � = n − k − m + 23/24 > 16. Then

Nk(m, n) − Nk(m + 1, n)
p(n − k − m + 1)

= 1 + e
√

2π/
√

3�
(
1 +
( √3
√

2π
−
√

3
√

2π

) 1
√
�
+ O≤

(2079
�

))

− eπ/
√

6�
(
2 +
(2√3
√

2π
− 2
√

3
√

2π

) 1
√
�
+ O≤

(3929
�

))
.
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[4] The second shifted difference of partitions 69

As a direct implication, we recover positivity of the differences of k-ranks in these
cases, as in [15, Corollary 1.5].

Our final application is to so-called non-k-ary partitions (k ∈ N), recently defined
by Schneider [19] as partitions of n with no parts equal to k. (While [19] uses
the terminology ‘k-nuclear’, Schneider has recommended the authors use the term
non-k-ary based on advice of Andrews to better fit the case of k = 1, classically called
the non-unitary partitions.) Letting νk(n) be the number of non-k-ary partitions of n,
it is clear that νk(n) = p(n) − p(n − k). By Theorem 1.1, we immediately obtain an
effective estimate for the ratio νk(n)/p(n), improving on [1, Theorem 1]. We also have

νk(n) − νk(n − k) = f (k, n),

and so we also obtain precise estimates for differences of non-k-ary partitions using
Theorem 2.2 for k <

√
N/4, with a direct implication being the following theorem.

THEOREM 1.6. For n ≥ 2 and k ≤
√

N/4, we have νk(n) − νk(n − k) > 0.

2. The proofs

In this section, we prove the main results of the paper. We begin by proving a
technical estimate for the value of p(n − j), using Rademacher’s exact formula for the
partition function.

PROPOSITION 2.1. Let N := n − 1/24 and j ∈ N0. Then

p(n − j) =
eπ
√

2(N−j)/3

4
√

3(N − j)

×
(
1 −

√
3

√
2π
√

N − j
+ O≤

(2π2(N − j)e−π
√

2(N−j)/3

3
+ 23π

√
N − j

3
e−(π/2)

√
(N−j)/2

))
.

PROOF. We first recall the following result from [9, Theorem 1.1] with α = 1, which
is simply Rademacher’s exact formula for the partition function [18],

p(n) =
π

25/433/4N3/4

∞∑
k=1

Ak(n)
k

I3/2

(
π

k

√
2N
3

)
, (2.1)

where Iν is the usual I-Bessel function and

Ak(n) :=
∑

0≤h<k
gcd(h,k)=1

eπis(h,k)−2πinh/k

is a Kloosterman sum with s(h, k) the usual Dedekind sum. By [20, page 172],

I3/2(x) =
x3/2

2
√

2π

∫ 1

−1
(1 − t2)ext dt. (2.2)
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We now bound the integrand for −1 ≤ t ≤ 0 by 1 and find that
∫ 0

−1
(1 − t2)ext dt = O≤(1). (2.3)

Here, the notation f (x) = O≤(g(x)) means that | f (x)| ≤ g(x), that is, there is no implied
constant in the big-O estimate.

Next we compute the integral for 0 ≤ t ≤ 1. To do so, we make the change of
variables u = 1 − t to find that∫ 1

0
(1 − t2)ext dt = ex

(
2
∫ 1

0
u2e−xu du

u
−
∫ 1

0
u3e−xu du

u

)
.

Under the change of variables w = ux, it is easy to show that this is equal to

2ex

x2

(
1 − 1

x
− Γ(2, x) +

Γ(3, x)
2x

)
,

where Γ(a, b) is the usual incomplete Γ-function. Since Γ(2, x) = (x + 1)e−x and
Γ(3, x) = (x2 + 2x + 2)e−x, we find that

∫ 1

0
(1 − t2)ext dt =

2ex

x2

(
1 − 1

x
− x + 1

ex +
x2 + 2x + 2

2xex

)
. (2.4)

Substituting (2.3) and (2.4) into (2.2), we obtain

I3/2(x) =
x3/2

2
√

2π

(2ex

x2

(
1 − 1

x
− x + 1

ex +
x2 + 2x + 2

2xex

)
+ O≤(1)

)

=
ex

√
2πx

(
1 − 1

x
+

(1
x
− x

2

)
e−x + O≤

( x2

2ex

))
.

