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PARKING FUNCTIONS: INTERDISCIPLINARY CONNECTIONS

MEI YIN,∗ University of Denver

Abstract

Suppose that m drivers each choose a preferred parking space in a linear car park with
n spots. In order, each driver goes to their chosen spot and parks there if possible, and
otherwise takes the next available spot if it exists. If all drivers park successfully, the
sequence of choices is called a parking function. Classical parking functions correspond
to the case m = n.

We investigate various probabilistic properties of a uniform parking function.
Through a combinatorial construction termed a parking function multi-shuffle, we give
a formula for the law of multiple coordinates in the generic situation m � n. We further
deduce all possible covariances: between two coordinates, between a coordinate and an
unattempted spot, and between two unattempted spots. This asymptotic scenario in the
generic situation m � n is in sharp contrast with that of the special situation m = n.

A generalization of parking functions called interval parking functions is also studied,
in which each driver is willing to park only in a fixed interval of spots. We construct
a family of bijections between interval parking functions with n cars and n spots and
edge-labeled spanning trees with n + 1 vertices and a specified root.

Keywords: Parking function; multi-shuffle; asymptotic expansion; Abel’s multinomial
theorem; edge-labeled spanning tree
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1. Introduction

Parking functions are an established area of research in combinatorics, with connections to
labeled trees and forests (Chassaing and Marckert [4]), non-crossing partitions and hyperplane
arrangements (Stanley [18, 19]), symmetric functions (Haiman [12]), abelian sandpiles (Cori
and Rossin [6]), and other topics.

Consider a parking lot with n parking spots placed sequentially along a one-way street.
A line of m ≤ n cars enters the lot, one by one. The ith car drives to its preferred spot πi and
parks there if possible; if the spot is already occupied then the car parks in the first available
spot after that. The list of preferences π = (π1, . . . , πm) is called a generalized parking func-
tion if all cars successfully park. (This generalizes the term parking function, which classically
refers to the case m = n. When there is no risk of confusion we will drop the modifier ‘gen-
eralized’ and simply refer to both of these cases as parking functions.) We denote the set of
parking functions by PF(m, n), where m is the number of cars and n is the number of parking
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spots. The total number of parking functions is |PF(m, n)| = (n − m + 1)(n + 1)m−1 (Pitman
and Stanley [16]). Using the pigeonhole principle, we see that a parking function π ∈ PF(m, n)
must have at most one value = n, at most two values ≥ n − 1, and for each k at most k values
≥ n − k + 1, and any such function is a parking function. Equivalently, π is a parking function
if and only if

#{k : πk ≤ i} ≥ m − n + i, ∀i = n − m + 1, . . . , n. (1.1)

Note that parking functions are invariant under the action of Sm by permuting cars.
In our previous work [13], we investigated various probabilistic properties of a parking

function chosen uniformly at random from PF(m, n), giving a formula for the law of a single
coordinate. Adapting known results on random linear probes, we further deduced the covari-
ance between two coordinates in the special situation m = n. This paper will delve deeper into
the properties of a uniform parking function in the generic situation m � n. Our probabilistic
results rely on an original combinatorial construction which we term a parking function multi-
shuffle, and our novel asymptotic calculation utilizes the multi-dimensional Cauchy product of
the tree function F(z) =∑∞

s=0(s + 1)s−1 zs

s! , a variant of the Lambert function, and its general-
izations. We will give all moments of multiple coordinates and deduce all possible covariances:
between two coordinates, between a coordinate and an unattempted spot, and between two
unattempted spots.

The multi-shuffle construction allows us to compute the number of parking functions
PF(m, n) where the parking preferences of l ≤ m cars are arbitrarily specified. Alternatively,
by permutation symmetry, we can think that l spots are already taken along a one-way street
with n parking spots, and we want to count the possible preferences for the remaining m − l
cars allowing them all to park successfully. In the parking function literature, the successful
preference sequences for the m − l cars that enter the street later are referred to as parking com-
pletions for τ = (τ1, . . . , τl), where the entries of τ denote the l spots that are already taken,
arranged in increasing order.

This parking scenario and its variations, such as defective parking functions where some
drivers fail to park (Cameron et al. [3]), have generated significant interest over the years.
Much progress has been made for the special case m = n of parking functions. Parking com-
pletions with a single spot taken (τ = (τ1) arbitrary) were enumerated by Diaconis and Hicks
[7]. The case in which the taken spots form a contiguous block starting from the first spot in the
linear car park, τ = (1, . . . , l), was first considered by Yan [20], with an explicit formula given
in a follow-up work by Gessel and Seo [11]. The formula was generalized by Ehrenborg and
Happ [9] to take into account cars of different sizes. More recently, Adeniran et al. [1] unified
prior work on parking completions for PF(n, n) and computed the number of parking functions
PF(n, n) where the parking preferences of l ≤ n cars are arbitrarily specified utilizing a pair
of operations termed Join and Split. The multi-shuffle construction introduced in this paper
builds upon our prior single-shuffle construction [13] and is a further generalization of the
above-mentioned work, being applicable for general m and n. Recognizing that unattempted
parking spots break up a parking function into non-interacting pieces, the multi-shuffle con-
struction also sheds light on the correlation between the coordinates of parking functions and
unattempted spots.

Given a positive-integer-valued vector u = (u1, . . . , um) with u1 ≤ · · · ≤ um, a u-parking
function of length m is a sequence (π1, . . . , πm) of positive integers whose non-decreasing
rearrangement (λ1, . . . , λm) satisfies λi ≤ ui for all 1 ≤ i ≤ m. Via a switch of coordinates
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in (1.1), we see that the parking function PF(m, n) investigated in this paper may be alter-
natively posed as a u-parking function, where the vector u is an arithmetic progression:
u = (n − m + 1, . . . , n). As we will see in Section 2.1, more generally, a parking completion
for PF(m, n) may be interpreted as a u-parking function, where the vector u need not consist of
consecutive numbers. Knowledge about PF(m, n) with specified parking preferences of l ≤ m
cars therefore adds to the understanding of u-parking functions as well. In particular, our enu-
meration of parking completions provides a different perspective on the volume formula for
Pitman–Stanley polytopes [16], and our mixed moment calculations for multiple coordinates
of parking functions extend those of Kung and Yan [14], who give explicit formulas for the first
and second factorial moments and a general form for the higher factorial moments of sums of
u-parking functions.

This paper is organized as follows. Section 2 illustrates the notion of a parking function
multi-shuffle, which decomposes a parking function into smaller components (Definition 1).
This construction leads to an explicit characterization of multiple coordinates π1, . . . , πl ∈ [n]
of parking functions (Theorems 1 and 2). For the case in which π1, . . . , πl form a contiguous
block, a simplified characterization is given in Proposition 2. Section 3 uses the multi-shuffle
construction introduced in Section 2 to investigate various properties of a parking function cho-
sen uniformly at random from PF(m, n). We compute asymptotics of all moments of multiple
coordinates in Theorem 5 in the generic situation m � n and give complete technical details
for all moments of two coordinates (Theorem 4). We further derive all possible covariances
involving coordinates of parking functions and unattempted spots in Propositions 6, 8, and 9.
The asymptotic scenario in the generic situation m � n is contrasted with that of the special
situation m = n in Section 3.5. Finally, Section 4 studies a generalization of parking functions
called interval parking functions, in which each driver is willing to park only in a fixed interval
of spots. We construct a family of bijections between interval parking functions IPF(n, n) and
edge-labeled spanning trees Fe(n + 1) (Theorem 10).

Notation

Let N be the set of non-negative integers. For m, n ∈N, we write [m, n] for the set of integers
{m, . . . , n} and [n] = [1, n]. For vectors a, b ∈ [n]m, we write a ≤C b if ai ≤ bi for all i ∈ [m];
this is the componentwise partial order on [n]m. In a similar fashion, we write a <C b if ai ≤ bi

for all i ∈ [m] and there is at least one j ∈ [m] such that aj < bj. For b ∈ [n]m, we write [b] for
the set of a ∈ [n]m with a ≤C b. The conjugate (or reverse complement) of x ∈ [n]m is the vector
x∗ = (n + 1 − xm, . . . , n + 1 − x1).

2. Parking function multi-shuffle

In this section we explore the properties of parking functions through a parking function
multi-shuffle construction. For explicitness, we will write our results in terms of parking coor-
dinates π1, . . . , πl, where 1 ≤ l ≤ m is any integer. However, by permutation symmetry, they
may be interpreted for any coordinates. Temporarily fix πl+1, . . . , πm. Let

Aπl+1,...,πm = {u = (u1, . . . , ul) : (u1, . . . , ul, πl+1, . . . , πm) ∈ PF(m, n)}. (2.1)

Via a switch of coordinates in (1.1), we see that π = (u1, . . . , ul, πl+1, . . . , πm) ∈ PF(m, n) if
and only if its non-decreasing rearrangement λ = (λ1, . . . , λm) satisfies λi ≤ n − m + i for all
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1 ≤ i ≤ m. From the parking scheme, we may assume that u = (u1, . . . , ul) is in strictly increas-
ing order, so that ui = λj ≥ λi for some j ≥ i. This implies that if Aπl+1,...,πm is non-empty,
then there is a unique maximal element (in the componentwise partial order) u ∈ [n]l with
ui ≥ n − m + i for all 1 ≤ i ≤ l and Aπl+1,...,πm = [u]. Therefore, given the last m − l parking
preferences, it is sufficient to identify the largest feasible first l preferences (if any exist).

