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Abstract
One of the elegant achievements in the history of proof theory is the characterization of the provably
total recursive functions of an arithmetical theory by its proof-theoretic ordinal as a way to measure
the time complexity of the functions. Unfortunately, the machinery is not sufficiently fine-grained to be
applicable on the weak theories, on the one hand and to capture the bounded functions with bounded
definitions of strong theories, on the other. In this paper, we develop such a machinery to address the
bounded theorems of both strong and weak theories of arithmetic. In the first part, we provide a refined
version of ordinal analysis to capture the feasibly definable and bounded functions that are provably total in
PA+⋃

β≺α
TI(≺β), the extension of Peano arithmetic by transfinite induction up to the ordinals below α.

Roughly speaking, we identify the functions as the ones that are computable by a sequence of PV-provable
polynomial time modifications on an initial polynomial time value, where the computational steps are
indexed by the ordinals below α, decreasing by the modifications. In the second part, and choosing l≤ k,
we use similar technique to capture the functions with bounded definitions in the theory Tk

2 (resp. Sk2) as the
functions computable by exponentially (resp. polynomially) long sequence of PVk−l+1-provable reductions
between l-turn games starting with an explicit PVk−l+1-provable winning strategy for the first game.

Keywords: Total search problems; ordinal analysis; bounded arithmetic; local search programs

1. Introduction
One of the elegant achievements in the history of proof theory is the witnessing techniques con-
necting the provability of a formula of a certain form to the existence of a computational entity
(algorithm (Troelstra 1998), function (Fairtlough andWainer 1998), term in a type theory (Avigad
and Feferman 1998), etc.) that witnesses the truth of the formula. These connections identify the
power of the theories, and they are useful to establish the unprovability of a formula by showing
the nonexistence of the corresponding witness. As an example, consider the ordinal analysis as
one of the well-known witnessing techniques that among many other things provides a charac-
terization for the provably total recursive functions of some mathematical theories (Buss 1994;
Fairtlough and Wainer 1998; Kreisel 1952). (For a comprehensive high-level explanation, see
Rathjen 1999.) It connects the provability of the totality of a�0

1-definable function to its time com-
plexity, measured by the proof-theoretic ordinal of the theory. The characterization then leads to
some independence results for the formulas in the form A=∀x∃yB(x, y), where B ∈�0

1 is a def-
inition of a function with a faster growth rate and hence higher time complexity than what the
theory can actually reach (Fairtlough and Wainer 1998).

There are, however, some settings in which the witnessing techniques and especially the one
based on ordinal analysis break down. Sometimes, we are only interested in the formulas with no
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existential quantifiers to witness (e.g., A=∀xB(x), where B is a quantifier-free formula). Other
times, the theory is so weak that even the basics of the witnessing machinery goes beyond the
power of the theory. Even working with powerful theories, there can be some problematic situ-
ations. For instance, one may be interested in bounded formulas (e.g., ∀x∃y≤ t(x)B(x, y), where
all quantifiers in B are also bounded) provable in Peano arithmetic, denoted by PA. Here, what
the usual witnessing methods provide is rather weak or even useless. For instance, using ordinal
analysis for PA, the best thing we can learn in the bounded setting is the existence of an algo-
rithm to compute y using a huge amount of time measured by ε0, the ordinal of the theory. This is
much weaker than what we started with, that is, the provability of the totality of the function with a
bounded definition. The reason roughly is that the algorithm leads to the existence of the definition
∃wC(x,w, y) for the function, where w encodes the computation and PA proves ∀x∃ywC(x,w, y).
However, the computation w can be huge and hence unbounded by the terms in the language and
in this sense proving the totality of a bounded function with a bounded definition is stronger than
the existence of such an algorithm.

To solve this type of issues and to address both weak theories and low complexity formulas,
many new witnessing techniques were designed, from witnessing the universal provable formulas
by short propositional proofs (Buss 1997; Cook 1975; Krajíček and Pudlák 1990; Paris and Wilkie
1981) to witnessing provable bounded formulas in first-order bounded theories of arithmetic in
special cases (Buss 1986; Buss and Krajíček 1994; Krajíček et al. 2007) and then in general cases
(Beckmann and Buss 2010; Skelley and Thapen 2011; Thapen 2011), using game reductions and
different versions of local search problems. A similar technique is also developed for second-order
bounded theories of arithmetic (Beckmann and Buss 2017, 2014; Buss et al. 1993; Kołodziejczyk
et al. 2011) and even for Peano arithmetic (Beckmann 2009). In this paper, we will continue this
line of research by providing a general witnessing machinery to witness the low-complexity the-
orems both in strong and weak theories of arithmetic using a computational entity that we call a
flow. Flows are meant to formalize the idea of flowing information and they formally are uniform
suitably long sequences of PV-provable implications between formulas in a suitable class, where
PV is Cook’s theory for polynomial time functions. We will work with two different types of flows
in this paper, ordinal flows and k-flows.

Ordinal flows
An ordinal flow is a transfinite uniform sequence of PV-provable implications between uni-
versal formulas. We use ordinal flows to witness low-complexity theorems of the theory PA+⋃

β≺α TI(≺β), where α is an ordinal with a certain polynomial time representation and TI(≺β)
means the transfinite induction up to the ordinal β . More precisely, we witness the provability
of an implication between two universal formulas in PA+⋃

β≺α TI(≺β) by a uniform sequence
of PV-provable implications of length β ≺ α. Using Herbrand’s theorem for PV, we push the wit-
nessing further to witness the PA+⋃

β≺α TI(≺β)-provable formulas in the formA=∀x̄∃ȳB(x̄, ȳ),
where B is a polynomial time computable predicate by an algorithm to compute ȳ by a sequence of
PV-provable polynomial time modifications on an initial polynomial time value, where the com-
putational steps are indexed by the ordinals below α, decreasing by the modifications. Our result
generalizes the main theorem of Beckmann (2009) that developed a similar characterization for
PA. However, as we will explain below, even for that special case, we use a simpler and easier to
generalize methodology.

To compare our result to the existing literature on ordinal analysis, it is important to focus
on the role of the polynomial time computable functions and the theory PV in our contribution.
First, note that changing the polynomial time functions and PV in our characterization to the
elementary or primitive recursive functions and ERA or PRA, respectively, makes the character-
ization an easy consequence of the known facts in the ordinal analysis literature. For instance,
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one can use the powerful witnessing theorems in Friedman and Sheard (1995), Avigad (2002) or
the interesting algebraic presentation of the ordinals in Beklemishev (2004). What is not trivial,
though, is providing a low-complexity version suitable to witness the low-complexity theorems
of arithmetic. To reach such a version, we have two options. The first, as followed in the above-
mentioned paper (Beckmann 2009), rewrites the continuous cut elimination technique (Buchholz
1991, 1997), replacing all primitive recursive functions by more careful polynomial time com-
putable operations (Beckmann et al. 2003). The second as an indirect approach uses the known
results in ordinal analysis as a black-box and rewitness them in a feasible manner to circum-
vent redoing the tedious ordinal analysis argument. This option is what we follow in the present
paper. More precisely, we first use the refined ordinal analysis in Friedman and Sheard (1995)
to show that a �0

2-formula is provable in the theory PA+⋃
β≺α TI(≺β) iff it is provable in an

extension of PRA with a weak form of transfinite induction. Then, using a suitable polynomial
time representation for the ordinals below α, we will transform a proof in the weaker theory
to a sequence of PV-provable polynomial time modifications described above. Our technique
of using ordinally long sequence of easy modifications is similar to what used in Avigad (2002),
although its machinery has a more model-theoretic character and also implements the ordinal
analysis from the scratch. Roughly speaking, Avigad (2002) provides a similar witnessing theorem
using elementary functions rather than polynomial time functions in its ordinal flows. However,
to have a verifiablity criterion, it insists on having the whole witnessing process provable inside the
meta-theory PRA. The witnessing machinery of Avigad (2002) cannot be directly used to prove
the low-complexity version we are interested in here. The reason is its use of PRA-formalized
Herbrand’s theorem for first-order logic that uses cut elimination, and it is extremely costly to be
directly formalizable in PV. To solve the issue, as Avigad (2002) also suggests, one must witness
the Herbrand’s theorem part by a sequence of PV-verifiable modifications or equivalently witness
the first-order logic by such modifications, directly. This is one of the things we do in the present
paper. Therefore, although our work is inspired by Beckmann (2009) and the witnessing theorems
in bounded arithmetic and hence its technique was developed independent from Avigad (2002),
one can interpret our contribution as a generalization of Avigad (2002) making its machinery
applicable even in the low-complexity settings.

k-flows
A (polynomial) k-flow is a uniform (polynomially) exponentially long sequence of PV-provable
implications between �̂b

k-formulas. Recall that �̂b
k- (�̂

b
k -formulas) are roughly the formulas with

k-many bounded quantifier blocks starting with a universal (existential) block and followed by
a quantifier-free formula over the language LPV that has a term for any polynomial time com-
putable function. We will witness the provability of an implication between �̂b

k-formulas in Tk
2

(resp. Sk2) by a k-flow (resp. polynomial k-flow). To push the witnessing further, we can use
Herbrand’s theorem again for the universal theory PV. However, this time the formulas are in
�̂b

k and hence we have k-many layers of quantifier to peel off. To control the number of layers,
we intend to remove, and we will follow a relative approach. We fix a number l≤ k and only
peel off the outmost l many quantifier blocks. More precisely, we first move the PV-provable
implications from PV to PVk−l+1, a universal theory for the functions in the (k− l+ 1)-th level
of the polynomial hierarchy. This way we can pretend that all the formulas in �̂b

k−l ∪ �̂b
k−l are

quantifier-free. Therefore, only lmany quantifier blocks are left to witness. Using Herbrand’s the-
orem for the theory PVk−l+1 and reading any quantifier-free formula in the language of PVk−l+1
as an l-turn game (Skelley and Thapen 2011), we can then witness any PV-provable implication
by an explicit PVk−l+1-verifiable reduction between l-turn games. These reductions are somewhat
nondeterministicmapping their input values to some possible instances, where one of the options
may work, (see the second part in Theorem 2 to see what we mean by nondeterminism in this
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context). Finally, using these reductions, we show that a formula in the form ∀x̄∃y≤ r(x̄)B(x̄, y),
where B ∈ �̂b

k−l ∪ �̂b
k−l is provable in Tk

2 (resp. Sk2) iff there is a uniform (polynomially) expo-
nentially long sequence of PVk−l+1-verifiable reductions between l-turn games, starting from an
explicit PVk−l+1-verifiable winning strategy for the first game. We will only spell out the details
for l= 1, 2. For l= 1, we show that our witnessing theorem reproves some of the well-known wit-
nessing theorems for Sk2 and Tk

2 including the usual witnessing of �̂b
k -definable functions of S

k
2

by �p
k-functions (Buss 1986) and �̂b

1-definable multifunctions of T1
2 by polynomial local search

problems Buss and Krajíček (1994). For l= 2, we provide new witnessing theorems. For Tk
2 , there

are other witnessing methods providing similar characterizations as ours based on better (i.e.,
deterministic) game reductions (Skelley and Thapen 2011; Thapen 2011). The theory of flows can
also prove these stronger characterizations. However, it needs to work with more involved notions
of a k-flow than what we have here. We leave such investigations to another paper. For Sk2, how-
ever, our result, to the best of our knowledge, is the only characterization in the same style of the
original witnessing theorems (Buss 1986) that reduce the provability in Sk2 to a polynomially long
sequence of feasible modifications. Of course, one can use the conservativity of Sk2 over T

k−1
2 for

�̂b
k -formulas and then using the witnessing for Tk−1

2 by the deterministic game reductions (Skelley
and Thapen 2011; Thapen 2011) or any other characterization (Beckmann and Buss 2009, 2010),
find a witnessing theorem for Sk2. Using this approach, the characterizations provide an exponen-
tially long sequence of deterministic reductions while we provide a polynomially long sequence
of more complex nondeterministic reductions. These two different approaches can be seen as an
instance of the usual phenomenon of simulating the huge power of the deterministic exponential
time with polynomial time nondeterminism, where the latter, if possible, is more informative than
the former.

Finally, to compare our witnessing method to the rich literature on witnessing theorems in
bounded arithmetic, let us emphasize two points that we find unique to our characterization.
First, unlike the methods used in Buss and Krajíček (1994), Krajíček et al. (2007), Skelley and
Thapen (2011), Thapen (2011), Beckmann and Buss (2009, 2010), our machinery is sufficiently
general to directly witness bounded theories arising from practically any type of bounded induc-
tion Akbar Tabatabai (2018). For instance, for any m≥ 2, consider the language LPV ∪ {#m},
where x#2y= 2|x||y| and x#i+1y= 2|x|#i|y| and define the class �̂b

k(#m) and the theory PV(#m) over
the new language similar to �̂b

k and PV overLPV. Now, for any n≥ 0,m≥ n+ 2, and k≥ 1, define
the theory Rkm,n as the extension of a basic universal theory to handle the function symbols, by the
induction axiom

A(0)∧ ∀x(A(x)→A(x+ 1))→∀xA(|x|n)
where A ∈ �̂b

k(#m), |x|0 = x, and |x|j+1 = ||x|j|. It is easy to imitate our technique in the present
paper to witness Rkm,n-provable implications between �̂b

k(#m)-formulas by a uniform sequence
of PV(#m)-provable implications between �̂b

k(#m)-formulas with the length |t|n, for some term t.
This can be even more generalized to any type of induction satisfying some basic properties Akbar
Tabatabai (2018).

The second point is that the length of our witnessing flows honestly reflects the type of the
induction we use. For instance, for Sk2 and T

k
2 , we use polynomially long and exponentially long k-

flows, respectively, and more generally, in Rkm,n where the induction is up to |x|n, the length of the
witnessing flow is |t|n, for some term t, see Akbar Tabatabai (2018). This honest correspondence
is not typical with the above-mentioned characterizations. For instance, the polynomially long
adaptation of the known characterizations for Tk

2 (Skelley and Thapen 2011; Thapen 2011), that
is, polynomially long sequence of PV-verifiable deterministic reductions between k-turn games,
does not witness Sk2-provable implications. The reason is that any polynomially long iteration of
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a deterministic reduction is again a deterministic reduction itself. Therefore, if such a witnessing
theorem holds, one can witness the implications in Sk2 between �̂b

k-formulas by a polynomially
long sequence of reductions and hence only one reduction. Thus, the �̂b

k -definable functions of S
k
2

must be all polynomial time computable and as all the functions in�p
k are �̂b

k -definable in Sk2, the
polynomial hierarchy must collapse. This simple observation shows that the nondeterminism we
use in our reductions is essential to have an honest characterization. Moreover, it shows that our
characterization for Sk2 is not a simple consequence of the methodologies used for Tk

2 in Skelley
and Thapen (2011), Thapen (2011) or even in Beckmann and Buss (2009, 2010).

Here is the structure of the paper. In Section 2, we recall the basic definitions of different
languages and arithmetical systems we use in this paper. In Section 3, we introduce our ver-
sion of polynomial time ordinal representation and we recall the one introduced in Beckmann
et al. (2003) for ε0. In Section 4, we present ordinal flows and the witnessing technique to reduce
the provability of the low complexity statements in the theory PA+⋃

β≺α TI(≺β). Finally, in
Section 5, we introduce k-flows to witness the provability of the low complexity statements in the
theories Sk2 and Tk

2 .