Noting that |1/x − x/2| ≤ x2/2 for x ≥ 1, we have

I3/2(x) =
ex

√
2πx

(
1 − 1

x
+ O≤(x2e−x)

)

for x ≥ 1. In particular,

I3/2

(
π

√
2N
3

)
=

31/4eπ
√

2N/3

23/4πN1/4

(
1 −
√

3
√

2π

1
√

N
+ O≤

(2π2Ne−π
√

2N/3

3

))
(2.5)

for n ≥ 1. This corresponds to the term k = 1 in the sum in (2.1) and we need to bound
the remaining terms of the sum. Note that |Ak(n)| ≤ k, so we may bound the remaining
terms in the sum by

∣∣∣∣∣
∞∑

k=2

Ak(n)
k

I3/2

(
π

k

√
2N
3

)∣∣∣∣∣ ≤
∞∑

k=2

I3/2

(
π

k

√
2N
3

)
.
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We now emulate [2, (3.20)]. By [2, (3.18)],

∑
2≤k≤	X


I3/2

(X
k

)
≤ 2

√
X
π

eX/2.

The remaining terms are
∑

k≥	X
+1

I3/2

(X
k

)
≤ X3/2

Γ(5/2)
√

2

∑
k≥	X
+1

1
k3/2 ,

where we use [2, Lemma 2.2(3)]. We thus have the bound

∑
k≥2

I3/2

(X
k

)
≤ 2

√
X
π

eX/2 +
2X3/2

Γ(5/2)
√

2
.

It remains to bound the final sum with basic calculus by 2
√

X/πeX/2, yielding

∑
k≥2

I3/2

(X
k

)
≤ 4

√
X
π

eX/2.

In our application, this yields
∞∑

k=2

I3/2

(
π

k

√
2N
3

)
≤ 4

4

√
2N
3

eπ/2
√

2N/3 =
29/4N1/4

31/4 eπ/2
√

2N/3. (2.6)

Substituting (2.5) and (2.6) in (2.1), we find that

p(n) =
π

25/433/4N3/4

(31/4eπ
√

2N/3

23/4πN1/4

(
1 −

√
3

√
2π
√

N
+ O≤

(2π2Ne−π
√

2N/3

3

))

+ O≤
(29/4N1/4

31/4 eπ/2
√

2N/3
))

=
eπ
√

2N/3

4
√

3N

(
1 −

√
3

√
2π
√

N
+ O≤

(2π2Ne−π
√

2N/3

3
+ 233−1/2πN1/2e−π/2

√
N/2
))

.

Note that N = N(n) is implicitly a function of n and N(n − j) = N(n) − j and so the
claim follows. �

Next we want to estimate the functions f ( j, n). The first step is to obtain estimates
of p(n − j)/p(n) analogous to those of [2], proving Theorem 1.1 en route.

THEOREM 2.2. Let j <
√

N/4 and n ≥ 14. Then

f ( j, n)
p(n)

= 1 + e
√

2πj/
√

3N
(
1 +
( √3
√

2π
−
√

3
√

2π

) 1
√

N
+

2j
N
− πj2
√

6N3/2
+ O≤

(2075
N

))

− eπj/
√

6N
(
2 +
(2√3
√

2π
− 2
√

3
√

2π

) 1
√

N
+

2j
N
− πj2

2
√

6N3/2
+ O≤

(3926
N

))
.
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PROOF. Recall that

f ( j, n)
p(n)

= 1 − 2
p(n − j)

p(n)
+

p(n − 2j)
p(n)

.

We first bound 1/p(n). By Proposition 2.1,

p(n) =
eπ
√

2N/3

4
√

3N

(
1 −

√
3

√
2π
√

N
+ g(N)

)
,

where

|g(N)| ≤ 2π2Ne−π
√

2N/3

3
+ 23 · 3−1/2πN1/2e−(π/2)

√
N/2 =: h(N).

Now we want to approximate 1/p(n). For N > 1,
∣∣∣∣∣
√

3
√

2π
√

N
− g(N)

∣∣∣∣∣ <
√

3
√

2π
√

N
+ |g(N)| ≤

√
3

√
2π
√

N
+ h(N) < 0.99,

which can be seen by taking Taylor series. We claim that for 0 < |z| < 0.99,

1
1 − z

= 1 + z + O≤(100|z|2).