Example 1. Take m = 4, n = 6, π3 = 2, and π4 = 6. Then Aπ3,π4 = [u] = [(4, 5)].

Definition 1. Take 1 ≤ l ≤ m any integer. Let u = (u1, . . . , ul) ∈ [n]l be in increasing order
with ui ≥ n − m + i for all 1 ≤ i ≤ l. Say that πl+1, . . . , πm is a parking function multi-shuffle
of l + 1 parking functions α1 ∈ PF(m − n + u1 − 1, u1 − 1), α2 ∈ PF(u2 − u1 − 1, u2 − u1 −
1), . . . , αl ∈ PF(ul − ul−1 − 1, ul − ul−1 − 1), and αl+1 ∈ PF(n − ul, n − ul) if πl+1, . . . , πm

is any permutation of the union of the l + 1 words α1, α2 + (u1, . . . , u1), . . . , αl+1 +
(ul, . . . , ul). We will denote this by (πl+1, . . . , πm) ∈ MS(m − n + u1 − 1, u1 − 1, u2 − u1 −
1, . . . , ul − ul−1 − 1, n − ul).

Example 2. Take m = 8, n = 10, u1 = 6, and u2 = 8. Take α1 = (2, 1, 2) ∈ PF(3, 5), α2 = (1) ∈
PF(1, 1), and α3 = (2, 1) ∈ PF(2, 2). Then (2, 7, 2, 9, 10, 1) ∈ MS(3, 5, 1, 2) is a multi-shuffle
of the three words (2, 1, 2), (7), and (10, 9).

Theorem 1. Take 1 ≤ l ≤ m any integer. Let u = (u1, . . . , ul) ∈ [n]l be in increasing order with
ui ≥ n − m + i for all 1 ≤ i ≤ l. Then Aπl+1,...,πm = [u] if and only if (πl+1, . . . , πm) ∈ MS(m −
n + u1 − 1, u1 − 1, u2 − u1 − 1, . . . , ul − ul−1 − 1, n − ul).

Proof. =⇒: The statement Aπl+1,...,πm = [u] is equivalent to saying that π = (
u1, . . . , ul,

πl+1, . . . , πm
)

is a parking function, but π i = (u1, . . . , ui−1, ui + 1, ui+1, . . . , ul,

πl+1, . . . , πm) is not, for any 1 ≤ i ≤ l. By (1.1), this can only happen when
#{k : πk ≤ ui} = m − n + ui for all 1 ≤ i ≤ l. We claim that none of the subsequent m − l
cars can have preference u1, . . . , ul. Suppose otherwise, so that there is a later car with pref-
erence ui. Such a car would necessarily park in spots ui + 1, . . . , n for π , and consequently it
could change places with car i in π i, contradicting the statement that πi = ui is allowed but
π i

i = ui + 1 is not allowed. Hence, excluding the first l cars, π has exactly m − n + u1 − 1 cars
with value ≤ u1 − 1, exactly u2 − u1 − 1 cars with value ≥ u1 + 1 and ≤ u2 − 1, . . . , exactly
ul − ul−1 − 1 cars with value ≥ ul−1 + 1 and ≤ ul − 1, and exactly n − ul cars with value
≥ ul + 1.

Let α1 be the subsequence of (πl+1, . . . , πm) with value ≤ u1 − 1, α′
2 the subsequence with

value ≥ u1 + 1 and ≤ u2 − 1, . . . , α′
l the subsequence with value ≥ ul−1 + 1 and ≤ ul − 1,

and α′
l+1 the subsequence with value ≥ ul + 1. Construct α2 = α′

2 − (u1, . . . , u1), . . . , αl+1 =
α′

l+1 − (ul, . . . , ul). It is clear from the above reasoning that α1 ∈ PF(m − n + u1 − 1, u1 − 1),
α2 ∈ PF(u2 − u1 − 1, u2 − u1 − 1), . . . , αl ∈ PF(ul − ul−1 − 1, ul − ul−1 − 1), and αl+1 ∈
PF(n − ul, n − ul). By Definition 1, (πl+1, . . . , πm) ∈ MS(m − n + u1 − 1, u1 − 1, u2 − u1 −
1, . . . , ul − ul−1 − 1, n − ul).

⇐=: We first show that π = (u1, . . . , ul, πl+1, . . . , πm) is a parking function. This is clear,
since from Definition 1, π can be decomposed into 2l + 1 parts: a subsequence α1 of length
m − n + u1 − 1 with entries ≤ u1 − 1, one entry u1, a subsequence α′

2 of length u2 − u1 − 1
with entries ≥ u1 + 1 and ≤ u2 − 1, one entry u2, . . . , a subsequence α′

l of length ul − ul−1 − 1
with entries ≥ ul−1 + 1 and ≤ ul − 1, one entry ul, and a subsequence α′

l+1 of length n − ul

with entries ≥ ul + 1. Moreover, α1, α2 = α′
2 − (u1, . . . , u1), . . . , αl+1 = α′

l+1 − (ul, . . . , ul)
are l + 1 parking functions.
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Next we show that π i = (u1, . . . , ui−1, ui + 1, ui+1, . . . , ul, πl+1, . . . , πm) is not a parking
function for any 1 ≤ i ≤ l. But this is immediate: since the only entries of π i that are bounded
above by ui are those from α1, α′

2, . . . , α′
i and u1, . . . , ui−1, we have

#{k : π i
k ≤ ui} = (m − n + u1 − 1) + (u2 − u1 − 1) + · · · + (ui − ui−1 − 1) + i − 1

= m − n + ui − 1 < m − n + ui, (2.2)

a contradiction.
Combining, we have Aπl+1,...,πm = [u]. �

Theorem 2. Take 1 ≤ l ≤ m any integer. Let v = (v1, . . . , vl) ∈ [n]l be in increasing order. The
number of parking functions π ∈ PF(m, n) with π1 = v1, . . . , πl = vl is

(n − m + 1)
∑

s∈Sl(v)

(
m − l

s

)
(s1 + 1 + n − m)s1−1

l+1∏
i=2

(si + 1)si−1, (2.3)

where
Sl(v) =

{
s = (s1, . . . , sl+1) ∈N

l+1 | s1+···+si≥m−n+vi−i ∀i∈[l]
s1+···+sl+1=m−l

}
. (2.4)

Note that this quantity stays constant if all vi ≤ n − m + i and decreases as each vi increases
past n − m + i, as there are fewer resulting summands.

Proof. If πi = vi for 1 ≤ i ≤ l, then Aπl+1,...,πm = [u] where ui ≥ max(vi, n − m + i). Thus,
from Theorem 1, the number of parking functions with π1 = v1, . . . , πl = vl is

n−l+i∑
ui=max(vi,n−m+i) ∀i∈[l]

(
m − l

s

)
|PF(m − n + u1 − 1, u1 − 1)|·

·
l∏

i=2

|PF(ui − ui−1 − 1, ui − ui−1 − 1)||PF(n − ul, n − ul)|

=
n−l+i∑

ui=max(vi,n−m+i) ∀i∈[l]

(
m − l

s

)
(n − m + 1)um−n+u1−2

1

l∏
i=2

(ui − ui−1)ui−ui−1−2(n − ul + 1)n−ul−1

= (n − m + 1)
∑

s∈Sl(v)

(
m − l

s

)
(s1 + 1 + n − m)s1−1

l+1∏
i=2

(si + 1)si−1, (2.5)

where s = (m − n + u1 − 1, u2 − u1 − 1, . . . , ul − ul−1 − 1, n − ul). �
For the special case l = 0 and v = () (where no parking preferences are specified),

we recover the total number of parking functions |PF(m, n)| = (n − m + 1)(n + 1)m−1. We
describe an alternative characterization of this number in the following.

Proposition 1. The number of parking functions |PF(m, n)| satisfies

|PF(m, n)| =
∑
s|=m

(
m

s

) n−m+1∏
i=1

(si + 1)si−1, (2.6)

where s = (s1, . . . , sn−m+1) is a composition of m.
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Proof. For a parking function π ∈ PF(m, n), there are n − m parking spots that are never
attempted by any car. Let ki(π) for i = 1, . . . , n − m represent these spots, so that 0 := k0 <

k1 < · · · < kn−m < kn−m+1 := n + 1. This separates π into n − m + 1 disjoint non-interacting
segments (some segments might be empty), with each segment a classical parking function of
length (ki − ki−1 − 1) after translation. We have

|PF(m, n)| =
∑

k

n−m+1∏
i=1

(ki − ki−1)ki−ki−1−2
(

m

k1 − k0 − 1, . . . , kn−m+1 − kn−m − 1

)

=
∑
s|=m

(
m

s1, . . . , sn−m+1

) n−m+1∏
i=1

(si + 1)si−1, (2.7)

where s = (k1 − k0 − 1, . . . , kn−m+1 − kn−m − 1) and
∑n−m+1

i=1 si = m. �
Building upon Theorem 2 and Proposition 1, we specialize to the case where the specified

parking preferences of the first l cars form a contiguous block.