2. Preliminaries
For any first-order language L, by an L-formula, we mean any expression constructible by the
connectives {∧,∨, ∀, ∃} from the atomic formulas (including ⊥ and �) and their negations. The
formula¬A is defined via deMorgan laws andA→ B is an abbreviation for¬A∨ B. By anL-term,
we simply mean a term in the language L. By t̄, we mean a sequence of terms in the language and
x̄means a sequence of variables.

To introduce the system PV, let us recall Cobham’s machine-independent characterization of
polynomial-time computable (ptime, for short) functions (Cobham 1965). It states that a function
is ptime iff it is constructible from certain basic functions by composition and a weak sort of
recursion called the bounded recursion on notation. Any such construction provides an algorithm
to compute the corresponding ptime function. Let LPV be a first-order language with a function
symbol for any such algorithm. In Cook (1975), Cook introduced an equational theory over the
language LPV to reason about ptime functions. The theory essentially consists of the defining
axioms for the function symbols together with a sort of induction rule. Later, a conservative first-
order extension of PV, denoted by PV1, was introduced by Krajíček et al. (1991). The theory has
the polynomial induction axiom scheme denoted by PInd

A(0)∧ ∀x(A(�x
2
�)→A(x))→∀xA(x),

for any quantifier-free formula A(x) and is universally axiomatizable (Krajíček et al. 1991). In this
paper, we will only use the theory PV1 and not PV. Therefore, by abuse of notation, we will use
the name PV to denote its first-order extension PV1.

In any language extending LPV, by a bounded quantifier, we mean a quantifier in the form
∀x(x≤ t→A(x)) or ∃x(x≤ t ∧A(x)), abbreviated by ∀x≤ t A(x) and ∃x≤ t A(x), respectively.
For any sequence of variables x̄= (x1, . . . , xn) and terms t̄= (t1, . . . , tn), byQx̄≤ t̄ A(x̄), we mean
Qx1 ≤ t1Qx2 ≤ t2 . . .A(x1, . . . , xn), for any Q ∈ {∀, ∃}.

By recursion on k, define the classes �̂b
k and �̂b

k of LPV-formulas in the following way:

• �̂b
0 = �̂b

0 is the class of all quantifier-free formulas,
• �̂b

k ⊆ �̂b
k+1 and �̂b

k ⊆ �̂b
k+1,

• �̂b
k and �̂b

k are closed under conjunction and disjunction,
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• If B(x) ∈ �̂b
k , then ∃x≤ t B(x) ∈ �̂b

k and ∀x≤ t B(x) ∈ �̂b
k+1 and

• If B(x) ∈ �̂b
k, then ∀x≤ t B(x) ∈ �̂b

k and ∀x≤ t B(x) ∈ �̂b
k+1.

Define �̂b∞ = �̂b∞ as
⋃∞

k=0 �̂b
k that is the same as

⋃∞
k=0 �̂b

k. For the sake of simplicity, we sup-
pressed the free variables in our notation in the above definition while they are also allowed to be
used in the formulas.

By the axiom scheme �̂b
k − PInd, we mean

A(0)∧ ∀x(A(�x
2
�)→A(x))→∀xA(x),

for any A ∈ �̂b
k and by �̂b

k − Ind, we mean
A(0)∧ ∀x(A(x)→A(x+ 1))→∀xA(x),

for A ∈ �̂b
k. The schemes �̂b

k − PInd and �̂b
k − Ind are defined similarly. For any k≥ 1, define

the theories Sk2 and Tk
2 as PV+ �̂b

k − PInd and PV+ �̂b
k − Ind, respectively. It is known that Sk2

(resp., Tk
2) proves �̂b

k − PInd (resp., �̂b
k − Ind). It is also useful to mention that the following

axiom scheme, denoted by �̂b
k − LInd

A(0)∧ ∀x(A(x)→A(x+ 1))→∀xA(|x|),
where A ∈ �̂b

k, is provable in Sk2. The same also holds for �̂b
k − LInd, where we replace �̂b

k by �̂b
k

(Buss 1986; Krajíček 1995). The following theorem is true for theories Sk2 and Tk
2 Krajíček (1995).

Theorem. (Parikh) Let T be either Sk2 or T
k
2 , for some k≥ 1 and A(x̄, y) be an LPV-formula in �̂b∞.

Then, if T � ∀x̄∃yA(x̄, y), then there exists an LPV-term t(x̄) such that T � ∀x̄∃y≤ t(x̄)A(x̄, y).

It is possible to define a universal theory for any level in the polynomial hierarchy, similar to
what PV1 does for the polynomial time computable functions. More precisely, for any k≥ 2, one
can define a universal theory PVk over an extended languageLPVk that has a term for any function
in the kth level of the polynomial hierarchy, denoted by�p

k (Krajíček et al. 1991). We do not spell
out the details of these theories. The only thing we need to know is that PVk has an explicit term
for the characteristic functions of �̂b

k -formula and its term construction allows defining functions
by bounded recursion on notation (Krajíček et al. 1991; Krajíček 1995). As PVk is universal, it
enjoys Herbrand’s theorem (Buss 1998b; Krajíček 1995):

Theorem. (Herbrand) Let A(x̄, y) and B(x̄, y, z) be two quantifier-free LPVk -formulas. Then:

• If PVk � ∃yA(x̄, y), then there exists an LPVk -term f (x̄) such that PVk �A(x̄, f (x̄)).
• If PVk � ∃y∀zB(x̄, y, z), then there are LPVk -terms f0(x̄), f1(x̄, z0), f2(x̄, z0, z1), . . . ,
fm(x̄, z0, z1, . . . , zm−1) such that

∨m
i=0 B(x̄, fi(x̄, z0, . . . , zi−1), zi) is provable in PVk.

It is possible to generalize this theorem to a generalized Herbrand’s theorem to cover more alterna-
tions of quantifiers. However, in this paper, one can restrict oneself only to these two levels (Buss
1998b).

The system PVk proves the scheme PInd for any quantifier-free LPVk-formula. As any LPVk-
term can be defined by an LPV-formula in �̂b

k , it is possible to represent any quantifier-free LPVk-
formula by two LPV-formulas, one in �̂b

k and one in �̂b
k. Using this fact, one can interpret PVk

inside the theory Sk2.
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Going beyond bounded theories of arithmetic, in a similar fashion to PV and using the con-
struction of primitive recursive functions by composition and primitive recursion on certain basic
functions, it is possible to extend the language LPV by a fresh function symbol for any primitive
recursive function. Denote this new language by LPRA and set the first-order theory PRA over
LPRA as PV extended by the defining axioms for the new functional symbols and the induction
axiom A(0)∧ ∀x(A(x)→A(x+ 1))→∀xA(x), for any quantifier-free formula in the new lan-
guage. This is of course different from the usual definition of PRA as its language is extended by
the ptime function symbols in LPV, and the theory itself is extended by the theory PV. Moreover,
the formula in the induction axiom of PRA may contain the symbols from LPV. However, as the
functions in the Cobham calculus are constructible as primitive recursive functions, it is clear
that the separation of the primitive recursive function symbols and ptime function symbols is
just a technical point and is totally immaterial. In fact, our presentation of PRA is a conservative
extension of the usual PRA and hence has nothing essentially different from the usual PRA.

By Peano arithmetic, denoted by PA, we mean the theory PV extended by full induction axiom
scheme A(0)∧ ∀x(A(x)→A(x+ 1))→∀xA(x), for any formula A(x). This is also different from
the usual definition of PA. However, as all of the function symbols in LPV are definable in the
usual language of PA and their functionality and totality are provable in the usual PA, it is easy to
see that our PA is a conservative extension of the usual PA.

By �0
2, we mean the class of LPV-formulas in the form ∀x̄∃ȳA(x̄, ȳ), where any quantifier in

A(x̄, ȳ) is bounded. For two theories T and S and a class of formulas�, by T ≡� S, we mean T �A
iff S�A, for any A ∈�.

Finally, let us recall some basics of the ordinal arithmetic. Apart from addition, multiplication,
and exponentiation of the ordinals, it is also possible to define subtraction −̇ from left such that
α−̇β = 0, if α ≺ β and α−̇β = γ , if β � α, where γ is the unique ordinal with the property that
β + γ = α. Similarly, it is possible to define the division d from left such that if β �= 0, then d(α, β)
is the unique γ such that α = βγ + δ, for some δ ≺ β .

3. Polynomial-Time Ordinal Representations
In this section, we will introduce polynomial time ordinal representations and recall the concrete
representation for the ordinal ε0 provided in Beckmann et al. (2003). Both parts will be of essential
use in Section 4.

Definition 1. Let α be an infinite ordinal closed under addition, multiplication, and the operation
β �→ωβ .We call the tuple

O= (O,≺,+, ·, −̇, d(·, ·), o, x �→ωx, 0, 1,ω)
a polynomial time representation with a primitive recursive exponentiation (ptime representation,
for short) for the ordinal α, if:

• O is a unary polynomial time relation on the natural numbers represented as a quantifier-free
LPV-formula. Its intended meaning is the set of all the representations of the ordinals below α.
We use small Greek letters to denote the elements of O. For instance, by ∀β A(β), we actually
mean ∀x(O(x)→A(x)).

• ≺ is a binary polynomial time relation on the natural numbers, represented as a quantifier-free
LPV-formula. Its intendedmeaning is the order over the ordinals below α.We define the relation
(γ � β) as (γ ≺ β)∨ (γ = β).

• +, ·, −̇ and d(·, ·) are binary polynomial time functions, represented as LPV-terms. Their
intended meaning is the ordinal addition, multiplication, subtraction from left, and division
from left, respectively.
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8 A. Akbar Tabatabai

• o is a unary polynomial time function represented as an LPV-term. Its intended meaning is the
function that maps the natural numbers to the representation of their order-types below α. For
instance, o(0) is the least element of O while o(1) is its second least element.

• ωx is a primitive recursive unary function represented as an LPRA-term. Its intended meaning
is the function that maps the ordinal β ≺ α to the ordinal ωβ ≺ α.

• 0, 1 and ω are three numbers representing the ordinals zero, one and ω, respectively.
• The structure (O,≺ ) is isomorphic to (α,≺α ), where ≺α is the order on α.
• PV proves that ≺ is a total ordering onO with the minimum 0.
• PV proves that ≺ is discrete over O, that is, for all β , γ ∈O, if γ ≺ β + 1, then either γ ≺ β or

γ = β .
• PV proves the associativity of the addition and multiplication, the left distributivity of mul-
tiplication over the addition, the neutrality of 0 for the addition, the neutrality of 1 for the
multiplication and the identity 0β = β0= 0.

• PV proves that the addition and the nonzero multiplication from left respect the order ≺, that
is, if δ ≺ γ then β + δ ≺ β + γ and if we also have β �= 0, then βδ ≺ βγ .

• PV proves that the addition and multiplication from right respects �, that is, if δ � γ then
δ+ β � γ + β and δβ � γβ .

• PV proves the defining axioms of −̇, that is, if α ≺ β then α−̇β = 0 and if α � β then α =
β + (α−̇β).

• PV proves the defining axioms of d, that is, if β �= 0, then βd(α, β)� α and α−̇βd(α, β)≺ β .
• PV proves that o is an order-isomorphism between the natural numbers and the ordinals
below ω, mapping 0 and 1 to 0 and 1, respectively, that is, PV proves o(0)= 0, o(1)= 1,
∀x[O(o(x))∧ o(x)≺ω], ∀β ≺ω∃!y o(y)= β , and ∀xy(x< y↔ o(x)≺ o(y)).Where there is no
risk of confusion, we will use the numbers and their ordinal reinterpretations, interchangeably.
For instance, we use 1 for 1.

• PRA proves that ω0 = 1 and ω1 =ω. It also proves that ωβ respects � and maps the addition
to the multiplication.

• If there is no γ ∈O such that β = γ + 1, then ωβ is the supremum of the set {ωγ | γ ≺ β}, that
is, for any δ ∈O, if ωγ � δ, for any γ ≺ β , then ωβ � δ.

• PRA proves that for every β ∈O, there is a unique expansion β =ωγ1 + . . .+ωγn such that
γn � γn−1 � . . .� γ1.

Remark 2. Here are some remarks. First, notice that the relations of being a successor and a limit
ordinal are both definable by the predicates ∃γ (β = γ + 1) and ∀γ ≺ β(γ + 1≺ β), respectively.
It is also easy to see that PV can prove the dichotomy that for any β ∈O, it is either a successor
or a limit. Second, using the compatibility of the order with the addition and the multiplication,
one can easily prove in PV that if β = γ + δ= γ + η, then β−̇γ = δ= η. This observation proves
that for any γ ≺ β , the interval (0, β−̇γ ) in O is in one-to-one correspondence with the inter-
val (γ , β), via the map δ �→ γ + δ. Similarly, PV proves that if γ �= 0, then β = γ δ= γ η implies
d(β , γ )= δ = η. Therefore, d(γ δ, γ )= δ, for γ �= 0. Third, let us explain the discrepancy between
the polynomial time character of the order, addition, multiplication, subtraction, and division and
the primitive recursive character of the function x �→ωx in our definition. For that purpose, first,
pretend that our definition uses the primitive recursive functions and predicates and PRA every-
where when it actually uses polynomial time functions and predicates and PV. Then, one can
easily see that this primitive recursive version of our representation is just a mild extension of the
primitive recursive (even elementary) ordinal representation employed in Friedman and Sheard
(1995). (Their conditions are different, but it is easy to show that our axioms imply theirs.) As we
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use a proof-theoretic result of Friedman and Sheard (1995), using the primitive recursive version
of our definition is completely justified. However, there is another role for our ordinal representa-
tion. As it is clear, in this paper, we intend to address the lower complexity formulas and for that
purpose, some basic ordinal arithmetic (up to addition and multiplication and hence subtraction
and division from left) is required to be implemented in polynomial time. Therefore, we are forced
to lower the complexity of some parts of the representation. However, as the use of the exponen-
tiation is only restricted to the result from Friedman and Sheard (1995) that we use as a black box
here, we decided to lower the complexity up to the point we need and let the exponentiation parts
intact. This way we can accept more ptime representations.

Let β ∈O. By the axiom scheme TI(≺β), we mean the transfinite induction up to β , that is
∀γ ≺ β[∀δ ≺ γA(δ)→A(γ )]→∀γ ≺ βA(γ ),

where A can be any formula in LPV. In Friedman and Sheard (1995), a refined method of ordi-
nal analysis is provided showing that the �0

2-consequences of the theory PA+
⋃

β∈O TI(≺β) are
actually provable in a smaller theory extending PRA with a weak form of transfinite induction
stating that for any β ≺ α, there is no primitive recursive decreasing sequence of ordinals below
β . For more, see Friedman and Sheard (1995), Rathjen (1999).

Theorem. Let α be an ordinal andO be its ptime representation. Then,

PA+
⋃
β∈O

TI(≺β)≡�0
2
PRA+

⋃
β∈O

PRWO(≺β),

where PRWO(≺β) is the scheme ∀x̄∃y[f (x̄, y+ 1)⊀ f (x̄, y)∨¬O(f (x̄, y))∨ f (x̄, y)⊀ β], for any
function symbol f in LPRA.

3.1 A polynomial-time representation for ε0
In this subsection, we will recall the basics of the ptime notation system for the ordinal ε0,
introduced in Beckmann et al. (2003). Define O0 and ≺0 inductively and simultaneously in the
following way: O0 is the least set of expressions containing the empty string 0 and is closed
under the operation (α1, . . . , αn) �→ωα1a1 + . . .+ωαnan, where ai �= 0 are natural numbers
and αn ≺0 . . .≺0 α2 ≺0 α1 and set ωα1a1 + . . .+ωαnan ≺0 ωβ1b1 + . . .+ωβmbm, if there exists
i≤min{m, n} such that αj = βj and aj = bj, for any j≤ i and one of the following takes place:

• i= n<m,
• i<min{m, n} and αi+1 ≺0 βi+1
• i<min{m, n} and αi+1 = βi+1 and ai < bi.