To see this, we bound∣∣∣∣∣ 1
1 − z

− 1 − z
∣∣∣∣∣ =
∣∣∣∣∣1 − (1 + z)(1 − z)

1 − z

∣∣∣∣∣ = |z|2
|1 − z| ≤

|z|2
1 − |z| <

1
0.01
|z|2 = 100|z|2.

Thus,

1
p(n)

=
4
√

3Ne−π
√

2N/3

1 −
√

3√
2π
√

N
+ g(N)

= 4
√

3Ne−π
√

2N/3
(
1 +

√
3

√
2π
√

N
− g(N) + O≤

(
100
∣∣∣∣∣
√

3
√

2π
√

N
− g(N)

∣∣∣∣∣
2))

= 4
√

3Ne−π
√

2N/3
(
1 +

√
3

√
2π
√

N
+ O≤

(
|g(N)| + 100

∣∣∣∣∣
√

3
√

2π
√

N
− g(N)

∣∣∣∣∣
2))

.

Now the error may be bounded against

h(N) + 100
( √3
√

2π
√

N
+ h(N)

)2
= O≤

(1350
N

)

again by basic calculus. Thus,

1
p(n)

= 4
√

3Ne−π
√

2N/3
(
1 +

√
3

√
2π
√

N
+ O≤

(1350
N

))
.
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[8] The second shifted difference of partitions 73

Consider p(n − J), J ∈ { j, 2j}. By Proposition 2.1,

p(N − J) =
eπ
√

2/3
√

N−J

4
√

3(N − J)

(
1 −

√
3

√
2π
√

N − J
+ O≤(h(N − J))

)
. (2.7)

First note that j <
√

N/4 implies that (note that N ≥ 14 − 1/24)

N − J ≥ N − 2j ≥ N −
√

N
2
≥ 12.

Moreover, since 1 ≤ j ≤
√

N/4,
J
N
≤ 2j

N
≤
√

N
2N
=

1

2
√

N
≤ 1

2
√

14 − 1
24

< 0.2.

We now approximate the exponential in (2.7). We claim that

eπ
√

2/3
√

N−J = eπ
√

2/3
√

N−πJ/
√

6N
(
1 − πJ2

4
√

6N3/2
+ O≤

(0.1
N

))
.

To see this, define

f (x) :=
√

1 − x − 1 +
x
2
+

x2

8
.

It is straightforward to show that for 0 ≤ x < 0.2, we have

| f (x)| ≤ 0.1x3.

We use this to write
√

N − J =
√

N

√
1 − J

N
=
√

N
(

f
( J
N

)
+ 1 − J

2N
− 1

8

( J
N

)2)

and obtain
eπ
√

2/3
√

N−J−π
√

2/3
√

N+πJ/
√

6N = e−π
√

2/3
√

N(− f (J/N)+J2/8N2).

Note that

− f (x) +
x2

8
= 1 − x

2
−
√

1 − x =
x2

8
+ · · · > 0.

Also note that for x > 0,

e−x − 1 + x =
∑
n≥2

(−1)nxn

n!
≤ x2

2

by Leibnitz’s criterion. Thus,

e−π
√

2/3
√

N(− f (J/N)+J2/8N2)

= 1 − π
√

2/3
√

N
(
− f
( J
N

)
+

J2

8N2

)
+ O≤

(1
2

(√2
3

√
N
(
− f
( J
N

)
+

J2

8N2

))2)

= 1 − πJ2

√
6N3/2

+ O≤
(
π

√
2
3

√
N
∣∣∣∣∣ f
( J
N

)∣∣∣∣∣ + 1
2

(
π

√
2
3

√
N
(∣∣∣∣∣ f
( J
N

)∣∣∣∣∣ + J2

8N2

))2)
.
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We now bound the error against

π

√
2
3

√
N · 0.1

( J
N

)3
+
π2

3
N
(
0.1
( J
N

)3
+

J2

8N2

)2

≤ π
√

2
3
· 0.1

1
23N
+
π2

3
N
(
0.1
( 1

2
√

N

)3
+

1
8

( 1

2
√

N

)2)2

=
0.1π

4
√

6

1
N
+
π2

24
1
N

( 0.1
√

N
+ 1/4

)2
=

(0.1π

4
√

6
+
π2

24

( 0.1
√

N
+ 1/4

)2) 1
N
≤ 0.1

N
,

where in the final inequality, we used N ≥ 14 − 1/24. This gives the claim.
Next we claim that for x < 0.2,

1
1 − x

= 1 + x + O≤(1.25x2).