Proposition 2. Take 1 ≤ l ≤ m any integer. Let 1 ≤ k ≤ n − l + 1. The number of parking
functions π ∈ PF(m, n) with π1 = k, . . . , πl = k + l − 1 is

(n − m + 1)
min(n−k−l+1,m−l)∑

s=0

(
m − l

s

)
(n − s + 1 − l)m−s−l−1l(s + l)s−1. (2.8)

Note that this quantity stays constant for k ≤ n − m + 1 and decreases as k increases past
n − m + 1, as there are fewer resulting summands.

Proof. We take vi = k + i − 1 for 1 ≤ i ≤ l in Theorem 2 and extract s1 from the multinomial
coefficient

(m−l
s

)
:

(n − m + 1)
m−l∑

s1=max(0,m−n+k−1)

(
m − l

s1

)
(s1 + 1 + n − m)s1−1·

·
∑

(s2,...,sl+1)|=m−l−s1

(
m − l − s1

s2, . . . , sl+1

) l+1∏
i=2

(si + 1)si−1. (2.9)

Using Proposition 1 and simplifying, we find that this becomes

(n − m + 1)
m−l∑

s1=max(0,m−n+k−1)

(
m − l

s1

)
(s1 + 1 + n − m)s1−1|PF(m − l − s1, m − 1 − s1)|

= (n − m + 1)
m−l∑

s1=max(0,m−n+k−1)

(
m − l

s1

)
(s1 + 1 + n − m)s1−1l(m − s1)m−l−s1−1

= (n − m + 1)
min(n−k−l+1,m−l)∑

s=0

(
m − l

s

)
(n − s + 1 − l)m−s−l−1l(s + l)s−1, (2.10)

where the last equality comes from a change of variables s = m − l − s1. �
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If we sum over all possible contiguous blocks that the first l cars may occupy, the result
simplifies nicely.

Proposition 3. Take 1 ≤ l ≤ m any integer. Then

n−l+1∑
k=1

#{π ∈ PF(m, n) : π1 = k, . . . , πl = k + l − 1} = (n − m + 1)(n + 1)m−l. (2.11)

Proof. The proof relies on an extension of Pollak’s circle argument [10]. Add an additional
space n + 1, and arrange the spaces in a circle. Allow n + 1 also to be a preferred space. We
first select a contiguous block of length l for the first l cars, which can be done in n + 1 ways.
Then, for the remaining m − l cars, there are (n + 1)m−l possible preference sequences. Note
that π is a parking function if and only if the spot n + 1 is left open. For j ∈Z/(n + 1)Z,
the preference sequence π + j(1, . . . , 1) (modulo n + 1) gives an assignment whose missing
spaces are the rotations by j of the missing spaces for the assignment of π . Since there are n −
m + 1 missing spaces for the assignment of any preference sequence, any preference sequence
π has n − m + 1 rotations which are parking functions. Therefore

n−l+1∑
k=1

#{π ∈ PF(m, n) : π1 = k, . . . , πl = k + l − 1} = n − m + 1

n + 1
(n + 1)(n + 1)m−l

= (n − m + 1)(n + 1)m−l. (2.12)

�
For the special case l = 1, Proposition 3 reduces to the decomposition of parking functions

PF(m, n) according to the parking preference of the first car π1.

2.1. Connections with Pitman–Stanley polytopes

Denote the set of u-parking functions by PF(u). The following propositions are direct con-
sequences of the parking criterion (1.1) and are equivalent in nature. See the beginning of
Section 2 for more explanation.

Proposition 4. Take 1 ≤ l ≤ m any integer. Let v = (v1, . . . , vl) ∈ [n]l be in increasing order.
Then π = (v1, . . . , vl, πl+1, . . . , πm) ∈ PF(m, n) if and only if (πl+1, . . . , πm) ∈ PF(u), where
the ui are the largest m − l numbers in {n − m + 1, . . . , n}\{v1, . . . , vl}, arranged in increas-
ing order.

Proposition 5. Let u = (u1, . . . , um) be a positive-integer-valued vector with u1 < · · · <
um. Let v = (v1, . . . , vl) = [u1, um]\{u1, . . . , um}, arranged in increasing order. Then π =
(v1, . . . , vl, π1, . . . , πm) ∈ PF(um − u1 + 1, um) if and only if (π1, . . . , πm) ∈ PF(u).

Knowledge about PF(u) thus yields knowledge about PF(m, n) where the first l cars have
specified parking preferences, with l depending on the gaps in u, and vice versa. In [16], Pitman
and Stanley introduced an m-dimensional polytope �m and related the number of u-parking
functions to the volume polynomial of �m. Let x = (x1, . . . , xm) with xi > 0 for all i. Let

�m(x) = {
y ∈R

m : yi ≥ 0 and y1 + · · · + yi ≤ x1 + · · · + xi, ∀i ∈ [m]
}

. (2.13)

The m-dimensional volume Vm(x) = Vol(�m(x)) is a homogeneous polynomial of degree m in
the variables x1, . . . , xm, and is called the volume polynomial of the Pitman–Stanley polytope.
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The definition of volume may be extended to when some of the xi equal zero for 2 ≤ i ≤ m.
Trivially, we take Vm(x) = 0 if x1 = 0.

Theorem 3. (Adapted from Pitman and Stanley [16].) Take m ≥ 1 any integer. Let u =
(u1, . . . , um) ∈N

m with u1 ≤ · · · ≤ um. Let x = �u = (u1, u2 − u1, . . . , um − um−1) ∈N
m. The

number of u-parking functions |PF(u)| = m!Vm(x), where the volume polynomial

Vm(x) =
∑

k∈Km

m∏
i=1

xki
i

ki! = 1

m!
∑

k∈Km

(
m

k1, . . . , km

)
xk1

1 . . . xkm
m , (2.14)

and Km is the set of balanced vectors of length m, i.e.

Km = {
k ∈N

m : k1 + · · · + ki ≥ i, ∀i ∈ [m − 1] and k1 + · · · + km = m
}
. (2.15)

Though the index set and summation formula in Theorem 3 resemble those of Theorem 2,
we will show via an example that they are not parallel interpretations for parking functions,
but rather are complementary to each other.

Example 3. Take m = 4, n = 5, u = (2, 5), v = (3, 4), and x = �u = (2, 3). Then by
Propositions 4 and 5, (v1, v2, π1, π2) ∈ PF(4, 5) and (π1, π2) ∈ PF(u) both satisfy

(π1, π2) ∈ A := {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1),

(2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)}. (2.16)

From Theorem 2,

|A| = 2

((
2

1, 1, 0

)
30201−1 +

(
2

1, 0, 1

)
301−120 +

(
2

2, 0, 0

)
411−11−1

)
= 2(2 + 2 + 4) = 16.

(2.17)
From Theorem 3,

|A| =
(

2

1, 1

)
2131 +

(
2

2, 0

)
2230 = 12 + 4 = 16. (2.18)

We see that neither of the compositions of |A| refines the other.

3. Properties of random parking functions

In this section we use the multi-shuffle construction introduced in Section 2 to investi-
gate various properties of a parking function chosen uniformly at random from PF(m, n).
Sections 3.1 through 3.4 discuss the generic situation m � n, with Section 3.1 focusing on
mixed moments of multiple coordinates and Sections 3.2 through 3.4 focusing on covariances.
Section 3.5 discusses the special situation m = n. We will write our results in terms of coordi-
nates π1, . . . , πl of parking functions, where 1 ≤ l ≤ m is any integer, and unattempted parking
spots, which we denote by ki(π) for i = 1, . . . , n − m. The parking coordinates satisfy permu-
tation symmetry while the unattempted parking spots do not, so the statements in this section
may be interpreted for any coordinates but are specific to the unattempted spots.
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3.1. Mixed moments of multiple coordinates

We begin with an asymptotic result for the mixed moments of two coordinates.

Theorem 4. Take p, q ≥ 1 any integer. Take m and n large with m = cn for some 0 < c < 1. For
a parking function π chosen uniformly at random from PF(m, n), we have

E
(
π

p
1

)= np

p + 1

(
1 + 1

n

(
p + 1

2
− cp

1 − c

)
+ O

(
1

n2

))
, (3.1)

and

E
(
π

p
1 π

q
2

)= np+q

(p + 1)(q + 1)

(
1 + 1

n

(
p + q + 2

2
− c(p + q)

1 − c

)
+ O

(
1

n2

))
. (3.2)

The proof of Theorem 4 will utilize the following lemma.

Lemma 1. Take l ≥ 1 any integer and n large. For 1 ≤ i ≤ l, take pi ≥ 1 any integer and ai ∼ n
with a1 < · · · < al. Then

∑
#{i : πi≤ak}≥k

∀k∈[l]

l∏
i=1

π
pi
i = a

∑l
i=1 pi+l

l∏l
i=1 (pi + 1)

(
1 + 1

n

(∑l
i=1 pi + l

2

)
+ O

(
1

n2

))
. (3.3)

Proof. Notice that the left side of (3.3) may be alternatively computed in stages.
Stage 1: We sum up

∏l
i=1 π

pi
i , where the πi all range from 1 to al.