Using some efficient method of sequence encoding, it is possible to arithmetize the setO0 and the
predicate ≺0. It is also possible to implement the arithmetization in a way that the length of the
Gödel number of α ∈O0 is proportional to the number of symbols in the expression α. By this fact,
Beckmann et al. (2003) shows that both O0 and ≺0 are polynomial time computable and hence
formalizable in PV. (Technically, it uses a conservative extension of PV, but the difference does
not affect us here.) We fix quantifier-free predicates O0(x) and x≺0 y to denote the formalized
versions in the language LPV. In Beckmann et al. (2003), it is shown that PV proves that ≺ is
a total ordering on O0. It is clear that PV also proves that 0 is the minimum element of O0.
Define 1 as ω01 and for o, consider the function that maps the number n to ω0n. Denote ωo(1)

by ω. Then, we have ω0 = 1 and ω1 =ω. The map o is ptime, and it is easy to prove in PV that
o is an order-isomorphism, that is, PV� ∀x[O0(o(x))∧ o(x)≺ω], PV� ∀α ≺ω∃!y o(y)= α and
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PV� x< y↔ o(x)≺0 o(y). For x �→ωx, use the evident function mapping the expression β to the
expression ωβ and note that it is clearly primitive recursive.

In the rest of this subsection, we will explain how to formalize the basic ordinal arithmetic in
PV, using the aforementioned representation. For that purpose, first consider the following equal-
ities over the real ordinals below ε0.We assumed that the inputs are nonzero as the operations with
one zero input are trivial. These equalities make the computation of the addition, multiplication,
subtraction from left and division from left possible, using the Cantor normal form of the ordinals.
We will not provide a proof for these equalities as they are just simple computations, see Takeuti
and Zaring (1982).

( n∑
i=1

ωαiai
)
+

( m∑
j=1

ωβj bj
)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n
i=1 ωαiai +∑m

j=1 ωβj bj αn � β1∑m
j=1 ωβj bj α1 ≺ β1∑k
i=1 ωαiai +∑m

j=1 ωβj bj αk+1 ≺ β1 ≺ αk∑k−1
i=1 ωαiai +ωαk(ak + b1)+∑m

j=2 ωβj bj αk = β1

( n∑
i=1

ωαiai
)
−̇

( m∑
j=1

ωβj bj
)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 αk+1 ≺ βk+1∑n

i=k+1 ωαiai αk+1 � βk+1
ωαk+1 (ak+1 − bk+1)+

∑n
i=k+2 ωαiai αk+1 = βk+1, ak+1 > bk+1

0 αk+1 = βk+1, ak+1 < bk+1
where k is the maximum i such that αi = βi and ai = bi, if there is any and otherwise k= 0,

( n∑
i=1

ωαiai
)( m∑

j=1
ωβj bj

)
=

⎧⎪⎨
⎪⎩

∑m
j=1 ωα1+βj bj βm � 0∑m−1
j=1 ωα1+βj bj +ωα1a1bm +∑n

i=2 ωαiai βm = 0,m> 1
ωα1a1b1 +∑n

i=2 ωαiai βm = 0,m= 1

d
( n∑

i=1
ωαiai,

m∑
j=1

ωβj bj
)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 α1 ≺ β1∑k

i=1 ωαi−̇β1ai α1 � β1, αk �= β1∑k−1
i=1 ωαi−̇β1ai + d(ak, b1) α1 � β1, αk = β1, ( ∗ )∑k−1
i=1 ωαi−̇β1ai + (d(ak, b1)− 1) otherwise

where k is the greatest i such that αi � β1, d(ak, b1) is the quotient of ak divided by b1 and ( ∗ )
is the condition that

∑n
i=k ωαiai �ωαkb1d(ak, b1)+

∑m
j=2 ωβj bj. Note that to compute any of the

operations, it is enough to do constant many comparisons and basic numerical computations,
a search to find the maximum index that takes at most as long as the length of the inputs and
at most m or n many applications of a ptime function. Hence, all the operations are ptime and
hence representable in PV. It is easy to see but tedious to show that all the claimed properties in
Definition 1 hold. Therefore, the described data in this subsection defines a ptime representation
for ε0 that we denote byO0.

4. Ordinal Flows and Arithmetic
Let α be an ordinal and O be its ptime representation. In this section, we develop a wit-
nessing method for the theory PA+⋃

β∈O TI(≺β). The section consists of three parts. First,
in Subsection 4.1, we will introduce an auxiliary theory TI(∀1,≺ ) with a transfinite induc-
tion on the universal formulas in the language of PV. The system is powerful enough to
interpret PRA+⋃

β∈O PRWO(≺β) and hence proves all �0
2-theorems of PA+⋃

β∈O TI(≺β).
Then in Subsection 4.2, we will provide a witnessing method for TI(∀1,≺ ) that transforms
the provability between two universal formulas in TI(∀1,≺ ) to an ordinal-length sequence of
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PV-provable implications. Finally, in Subsection 4.3, we use Herbrand’s theorem, Theorem 2, to
witness the implications in PV to provide a characterization for the low complexity theorems of
PA+⋃

β∈O TI(≺β).

4.1 The system TI(∀1,≺ )
This subsection is devoted to the introduction and investigation of the auxiliary theory TI(∀1,≺ ).

Definition 3. Define ∀1 (resp., ∃1) as the least set of LPV-formulas containing all atomic formu-
las and their negations and closed under conjunction, disjunction, and universal (resp. existential)
quantifiers.

Let I∀1 (resp. I∃1) be the theory extending PV by the ∀1-induction (resp. ∃1-induction) scheme,
that is, A(0)∧ ∀x(A(x)→A(x+ 1))→∀xA(x), for any A(x) ∈ ∀1 (resp. A(x) ∈ ∃1). Note that
I∃1 = I∀1. The proof uses the usual technique of using ∀1-induction on B(x)=¬A(y−̇x) to prove
∃1-induction on A(y) and similarly for the other direction, see Buss (1998).

Lemma 4. For any primitive recursive function f :Nk→N, there is a ∃1-formula Df (x̄, y) such that
I∃1 � ∀x̄∃!yDf (x̄, y) and N �Df (n̄,m) iff f (n̄)=m, for any n̄,m ∈N.
Proof. For any primitive recursive function f , we provide a quantifier-free formula Cf (x̄,w, y) ∈
LPV encoding that w is a computation of f with the input x̄ and the output y. To that aim, we use
recursion on the construction of f . The cases for the basic functions and composition are easy.
For the recursion case, if f (x̄, y) is defined via recursive equations f (x̄, 0)= g(x̄) and f (x̄, y+ 1)=
h(x̄, y, f (x̄, y)), define Cf (x̄, y, 〈u, v〉, z) as Cg(x̄, u0, v0)∧ ∀i≤ l(v)Ch(x̄, i, vi, ui+1, vi+1)∧ vl(v) = z,
where v encodes the sequence {f (x̄, i)}l(v)i=0, the number l(v) is the length of this sequence and u
encodes the sequence of computations {ui}l(v)i=0, where u0 reads x̄ and computes v0 = f (x̄, 0) and
ui+1 reads x̄, i and f (x̄, i) and computes f (x̄, i+ 1) via the function h. Note that the predicate
∀i≤ l(v)Ch(x̄, i, vi, ui, vi+1) is polynomial computable, as l(v)≤ |v|, where |v| is the binary length
of v. Hence, there exists a polynomial time function symbol in PV like F such that PV proves that
F(x̄, u, v)= 1 iff ∀i≤ l(v)Ch(x̄, i, vi, ui, vi+1). Therefore,Cf can be written in a quantifier-free form.
Now, set Df (x̄, y)=∃wCf (x̄,w, y). It is clear that Df ∈ ∃1 and N �Df (n̄,m) iff f (n̄)=m, for any
n̄,m ∈N. Finally, the proof of the claim that I∃1 � ∀x̄∃!yDf (x̄, y) is similar to the similar claim in
the representation of primitive recursive functions in I�1. �

Definition 5. Define the theory TI(∀1,≺ ) over LPV as the theory PV extended by the transfinite
induction scheme ∀δ(∀γ ≺ δ A(γ )→A(δ))→A(θ), for any A(γ ) ∈ ∀1 and any constant θ ∈O.

Note that TI(∀1,≺ ) extends the theory I∀1 as TI(∀1,≺ ) proves ∀δ ≺ω(∀γ ≺ δ A(γ )→
A(δ))→∀δ ≺ωA(δ), for any A ∈ ∀1. Using the function o and the fact that it is an order-
isomorphism between the numbers and the ordinals below ω, we will have ∀x(∀y< x A(y)→
A(x))→∀xA(x) which implies A(0)∧ ∀x(A(x)→A(x+ 1))→∀xA(x). Therefore, by Lemma 4,
TI(∀1,≺ ) represents any primitive recursive function with an ∃1-definition. As it is routine in
arithmetic (Buss 1998), this provides both ∀1 and ∃1 definitions for any atomic formula in LPRA.
Hence, it is possible to interpret any ∀1-formula in LPRA as an ∀1-formula in LPV. Using that
interpretation, we can pretend that TI(∀1,≺ ) has a fresh function symbol for any primitive recur-
sive function and the ∀1-formulas in the new language are allowed in the transfinite induction.
Moreover, we can also pretend that TI(∀1,≺ ) extends the theory PRA. The reason simply is that
the equational defining axioms in PRA are all provable in I∀1 = I∃1 and hence in TI(∀1,≺ ), as
they are actually encoded in the definition Df of f . For the quantifier-free induction of PRA, as we
have seen before, it is possible to use the isomorphism o to prove the induction in TI(∀1,≺ ).
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Lemma 6. If PRA+⋃
β∈O PRWO(≺β)�A then TI(∀1,≺ )�A, for any A ∈LPV.

Proof. Pretend TI(∀1,≺ ) has a function symbol for any primitive recursive function, allowed in
the ∀1-formulas. As TI(∀1,≺ ) extends PRA, it is enough to prove TI(∀1,≺ )� PRWO(≺β), for
any β ∈O. For the sake of contradiction, assume ∀y[f (x̄, y+ 1)≺ f (x̄, y)∧O(f (x̄, y))∧ f (x̄, y)≺
β]. Set B(γ , x̄)=∀y(f (x̄, y) �= γ ) and note that B(γ , x̄) ∈ ∀1. By transfinite induction, we prove
∀γ ≺ β B(γ , x̄). For that purpose, assume ∀δ ≺ γ [δ ≺ β→ B(δ, x̄)]. Then, to prove [γ ≺ β→
B(γ , x̄)], if f (x̄, y)= γ , for some γ ≺ β , as f (x̄, y+ 1)≺ f (x̄, y), we have f (x̄, y+ 1)≺ γ ≺ β . On
the other hand, by ∀δ ≺ γ [δ ≺ β→ B(δ, x̄)], we know that none of the ordinals δ below γ is in
the form of f (x̄, z), which contradicts with f (x̄, y+ 1)≺ γ . Hence, [γ ≺ β→ B(γ , x̄)]. Therefore,
∀δ ≺ γ [δ ≺ β→ B(δ, x̄)] implies [γ ≺ β→ B(γ , x̄)]. Hence, by transfinite induction, we have
∀γ ≺ β B(γ , x̄) which for γ = f (x̄, 0)≺ β implies ∀y(f (x̄, y) �= f (x̄, 0)) which is a contradiction. �

Corollary 7. PA+⋃
β∈O TI(≺β)≡�0

2
TI(∀1,≺ ).

Proof. One direction is a consequence of the fact that PA+⋃
β∈O TI(≺β) proves the transfi-

nite induction for any formulas and hence extends the theory TI(∀1,≺ ). The other direction is a
consequence of Theorem 3 and Lemma 6. �

4.1.1 A proof system for TI(∀1,≺ )
We now present a sequent calculus for the theory TI(∀1,≺ ). By a sequent over LPV, we mean
an expression in the form S= ⇒�, where  and � are multisets of formulas in LPV. Define
LPV as the usual system LK augmented with the equality axioms for atomic formulas and their
negations and all quantifier-free theorems of PV as the initial sequents:

Axioms:
⊥⇒ ⇒�

P⇒ P ¬P⇒¬P P,¬P⇒ ⇒ P,¬P ⇒A

⇒ t= t s1 = t1, . . . , sn = tn⇒ f (s̄)= f (t̄) s1 = t1, . . . , sn = tn,Q(s̄)⇒Q(t̄)
where P ranges over all atomic formulas, f ranges over all function symbols in the language, Q
ranges over all atmoic formulas or their negations, and A ranges over all quantifier-free theorems
of PV.

Structural Rules:
,A,A⇒�

,A⇒�
Lc

⇒A,A,�
⇒A,�

Rc
⇒�

,A⇒�
Lw

⇒�

⇒A,�
Rw

⇒A,� �,A⇒�

,�⇒�,�
cut

Logical Rules:

i ∈ {0, 1} ,Ai⇒�

,A0 ∧A1⇒�
L∧ ⇒A,� ⇒ B,�

⇒A∧ B,�
R∧
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,A⇒� , B⇒�

,A∨ B⇒�
L∨ i ∈ {0, 1} ⇒Ai,�

⇒A0 ∨A1,�
R∨

,A(t)⇒�

, ∀xA(x)⇒�
L∀ ⇒A(y),�

⇒∀xA(x),� R∀

,A(y)⇒�

, ∃xA(x)⇒�
L∃ ⇒A(t),�

⇒∃xA(x),� R∃

In the rules (R∀) and (L∃), the variable y should not appear in the consequence. Adding the
rule

, ∀γ ≺ δ A(γ )⇒�,A(δ)
⇒�,A(θ)

Indα

to LPV, we get G0. Note that in (Indα), the variable δ should not appear in the consequence.
Moreover, the constant θ ∈O is arbitrary and can take any value. For more on the proof theory of
first-order theories and specially arithmetic, see Buss (1998a,b).

By the usual cut reduction method (Buss 1998a,b), it is easy to prove that for any  ∪�⊆∀1,
if ⇒� is provable in TI(∀1,≺ ) (resp., PV), then it has aG0-proof (resp. LPV-proof) consisting
only of ∀1-formulas. For some practical reasons, we simplify the system G0 by changing the cut
and the induction rules to the weak cut and weak induction rules, respectively:

⇒A A⇒�

⇒�
wCut

, ∀γ ≺ δ A(γ )⇒∀γ ≺ δ + 1A(γ )
⇒A(θ)

wIndα

Denote this system byG1. Note that the difference between (Indα) and (wIndα) is that in the latter
� is omitted and A(δ) is replaced by ∀γ ≺ δ + 1A(γ ).

Lemma 8. For any  ∪�⊆∀1, if TI(∀1,≺ )�∧
→∨

�, then ⇒� has a G1-proof only
consisting of ∀1-formulas.

Proof. By a ∀1-proof in G1 (resp. LPV), we mean a proof in G1 (resp. LPV) consisting only of
∀1-formulas. We show that the cut rule and the induction rule (over ∀1-formulas) are derivable
in G1 (by a ∀1-proof). We only investigate the harder case of ∀1-proofs. The other is the same
omitting the restrictions everywhere.

For cut, consider the following proof-tree in G1, where the double lines mean simple omitted
proofs in G1. The tree proves ,�⇒�,� from ⇒A,� and �,A⇒�.