To see this, we bound ∣∣∣∣∣ 1
1 − x

− 1 − x
∣∣∣∣∣ = x2

|1 − x| ≤
x2

1 − |x| ≤
x2

0.8
.

We use this for

1
N − J

=
1
N

1
1 − J/N

=
1
N

(
1 +

J
N
+ O≤

(
1.25
( J
N

)2))
=

1
N

(
1 +

J
N
+ O≤

(0.4
N

))
.

Next, for 0 ≤ x < 0.2,
1

√
1 − x

− 1 ≤ 0.6x.

Thus,
1

√
N − J

=
1
√

N

1
√

1 − J/N
=

1
√

N

(
1 + O≤

(
0.6

J
N

))
=

1
√

N
+ O≤

(
0.6

J
N3/2

)
=

1
√

N
+ O≤

(0.3
N

)
.

Finally, by basic calculus, we find the bound

2π2xe−π
√

2x/3

3
+ 233−1/2πx1/2e−(π/2)

√
x/2 ≤ 15x1/2e−(π/2)

√
x/2

for x ≥ 12. Thus,

| f (N − J)| ≤ 15(N − J)1/2e−(π/2
√

2)
√

N−J .

Now note that x1/2e−(π/2)
√

x/2 is decreasing for x ≥ 1. We then use the bound

N − J ≥ N −
√

N
2

and thus

(N − J)1/2e−(π/2)
√

(N−J)/2 ≤
(
N −
√

N
2

)1/2
e−(π/2)

√
(N−
√

N/2)/2 = O≤
(1.1

N

)
.
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Thus,

p(n − J) =
1

4
√

3
eπ
√

2N/3−πJ/
√

6N
(
1 − πJ2

4
√

6N3/2
+ O≤

(0.1
N

)) 1
N

(
1 +

J
N
+ O≤

(0.4
N

))

×
(
1 −
√

3
√

2π

( 1
√

N
+ O≤

(0.3
N

))
+ O≤

(1.1
N

))
.

We combine
(
1 − πJ2

4
√

6N3/2
+ O≤

(0.1
N

))(
1 +

J
N
+ O≤

(0.4
N

))

= 1 +
J
N
− πJ2

4
√

6N3/2

+ O≤
(0.4

N
+

πJ3

4
√

6N5/2
+

0.4πJ2

4
√

6N5/2
+

0.1
N
+ 0.1

J
N2 + 0.1 · 0.4

N2

)
.

The error may be bounded against 0.56/N.
Next, we estimate

1 −
√

3
√

2π

( 1
√

N
+ O≤

(0.3
N

)
+ O≤

(1.1
N

))
= 1 −

√
3

√
2π
√

N
+ O≤

(1.31
N

)
.

Thus,

4
√

3Ne−π
√

2N/3+πJ/
√

6N p(n − J)

=

(
1 +

J
N
− πJ2

4
√

6N3/2
+ O≤

(0.56
N

))(
1 −

√
3

√
2π
√

N
+ O≤

(1.31
N

))

= 1 +
J
N
− πJ2

4
√

6N3/2
−
√

3
√

2π
√

N
+ O≤

(2.71
N

)
.

Note that this calculation also proves Theorem 1.1. Thus, overall, we obtain

f (n, j)
p(n)

= 1 +
1

p(n)
(p(n − 2j) − 2p(n − j))

= 1 + 4
√

3Ne−π
√

2N/3
(
1 +

√
3

√
2π
√

N
+ O≤

(1350
N

))eπ√2N/3

4
√

3N

×
(
e
√

2πj/
√

3N
(
1 +

2j
N
− πj2
√

6N3/2
−
√

3
√

2π
√

N
+ O≤

(2.71
N

))

− 2eπj/
√

6N
(
1 +

j
N
− πj2

4
√

6N3/2
−
√

3
√

2π
√

N
+ O≤

(2.71
N

)))
. (2.8)
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Since j ≤
√

N/4 and n ≥ 14, a straightforward calculation gives
(
1 +

√
3

√
2π
√

N
+ O≤

(1350
N

))(
1 +

2j
N
− πj2
√

6N3/2
−
√

3
√

2π
√

N
+ O≤

(2.71
N

))

= 1 +
( √3
√

2π
−
√

3
√

2π

) 1
√

N
+

2j
N
− πj2
√

6N3/2
+ O≤

(2075
N

)
.