Stage 2: We subtract the sum of
∏l

i=1 π
pi
i , where the πi all range from a1 + 1 to al (so none

of the πi is ≤ a1).
Stage 3: We subtract the sum of

∏l
i=1 π

pi
i , where one of the πi ranges from 1 to a1, while

the others all range from a2 + 1 to al (so only one of the πi is ≤ a2).
...

Stage l: We subtract the sum of
∏l

i=1 π
pi
i , where one of the πi ranges from 1 to a1, one

ranges from 1 to a2, . . . , one ranges from 1 to al−2, and the two remaining πi both range from
al−1 + 1 to al (so only l − 2 of the πi are ≤ al−1).

For illustration, we perform this alternative procedure when l = 3:

a3∑
π1=1

a3∑
π2=1

a3∑
π3=1

π
p1
1 π

p2
2 π

p3
3 −

a3∑
π1=a1+1

a3∑
π2=a1+1

a3∑
π3=a1+1

π
p1
1 π

p2
2 π

p3
3

−
⎛
⎝ a1∑

π1=1

π
p1
1

a3∑
π2=a2+1

a3∑
π3=a2+1

π
p2
2 π

p3
3 +

a1∑
π2=1

π
p2
2

a3∑
π1=a2+1

a3∑
π3=a2+1

π
p1
1 π

p3
3

+
a1∑

π3=1

π
p3
3

a3∑
π1=a2+1

a3∑
π2=a2+1

π
p1
1 π

p2
2

⎞
⎠ . (3.4)

Since ai ∼ n, the sums subtracted in Stages 2 through l are all of lower order than the sum in
Stage 1. The conclusion then follows from standard asymptotic analysis on the leading-order
term. �
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Proof of Theorem 4. We convert the parking preferences of the first two cars to an equivalent
increasing order:

n∑
j=1

n∑
k=1

jpkq#{π ∈ PF(m, n) : π1 = j, π2 = k} =
n−1∑
j=1

jp+q#{π ∈ PF(m, n) : π1 = j, π2 = j + 1}

+
n−1∑
j=1

n∑
k=j+1

(
jpkq + jqkp)#{π ∈ PF(m, n) : π1 = j, π2 = k}. (3.5)

By Theorem 2, the second term of (3.5) is

(n − m + 1)
n−1∑
j=1

n∑
k=j+1

(
jpkq + jqkp) m−2∑

s1=max(0,m−n+j−1)

m−2−s1∑
s2=max(0,m−n+k−2−s1)(

m − 2

s1, s2, m − 2 − s1 − s2

)
(s1 + 1 + n − m)s1−1(s2 + 1)s2−1(m − 2 − s1 − s2 + 1)m−2−s1−s2−1

= (n − m + 1)
m−2∑
s1=0

m−2−s1∑
s2=0

(
m − 2

s1, s2, m − 2 − s1 − s2

)
(s1 + 1 + n − m)s1−1(s2 + 1)s2−1·

· (m − 2 − s1 − s2 + 1)m−2−s1−s2−1
n−m+1+s1∑

j=1

n−m+2+s1+s2∑
k=j+1

(
jpkq + jqkp). (3.6)

We make a change of variables: s = s2 and t = m − 2 − s1 − s2. Then (3.6) becomes

(n − m + 1)
m−2∑
s=0

m−2−s∑
t=0

(
m − 2

s, t, m − 2 − s − t

)
(n − 1 − s − t)m−3−s−t·

· (s + 1)s−1(t + 1)t−1
n−1−s−t∑

j=1

n−t∑
k=j+1

(
jpkq + jqkp). (3.7)

Similarly, by Proposition 2, the first term of (3.5) is

(n − m + 1)
n−1∑
j=1

jp+q
m−2∑

s1=max(0,m−n+j−1)

m−2−s1∑
s2=0

(
m − 2

s1, s2, m − 2 − s1 − s2

)
·

· (s1 + 1 + n − m)s1−1(s2 + 1)s2−1(m − 2 − s1 − s2 + 1)m−2−s1−s2−1

= (n − m + 1)
m−2∑
s1=0

m−2−s1∑
s2=0

(
m − 2

s1, s2, m − 2 − s1 − s2

)
(s1 + 1 + n − m)s1−1(s2 + 1)s2−1·

· (m − 2 − s1 − s2 + 1)m−2−s1−s2−1
n−m+1+s1∑

j=1

jp+q. (3.8)
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We make a change of variables: s = s2 and t = m − 2 − s1 − s2. Then (3.8) becomes

(n − m + 1)
m−2∑
s=0

m−2−s∑
t=0

(
m − 2

s, t, m − 2 − s − t

)
(n − 1 − s − t)m−3−s−t·

· (s + 1)s−1(t + 1)t−1
n−1−s−t∑

j=1

jp+q. (3.9)

Using Lemma 1, for p, q ≥ 1, (3.7)+(3.9) is asymptotically

n − m + 1

(p + 1)(q + 1)

m−2∑
s=0

m−2−s∑
t=0

ms+t

s!t! nm−s−t+p+q−1e−c(s+t+1)(s + 1)s−1(t + 1)t−1·

·
(

1 − (s + t)(s + t + 3)

2cn
+ (s + t + 1)(s + t + 3)

n
− t(p + q + 2)

n

−c(s + t + 1)2

2n
+ p + q + 2

2n
+ O

(
n−2)) . (3.10)

The tree function F(z) =∑∞
s=0

zs

s! (s + 1)s−1 is related to the Lambert W function via F(z) =
−W( − z)/z, and satisfies F

(
ce−c

)= ec. By the chain rule its first and second derivatives
therefore satisfy

F′(ce−c)= e2c

1 − c
, F′′(ce−c)= 3 − 2c

(1 − c)3
e3c. (3.11)

We recognize that (3.10) is in the form of a Cauchy product, and converges to

n − m + 1

(p + 1)(q + 1)
nm+p+q−1e−c

∞∑
s=0

∞∑
t=0

(
ce−c

)s+t

s!t! (s + 1)s−1(t + 1)t−1·

·
(

1 + 1

n
(A + Bs + Ct + Ds2 + Et2 + Fst) + O

(
n−2)) , (3.12)

where

A = − c

2
+ 3 + p + q + 2

2
, B = −c − 3

2c
+ 4, C = −c − 3

2c
− p − q + 2,

D = − c

2
− 1

2c
+ 1, E = − c

2
− 1

2c
+ 1, F = −c − 1

c
+ 2. (3.13)

Using F(z) this can be written as follows (with z = ce−c):

n − m + 1

(p + 1)(q + 1)
nm+p+q−1·

·
[

F(z) + 1

n

(
AF(z) + (B + C)zF′(z) + (D + E)

(
z2F′′(z) + zF′(z)

)+ Fz2F′(z)
F′(z)

F(z)

)
+ O

(
n−2)] .

(3.14)

https://doi.org/10.1017/apr.2022.49 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.49


Parking functions: interdisciplinary connections 779

Dividing by |PF(m, n)| = (n − m + 1)(n + 1)m−1 and simplifying, we get

np+q

(p + 1)(q + 1)

(
1 + 1

n

(
p + q + 2

2
− c(p + q)

1 − c

)
+ O

(
1

n2

))
(3.15)

for the generic (p, q)th mixed moment.
For the special case p ≥ 1 and q = 0, a similar asymptotic calculation gives the pth moment

as
np

p + 1

(
1 + 1

n

(
p + 1

2
− cp

1 − c

)
+ O

(
1

n2

))
. (3.16)

�
Extending the asymptotic expansion approach in the proof of Theorem 4, we have the

following more general result.

Theorem 5. Take l ≥ 1 any integer. For 1 ≤ i ≤ l, take pi ≥ 1 any integer. Take m and n large
with m = cn for some 0 < c < 1. For a parking function π chosen uniformly at random from
PF(m, n), we have

E

(
l∏

i=1

π
pi
i

)
= n

∑l
i=1 pi∏l

i=1 (pi + 1)

(
1 + 1

n

(∑l
i=1 pi + l

2
− c

∑l
i=1 pi

1 − c

)
+ O

(
1

n2

))
. (3.17)

Proof. We will not include all technical details as in the l = 1, 2 case, but point out some
key facts. As in the proof of Theorem 4, using Theorem 2 and Proposition 2 and interchanging
the order of summation, we have

∑(
l∏

i=1

π
pi
i

)
{π ∈ PF(m, n) : πi specified ∀i ∈ [l]}

= (n − m + 1)
m−l∑
s1=0

· · ·
m−l−s1−···−sl−1∑

sl=0

(
m − l

s1, . . . , sl, m − l − s1 − · · · − sl

)
·

· (n − l + 1 − s1 − · · · − sl)
m−l−1−s1−···−sl

l∏
i=1

(si + 1)si−1

⎡
⎢⎢⎢⎢⎣

∑
#
{

i : πi≤n−l+k−∑l
j=k sj

}
≥k

∀k∈[l]

l∏
i=1

π
pi
i

⎤
⎥⎥⎥⎥⎦ .