Σ ⇒⋀ Σ

Γ, Σ ⇒⋀ Σ,

Γ ⇒ A,

Γ, Σ ⇒ A,

Γ, Σ ⇒ A ∧⋀ Σ,

Γ, Σ ⇒ (A ∧⋀ Σ)∨⋁

⋁ ⇒

⋁ ⇒ Λ,

Σ, A ⇒ Λ
A ∧⋀ Σ ⇒ Λ

A ∧⋀ Σ ⇒ Λ,

(A ∧⋀ Σ)∨⋁ ⇒ Λ,
wCutΓ, Σ ⇒ Λ,

Note that the simulation of the cut rule in G1 implies that G1 is as powerful as LPV. It also
transforms a ∀1-proof in LPV to a ∀1-proof in G1. For the induction rule, consider the following
proof-tree proving ⇒A(θ),� from , ∀γ ≺ δ A(γ )⇒A(δ),�:
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Γ,⋁ ⇒ [A( )∨⋁ ]

Γ,∀ ≺ A( )⇒ A( ),

Γ,∀ ≺ A( )⇒ [A( )∨⋁ ]

Γ, [∀ ≺ A( )]∨⋁ ⇒ [A( )∨⋁ ]
∗

Γ,∀ ≺ [A( )∨⋁ ]⇒ [A( )∨⋁ ]
∗∗

Γ,∀ ≺ [A( )∨⋁ ]⇒∀ ≺ + 1 [A( )∨⋁ ]
wInd

Γ ⇒ A( )∨⋁
†

Γ ⇒ A( ),

where ( ∗ ) is the result of a cut with the sequent ∀γ ≺ δ [A(γ )∨∨
�]⇒ [∀γ ≺ δ A(γ )]∨∨

�

which has a proof in LPV and hence a ∀1-proof in LPV and by the observation we have just
made, a ∀1-proof in G1. Note that the use of cut is allowed as we showed its derivability in G1.
Moreover, ( ∗ ∗) is the result of a cut with the PV-provable sequent [A(δ)∨∨

�], ∀γ ≺ δ [A(γ )∨∨
�]⇒∀γ ≺ δ + 1 [A(γ )∨∨

�]. The latter is provable in LPV. Therefore, it has a ∀1-proof in
LPV and hence inG1. Finally, † is the result of a cut with A(θ)∨∨

�⇒A(θ),� that has a trivial
∀1-proof. �

4.2 Ordinal flows
In this subsection, we will witness TI(∀1,≺ )-provable implications between ∀1-formulas by a
sequence of β many PV-provable implications, for some β ∈O.

Definition 9. Let A(x̄), B(x̄) ∈ ∀1. A pair (H(γ , x̄), β) of a ∀1-formula and β ∈O such that β � 1
is called an α-flow from A(x̄) to B(x̄), if:

• PV�A(x̄)↔H(0, x̄).
• PV� ∀ 1� δ � β [∀γ ≺ δ H(γ , x̄)→H(δ, x̄)].
• PV�H(β , x̄)↔ B(x̄).

We denote the existence of an α-flow from A(x̄) to B(x̄) by A(x̄)�α B(x̄). For any multisets  and
� of ∀1-formulas, by  �α �, we mean

∧
 �α

∨
�.

In order to use α-flows to witness the proofs in TI(∀1,≺ ), we will develop a high-level calculus
for this new notion, implemented in the following series of lemmas.

Lemma 10. Let A(x̄), B(x̄), C(x̄) ∈ ∀1. Then:

(i) If PV�A(x̄)→ B(x̄), then A(x̄)�α B(x̄).
(ii) If A(x̄)�α B(x̄), then A(x̄) ◦ C(x̄)�α B(x̄) ◦ C(x̄), for any ◦ ∈ {∧,∨}.
Proof. For (i), set β = 1 and H(γ , x̄)= (γ = 0→A(x̄))∧ (γ = 1→ B(x̄)). It is clear that PV�
H(0, x̄)↔A(x̄) and PV�H(1, x̄)↔ B(x̄). As PV�A(x̄)→ B(x̄), we can see that (H(γ , x̄), β) is an
α-flow from A(x̄) to B(x̄).

For (ii), we only prove the conjunction case. The disjunction case is similar. SinceA(x̄)�α B(x̄),
by Definition 9, there exist an ordinal β � 1 and a formula H(γ , x̄) ∈ ∀1 satisfying the conditions
in Definition 9. Set I(γ , x̄)=H(γ , x̄)∧ C(x̄) and note that I(γ , x̄) ∈ ∀1. It is easy to see that the
pair (I(γ , x̄), β) is an α-flow from A(x̄)∧ C(x̄) to B(x̄)∧ C(x̄), as the PV-provability of ∀ 1�
δ � β [∀γ ≺ δ H(γ , x̄)→H(δ, x̄)] implies the PV-provability of ∀ 1� δ � β [∀γ ≺ δ (H(γ , x̄)∧
C(x̄))→ (H(δ, x̄)∧ C(x̄))]. �
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In the next lemma, we glue α-flows together to construct longer α-flows. Notice that the proof
heavily uses the fact that the operations {+, −̇, ·, d} and their basic properties are representable in
PV.

Lemma 11.

(i) If A(x̄)�α B(x̄) and B(x̄)�α C(x̄), then A(x̄)�α C(x̄).
(ii) If , ∀γ ≺ δ A(γ , x̄)�α ∀γ ≺ δ + 1A(γ , x̄), then  �α A(θ , x̄), for any θ ∈O.

Proof. For (i), as A(x̄)�α B(x̄), there exists an α-flow (H(γ , x̄), β) from A(x̄) to B(x̄). Similarly, as
B(x̄)�α C(x̄), there is an α-flow (H′(γ , x̄), β ′) from B(x̄) to C(x̄). Set β ′′ = β + β ′ andH′′(γ , x̄)=
[γ � β→H(γ , x̄)]∧ [β ≺ γ � β + β ′ →H′(γ −̇β , x̄)]. We claim that the pair (H′′(γ , x̄), β ′′) is
an α-flow from A(x̄) to C(x̄). First, note that H′′(0, x̄) is PV-equivalent to H(0, x̄) which is
PV-equivalent to A(x̄). Similarly, as (β + β ′)−̇β = β ′ is provable in PV, we know that H′′(β +
β ′, x̄) is PV-equivalent to H′(β ′, x̄) which is PV-equivalent to C(x̄). To prove PV� ∀ 1� δ �
β ′′ [∀γ ≺ δ H′′(γ , x̄)→H′′(δ, x̄)], note that if δ � β , then the claim reduces to the same claim
for H(γ , x̄) which is provable. If β ≺ δ � β + β ′, assume ∀γ ≺ δ H′′(γ , x̄) to prove H′′(δ, x̄) or
equivalently H′(δ−̇β , x̄). Note that ∀γ ≺ δ H′′(γ , x̄) implies ∀β � γ ≺ δ H′′(γ , x̄). As the inter-
val (0, δ−̇β) is isomorphic to (β , δ), by the map γ �→ β + γ , then ∀β � γ ≺ δ H′′(γ , x̄) implies
∀0≺ γ ≺ δ−̇β H′′(β + γ , x̄) which implies ∀0≺ γ ≺ δ−̇β H′(γ , x̄). On the other hand, ∀β � γ ≺
δ H′′(γ , x̄) implies H′′(β , x̄) which is PV-equivalent to H(β , x̄), by definition. As H(β , x̄) is PV-
equivalent to B(x̄) which is also PV-equivalent to H′(0, x̄), we can claim that H(β , x̄) and H′(0, x̄)
are PV-equivalent. Hence, ∀β � γ ≺ δ H′′(γ , x̄) implies ∀γ ≺ δ−̇β H′(γ , x̄) which also implies
H′(δ−̇β , x̄), as (H′(γ , x̄), β ′) is an α-flow.

For (ii), as
∧

 ∧ ∀γ ≺ δ A(γ , x̄)�α ∀γ ≺ δ + 1A(γ , x̄), by Lemma 10, we have
∧

 ∧
∀γ ≺ δ A(γ , x̄)�α

∧
 ∧ ∀γ ≺ δ+ 1A(γ , x̄). Set B(δ, x̄)=∧

 ∧ ∀γ ≺ δ A(γ , x̄). Therefore,
B(δ, x̄)�α B(δ + 1, x̄). Let (H(η, δ, x̄), β) be the α-flow from B(δ, x̄) to B(δ + 1, x̄). Note that
H(0, δ, x̄) is PV-equivalent to B(δ, x̄) and H(β , δ, x̄) is PV-equivalent to H(0, δ + 1, x̄), as both
are PV-equivalent to B(δ + 1). Define β ′ = β(θ + 1) and I(τ , x̄)=H(τ −̇βd(τ , β), d(τ , β), x̄) and
note that I(τ , x̄) ∈ ∀1. We show that (I(τ , x̄), β ′) is an α-flow from B(0, x̄) to B(θ + 1, x̄). Note that
(I(τ , x̄), β ′) is nothing but the result of gluing the α-flows (H(η, δ, x̄), β), for all δ ≺ θ + 1, one
after another as depicted in the following figure (for simplicity, in the figures, we drop the free
variables x̄).

B(0) B(1) ⋯ B( + 1)

H(0, 0) H(1, 0) ⋯ H( , 0)≡ H(0, 1) ⋯ H(0, + 1)

I(0) I(1) ⋯ I( ) ⋯ I( ( + 1))

≡ ≡

≡ ≡ ≡≡
≡

First, as d(0, β)= 0 and 0−̇βd(0, β)= 0, provably in PV, we know that I(0, x̄) is PV-equivalent
to H(0, 0, x̄) which is itself PV-equivalent to B(0, x̄). Second, as d(β(θ + 1), β)= θ + 1 and β(θ +
1)−̇βd(β(θ + 1), β)= 0, provably in PV, we know that I(β(θ + 1), x̄) is PV-equivalent toH(0, θ +
1, x̄) which is PV-equivalent to B(θ + 1, x̄). For the middle condition, we must prove PV�
∀ 1� τ � β(θ + 1) [∀ζ ≺ τ I(ζ , x̄)→ I(τ , x̄)]. There are two cases to consider, either βd(τ , β)≺
τ or βd(τ , β)= τ . If βd(τ , β)≺ τ , then βd(τ , β)+ 1� τ which implies τ = βd(τ , β)+μ for
μ= τ −̇βd(τ , β)� 1. As for any η≺μ, we have βd(τ , β)+ η≺ τ , we know that ∀ζ ≺ τ I(ζ , x̄)
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implies ∀η≺μH(η, d(τ , β), x̄). As we have μ� 1, the latter proves H(μ, d(τ , β), x̄) which is
PV-equivalent to I(τ , x̄).

⋯ H(0, d( , )) H(1, d( , )) ⋯ H( , d( , )) ⋯

⋯ I( d( , )) I( d( , )+ 1) ⋯ I( ) ⋯

≡ ≡≡

For the other case, if βd(τ , β)= τ , we should use ∀ζ ≺ τ I(ζ , x̄) to prove the formula I(τ , x̄)=
H(0, d(τ , β), x̄). Again, there are two cases to consider: either d(τ , β) is a successor or a limit ordi-
nal. If d(τ , β)= ρ + 1, for some ρ, asH(0, ρ + 1, x̄) is PV-equivalent toH(β , ρ, x̄), it is enough to
proveH(β , ρ, x̄). As βρ + η≺ βρ + β = β(ρ + 1)= τ , for any η≺ β , we know that ∀ζ ≺ τ I(ζ , x̄)
implies ∀η≺ β H(η, ρ, x̄) which implies H(β , ρ, x̄).

⋯ H(0, ) H(1, ) ⋯ H( , )≡ H(0, + 1) ⋯

⋯ I( ) I( + 1) ⋯ I( ( + 1)) ⋯

≡ ≡ ≡

If d(τ , β) is a limit ordinal, then ∀ζ ≺ βd(τ , β) I(ζ , x̄) implies the formula ∀δ ≺ d(τ , β)H(0, δ, x̄)
which implies ∀δ ≺ d(τ , β)B(δ, x̄). The latter is ∀δ ≺ d(τ , β)[

∧
 ∧ ∀γ ≺ δ A(γ , x̄)] that implies∧

 ∧ ∀γ ≺ d(τ , β)A(γ , x̄), as d(τ , β) is a limit ordinal. The latter is PV-equivalent to
H(0, d(τ , β), x̄)= I(τ , x̄). This completes the proof of the claim and shows that B(0, x̄)�α B(θ +
1, x̄). Now, as PV�∧

→ (
∧

 ∧ ∀γ ≺ 0A(γ , x̄)) and PV� (∧  ∧ ∀γ ≺ θ + 1A(γ , x̄))→
A(θ , x̄), by Lemma 10, we have

∧
 �α

∧
 ∧ ∀γ ≺ 0A(γ , x̄) and

∧
 ∧ ∀γ ≺ θ + 1A(γ , x̄)�α

A(θ , x̄). Hence, by part (i), we have
∧

 �α A(θ , x̄) which completes the proof. �

Lemma 12. (Conjunction and Disjunction Rules)

(i) If ,A�α � or , B�α �, then ,A∧ B�α �.
(ii) If  �α A,� and  �α B,�, then  �α A∧ B,�.
(iii) If  �α A,� or  �α B,�, then  �α A∨ B,�.
(iv) If ,A�α � and , B�α �, then ,A∨ B�α �.

Proof. For (i) and (iii), as the implications [(
∧

 ∧ (A∧ B))→ (
∧

 ∧A)], [(
∧

 ∧ (A∧
B))→ (

∧
 ∧ B)], [(

∨
�∨A)→ (

∨
�∨ (A∨ B))] and [(

∨
�∨ B)→ (

∨
�∨ (A∨ B))] are

all provable in PV, using Lemmas 10 and 11, we reach what we wanted. For (ii), if  �α �,A then∧
 �α

∨
�∨A, by definition. By Lemma 10, we reach

∧
 �α (

∨
�∨A)∧∧

. Similarly,
we have

∧
 �α

∨
�∨ B and by Lemma 10, we reach

∧
 ∧ (

∨
�∨A)�α (

∨
�∨ B)∧

(
∨

�∨A). Therefore,
∧

 �α (
∨

�∨ B)∧ (
∨

�∨A), by part (i) in Lemma 11. Finally, as
(
∨

�∨ B)∧ (
∨

�∨A)→∨
�∨ (A∧ B) is provable in PV, by Lemmas 10 and 11, we reach∧

 �α

∨
�∨ (A∧ B). The proof for (iv) is similar. �

Having the required lemmas, we are now ready to prove the following theorem as the main
extraction technique that witnesses the proofs in TI(∀1,≺ ) by α-flows.

Theorem. Let (x̄)∪�(x̄)⊆∀1. Then, TI(∀1,≺ )�∧
(x̄)→∨

�(x̄) iff (x̄)�α �(x̄).
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Proof. We first prove the easier direction. Assume (x̄)�α �(x̄) and the pair (H(γ , x̄), β) is an
α-flow from

∧
(x̄) to

∨
�(x̄). As PV� ∀ 1� δ � β [∀γ ≺ δ H(γ , x̄)→H(δ, x̄)] and TI(∀1,≺ )

extends PV, we have
TI(∀1,≺ )� ∀ 1� δ � β [∀γ ≺ δ H(γ , x̄)→H(δ, x̄)].

Then, as H(γ , x̄) ∈ ∀1, by the transfinite induction in TI(∀1,≺ ), we reach TI(∀1,≺ )�H(0, x̄)→
H(β , x̄). Finally, using the PV-provable equivalences

∧
(x̄)↔H(0, x̄) and H(β , x̄)↔∨

�(x̄),
we reach TI(∀1,≺ )�∧

(x̄)→∨
�(x̄).