We turn to the final product in (2.8) given by

2
(
1 +

√
3

√
2π
√

N
+ O≤

(1350
N

))(
1 +

j
N
− πj2

4
√

6N3/2
−
√

3
√

2π
√

N
+ O≤

(2.71
N

))
.

Again using j ≤
√

N/4 and n ≥ 14, it is not hard to show that this is equal to

2 +
(2√3
√

2π
− 2
√

3
√

2π

) 1
√

N
+

2j
N
− πj2

2
√

6N3/2
+ O≤

(3926
N

)
.

Combining everything together, we obtain the statement of the theorem. �

We end by proving the eventual positivity of the ratio f ( j, n)/p(n), which is crucial
to the applications in the introduction.

THEOREM 2.3. Let j ≤
√

N/4. Then we have that f ( j, n)/p(n) > 0 for all n ≥ 2.

PROOF. Let X = e
√

2πj/
√

3N − 2eπj/
√

6N . By Theorem 2.2, the result follows if

f ( j, n)
p(n)

− 1 =
(
1 +
( √3
√

2π
−
√

3
√

2π

) 1
√

N
+

j
N
− πj2

4
√

6N3/2
+

3926
N

)
X

+ e
√

2πj/
√

3N
( j
N
− 3πj2

4
√

6N3/2

)
> −1 (2.9)

for all n ≥ 14, with a finite computer check taking care of the remaining cases.
We first observe using j ≤

√
N/4 that

3πj2

4
√

6N3/2
<

j
N

,

implying that the final term in (2.9) is positive. Thus, the claim follows if
(
1 +
( √3
√

2π
−
√

3
√

2π

) 1
√

N
+

j
N
− πj2

4
√

6N3/2
+

3926
N

)
X > −1.

Since −1 < X < 0 for all n ≥ 4, this follows if
( √3
√

2π
−
√

3
√

2π

) 1
√

N
+

j
N
− πj2

4
√

6N3/2
+

3926
N
< 0.

It is simple to check that this is always satisfied for n ≥ 14, and the theorem follows.
We note that this also proves Theorem 1.2. �

https://doi.org/10.1017/S0004972722000764 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722000764


[12] The second shifted difference of partitions 77

We are grateful to the referee for pointing out the following more elementary
approaches to proving Theorem 1.2, and in fact a wider class of inequalities for p(n).
Let Vj(n) be the set of non-j-ary partitions. For any � ≥ 0, we may construct a map

π : Vj(n − �)→ Vj(n)
(λ1, . . . , λs) �→ (λ1 + �, λ2, . . . , λs).

Since this map is clearly injective, we immediately obtain

p(n − �) − p(n − � − j) ≤ p(n) − p(n − j)

for all � ≥ 0. Choosing � = j, we recover Theorem 1.2. One may also write this in terms
of coefficients of q-series, as in [17, (2.4)]:

Δr
j (p(n)) = [qn](1 − qj)r

∏
k≥1

(1 − qk)−1.

When r = 2, it is readily checked (using the q-binomial theorem) that the q-series
has nonnegative coefficients, giving Theorem 1.2. However, if one fixes j and asks
about the behaviour as r → ∞, it is less clear whether the q-series has nonnegative
coefficients. For j = 1, this is Gupta’s conjecture [7]. Moreover, in [17], it is shown that
Δr

1(p(n)) alternates in sign before eventually becoming nonnegative. Does a similar
phenomenon hold for Δr

j (p(n))?
We remark that these more elementary approaches rely on the combinatorial

structure and the infinite product representations that occur for p(n). For other objects
with similar asymptotic behaviour to p(n), our analytical techniques provide a pathway
to similar inequalities where one may not have a combinatorial interpretation or infinite
product representation.
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