(3.18)

By Lemma 1, for pi ≥ 1, (3.18) is asymptotically

n − m + 1∏l
i=1 (pi + 1)

m−l∑
s1=0

· · ·
m−l−s1−···−sl−1∑

sl=0

m
∑l

i=1 si∏l
i=1 si!

nm−1+∑l
i=1 (pi−si)e

−c
(

l−1+∑l
i=1 si

) l∏
i=1

(si + 1)si−1·

·
⎛
⎝1 −

(∑l
i=1 si

) (
2l − 1 +∑l

i=1 si

)
2cn

+
(

l − 1 +∑l
i=1 si

) (
l + 1 +∑l

i=1 si

)
n

−
sl

(∑l
i=1 pi + l

)
n

−
c
(

l − 1 +∑l
i=1 si

)2

2n
+
∑l

i=1 pi + l

2n
+ O

(
n−2

)⎞⎟⎠ . (3.19)
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Let F(z) =∑∞
s=0

zs

s! (s + 1)s−1. An application of the tree function method shows that (3.19)
converges to

n − m + 1∏l
i=1 (pi + 1)

nm−1+∑l
i=1 pi ·

·
[

F(z) + 1

n

(
AF(z) +

(
Bl −

l∑
i=1

pi − l

)
zF′(z) + Cl

(
z2F′′(z) + zF′(z)

)+ D

(
l

2

)
z2F′(z)

F′(z)

F(z)

)

+ O
(
n−2)], (3.20)

where

A = −c(l − 1)2

2
+ (l2 − 1) +

∑l
i=1 pi + l

2
, B = −c(l − 1) − 2l − 1

2c
+ 2l,

C = − c

2
− 1

2c
+ 1, D = −c − 1

c
+ 2. (3.21)

Dividing by |PF(m, n)| = (n − m + 1)(n + 1)m−1 and simplifying, we get

n
∑l

i=1 pi∏l
i=1 (pi + 1)

(
1 + 1

n

(∑l
i=1 pi + l

2
− c

∑l
i=1 pi

1 − c

)
+ O

(
1

n2

))
(3.22)

for the generic mixed moment. �
Record the parking outcome of π ∈ PF(m, n) as τ (π) = (τ1, . . . , τm), where the ith car parks

in spot τi with 1 ≤ τi ≤ n. An asymptotic argument similar to the one in the proof of Theorems
4 and 5 leads to the following.

Theorem 6. Take l ≥ 1 any integer. For 1 ≤ i ≤ l, take pi ≥ 1 any integer. Take m and n large
with m = cn for some 0 < c < 1. For a parking function π chosen uniformly at random from
PF(m, n), we have

E

(
l∏

i=1

τ
pi
i

)
= n

∑l
i=1 pi∏l

i=1 (pi + 1)

(
1 + 1

n

(∑l
i=1 pi + l

2
− c

∑l
i=1 pi

1 − c

)
+ O

(
1

n2

))
, (3.23)

where τ is the parking outcome of π . In particular, for any finite i,

E
(
τ

pi
i

)= npi

pi + 1

(
1 + 1

n

(
pi + 1

2
− cpi

1 − c

)
+ O

(
1

n2

))
. (3.24)

We will now deduce all possible covariances of parking functions: between two coordinates,
between a coordinate and an unattempted spot, and between two unattempted spots. As for
the mixed moment calculations in Section 3.1, combinatorial considerations and asymptotic
expansion will be the central ingredients in our derivations.

3.2. Covariance between two coordinates

Proposition 6. Take m and n large with m = cn for some 0 < c < 1. For a parking function π

chosen uniformly at random from PF(m, n), we have

Var(π1) ∼ 1

12
n2 − c

6(1 − c)
n, Cov(π1, π2) ∼ − 1

4(1 − c)2
. (3.25)
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Proof. For p = q = 1, performing asymptotic expansion as in the proof of Theorem 4 but
keeping more lower-order terms, we have that

n∑
j=1

n∑
k=1

jk#{π ∈ PF(m, n) : π1 = j, π2 = k}

converges to

n − m + 1

4
nm+1e−c

∞∑
s=0

∞∑
t=0

(
ce−c

)s+t

s!t! (s + 1)s−1(t + 1)t−1·

·
(

1 +
(

A1 + A2s + A3t + A4s2 + A5t2 + A6st
)1

n
+
(

B1 + B2s + B3t + B4s2 + B5t2 + B6st+

+B7s2t + B8st2 + B9s3 + B10t3 + B11s3t + B12st3 + B13s2t2 + B14s4 + B15t4
) 1

n2
+ O

(
n−3)),

where

A1 = − c

2
+ 5, A2 + A3 = −2c − 3

c
+ 4,

A4 + A5 = −c − 1

c
+ 2, A6 = −c − 1

c
+ 2,

B1 = c2

8
− 17c

6
+ 9, B2 + B3 = c2 − 13

6c2
− 14c − 15

c
+ 45

2
,

B4 + B5 = 3c2

2
+ 3

4c2
− 12c − 11

c
+ 41

2
, B6 = 3c2

2
+ 3

4c2
− 12c − 11

c
+ 37

2
,

B7 + B8 = 3c2 + 7

2c2
− 14c − 15

c
+ 45

2
, B9 + B10 = c2 + 7

6c2
− 14c

3
− 5

c
+ 15

2
,

B11 + B12 = c2 + 1

c2
− 4c − 4

c
+ 6, B13 = 3c2

4
+ 3

4c2
− 3c − 3

c
+ 9

2
,

B14 + B15 = c2

4
+ 1

4c2
− c − 1

c
+ 3

2
. (3.26)

A more involved application of the tree function method then yields

E(π1π2) ∼ n2

4
+ (1 − 2c)n

2(1 − c)
+ 1 − c + 3c2 − 2c3

2(1 − c)3
. (3.27)

The same approach also yields

E(π1) ∼ n

2
+ 1 − 2c

2(1 − c)
+ 1 + c − c2

2(1 − c)3n
. (3.28)

The claimed asymptotics are then immediate. �

3.3. Covariance between a coordinate and an unattempted spot

Recall that for a parking function π ∈ PF(m, n), there are n − m parking spots that are never
attempted by any car. Let ki(π) for i = 1, . . . , n − m represent these spots, so that 0 := k0 <

k1 < · · · < kn−m < kn−m+1 := n + 1. Let

PF(m, n; i, k) = {π ∈ PF(m, n) : ki(π) = k}, (3.29)
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consisting of parking functions where the ith empty spot is fixed at k. The unattempted spot
k ranges from i to m + i and breaks up the parking function π into two components α and β,
with α ∈ PF(k − i, k − 1) and β ∈ PF(m − k + i, n − k), and π a shuffle of the two. From the
parking scheme, if j < k and π = (j, π2, . . . , πm) ∈ PF(m, n; i, k), then π ′ = (l, π2, . . . , πm) ∈
PF(m, n; i, k) for all 1 ≤ l ≤ j, while if j > k and π = (j, π2, . . . , πm) ∈ PF(m, n; i, k), then
π ′ = (l, π2, . . . , πm) ∈ PF(m, n; i, k) for all k + 1 ≤ l ≤ j. This implies that given the last m − 1
parking preferences, it is sufficient to identify the largest feasible first preference (if any
exists).

Theorem 7. We have that π = (j, π2, . . . , πm) is in PF(m, n; i, k) but π ′ = (j + 1, π2, . . . , πm)
is not if and only if either (1) i ≤ j ≤ k − 1 and (π2, . . . , πm) is a multi-shuffle of
α ∈ PF(j − i, j − 1), β ∈ PF(k − j − 1, k − j − 1), and γ ∈ PF(m − k + i, n − k); or (2) j ≥
n − m − i + k + 1 and (π2, . . . , πm) is a multi-shuffle of α ∈ PF(k − i, k − 1), β ∈ PF(j − k −
1 − n + m + i, j − k − 1), and γ ∈ PF(n − j, n − j).

Proof. The proof builds upon Theorem 1.
First suppose j < k. Then (π2, . . . , πm) = (δ1, . . . , δk−i−1, γ1, . . . , γm−k+i) := (δ, γ ),

where δ consists of cars with preference ≤ k − 1 and γ consists of cars with preference ≥ k + 1.
It is clear that (π1, δ) ∈ PF(k − i, k − 1) and γ ∈ PF(m − k + i, n − k). The statement of the the-
orem is equivalent to identifying j such that Aδ = [j]. From Theorem 1, j ≥ i and δ is a shuffle
of α ∈ PF(j − i, j − 1) and β ∈ PF(k − j − 1, k − j − 1).