For the other direction, assume TI(∀1,≺ )�∧
(x̄)→∨

�(x̄). By Lemma 8, (x̄)⇒�(x̄)
has a G1-proof only consisting of ∀1-formulas. By induction on this proof, we show that for any
sequent �⇒� in the proof, we have � �α �.

For the axioms, as they are provable in PV, using Lemma 10, there is nothing to prove. The case
of structural rules (except for the weak cut) is easy. Weak cut and weak induction are addressed
in Lemma 11. The conjunction and disjunction rules are proved in Lemma 12. For the right
universal quantifier rule, if �(x̄)⇒�(x̄), ∀zB(x̄, z) is proved from �(x̄)⇒�(x̄), B(x̄, z), then by
induction hypothesis,�(x̄)�α �(x̄), B(x̄, z). Therefore, there exists an α-flow (H(γ , x̄, z), β) from∧

�(x̄) to B(x̄, z)∨∨
�(x̄). Define I(γ , x̄)=∀zH(γ , x̄, z) and note that I(x̄, z) ∈ ∀1. It is easy to

see that (I(γ , x̄), β) is an α-flow from ∀z[∧ �(x̄)] to ∀z[B(x̄, z)∨∨
�(x̄)], as PV-provability of

∀γ ≺ δH(γ , z, x̄)→H(δ, z, x̄) implies the PV-provability of ∀γ ≺ δ∀zH(γ , z, x̄)→∀zH(δ, z, x̄).
Finally, as z does not occur as a free variable in �(x̄)∪�(x̄), we have the PV-equivalence between
∀z[∧ �(x̄)] and

∧
�(x̄) and similarly between ∀z[B(x̄, z)∨∨

�(x̄)] and
∨

�(x̄)∨ ∀zB(x̄, z).
Using Lemmas 10 and 11, we can prove

∧
�(x̄)�α

∨
�(x̄)∨ ∀zB(x̄, z). For the left universal

quantifier rule, if �(x̄), ∀zB(x̄, z)⇒�(x̄) is proved from �(x̄), B(x̄, s(x̄))⇒�(x̄), then by induc-
tion hypothesis �(x̄), B(x̄, s(x̄))�α �(x̄). Since PV�∧

�(x̄)∧ ∀zB(x̄, z)→∧
�(x̄)∧ B(x̄, s(x̄)),

by Lemmas 10 and 11, we reach �(x̄), ∀zB(x̄, z)�α �(x̄). �

Corollary 13. Let α be an ordinal with the ptime representationO. Then, PA+⋃
β∈O TI(≺β )�∧

(x̄)→∨
�(x̄) iff (x̄)�α �(x̄), for (x̄)∪�(x̄)⊆∀1.

Proof. As any implication in the form
∧

(x̄)→∨
�(x̄) is logically equivalent to a �0

2-formula,
the claim is a consequence of Theorem 4 and Corollary 7. �

Corollary 14. Let O0 be the ptime representation for ε0 introduced in Subsection 3.1. Then, PA�∧
(x̄)→∨

�(x̄) iff (x̄)�ε0 �(x̄), for (x̄)∪�(x̄)⊆∀1.

4.3 Ordinal local search programs
In this subsection, we will first introduce the notion of an ordinal local search program as a
formalized version of the transfinite ptime modifications over an initial ptime value that we
explained before. We will then use these programs to witness some provable statements in the
theory PA+⋃

β∈O TI(≺β).

Definition 15. Let T be a theory over the language LPV. A total search problem of T is a
quantifier-free formula A(x̄, ȳ) such that T � ∀x̄∃ȳA(x̄, ȳ). A total search problem is called an NP-
search problem, if there are sequences of polynomials r̄ such that PV�A(x̄, ȳ)→|ȳ| ≤ r̄(|x̄|), where
|ȳ| ≤ r̄(|x̄|) is an abbreviation for

∧
i (|yi| ≤ ri(|x̄|)). We denote the class of all these total search

(resp., NP-search) problems of T by TSP(T) (resp. TFNP(T)).

Definition 16. Let α be an ordinal, O be its ptime representation, A(x̄, ȳ) be a quantifier-free for-
mula in LPV and β ∈O. By an LS(�β )-program for A(x̄, ȳ), we mean the following data: an initial
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sequence of LPV-terms ī(x̄), a quantifier-free LPV-formula G(γ , x̄, z̄), a sequence of LPV-terms
N̄(γ , x̄, z̄), an LPV-term q(γ , x̄, z̄), a sequence of LPV-terms p̄(x̄, z̄), such that:

• PV�G(β , x̄, ī(x̄)),
• PV� γ �= 0→ q(γ , x̄, z̄)≺ γ ,
• PV� γ �= 0→ [G(γ , x̄, z̄)→G(q(γ , x̄, z̄), x̄, N̄(γ , x̄, z̄))],
• PV�G(0, x̄, z̄)→A(x̄, p̄(x̄, z̄)).

By LS(�β ), we mean the class of all formulas A(x̄, ȳ) for which there exists a LS(�β )-program. By
PLS(�β ), we mean the class LS(�β )∩ TFNP(Th(N)).

Membership A(x̄, ȳ) ∈ LS(�β ) implies ∀x̄∃ȳA(x̄, ȳ) and the LS(�β )-program actually pro-
vides an algorithm to compute ȳ from x̄. To see this, denote G(γ , x̄, z̄) by Gγ . The algorithm starts
at the level β with an initial value ī(x̄) satisfying the property Gβ . Then, using the feasible function
q, it finds a lower level to go to and uses the modification N̄ to update any value with the property
Gγ to a value satisfying the property Gq(γ ). Finally, reaching the zeroth level, the algorithm uses p̄
to compute ȳ satisfying A from any value with the property G0.

The next theorem uses LS(�β )-programs (PLS(�β )-programs) to witness the total search
(NP-search) problems of PA+⋃

β∈O TI(≺β). The idea is using Herbrand’s theorem, Theorem 2,
applied on PV to push the data extraction of Corollary 13 a bit further to reach an ordinal local
search program for total search problems.

Theorem. Let α be an ordinal with the ptime representationO. Then TSP(PA+⋃
β∈O TI(≺β))=⋃

β∈O LS(�β ) and TFNP(PA+⋃
β∈O TI(≺β))=⋃

β∈O PLS(�β ).

Proof. We only prove the first equality. The second is just a consequence. For the first direc-
tion, assume that A(x̄, ȳ) has a LS(�β )-program. Set H(γ , x̄)=∀z̄¬G(γ , x̄, z̄)∧ ∀ȳ¬A(x̄, ȳ)
and note that H ∈ ∀1. We claim that (H(γ , x̄), β) is an α-flow from ∀ȳ¬A(x̄, ȳ) to ⊥. First,
as PV�G(0, x̄, z̄)→A(x̄, p̄(x̄, z̄)), we have PV� ∀ȳ¬A(x̄, ȳ)→∀z̄¬G(0, x̄, z̄) and hence PV�
∀ȳ¬A(x̄, ȳ)↔H(0, x̄). Second, as PV�G(β , x̄, ī(x̄)), we reach PV� ∀z̄¬G(β , x̄, z̄)↔⊥ and hence
PV�⊥↔H(β , x̄). Finally, using PV� γ �= 0→ q(γ , x̄, z̄)≺ γ , and

PV� γ �= 0→ [G(γ , x̄, z̄)→G(q(γ , x̄, z̄), x̄, N̄(γ , x̄, z̄))],
it is easy to see that

PV� ∀ 1� δ � β [¬G(q(δ, x̄, z̄), x̄, N̄(δ, x̄, z̄))→¬G(δ, x̄, z̄)]
and hence we reach

PV� ∀ 1� δ � β [∀γ ≺ δ ∀z̄¬G(γ , x̄, z̄)→∀z̄¬G(δ, x̄, z̄)].
The latter implies PV� ∀ 1� δ � β [∀γ ≺ δ H(γ , x̄)→H(δ, x̄)]. Therefore, (H(γ , x̄), β) is an
α-flow from ∀ȳ¬A(x̄, ȳ) to ⊥. Hence, PA+⋃

β∈O TI(≺β)� ∀ȳ¬A(x̄, ȳ)→⊥, by Corollary 13
and thus, we reach PA+⋃

β∈O TI(≺β)� ∀x̄∃ȳ A(x̄, ȳ). For the converse, assume that PA+⋃
β∈O TI(≺β)� ∀x̄∃ȳA(x̄, ȳ), where A(x̄, ȳ) ∈LPV is quantifier-free. As PA+⋃

β∈O TI(≺β)�
∀ȳ¬A(x̄, ȳ)→⊥, by Corollary 13, ∀ȳ¬A(x̄, ȳ)�α ⊥. Hence, there exist H(γ , x̄) ∈ ∀1 and β ∈O
such that PV� ∀ȳ¬A(x̄, ȳ)↔H(0, x̄), PV�H(β , x̄)↔⊥ and

PV� ∀ 1� δ � β [∀γ ≺ δ H(γ , x̄)→H(δ, x̄)].
As H ∈ ∀1, there exists a quantifier-free formula I(γ , x̄, z̄) such that H(γ , x̄) and ∀z̄I(γ , x̄, z̄) are
equivalent over PV. On the other hand, as the implications are provable in PV, we can witness
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the existential quantifiers by ptime functions. Hence, there are LPV-terms Ȳ(x̄, z̄), Z̄(γ , x̄, z̄),
�(γ , x̄, z̄), and W̄(x̄) such that

• PV�¬A(x̄, Ȳ(x̄, z̄))→ I(0, x̄, z̄),
• PV� I(β , x̄, W̄(x̄))→⊥,
• PV� ∀1� δ � β [[(�(δ, x̄, z̄)≺ δ→ I(�(δ, x̄, z̄), x̄, Z̄(δ, x̄, z̄))]→ I(δ, x̄, z̄)].

Define G(δ, x̄, z̄)=¬I(δ, x̄, z̄)∧ (δ � β),

q(δ, x̄, z̄)=
{

�(δ, x̄, z̄) ¬I(δ, x̄, z̄)∧ (δ � β)
0 otherwise

ī(x̄)= W̄(x̄) and p̄(x̄, z̄)= Ȳ(x̄, z̄). It is easy to see that this new data is an LS(�β )-program for
A(x̄, ȳ). �

Applying Theorem 5 to α = ε0, we reach the following Corollary, originally proved in
Beckmann (2009).

Corollary 17. Let O0 be the ptime representation of the ordinal ε0 introduced in Subsection 3.1.
Then TSP(PA)=⋃

β∈O0 LS(�β ) and TFNP(PA)=⋃
β∈O0 PLS(�β ).

5. k-Flows and Bounded Arithmetic
In this section, we will modify the method developed for the strong theories of arithmetic in
Section 4 to also cover the bounded and hence weaker theories of arithmetic. The structure of
the present section is similar to that of Section 4. After recalling the usual sequent calculi for the
theories Sk2 and T

k
2 in Subsection 5.1, the next subsection, Subsection 5.2 will be devoted to investi-

gate a suitable version of a flow for bounded arithmetic called a k-flow. Roughly speaking, a k-flow
is an exponentially long uniform sequence of PV-provable implications between LPV-formulas in
the class �̂b

k. After proving some basic properties of k-flows, we will conclude the subsection by
proving a witnessing theorem, transforming the proofs of the implications between �̂b

k-formulas
in Sk2 and Tk

2 to some types of k-flows. Finally, in Subsection 5.3, we will introduce the appropri-
ate notion of a local search program to witness the PV-provable implications further and find a
complete witnessing for the theories Sk2 and Tk

2 .

5.1 Sequent calculi for bounded arithmetic
To recall the usual sequent calculi for Sk2 and Tk

2 , introduced in Buss (1986), first consider the
following rules:

Bounded Quantifier Rules:

,A(s)⇒�

, s≤ t, ∀y≤ t A(y)⇒�
L∀≤ , z≤ t⇒A(z),�

⇒∀y≤ t A(y),�
R∀≤

, z≤ t,A(z)⇒�

, ∃y≤ t A(y)⇒�
L∃≤ ⇒A(s),�

, s≤ t,⇒∃y≤ t A(y),�
R∃≤
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Induction Rules:

,A(� z2�)⇒A(z),�
,A(0)⇒A(t),�

PIndk
,A(z)⇒A(z+ 1),�

,A(0)⇒A(t),�
Indk

In the rules (R∀≤) and (L∃≤) as well as in the induction rules, the variable z should not appear
in the consequence of the rule. Moreover, in the induction rules (PIndk) and (Indk), the index k
means that the formula A(z) is restricted to the class �̂b

k.
The system LSk2 (resp. LTk

2) for Sk2 (resp. T
k
2) is defined as the system LPV plus the bounded

quantifier rules and the rule (PIndk) (resp. (Indk)). For some technical reasons, we prefer to work
with the alternative systems where the cut and the induction rules are weakened. Define the system
wLSk2 (resp. wLTk

2) similar to LSk2 (resp. LTk
2) with the difference that in the former the quantifier

rules in LPV are omitted and the cut and the induction rule (PIndk) (resp. (Indk)) are replaced by
the weak cut and the weak induction rule (wPIndk) (resp. (wIndk)) depicted below:

⇒A A⇒�

⇒�
wCut

,A(� z2�)⇒A(z)
,A(0)⇒A(s)

wPIndk
,A(z)⇒A(z+ 1)

,A(0)⇒A(s)
wIndk

In the weak induction rules, we have the similar constraints as before, namely that A ∈ �̂b
k and z

does not appear in the consequence of the rules. Note that the only point modified in the weak
induction rules is the missing context �.

The following theorem ensures that the system wLSk2 (resp. wLTk
2) is complete for the sequents

of �̂b
k-formulas. Notice that the lemma does not claim the full completeness as the system wLSk2

(resp. wLTk
2) is clearly weak to introduce any unbounded quantifier.

Lemma 18. For any  ∪�⊆ �̂b
k:

• If Sk2 �
∧

→∨
�, then ⇒� has a wLSk2-proof only consisting of �̂b

k-formulas.

• If Tk
2 �

∧
→∨

�, then ⇒� has a wLTk
2-proof only consisting of �̂b

k-formulas.

Proof. It is a well-known consequence of the cut reduction theorem for LSk2 (resp. LTk
2) that if∧

→∨
� is provable in Sk2 (resp. T

k
2), it has a proof in LSk2 (resp. LTk

2) only consisting of �̂b
k-

formulas and only using bounded quantifier rules instead of the usual unbounded quantifier rules
in LPV (Buss 1986; Krajíček 1995). Therefore, the only thing remained to prove is simulating the
cut and the induction rules over �̂b

k-formulas by their weak versions applied over the same family
of formulas. This simulation is almost identical to the one presented in the proof of Lemma 8 and
hence will be skipped here. �

5.2 k-flows
In this subsection, we will first introduce a k-flow as a uniform term-length sequence of PV-
provable implications between �̂b

k-formulas. Then, we will develop a high-level calculus for
k-flows to witness the provability in theories Sk2 and Tk

2 .