Next suppose j > k. Then (π2, . . . , πm) = (α1, . . . , αk−i, δ1, . . . , δm−k+i−1) := (α, δ),
where α consists of cars with preference ≤ k − 1 and δ consists of cars with preference
≥ k + 1. It is clear that α ∈ PF(k − i, k − 1) and (π1, δ) ∈ PF(m − k + i, n − k). The state-
ment of the theorem is equivalent to identifying j such that Aδ = [j − k]. From Theorem 1,
j − k ≥ n − m − i + 1 and δ is a shuffle of β ∈ PF(j − k − 1 − n + m + i, j − k − 1) and γ ∈
PF(n − j, n − j). �

Proposition 7. Take 1 ≤ i ≤ n − m any integer. Take i ≤ k ≤ m + i any integer. For j < k, the
number of parking functions π ∈ PF(m, n) with π1 = j and ki = k is

(
m − 1

m − k + i

)
i(n − m − i + 1)(n − k + 1)m−k+i−1

min(k−i−1,k−j−1)∑
s=0(

k − i − 1

s

)
(k − 1 − s)k−i−s−2(s + 1)s−1. (3.30)

Note that this quantity stays constant for j ≤ i and decreases as j increases past i, as there
are fewer resulting summands. For j > k, the number of parking functions π ∈ PF(m, n) with
π1 = j and ki = k is

(
m − 1

k − i

)
ikk−i−1(n − m − i + 1)

min(m+i−k−1,n−j)∑
s=0

(
m − k + i − 1

s

)
(n − k − s)m+i−k−s−2(s + 1)s−1.

(3.31)

Note that this quantity stays constant for j ≤ n − m − i + k + 1 and decreases as j increases
past n − m − i + k + 1, as there are fewer resulting summands.
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Proof. If π1 = j < k, then the maximal π1 consistent with π2, . . . , πm and ki is some l ≥
max(j, i) and ≤ k − 1. Thus, from Theorem 7, the number of parking functions with π1 = j and
ki = k is

k−1∑
l=max(j,i)

(
m − 1

l − i, k − l − 1, m − k + i

)
|PF(l − i, l − 1)|·

· |PF(k − l − 1, k − l − 1)||PF(m − k + i, n − k)|

=
k−1∑

l=max(j,i)

(
m − 1

l − i, k − l − 1, m − k + i

)
i(n − m − i + 1)ll−i−1(k − l)k−l−2(n − k + 1)m−k+i−1

=
(

m − 1

m − k + i

)
i(n − m − i + 1)(n − k + 1)m−k+i−1·

·
min(k−i−1,k−j−1)∑

s=0

(
k − i − 1

s

)
(k − 1 − s)k−i−s−2(s + 1)s−1, (3.32)

where the last equality comes from a change of variables s = k − l − 1.
If π1 = j > k, then the maximal π1 consistent with π2, . . . , πm and ki is some l ≥ max(j, n −

m − i + k + 1). Thus, from Theorem 7, the number of parking functions with π1 = j and
ki = k is

n∑
l=max(j,n−m−i+k+1)

(
m − 1

k − i, l − k − 1 − n + m + i, n − l

)
|PF(k − i, k − 1)|·

· |PF(l − k − 1 − n + m + i, l − k − 1)||PF(n − l, n − l)|

=
n∑

l=max(j,n−m−i+k+1)

(
m − 1

k − i, l − k − 1 − n + m + i, n − l

)
ikk−i−1(n − m − i + 1)·

· (l − k)l−k−n+m+i−2(n − l + 1)n−l−1

=
(

m − 1

k − i

)
ikk−i−1(n − m − i + 1)·

·
min(m+i−k−1,n−j)∑

s=0

(
m − k + i − 1

s

)
(n − k − s)m+i−k−s−2(s + 1)s−1,

where the last equality comes from a change of variables s = n − l. �

Proposition 8. Take i ≥ 1 any integer. Take m and n large with m = cn for some 0 < c < 1. For
a parking function π chosen uniformly at random from PF(m, n), we have

Cov(π1, ki) ∼ − i

2(1 − c)2
. (3.33)
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Proof. From Proposition 7 and interchanging the order of summation, we have

m+i∑
k=i

k

⎛
⎝k−1∑

j=1

j#{π ∈ PF(m, n) : π1 = j, ki = k} +
n∑

j=k+1

j#{π ∈ PF(m, n) : π1 = j, ki = k}
⎞
⎠

= 1

2
i(n − m − i + 1)

⎡
⎣m−1∑

s=0

m+i∑
k=i+1+s

(
m − 1

m − k + i, s, k − i − s − 1

)
k(n − k + 1)m−k+i−1·

· (k − 1 − s)k−i−s(s + 1)s−1
(

1 + 1

k − 1 − s

)

+
m−1∑
s=0

m+i−1−s∑
k=i

(
m − 1

k − i, s, m − k + i − 1 − s

)
kk−i(n − k − s)m+i−k−s(s + 1)s−1

(
1 + 2k + 1

n − k − s

)]
.

(3.34)

We make a change of variables: t = k − i − s − 1 in the first sum and t = k − i in the second
sum. Then (3.34) becomes

1

2
i(n − m − i + 1)

m−1∑
s=0

m−1−s∑
t=0

(
m − 1

s, t, m − 1 − s − t

)
(n − i − s − t)m−s−t−2(s + 1)s−1·

·
[

(s + t + i + 1)(t + i)t+1
(

1 + 1

t + i

)
+ (t + i)t(n − i − s − t)2

(
1 + 2(t + i) + 1

n − i − s − t

)]

= 1

2
i(n − m − i + 1)nme−ic

m−1∑
s=0

m−1−s∑
t=0

(
ce−c

)s+t

s!t! (s + 1)s−1(t + i)t·

·
(

1 − (s + t)(s + t + 1)

2cn
− c(s + t + i)2

2n
+ (s + t + i)(s + t)

n
+ 2(t + i) + 1

n
+ O

(
n−2

))
.

(3.35)

The generalized tree function Fi(z) =∑∞
s=0

zs

s! (s + i)s−1 is related to the tree function F1(z)

via Fi(z) = (F1(z))i/i, and satisfies Fi
(
ce−c

)= eic/i. Furthermore, Gi(z) =∑∞
s=0

zs

s! (s + i)s =
(Fi−1(z))′. By the chain rule, the first and second derivatives of F1(z) and Gi(z) therefore
respectively satisfy

F′
1

(
ce−c)= e2c

1 − c
, F′′

1

(
ce−c)= 3 − 2c

(1 − c)3
e3c,

Gi
(
ce−c)= eic

1 − c
, G′

i

(
ce−c)= i + 1 − ic

(1 − c)3
e(i+1)c, (3.36)

G′′
i

(
ce−c)= (1 − c)2i2 + (1 − c)(4 − c)i + (4 − c)

(1 − c)5
e(i+2)c.

We recognize that (3.35) is in the form of a Cauchy product, and converges to

1

2
i(n − m − i + 1)nme−ic

∞∑
s=0

∞∑
t=0

(
ce−c

)s+t

s!t! (s + 1)s−1(t + i)t·

·
(

1 + 1

n
(A + Bs + Ct + Ds2 + Et2 + Fst) + O

(
n−2)) ,
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where

A = 1 + 2i − ci2

2
, B = − 1

2c
+ i − ci,

C = − 1

2c
+ i − ci + 2, D = 1 − 1

2c
− c

2
, (3.37)

E = 1 − 1

2c
− c

2
, F = 2 − 1

c
− c.

Using F1(z) and Gi(z), this can be written as follows (with z = ce−c):

1

2
i(n − m − i + 1)nme−ic

[
F1(z)Gi(z) + 1

n

(
AF1(z)Gi(z) + BzF′

1(z)Gi(z) + CzF1(z)G′
i(z) +

D
(
z2F′′

1 (z) + zF′
1(z)

)
Gi(z) + EF1(z)

(
z2G′′

i (z) + zG′
i(z)

)+ Fz2F′
1(z)G′

i(z)
)

+ O

(
1

n2

)]
.

(3.38)

Dividing by |PF(m, n)| = (n − m + 1)(n + 1)m−1 and simplifying, we get

E(π1ki) ∼ in

2(1 − c)
− 3ic

2(1 − c)2
. (3.39)

The same approach also yields

E(ki) ∼ i

1 − c
− ic

(1 − c)2n
. (3.40)

If we combine these with Theorem 4, the claimed asymptotics are then immediate. �

3.4. Covariance between two unattempted spots

Proposition 9. Take 1 ≤ i < j any pair of distinct integers. Take m and n large with m = cn for
some 0 < c < 1. For a parking function π chosen uniformly at random from PF(m, n), we have

Var(ki) ∼ ic

(1 − c)3
, Cov(ki, kj) ∼ ic

(1 − c)3
. (3.41)

Proof. Take ki(π ) = k and kj(π ) = l. The unattempted spot k ranges from i to m + i, and
the unattempted spot l ranges from k − i + j to m + j. The two unattempted spots break up
the parking function π into three components α, β, and γ , with α ∈ PF(k − i, k − 1), β ∈
PF(l − k − j + i, l − k − 1), and γ ∈ PF(m − l + j, n − l), and π a multi-shuffle of the three. We
have

m+i∑
k=i

k
m+j∑

l=k−i+j

l#{π ∈ PF(m, n) : ki = k, kj = l}

=
m+i∑
k=i

k
m+j∑

l=k−i+j

l

(
m

k − i, l − k − j + i, m − l + j

)
ikk−i−1·

· (j − i)(l − k)l−k−j+i−1(n − m − j + 1)(n − l + 1)m−l+j−1. (3.42)
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We make a change of variables: s = k − i and t = l − k − j + i. Then (3.42) becomes

i(j − i)(n − m − j + 1)
m∑

s=0

m−s∑
t=0

(
m

s, t, m − s − t

)
(s + i)s(t + j − i)t−1·

· (j + s + t)(n − j − s − t + 1)m−s−t−1

= i(j − i)(n − m − j + 1)nm−1e−c(j−1)
m∑

s=0

m−s∑
t=0

(
ce−c

)s+t

s!t! ·

·
[
(s + i)s+1(t + j − i)t−1 + (s + i)s(t + j − i)t

] (
1 + O

(
n−1

))
. (3.43)

The generalized tree function Fi(z) =∑∞
s=0

zs

s! (s + i)s−1 is related to the tree function F1(z)

via Fi(z) = (F1(z))i/i, and satisfies Fi
(
ce−c

)= eic/i. Furthermore, Gi(z) =∑∞
s=0

zs

s! (s + i)s =
(Fi−1(z))′ and Hi(z) =∑∞

s=0
zs

s! (s + i)s+1 = (Fi−2(z))′′. By the chain rule, Gi(z) and Hi(z)
therefore respectively satisfy

Gi
(
ce−c)= eic

1 − c
, Hi

(
ce−c)= (1 − c)i + c

(1 − c)3
eic. (3.44)

We recognize that (3.43) is in the form of a Cauchy product, and converges to

i(j − i)(n − m − j + 1)nm−1e−c(j−1)·

·
∞∑

s=0

∞∑
t=0

(
ce−c

)s+t

s!t!
[
(s + i)s+1(t + j − i)t−1 + (s + i)s(t + j − i)t

] (
1 + O

(
n−1

))
.

Using Fi(z), Gi(z), and Hi(z), this can be written as follows (with z = ce−c):

i(j − i)(n − m − j + 1)nm−1e−c(j−1)
[

Hi(z)Fj−i(z) + Gi(z)Gj−i(z) + O

(
1

n

) ]
. (3.45)

Dividing by |PF(m, n)| = (n − m + 1)(n + 1)m−1 and simplifying, we get

E(kikj) ∼ i(c + j − jc)

(1 − c)3
. (3.46)

The same approach also yields

E(k2
i ) ∼ i(c + i − ic)

(1 − c)3
. (3.47)

If we combine these with (3.40), the claimed asymptotics are then immediate.

3.5. The special situation m = n

The asymptotic moment calculations in Sections 3.1, 3.2, 3.3, and 3.4 could alternatively be
approached via Abel’s multinomial theorem. Unlike the tree function method, which fails for
the case m = n because of divergence, Abel’s multinomial theorem applies broadly, whether in
the generic case m � n or in the special case m = n. However, calculation-wise, it is in general
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more cumbersome to apply Abel’s multinomial theorem than the tree function method, so we
only use this alternative approach when m = n.

Theorem 8. (Abel’s multinomial theorem, derived from Pitman [15] and Riordan [17].) Let

An(x1, . . . , xm; p1, . . . , pm) =
∑(

n

s

) m∏
j=1

(xj + sj)
sj+pj , (3.48)

where s = (s1, . . . , sm) and
∑m

i=1 si = n. Then

An(x1, . . . , xi, . . . , xj, . . . , xm; p1, . . . , pi, . . . , pj, . . . , pm)

= An(x1, . . . , xj, . . . , xi, . . . , xm; p1, . . . , pj, . . . , pi, . . . , pm); (3.49)

An(x1, . . . , xm; p1, . . . , pm)

=
m∑

i=1

An−1(x1, . . . , xi−1, xi + 1, xi+1, . . . , xm; p1, . . . , pi−1, pi + 1, pi+1, . . . , pm);

(3.50)

An(x1, . . . , xm; p1, . . . , pm) =
n∑

s=0

(
n

s

)
s!(x1 + s)An−s(x1 + s, x2, . . . , xm; p1 − 1, p2, . . . , pm).

(3.51)

Moreover, the following special instances hold via the basic recurrences listed above:

An(x1, . . . , xm; −1, . . . , −1) = (x1 · · · xm)−1(x1 + · · · + xm)(x1 + · · · + xm + n)n−1; (3.52)

An(x1, . . . , xm; − 1, . . . , −1, 0) = (x1 · · · xm)−1xm(x1 + · · · + xm + n)n. (3.53)

We recognize that in computing E
(∏l

i=1 π
pi
i

)
in Theorem 5, (3.18) is asymptotically

n − m + 1∏l
i=1 (pi + 1)

⎛
⎝Am−l

(
n − m + 1, 1, . . . , 1

l1′s
;

l∑
i=1

pi + l − 1, −1, . . . , −1
l−1′s

)

+ (l − 1)

(
l∑

i=1

pi + l

)
Am−l

(
n − m + 1, 1, . . . , 1

l1′s
;

l∑
i=1

pi + l − 2, 0, −1, . . . , −1
l−1 −1′s

)

+1

2

(
l∑

i=1

pi + l

)
Am−l

(
n − m + 1, 1, . . . , 1

l1′s
;

l∑
i=1

pi + l − 2, −1, . . . , −1
l−1′s

)⎞
⎠ . (3.54)

This is a general formula that works for any m, n, and l. When m = n, taking l = 1, 2, we have

E(π1) ∼ n

2
−

√
2π

4
n1/2 + 5

3
, (3.55)

E(π1π2) ∼ n2

4
−

√
2π

4
n3/2 + 2n. (3.56)

These asymptotic results are in sharp contrast with the case m = cn for some 0 < c < 1. As
c → 1, the correction terms in (3.27) and (3.28) blow up, contributing to the difference between
the asymptotic orders in the generic situation m � n and the special situation m = n.
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4. Interval parking functions

In this section we study a generalization of the parking functions PF(m, n) in which the ith
car is willing to park only in an interval [ai, bi] ⊆ {1, . . . , n}. If all cars can successfully park
then we say that the pair (a, b) = ((a1, . . . , am), (b1, . . . , bm)) is an interval parking function
with m cars and n spots, or IPF(m, n). If bi = n for all i, then we recover a parking function
PF(m, n).

Let τ (·) denote the parking outcome of either a parking function or an interval parking
function. The following propositions for IPF(m, n) generalize the corresponding results for the
special case IPF(n, n) discussed in [5].

Proposition 10. Let a, b ∈ [n]m. Then the following hold:

1. a ∈ PF(m, n) if and only if (a, (n, . . . , n)) ∈ IPF(m, n).

2. (a, b) ∈ IPF(m, n) if and only if a ∈ PF(m, n) and τ (a) ≤C b.

Proof. These equivalences follow directly from the definition.

Proposition 11. Let c = (a, b) ∈ IPF(m, n). Then the following hold:

1. b∗ ∈ PF(m, n).

2. a ≤C τ (c) ≤C b and τ (b∗)∗ ≤C b.

Proof. Evidently a ≤C τ (c) ≤C b. Since τ (c) is a parking outcome, it consists of dis-
tinct entries, and so its non-decreasing rearrangement λ = (λ1, . . . , λm) satisfies λi ≥ i for
all 1 ≤ i ≤ m. It follows that τ (c)∗ also consists of distinct entries, and its non-decreasing
rearrangement λ∗ = (λ∗

1, . . . , λ∗
m) = (n + 1 − λm, . . . , n + 1 − λ1) satisfies λ∗

i ≤ n − m + i for
all 1 ≤ i ≤ m. Therefore τ (c)∗ ∈ PF(m, n). From τ (c) ≤C b, one has b∗ ≤C τ (c)∗. Hence b∗ ∈
PF(m, n). This implies that b∗ ≤C τ (b∗), and further implies that τ (b∗)∗ ≤C b. �

Proposition 12. The number of interval parking functions |IPF(m, n)| satisfies

|IPF(m, n)| =
∑
s|=m

(
m

s

) n−m+1∏
i=1

(si + 1)si−1 n!∏n−m
i=1 (n − i + 1 − s1 − · · · − si)

, (4.1)

where s = (s1, . . . , sn−m+1) is a composition of m. In particular,

|IPF(n, n)| = n!(n + 1)n−1. (4.2)

Proof. For an interval parking function c = (a, b) ∈ IPF(m, n), there are n − m parking spots
that are never attempted by any car. Let ki(π ) for i = 1, . . . , n − m represent these spots, so that
0 := k0 < k1 < · · · < kn−m < kn−m+1 := n + 1. This separates a ∈ PF(m, n) into n − m + 1
disjoint non-interacting segments (some segments might be empty), with each segment a
classical parking function of length (ki − ki−1 − 1) after translation. The parking outcome is
τ (c) = τ (a), and for every a ∈ PF(m, n), there are precisely n!/∏n−m

i=1 (n − ki + 1) choices for
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b such that (a, b) ∈ IPF(m, n). We have

|IPF(m, n)| =
∑

k

n−m+1∏
i=1

(ki − ki−1)ki−ki−1−2 n!∏n−m
i=1 (n − ki + 1)

·

·
(

m

k1 − k0 − 1, . . . , kn−m+1 − kn−m − 1

)

=
∑
s|=m

(
m

s1, . . . , sn−m+1

) n−m+1∏
i=1

(si + 1)si−1 n!∏n−m
i=1 (n − i + 1 − s1 − · · · − si)

, (4.3)

where s = (k1 − k0 − 1, . . . , kn−m+1 − kn−m − 1) and
∑n−m+1

i=1 si = m. �
From (4.2), we recognize that the number of interval parking functions IPF(n, n) coincides

with the number of edge-labeled spanning trees of Kn+1. The rest of Section 4 will focus on
this combinatorial implication. We first present some background material on the symmetric
group.