Definition 19. Let A(x̄), B(x̄) ∈ �̂b
k be two LPV-formulas and t(x̄) be an LPV-term. A k-flow from

A(x̄) to B(x̄) with the length t(x̄) is a pair (H(u, x̄), t(x̄)), where H(u, x̄) ∈ �̂b
k and:

• PV�H(0, x̄)↔A(x̄).
• PV�H(t(x̄), x̄)↔ B(x̄).
• PV� ∀u< t(x̄) [H(u, x̄)→H(u+ 1, x̄)].
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A k-flow is called polynomial if t(x̄)= q(|x̄|), for some polynomial q,where by equality, we mean the
syntactical equality between the terms. If there exists a k-flow from A(x̄) to B(x̄) with the length t(x̄),
we write A(x̄)�t(x̄)

k B(x̄). If we intend to emphasize on the existence of the k-flow regardless of its
length, we write A(x̄)�k B(x̄) and if the k-flow is polynomial A(x̄)�p

k B(x̄). Moreover, if  ∪�⊆
�̂b

k, by  �k � (resp.  �p
k �), we mean

∧
 �k

∨
� (resp.

∧
 �p

k
∨

�).

Similar to the situation with the ordinal flows, it is also reasonable to provide a high-level
calculus to work with the k-flows. The following series of lemmas realize this goal.

Lemma 20. (Padding) Let A(x̄), B(x̄) ∈ �̂b
k and t(x̄), s(x̄) be two LPV-terms such that PV� t(x̄)≤

s(x̄). If A(x̄)�t(x̄)
k B(x̄), then A(x̄)�s(x̄)

k B(x̄). Therefore, without loss of generality, we can always
assume that the length t(x̄) of a k-flow is PV-monotone, that is, PV�∧n

i=1 (xi ≤ yi)→ t(x̄)≤ t(ȳ).

Proof. Let (H(u, x̄), t(x̄)) be a k-flow from A(x̄) to B(x̄). Then, define

H′(u, x̄)=
{
H(u, x̄) u≤ t(x̄)
B(x̄) u> t(x̄)

Notice that H′(u, x̄) ∈ �̂b
k. It is easy to prove that (H′(u, x̄), s(x̄)) is a k-flow from A(x̄) to B(x̄).

The only thing worth emphasizing is the role of the assumption PV� t(x̄)≤ s(x̄) in the proof.
This assumption together with the definition of H′(u, x̄) shows PV�H′(s(x̄), x̄)↔ B(x̄) which is
one of the conditions of being a k-flow. This observation completes the proof of the first part of
the claim. For its second part, note that for any term t(x̄), there exists a polynomial q such that
PV� t(x̄)≤ 2q(|x̄|) (Buss 1986; Krajíček 1995). As 2q(|x̄|) is PV-monotone, it is enough to use the
first part to extend a k-flow with the length t(x̄) to a k-flow with the length 2q(|x̄|). For polynomial
k-flows, as the length t(x̄) is in the form q(|x̄|), for some polynomial q, it is already PV-monotone
and hence there is nothing to prove. �

Lemma 21. Let A(x̄), B(x̄), C(x̄) ∈ �̂b
k. Then:

(i) If PV�A(x̄)→ B(x̄), then A(x̄)�p
k B(x̄).

(ii) If A(x̄)�k B(x̄), then A(x̄) ◦ C(x̄)�k B(x̄) ◦ C(x̄), for any ◦ ∈ {∧,∨}. A similar claim also holds
for �p

k.

Proof. The proof is similar to that of Lemma 10. �

Lemma 22. (Bounded variables) Let A(x̄, y), B(x̄, y) ∈ �̂b
k be twoLPV-formulas and s(x̄) be anLPV-

term (not depending on y). If A(x̄, y)�k B(x̄, y), then there exists a formula I(u, y, x̄) ∈ �̂b
k and an

LPV-term r(x̄) (not depending on y) such that:

• PV� I(0, y, x̄)↔A(x̄, y).
• PV� ∀y≤ s(x̄)[I(r(x̄), y, x̄)↔ B(x̄, y)].
• PV� I(u, y, x̄)→ I(u+ 1, y, x̄).
• PV� r(x̄)≥ 1.

If we also have A(x̄, y)�p
k B(x̄, y), then the term r(x̄) can be chosen in the form q(|x̄|), for some

polynomial q.
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Proof. Assume (H(u, y, x̄), t(y, x̄)) is a k-flow from A(x̄, y) to B(x̄, y). Using Lemma 20, we can
assume that t(y, x̄) is PV-monotone and PV� t(y, x̄)≥ 1. Define

I(u, y, x̄)=
{
H(u, y, x̄) u≤ t(y, x̄)
B(y, x̄) u> t(y, x̄)

and notice that I(u, y, x̄) ∈ �̂b
k. Recall from the basic facts in bounded arithmetic that for the term

s(x̄), there is a polynomial qs such that PV� |s(x̄)| ≤ qs(|x̄|) (Buss 1986; Krajíček 1995). Define
r(x̄)= t(2qs(|x̄|), x̄) and note that PV� y≤ s(x̄)→ t(y, x̄)≤ r(x̄), as t(y, x̄) is PV-monotone and
PV� r(x̄)≥ 1. We claim that I(u, y, x̄) and r(x̄) work. The first and the third claims in the state-
ment of the lemma are the trivial consequences of the fact that (H(u, y, x̄), t(y, x̄)) is a k-flow from
A(x̄, y) to B(x̄, y). For the second, notice that as PV� y≤ s(x̄)→ t(y, x̄)≤ r(x̄), we can use the
definition of I(y, x̄) to see that the formula I(r(x̄), x̄) is PV-equivalent to B(y, x̄).

For the polynomial case, if (H(u, y, x̄), t(y, x̄)) is a polynomial k-flow from A(x̄, y) to B(x̄, y),
then there is a polynomial qt such that t(y, x̄)= qt(|y|, |x̄|). Therefore, r(x̄)= qt(qs(|x|)+ 1, |x̄|)
which implies that r(x̄) is in the form qr(|x̄|), for some poynomial qr . �

Lemma 23. Let (x̄)∪ {A(x̄), B(x̄), C(x̄),D(y, x̄)} ⊆ �̂b
k. Then:

(i) (weak gluing) If A(x̄)�k B(x̄) and B(x̄)�k C(x̄) then A(x̄)�k C(x̄).A similar claim also holds
for �p

k.

(ii) (polynomial strong gluing) If (x̄),D(� y2�, x̄)�p
k D(y, x̄), then we have (x̄),D(0, x̄)�p

k
D(s(x̄), x̄), for any LPV-term s(x̄).

(iii) (strong gluing) If (x̄),D(y, x̄)�k D(y+ 1, x̄), then (x̄),D(0, x̄)�k D(s(x̄), x̄), for any LPV-
term s(x̄).

Proof. For (i), as A(x̄)�k B(x̄) and B(x̄)�k C(x̄), there exist k-flows (H(u, x̄), t(x̄)) and
(H′(u, x̄), t′(x̄)), from A(x̄) to B(x̄) and from B(x̄) to C(x̄), respectively. Set t′′(x̄)= t(x̄)+ t′(x̄)+ 1
and

H′′(u, x̄)=
{
H(u, x̄) u≤ t(x̄)
H′(u−̇(t(x̄)+ 1), x̄) u> t(x̄)

Notice thatH′′(u, x̄) is clearly a �̂b
k-formula. We claim that (H′′(u, x̄), t′′(x̄)) is a k-flow from A(x̄)

to C(x̄) as depicted in the following figure (for simplicity, in the figure, we sometimes drop the
free variables x̄):

A(x̄) B(x̄) B(x̄) C(x̄)

H(0) ⋯ H(t)

H ′
(0) ⋯ H ′

(t ′)

H ′′
(0) ⋯ H ′′

(t) H ′′
(t + 1) ⋯ H ′′

(t + t ′ + 1)

≡ ≡

≡ ≡

First, it is trivial that H′′(0, x̄) is PV-equivalent to H(0, x̄) which is PV-equivalent to A(x̄).
Similarly, H′′(t′′(x̄), x̄) is PV-equivalent to H′(t′(x̄), x̄) which is PV-equivalent to C(x̄). To prove
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PV� ∀u< t′′(x̄) [H′′(u, x̄)→H′′(u+ 1, x̄)], the cases u< t(x̄) and t(x̄)< u< t′′(x̄) are reduced
to a similar claim for H and H′. For u= t(x̄), note that H′′(t(x̄), x̄) is PV-equivalent to H(t(x̄), x̄)
and H′′(t(x̄)+ 1, x̄) is PV-equivalent to H′(0, x̄). As both formulas are PV-equivalent to B(x̄),
the proof is complete. Finally, note that if the k-flows (H(u, x̄), t(x̄)) and (H′(u, x̄), t′(x̄)) are
polynomial, there are polynomials q and q′ such that t(x̄)= q(|x̄|) and t′(x̄)= q′(|x̄|). Hence,
t′′(x̄)= q(|x̄|)+ q′(|x̄|)+ 1. Therefore, the k-flow (H′′(u, x̄), t′′(x̄)) is also polynomial.

For (ii), as (x̄),D(� y2�, x̄)�p
k D(y, x̄), by Lemma 21, we have

∧
(x̄)∧D(� y2�, x̄)�p

k
∧

 ∧
D(y, x̄). For simplicity, denote

∧
(x̄)∧D(y, x̄) by E(y, x̄). Therefore, we have E(� y2�, x̄)�p

k
E(y, x̄). First, we want to prove E(0, x̄)�p

k E(s(x̄), x̄). Roughly speaking, the idea is gluing the poly-
nomial k-flows from E(� y2�, x̄) to E(y, x̄), one after another, starting from y= s(x̄) till reaching
E(0, x̄):

E(0, x̄) ⋯ E(⌊
⌊

s(x̄)
2 ⌋

2 ⌋, x̄) E(⌊ s(x̄)
2 ⌋, x̄) E(s(x̄), x̄)

Notice that the result of this gluing extends the length of the k-flow by |s(x̄)| which is bounded
by a polynomial and hence acceptable. More formally, using Lemma 22 for the formulas E(� y2�, x̄)
and E(y, x̄) and the term 2s(x̄) (the choice of 2s(x̄) instead of s(x̄) is rather technical) and using the
fact that E(� y2�, x̄)�p

k E(y, x̄), we reach a pair (H′(u, y, x̄), t′(x̄)) such that:

(1) PV�H′(0, y, x̄)↔ E(� y2�, x̄),
(2) PV� ∀y≤ 2s(x̄)[H′(t′(x̄), y, x̄)↔ E(y, x̄)],
(3) PV�H′(u, y, x̄)→H′(u+ 1, y, x̄),
(4) PV� t′(x̄)≥ 1,

and t′(x̄)= qt′(|x̄|), for some polynomial qt′ . Define the function Y(z, x̄) as the result of |s(x̄)| +
1−̇z many iterations of the operation n �→ �n2 � on 2s(x̄). Note that the function is clearly poly-
nomial time computable. Therefore, we can define it recursively in PV and represent it by an
LPV-term. This term is PV-provably bounded by 2s(x̄), that is, PV� Y(z, x̄)≤ 2s(x̄) and we have
Y(0, x̄)= 0, Y(|s(x̄)|, x̄)= s(x̄) and if z≤ |s(x̄)|, then Y(z, x̄)= �Y(z+1,x̄)2 �, all provable in PV. Now,
define

I(u, x̄)=H′(u−̇t′(x̄)� u
t′(x̄)
�, Y(� u

t′(x̄)
� + 1), x̄).

Note that I(u, x̄) is well defined as t′(x̄) is greater than zero, provably in PV. It is trivial that I(u, x̄) ∈
�̂b

k. Set r(x̄)= t′(x̄)|s(x̄)|. We claim that the pair (I(u, x̄), r(x̄)) is a k-flow from E(0, x̄) to E(s(x̄), x̄)
as depicted in the following figure. For simplicity, we drop the free variables x̄ in the figure.

⋯ E(⌊ s
2⌋) E(s)

H ′
(t ′, ⌊ s

2⌋)≡ H ′
(0, s) H ′

(1, s) ⋯ H ′
(t ′, s)

⋯ I(∣⌊ s
2⌋∣t

′
) I(∣⌊ s

2⌋∣t
′ + 1) ⋯ I(∣s∣t ′)

≡
≡≡

≡

≡

To prove, we first claim that
PV� ∀z≤ |s(x̄)| [I(t′(x̄)z, x̄)↔ E(Y(z, x̄), x̄)] ( ∗ )
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The reason is that by definition, I(t′(x̄)z, x̄)=H′(0, Y(z+ 1, x̄), x̄) and the latter is PV-equivalent
to E(�Y(z+1,x̄)2 �, x̄), by the property (1) above. Finally, since for any z≤ |s(x̄)|, we have Y(z, x̄)=
�Y(z+1,x̄)2 � provably in PV, we reach the PV-equivalence with E(Y(z, x̄), x̄).

Now, we prove that (I(u, x̄), r(x̄)) is a k-flow from E(0, x̄) to E(s(x̄), x̄). First, note that I(0, x̄)
is PV-equivalent to E(0, x̄), by substituting z= 0 in ( ∗ ) and using the PV-provable fact that
Y(0, x̄)= 0. Second, note that I(r(x̄), x̄) is PV-equivalent to E(s(x̄), x̄), by substituting z= |s(x̄)|
in ( ∗ ) and using the PV-provable fact that Y(|s(x̄)|, x̄)= s(x̄). Third, to prove PV� ∀u<

t′(x̄) [I(u, x̄)→ I(u+ 1, x̄)], there are two cases to consider: Either u+ 1 divides t′(x̄) or not. In
the latter case, we have � u+1

t′(x̄)� = �
u

t′(x̄)�. By definition I(u, x̄) isH
′(u−̇t′(x̄)� u

t′(x̄)�, Y(�
u

t′(x̄)� + 1), x̄)

while I(u+ 1, x̄) is H′(u+ 1−̇t′(x̄)� u+1
t′(x̄)�, Y(�

u+1
t′(x̄)� + 1), x̄). Therefore, the former proves the lat-

ter by property (3) above. For the first case, if t′(x̄)|u+ 1, then there exists z≤ |s(x̄)| such that
u+ 1= t′(x̄)z. Therefore, I(u+ 1, x̄) is I(t′(x̄)z, x̄) which is PV-equivalent to E(Y(z, x̄), x̄) by ( ∗ ),
and hence PV-equivalent toH′(t′(x̄), Y(z, x̄), x̄) by (2), as Y(z, x̄) is PV-provably bounded by 2s(x̄).
As I(u, x̄) is H′(t′(x̄)−̇1, Y(z, x̄), x̄) by definition, by (3), the formula I(u, x̄) implies I(u+ 1, x̄) in
PV.

So far, we showed that (I(u, x̄), r(x̄)) is a k-flow from E(0, x̄) to E(s(x̄), x̄). Again, recall that for
the term s(x̄), there is a polynomial qs such that PV� |s(x̄)| ≤ qs(|x̄|) (Buss 1986; Krajíček 1995).
Hence, PV� r(x̄)≤ qs(|x̄|)qt′(|x̄|). Therefore, using Lemma 20, we can prove the existence of a k-
flow with the length qs(|x̄|)qt′(|x̄|) from E(0, x̄) to E(s(x̄), x̄) which implies E(0, x̄)�p

k E(s(x̄), x̄).
Now, to complete the proof of (ii), by the definition of E(y, x̄), we have

∧
(x̄)∧D(0, x̄)�p

k∧
(x̄)∧D(s(x̄), x̄). As PV�∧

(x̄)∧D(s(x̄), x̄)→D(s(x̄), x̄), by Lemma 21, we have
∧

(x̄)∧
D(s(x̄), x̄)�p

k D(s(x̄), x̄). Hence, by the weak gluing, the part (i) in the present lemma, we reach∧
(x̄)∧D(0, x̄)�p

k D(s(x̄), x̄).
The proof of (iii) is similar to that of (ii) and even easier. In this case, one must again define

E(y, x̄) as
∧

(x̄)∧D(y, x̄) and then glue the k-flows from E(y, x̄) to E(y+ 1, x̄), one after another,
for all 0≤ y< s(x̄). �

Lemma 24. (Conjunction and Disjunction Rules) Let  ∪�∪ {A, B} ⊆ �̂b
k. Then:

(i) If ,A�k � or , B�k � then ,A∧ B�k �.
(ii) If  �k A,� and  �k B,� then  �k A∧ B,�.
(iii) If  �k A,� or  �k B,� then  �k A∨ B,�.
(iv) If ,A�k � and , B�k � then ,A∨ B�k �.