4.1. The symmetric group as a Coxeter system

Denote by Sn the symmetric group on n letters. We set e = (1, . . . , n) (the identity permu-
tation) and w0 = (n, n − 1, . . . , 1). We denote by tij the permutation transposing i and j and
fixing all other values, and take si = ti,i+1. The elements s1, . . . , sn−1 are termed the standard
generators. Our convention for multiplication is right to left, which is consistent with treating
permutations as bijective functions from [n] → [n]. Thus tijx is obtained by transposing the
digits i,j wherever they appear in x, while xtij is obtained by transposing the digits in the ith
and jth positions.

The theory of normal forms in a Coxeter system was introduced by du Cloux [8] and is
elaborated in Björner and Brenti [2]. The symmetric group Sn may be viewed as a Coxeter
system of type A, with generators S = {s1, . . . , sn−1}. The length l(x) of x ∈Sn is the smallest
number k such that x can be written as a product si1 · · · sik of standard generators; in this case
si1 · · · sik is called a reduced word for x. It is a standard fact that length equals number of
inversions:

l(x) = {(i, j): 1 ≤ i < j ≤ n, x(i) > x(j)}. (4.4)

Let σk = sk · · · s1. Every x ∈Sn has a unique normal form: a reduced word N(x) of the form
v1 · · · vn−1, where vk = e or vk = sk · · · sj for some 1 ≤ j ≤ k is a prefix of σk. For example,
l(e) = 0, N(e) = e, and l(w0) = n(n − 1)/2, N(w0) = σ1 · · · σn−1. It is straightforward to obtain
the permutation x given its normal form N(x). Conversely, since xv−1

n−1 · · · v−1
1 = e, we may

interpret the normal-form decomposition of x in an alternative way: start with the permutation
x. Then v−1

n−1 corresponds to a sequence of adjacent transpositions that moves the value n in

x to the right until it is in the last position (if n is already in the last position, then v−1
n−1 = e).

Similarly, v−1
n−2 corresponds to a sequence of adjacent transpositions that moves the value n − 1

in xv−1
n−1 to the right until it is in the next-to-last position (if n − 1 is already in the next-to-last

position, then v−1
n−2 = e); and so on. Thus x is fully characterized by the sequence

λ(x) = (λ1(x), . . . , λn−1(x)) = (|v1|, . . . , |vn−1|) ∈ [0, 1] × · · · × [0, n − 1]. (4.5)

This describes an explicit bijection between Sn and C2 × · · · × Cn, where Ci is a chain with i
elements.
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4.2. One-to-one correspondence between interval parking functions IPF(n, n) and
edge-labeled spanning trees of Kn + 1

Recall the classical result that there exists a bijection between parking functions PF(n, n)
and spanning trees of Kn+1, using the concepts of specification and order permutation.
Building upon this result, we will construct a bijection between interval parking functions
IPF(n, n) and edge-labeled spanning trees of Kn+1, where the vertices are labeled 0 through n
(vertex 0 is the root) and the edges are labeled 1 through n.

As illustrated in Chassaing and Marckert [4] and Yan [21], a parking function π ∈ PF(n, n)
may be uniquely determined by its associated specification r(π) and order permutation σ (π).
Here the specification is r(π) = (r1, . . . , rn), where rk = #{i : πi = k} records the number of
cars whose first preference is spot k. The order permutation σ (π) ∈Sn, on the other hand, is
defined by

σi = |{j : πj < πi, or πj = πi and j ≤ i}|, (4.6)

and so is the permutation that orders the list, without switching elements which are the same. In
words, σi is the position of the entry πi in the non-decreasing rearrangement of π . Conversely,
we can easily recover a parking function π by replacing i in σ (π) with the ith smallest term in
the sequence 1r1 . . . nrn .

However, not every pair of a length-n vector r and a permutation σ ∈Sn can be the
specification and the order permutation of a parking function from PF(n, n). The vec-
tor and the permutation must be compatible with each other, in the sense that the terms
1 +∑k−1

i=1 ri, . . . ,
∑k

i=1 ri appear from left to right in σ for every k to satisfy the non-
decreasing rearrangement requirement of π . Moreover, the specification r should satisfy a
balance condition:

j∑
s=1

rs ≥ j, ∀1 ≤ j ≤ n,

n∑
s=1

rs = n. (4.7)

Let C(n) be the set of all compatible pairs.
Denote by F(n + 1) the set of spanning trees of Kn+1, where the vertices are labeled

0 through n and vertex 0 is the root. Furthermore, denote by Fe(n + 1) the set of edge-
labeled spanning trees of Kn+1, where the edges, in addition to the vertices, are also labeled 1
through n.

Theorem 9. (Adapted from Yan [21].) The set C(n) is in one-to-one correspondence with
PF(n, n), and is also in one-to-one correspondence with F(n + 1).

Theorem 10. There is a one-to-one correspondence between IPF(n, n) and Fe(n + 1), the set
of edge-labeled spanning trees of Kn+1.

Proof. By Proposition 10, (a, b) ∈ IPF(n, n) is equivalent to a ∈ PF(n, n) and τ (a) ≤C b.
Using Theorem 9, a is in one-to-one correspondence with a spanning tree of Kn+1, where a
determines the shape and vertex labels of the spanning tree. Since τ (a) is a permutation on n
letters, b − τ (a) takes values in C1 × · · · × Cn, where Ci is a chain of length i (after reordering
the indices). Using the results on Coxeter systems from Section 4.1, this gives an association
between b and the edge labels of the spanning tree.

We illustrate the map with a representative example. See Figure 1, which represents an
element of Fe(10). We read the vertices in ‘breadth-first search’ (BFS) order: v0, . . . , v9 =
0, 2, 5, 9, 6, 1, 8, 4, 7, 3. That is, read the root vertex first, then all vertices at level one (dis-
tance one from the root), then those at level two (distance two from the root), and so on,
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FIGURE 1. Edge-labeled spanning tree of complete graph.

where vertices at a given level are naturally ordered in order of increasing predecessor, and,
if they have the same predecessor, increasing order. We let σ = 259618473 be this vertex
ordering once we remove the root vertex. We also record the edges incident with the vertices
as x = 569341827, with associated normal form λ(x) = (0, 2, 2, 4, 4, 0, 2, 6) ∈ C2 × · · · × C9.
We let ri record the number of successors of vi; that is, r = (3, 1, 2, 1, 1, 0, 1, 0, 0). Now
r is balanced and σ−1 = 519724863 is compatible with r, by virtue of the fact that ver-
tices with the same predecessor are read in increasing order. The corresponding parking
function is a = (3, 1, 7, 4, 1, 2, 5, 3, 1), with parking outcome τ (a) = (3, 1, 7, 4, 2, 5, 6, 8, 9).
Thus b − τ (a) ∈ C7 × C9 × C3 × C6 × C8 × C5 × C4 × C2 × C1. Reordering the indices in
λ(x) and adding an extra 0 (for C1), we have b − τ (a) = (0, 6, 2, 4, 2, 4, 2, 0, 0). Hence
b = (3, 7, 9, 8, 4, 9, 8, 8, 9). The interval parking function connected with this edge-labeled
spanning tree is c = (a, b) = ((3, 1, 7, 4, 1, 2, 5, 3, 1), (3, 7, 9, 8, 4, 9, 8, 8, 9)).

The above one-to-one correspondence between edge-labeled spanning trees and interval
parking functions does not depend on using the BFS algorithm; any other algorithm which
builds up a tree one edge at a time through a sequence of growing subtrees will give an alterna-
tive bijection. Generally, an algorithm checks the vertices of the tree one by one, starting with
the root. At each step, we pick a new vertex and connect it to the checked vertices. The choice
function (which defines the algorithm) tells us which new vertex to pick. �

Equivalently, we could view the edge-labeled spanning tree of Kn+1 as the spanning tree of
a complete bipartite graph of Kn,n+1 where the first group has n vertices labeled 1 through n
and the second group has n + 1 vertices labeled 0 through n, and every vertex in the first group
has two incident edges. Two vertices i and j of Kn+1 are connected with edge label k if and
only if vertices i and j in the second group of Kn,n+1 are both connected to vertex k in the first
group. This is a one-to-one correspondence, since vertex k must be unique, as otherwise this
creates a cycle in Kn,n+1. See Figure 2 for a transformed view of Figure 1.

The author acknowledges helpful conversations with Jeremy L. Martin, and is particularly
thankful to Richard Kenyon for many enlightening comments.

Funding information

The author’s research was supported in part by the University of Denver’s Faculty Research
Fund 84688-145601 and Professional Research Opportunities for Faculty Fund 80369-145601.

https://doi.org/10.1017/apr.2022.49 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.49


792 M. YIN

FIGURE 2. Spanning tree of complete bipartite graph.
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