A similar claim also holds for �p
k.

Proof. The argument is identical to that of Lemma 12 claiming the same fact for the ordinal
flows. �

Lemma 25. (Negation Rules) If  ∪�⊆ �̂b
k and A,¬A ∈ �̂b

k, then:

(i) If ,A�k � then  �k ¬A,�.
(ii) If  �k A,� then ,¬A�k �.

A similar claim also holds for �p
k.

Proof. We only prove the claim for �k. The case for �
p
k is identical. For (i), assume ,A�k �

which means
∧

 ∧A�k
∨

�. As¬A ∈ �̂b
k, by Lemma 21, we have (

∧
 ∧A)∨¬A�k

∨
�∨

¬A. Since PV�∧
→ (

∧
 ∧A)∨¬A, by Lemma 21, we have

∧
 �k (

∧
 ∧A)∨¬A.

Hence, by weak gluing, Lemma 23, we have
∧

 �k
∨

�∨¬A. The proof for (ii) is similar. �
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Lemma 26. (Bounded Universal Quantifier) Let A(x̄), B(x̄, y) ∈ �̂b
k and s(x̄) be an LPV-term. If

A(x̄), (y≤ s(x̄))�k B(x̄, y), then A(x̄)�k ∀y≤ s(x̄)B(y, x̄). The same also holds for �p
k.

Proof. Again, we only prove the claim for �k. The proof for �p
k is identical. Since A(x̄), (y≤

s(x̄))�k B(x̄, y) and y≤ s(x̄) is quantifier-free, by Lemma 25, we haveA(x̄)�k (y≤ s(x̄)→ B(x̄, y)).
Note that (y≤ s(x̄)→ B(x̄, y)) is defined as ¬(y≤ s(x̄))∨ B(x̄, y), as the negation is not primitive
in the language. Use Lemma 22 for the formulas A(x̄) and (y≤ s(x̄)→ B(x̄, y)) and the term s(x̄).
Therefore, we have a formula I(u, y, x̄) ∈ �̂b

k and a term r(x̄) such that:

• PV� I(0, y, x̄)↔A(x̄).
• PV� ∀y≤ s(x̄)[I(r(x̄), y, x̄)↔ (y≤ s(x̄)→ B(x̄, y))].
• PV� I(u, y, x̄)→ I(u+ 1, y, x̄).

It is easy to see that the pair
(∀y≤ s(x̄)I(u, y, x̄), r(x̄)

)
is a k-flow from A(x̄) to ∀y≤ s(x̄)B(x̄, y). �

Now we are ready to use k-flows to witness the provable implications between �̂b
k-formulas in

Sk2 and Tk
2 .

Theorem. (Soundness and Completeness) Let (x̄)∪�(x̄)⊆ �̂b
k. Then:

(i) Sk2 �
∧

(x̄)→∨
�(x̄) iff (x̄)�p

k �(x̄).

(ii) Tk
2 �

∧
(x̄)→∨

�(x̄) iff (x̄)�k �(x̄).

Proof. We only prove (i). The proof of (ii) is similar. First, we prove the easier completeness part.
If (x̄)�p

k �(x̄), then by Definition 19, there exist a polynomial q, and a formula H(u, x̄) ∈ �̂b
k

such that:

• PV�H(0, x̄)↔∧
(x̄),

• PV�H(q(|x̄|), x̄)↔∨
�(x̄),

• PV� ∀u< q(|x̄|) [H(u, x̄)→H(u+ 1, x̄)].

Using Lemma 20, without loss of generality, we can also assume that PV� q(|x̄|)≥ 1. As
PV is a subtheory of Sk2, we also have all the above provabilities for Sk2. Hence, Sk2 � ∀u<

q(|x̄|) [H(u, x̄)→H(u+ 1, x̄)]. Since H(u, x̄) ∈ �̂k
2, by the �̂b

k − LInd axiom, we have, Sk2 �
H(0, x̄)→H(|2q(|x̄|)−̇1|, x̄). As PV� q(|x̄|)≥ 1, we have PV� |2q(|x̄|)−̇1| = |q(x̄)|. Hence, Sk2 �
H(0, x̄)→H(q(|x̄|), x̄). Therefore, Sk2 �

∧
(x̄)→∨

�(x̄).
For soundness, assume Sk2 �

∧
(x̄)→∨

�(x̄). By Lemma 18, (x̄)⇒�(x̄) has a wLSk2-proof
only consisting of �̂b

k-formulas. By induction on this proof, we show that for any sequent �⇒�

in the proof, we have � �p
k �. For the axioms, as they are provable in PV, using Lemma 21, there

is nothing to prove. The case of structural rules (except for the weak cut) is easy. Weak cut and
(wPIndk) are addressed in Lemma 23. The conjunction and disjunction rules are proved in Lemma
24 and the rule (R∀≤) is addressed in Lemma 26. Therefore, there are only three cases to consider.
If the last rule is

�(x̄, y), B(x̄, s(x̄, y))⇒�(x̄, y)
�(x̄, y), s(x̄, y)≤ t(x̄, y), ∀y≤ t(x̄, y)B(x̄, y)⇒�(x̄, y)

L∀≤

by the induction hypothesis, we have �(x̄, y), B(x̄, s(x̄, y))�p
k �(x̄, y). Since∧

�(x̄, y)∧ (s(x̄, y)≤ t(x̄, y))∧ ∀y≤ t(x̄, y)B(x̄, y)
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implies
∧

�(x̄, y)∧ B(x̄, s(x̄, y)) in PV, by Lemma 21 and weak gluing, Lemma 23, we have

�(x̄, y), s(x̄, y)≤ t(x̄, y), ∀y≤ t(x̄, y)B(x̄, y)�p
k �(x̄, y).

The case for the rule R∃≤ is similar to the previous case. Finally, if the last rule is
�(x̄), z≤ s(x̄), B(x̄, z)⇒�(x̄)
�(x̄), ∃y≤ s(x̄)B(x̄, y)⇒�(x̄)

L∃≤

by the induction hypothesis, we have �(x̄), z≤ s(x̄), B(x̄, z)�p
k �(x̄). Since ∃y≤ s(x̄)B(x̄, y) ∈ �̂b

k
and it starts with an existential quantifier, it must belong to �̂b

k−1. Hence, both¬B(x̄, z) and¬∃y≤
s(x̄)B(x̄, y)=∀y≤ s(x̄)¬B(x̄, y) are in �̂b

k. Therefore, by Lemma 25,

�(x̄), z≤ s(x̄)�p
k �(x̄),¬B(x̄, z).

By using the fact that the names of the parameters are not important in k-flows and employ-
ing Lemma 26, we have �(x̄)�p

k �(x̄), ∀y≤ s(x̄)¬B(x̄, y). Finally again by Lemma 25, we reach
�(x̄), ∃y≤ s(x̄)B(x̄, y)�p

k �(x̄). �

5.3 Reductions and PLS(k,l)-programs
In Subsection 5.2, we transformed the Sk2-provable (resp. Tk

2-provable) implications between
�̂b

k-formulas into exponentially (resp., polynomially) long uniform sequences of PV-provable
implications between �̂b

k-formulas. Having that characterization at hand, one can use the uni-
versality of PV to employ generalized Herbrand’s theorem and push the characterization of
Theorem 6 even further to witness all essentially existential quantifiers in the PV-provable
implications by polynomial-time computable functions. Instead of following this rather absolute
approach, in this subsection, we will employ a relative approach to witness all the essentially exis-
tential quantifiers up to a given level l≤ k. The idea is simple. First, by moving the PV-provable
implications from PV to PVk−l+1, we will pretend that all the LPV-formulas in �̂b

k−l ∪ �̂b
k−l are

quantifier-free in LPVk−l+1 . Therefore, only l many alternating quantifiers are left to peel off for
which we use the generalized Herbrand’s theorem. In choosing the right value for l, there is a clear
trade-off between the complexity of the witnessing functions on the one hand and the complexity
of the witnessing more alternating quantifiers, on the other. For the smaller values of l, the latter
would be quite easy as evidenced by Theorem 2. However, the cost to pay is the higher complexity
of the witnessing functions that now live in the higher level of the polynomial hierarchy, that is, in
the class �p

k−l+1. For the higher values of l, the situation is reverse. For instance, if l= k, then all
the witnessing functions are polynomial time as they live in PVk−k+1 = PV. However, the general-
ized Herbrand’s theorem must witness kmany quantifier alternations that is combinatorially too
complex to deal with. In the present subsection, we will lean toward the lower values for l and will
only apply the relative approach to two instances of l= 1 and l= 2 to avoid the high witnessing
complexity. However, it is worth emphasizing that the main base, that is, Theorem 6 is there and
one can use it for any value of l by employing the right instance of Herbrand’s theorem. We only
cover these two cases to show that how interesting the concrete consequences can be. For l= 1,
we will show that some well-known witnessing theorems in bounded arithmetic are just special
cases of our witnessing theorem. For l= 2, the witnessing results are all new.

5.3.1 The game interpretation
Let k≥ l≥ 1 be two numbers, G(x̄, y1, y2, . . . , yl) be a quantifier-free LPVk-formula and t(x̄) be
an LPVk-term. We call the pair (G(x̄, y1, y2, . . . , yl), t(x̄)) a (k, l)-game (a game, for short), and we
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interpret it as a uniform family of l-turn games between two players parameterized by the variables
x̄. To emphasize this parameter role, we sometimes write Gx̄(y1, y2, . . . , yl) for G(x̄, y1, y2, . . . , yl)
and if the variables are clear from the context, we use the shorthand (Gx̄, t(x̄)) for an instance
of the game and (G, t) for the uniform family itself. Given the value ā for x̄, the game Gā starts
with the first player, denoted by I, playing the number b1 ≤ t(ā) for y1. Then, the second player,
denoted by II, plays b2 ≤ t(ā) for y2 and so on. The resulting tuple (b1, b2, . . . , bl) is called a
play of the game. For a play, (b1, b2, . . . , bl), if G(ā, b1, b2, . . . , bl) holds, the first player wins
the game and otherwise, the second player is the winner. A play (b1, . . . , bl) is called a win-
ning play for the first (second) player, if it makes the first (second) player wins. It is an easy and
well-known fact that the first player has a winning strategy in Gā iff ∃y1 ≤ t(ā)∀y2 ≤ t(ā)∃y3 ≤
t(ā) . . .G(ā, y1, . . . , yl) holds. As we are always interested in the first player in this subsection,
by a winning play and a winning strategy, we always mean them for the first player. Having
two (k, l)-games (G(x̄, y1, y2, . . . , yl), t(x̄)) and (H(x̄, z1, z2, . . . , zl), s(x̄)), a natural question to ask
is the following. Let the existence of a winning strategy in (Gx̄, t(x̄)) implies the existence of a
winning strategy in (Hx̄, s(x̄)), for any x̄, that is, the implication
∃y1 ≤ t(x̄)∀y2 ≤ t(x̄) . . .G(x̄, y1, . . . , yl)→∃z1 ≤ s(x̄)∀z2 ≤ s(x̄) . . .H(x̄, z1, . . . , zl) ( † )

hold. Then, does it mean that we can find an explicit way to use a winning strategy for (Gx̄, t(x̄))
to design a winning strategy for (Hx̄, s(x̄))? One can even sharpen the question by asking if hav-
ing a proof of the implication ( † ) in the theory PVk helps to provide an explicit and relatively
simple transformation between the winning strategies. Fortunately, as PVk is a universal theory,
the extraction of the explicit transformation between the winning strategies is possible, and it is
simply the content of Herbrand’s theorem, Theorem 2 (up to some small modifications). We will
explain the details for the two case l= 1 and l= 2, below.

5.3.2 The case l= 1
Let (G(x̄, y), t(x̄)) and (H(x̄, z), s(x̄)) be two (k, 1)-games. The most trivial way to reduce the win-
ning strategy of the latter to that of the former is via a function f (x̄, y) that maps any move y≤ t(x̄)
in (G, t) to a move z≤ s(x̄) in (H, s) such that if the play y is a winning play in (G, t), then the play
z= f (x̄, y) is a winning play in (H, s). Moreover, as we expect the reduction to be simple and
verifiable, we expect that everything happens inside a base theory, in our case PVk. More formally:

Definition 27. Let (G(x̄, y), t(x̄)) and (H(x̄, z), s(x̄)) be two (k, 1)-games. A (k, 1)-reduction from
(H(x̄, z), s(x̄)) to (G(x̄, y), t(x̄)) is an LPVk -term f (x̄, y) such that:

• PVk � ∀y≤ t(x̄)[f (x̄, y)≤ s(x̄)],
• PVk � ∀y≤ t(x̄)[G(x̄, y)→H(x̄, f (x̄, y))].

Naturally, we expect a connection between the provability of
∃y≤ t(x̄)G(x̄, y)→∃z≤ s(x̄)H(x̄, z)

in PVk and the existence of a (k, 1)-reduction. This is the content of the following modification of
Herbrand’s theorem.

Theorem. For any two (k, 1)-games (G(x̄, y), t(x̄)) and (H(x̄, z), s(x̄)), the following are equivalent:

• PVk � ∃y≤ t(x̄)G(x̄, y)→∃z≤ s(x̄)H(x̄, z)
• There is a (k, 1)-reduction from (H(x̄, z), s(x̄)) to (G(x̄, y), t(x̄)).
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Proof. One direction is trivial. For the other, assume
PVk � ∃y≤ t(x̄)G(x̄, y)→∃z≤ s(x̄)H(x̄, z).

Therefore, PVk � ∀y∃z [(y≤ t(x̄)∧G(x̄, y))→ (z≤ s(x̄)∧H(x̄, z))]. By Herbrand’s theorem,
Theorem 2, there exists an LPVk-term g(x̄, y) such that

PVk � [y≤ t(x̄)∧G(x̄, y)]→ [g(x̄, y)≤ s(x̄)∧H(x̄, g(x̄, y))].
Define

f (x̄, y)=
{
g(x̄, y) g(x̄, y)≤ s(x̄)
0 g(x̄, y)> s(x̄)

It is easy to represent f (x̄, y) as an LPVk-term. By definition, it is clear that PVk � ∀y≤
t(x̄)[f (x̄, y)≤ s(x̄)]. Moreover, it is easy to see that PVk � ∀y≤ t(x̄)[G(x̄, y)→H(x̄, f (x̄, y))]. �

As explained in the opening of this subsection, for l= 1, the combination of witnessing by k-
flows, moving from PV to PVk and using Theorem 7 provides an explicit witnessing theorem for
theories Sk2 and T

k
2 . This is what we will come back to in Corollary 30. However, as the combination

has a natural form itself, it is worth defining it directly.

Definition 28. Let A(x̄, y) ∈ �̂b
k−1 be an LPV-formula and t(x̄) and r(x̄) be two LPV-terms. By a

PLS(k,1)-program for (A(x̄, y), r(x̄))with the length t(x̄),wemean the following data: an initialLPVk -
term i(x̄), a quantifier-free LPVk -formula G(x̄, u, z), an LPVk -term N(x̄, u, z), and an LPVk -term
p(x̄, z), such that:

• PVk � i(x̄)≤ s(x̄),
• PVk �G(x̄, 0, i(x̄)),
• PVk � ∀z≤ s(x̄)[N(x̄, u, z)≤ s(x̄)],
• PVk � ∀z≤ s(x̄) [G(x̄, u, z)→G(x̄, u+ 1,N(x̄, u, z))],
• PVk � ∀z≤ s(x̄)[p(x̄, z)≤ r(x̄)],
• PVk � ∀z≤ s(x̄)[G(x̄, t(x̄), z)→A(x̄, p(x̄, z))].

By PLS(k,1),wemean the class of all the pairs (A(x̄, y), r(x̄)) for which there exists a PLS(k,1)-program.
By PLSp(k,1), we mean the class of all the pairs (A(x̄, y), r(x̄)) for which there exists a PLS(k,1)-program
with a polynomial length, that is, t(x̄)= q(|x̄|), for some polynomial q.

It is easy to see that if (A(x̄, y), r(x̄)) ∈ PLS(k,1) then ∀x̄∃y≤ r(x̄)A(x̄, y) holds and the PLS(k,1)-
program actually provides an algorithm to compute y≤ r(x̄) from x̄. Denoting G(x̄, u, z) by Gu,
the algorithm starts at the zeroth level with an initial value i(x̄) bounded by s(x̄) satisfying the
propertyG0. Then, using the modificationN, it goes from one level to the next updating any value
z≤ s(x̄) with the property Gu to a value satisfying the property Gu+1. Note that the modification
always respects the bound s(x̄). Finally, reaching the level t(x̄), the algorithm uses p to compute
y≤ r(x̄) satisfying A from any value z≤ s(x̄) with the property Gt(x̄).

There are two points to emphasize here. First, the case k= 1, where the predicate G(x̄, y, z)
and all the functions i(x̄), N(x̄, u, z), and p(x̄, z) are polynomial time computable is just another
presentation of the well-known polynomial local search problems, (PLS for short), see Buss and
Krajíček (1994); Krajíček (1995). Therefore, one can simply read PLS(k,1)-programs as a gener-
alization of PLS from polynomial time to the kth level of the polynomial hierarchy, where the
predicate G(x̄, u, z) and the functions i(x̄), N(x̄, u, z), and p(x̄, z) are all allowed to be on the k-th
level of the hierarchy. It is also worth mentioning that our PLS(k,1)-programs are similar to but
weaker than �b

k − PLS problems with �b
l -goals defined in Beckmann and Buss (2009), where the
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functions i(x̄), N(x̄, u, z), and p(x̄, z) (and not the predicate G(x̄, u, z)) must be polynomial-time
computable and everything must be provable in S12 rather than in PVk. The second point is about
the PLSp(k,1)-programs with a polynomial length. For these programs, the algorithm we just pro-
vided can efficiently (relative to the level of the polynomial hierarchy, of course) compute the
value of y as it only needs to iterate the modification function N for polynomially many times. In
other words, we can pack the whole algorithm in one single LPVk-term as a formalized version of
a �p

k-function that computes y. We will come back to this observation in Corollary 31, where we
reprove a well-known witnessing theorem for Sk2, characterizing the �̂b

k -definable functions of S
k
2

as the ones in the kth level of the polynomial hierarchy.

Remark 29. Employing the game interpretation we explained before, a PLS(k,1) program for
(A(x̄, y), r(x̄)) with the length t(x̄) is nothing but the following three (k, 1)-reductions:

• i(x̄) as a (k, 1)-reduction from (G(x̄, 0, z), s(x̄)) to (�, s(x̄)).
• N(x̄, u, z) as a (k, 1)-reduction from the game (G(x̄, u+ 1, z), s(x̄)) to the game
(G(x̄, u, z), s(x̄)). Notice that u is also a parameter here.

• p(x̄, z) as a (k, 1)-reduction from the game (A(x̄, y), r(x̄)) to the game (G(x̄, t(x̄), z), s(x̄)).

Notice that the formula A(x̄, y) is not quantifier-free in LPVk and hence we cannot read the pair
(A(x̄, y), r(x̄)) as a (k, 1)-game. However, as A(x̄, y) is in �̂b

k−1, it is PVk-equivalent to a quantifier-
free formula and hence we can pretend that it is quantifier-free. Having that observation, we can
use Theorem 7 to see that there is a PLS(k,1) program for (A(x̄, y), r(x̄)) with the length t(x̄) iff there
exist a quantifier-free LPVk-formula G(x̄, u, z) and an LPV-term s(x̄) such that:

• PVk � ∃z≤ s(x̄)G(x̄, 0, z).
• PVk � ∃z≤ s(x̄)G(x̄, u, z)→∃z≤ s(x̄)G(x̄, u+ 1, z).
• PVk � ∃z≤ s(x̄)G(x̄, t(x̄), z)→∃y≤ r(x̄)A(x̄, y).

The next Corollary uses PLS(k,1)-programs (resp. PLSp(k,1)-programs) to witness the theorems
of Sk2 (resp. T

k
2) as promised before.

Corollary 30. Let k≥ 1, A(x̄, y) ∈ �̂b
k−1 and r(x̄) be an LPV-term:

(i) Sk2 � ∀x̄∃y≤ r(x̄)A(x̄, y) iff (A(x̄, y), r(x̄)) ∈ PLSp(k,1).
(ii) Tk

2 � ∀x̄∃y≤ r(x̄)A(x̄, y) iff (A(x̄, y), r(x̄)) ∈ PLS(k,1).
Proof. We only prove (i). The proof of (ii) is similar. For the right to left direction, if there exists
a PLS(k,1)-program for (A(x̄, y), r(x̄)) with the length q(|x̄|), for some polynomial q, using Remark
29, there are quantifier-free LPVk-formula G(x̄, u, z) and an LPV-term s(x̄) such that:

• PVk � ∃z≤ s(x̄)G(x̄, 0, z).
• PVk � ∃z≤ s(x̄)G(x̄, u, z)→∃z≤ s(x̄)G(x̄, u+ 1, z).
• PVk � ∃z≤ s(x̄)G(x̄, q(|x̄|), z)→∃y≤ r(x̄)A(x̄, y).

Since PVk is interpretable in Sk2, mapping all quantifier-free LPVk-formulas to LPV-formulas
in �̂b

k , we can pretend that G(x̄, u, z) ∈ �̂b
k and all the above formulas are also provable in

Sk2. Finally, since the theory Sk2 has the axiom �̂b
k − LInd and ∃z≤ s(x̄)G(x̄, u, z) ∈ �̂b

k , we have
Sk2 � ∃y≤ r(x̄)A(x̄, y). For the other direction, assume Sk2 � ∀x̄∃y≤ r(x̄)A(x̄, y). Hence, Sk2 � ∀y≤
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r(x̄)¬A(x̄, y)→⊥. By Theorem 6, ∀y≤ r(x̄)¬A(x̄, y)�p
k ⊥. Therefore, there exist a polynomial q

and a formula H(u, x̄) ∈ �̂b
k such that:

• PV�H(0, x̄)↔ [∀y≤ r(x̄)¬A(x̄, ȳ)].
• PV�H(q(|x̄|), x̄)↔⊥.
• PV� ∀u< q(|x̄|) [H(u, x̄)→H(u+ 1, x̄)].

Define H′(u, x̄) as [(u≤ q(|x̄|))→H(u, x̄)]. It is easy to see that

• PV� [∀y≤ r(x̄)¬A(x̄, ȳ)]→H′(0, x̄).
• PV�H′(q(|x̄|), x̄)→⊥.
• PV�H′(u, x̄)→H′(u+ 1, x̄).

As PV has the pairing function, it can encode finite many bounded variables as one bounded
variable. Hence, without loss of generality, we can assume that H′ is in the prenex bounded form
starting with one universal quantifier on z, that is, H′(u, x̄)=∀z≤ s′(x̄, u) I(x̄, u, z), where s′ is
PV-monotone and I ∈ �̂b

k−1. Define s(x̄) as s
′(q(|x̄|), x̄). Then, it is easy to see that

PV�H′(u, x̄)↔ [∀z≤ s(x̄)[(z≤ s′(u, x̄))∧ (u≤ q(|x̄|))→ I(x̄, u, z)]].
Hence, without loss of generality, we can assume that H′ is in the form ∀z≤ s(x̄)J(x̄, u, z), where
J is in �̂b

k−1. Since PV is a subtheory of PVk and in PVk any formula in �̂b
k−1 is equivalent to a

quantifier-free formula, we can assume that J is quantifier-free in the language of PVk and we have

• PVk � [∀y≤ r(x̄)¬A(x̄, y)]→∀z≤ s(x̄)J(x̄, 0, z).
• PVk � ∀z≤ s(x̄)J(x̄, q(|x̄|), z)→⊥.
• PVk � ∀z≤ s(x̄)J(x̄, u, z)→∀z≤ s(x̄)J(x̄, u+ 1, z).

DefineG(x̄, u, z) as¬J(x̄, q(|x̄|)−̇u, z) and note that it is a quantifier-freeLPVk-formula. Therefore,
we have

• PVk � ∃z≤ s(x̄)G(x̄, q(|x̄|), z)→∃y≤ r(x̄)A(x̄, y).
• PVk � ∃z≤ s(x̄)G(x̄, 0, z).
• PVk � ∃z≤ s(x̄)G(x̄, u, z)→∃z≤ s(x̄)G(x̄, u+ 1, z).

Finally, it is enough to use Remark 29 to get a PLS(k,1)-program for the pair (A(x̄, y), r(x̄)) with the
length q(|x̄|). Hence, (A(x̄, y), r(x̄)) ∈ PLSp(k,1). �

Note that the second part in Corollary 30, when applied on k= 1, reproves the well-known
characterization of the T1

2-provable formulas of the form ∀x̄∃y≤ r(x̄)A(x̄, y), where A(x̄, y) ∈ �̂b
0,

in terms of the usual PLS problems (Buss and Krajíček 1994; Krajíček 1995). Our result, however,
seems a bit weaker than the one proved in Buss and Krajíček (1994), Krajíček (1995), as in the
latter y is not assumed to be bounded and A(x̄, y) can be in �̂b

1 rather than in our lower class
of �̂b

0. However, proving the stronger form from the one we provided is just a standard tech-
nique. First, notice that the presence of r(x̄) is no restriction, thanks to Parikh theorem. Second,
to reduce the complexity of A(x̄, y), it is enough to write A(x̄, y) in the form ∃z̄≤ x̄(x̄)B(x̄, y, z̄),
where B(x̄, y, z̄) ∈ �̂b

0. Then, using the pairing function available in PV, we can make y and all the
variables z̄ into one bounded variable w≤ t(x̄). Now, we can apply Corollary 30 to compute w
by a PLS(k,1)-program. With this technique, the PLS(k,1)-program not only computes the intended
variable y but it also finds a value for the variables z̄. To retrieve our formula A(x̄, y), we can sim-
ply keep the computation for y and forget the other values for z̄ by reintroducing their existential
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quantifiers. Having this observation about the usual PLS, one can read Corollary 30 as a general-
ization of the mentioned characterization for T1

2 to cover both Tk
2 and Sk2, for any k≥ 1. However,

the latter case can be strengthened even further as the polynomial PLS(k,1)-program provided in
Corollary 30 can be simplified to one single LPVk-term. This reproves the following well-known
witnessing theorem for Sk2 (Buss 1986; Krajíček 1995).

Corollary 31. The provably �̂b
k -definable functions of Sk2 are in �p

k. Even better, if Sk2 �
∀x̄∃yA(x̄, y), where A(x̄, y) ∈ �̂b

k , then there exists a function f ∈�p
k represented as an LPVk -term

such that PVk � ∀x̄ A(x̄, f (x̄)).
Proof. Following the technique we just described, without loss of generality, we can assume that
A(x̄, y) has no existential quantifier in its front and hence it is actually in �̂b

k−1. By Parikh theorem,
there exists an LPV-term r(x̄) such that Sk2 � ∀x̄∃y≤ r(x̄)A(x̄, y). By Corollary 30, there exists a
PLS(k,1)-program for (A(x̄, y), r(x̄)) with the length q(|x̄|), for a polynomial q. Let G(x̄, u, z), i(x̄),
N(x̄, u, z), and p(x̄, z) be the data of the PLS(k,1)-program. By recursion on notation on w, define
the functionM(w, x̄) as {

M(0, x̄)= i(x̄)
M(w, x̄)=N(x̄, |w|−̇1,M(�w2 �, x̄)) w> 0

Recall that the LPVk-terms are closed under bounded recursion on notation. As both i and N are
LPVk-terms and i(x̄) is bounded by s(x̄) and N(x̄, u, z) maps any z≤ s(x̄) to something below s(x̄),
we can make sure that the function M(w, x̄) is also representable as an LPVk-term. Now, define
I(x̄,w, z) as G(x̄, |w|, z). Using the properties of the PLS(k,1)-program, it is clear that

• PVk � I(x̄, 0, i(x̄)),
• PVk � ∀z≤ s(x̄)∀w> 0 [I(x̄, �w2 �, z)→ I(x̄,w,N(x̄, |w|−̇1, z))].

Therefore, as PVk �M(w, x̄)≤ s(x̄), by using the axiom PInd on the quantifier-free formula
I(x̄,w,M(w, x̄)), we can prove PVk � I(x̄,w,M(w, x̄)). Substituting w= � 2q(|x̄|)2 �, we reach

PVk � I(x̄, |�2
q(|x̄|)

2
�|,M(�2

q(|x̄|)

2
�, x̄)).

Using the fact that PVk � |� 2q(|x̄|)2 �| = q(|x̄|), we have

PVk �G(x̄, q(|x̄|),M(�2
q(|x̄|)

2
�, x̄)).

Therefore, as p(x̄, z) is an LPVk-term and it has the property
PVk � ∀z≤ s(x̄)[G(x̄, q(|x̄|), z)→A(x̄, p(z̄, z))],

we can define f (x̄)= p(x̄,M(� 2q(|x̄|)2 �, x̄)) as an LPVk-term. Therefore, PVk � ∀x̄A(x̄, f (x̄)). �

5.3.3 The case l= 2
Let (G(x̄, y, z), t(x̄)) and (H(x̄, v,w), s(x̄)) be two (k, 2)-games. To use a winning strategy for
(G(x̄, y, z), t(x̄)) to design one for (H(x̄, v,w), s(x̄)), the most trivial way is using two functions
f (x̄, y) and g(x̄, y,w), where f (x̄, y) reads the first move y≤ t(x̄) in (G, t) and computes a first move
v≤ s(x̄) in (H, s). Then, g(x̄, y,w) reads the second move w≤ s(x̄) in (H, s) and computes a sec-
ond move z≤ t(x̄) in (G, t). These computations must be in a way that if the play (y, z) is winning
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in (G, t), the play (v,w) is winning in (H, t). Expecting the whole reduction process to be simple
relative to PVk, we have:

Definition 32. Let (G(x̄, y, z), t(x̄)) and (H(x̄, v,w), s(x̄)) be two (k, 2)-games. By a deterministic
(k, 2)-reduction from (H, s) to (G, t), we mean two LPVk -terms f (x̄, y) and g(x̄, y,w) such that:

• PVk � ∀y≤ t(x̄)[f (x̄, y)≤ s(x̄)].
• PVk � ∀w≤ s(x̄)∀y≤ t(x̄)[g(x̄, y,w)≤ t(x̄)].
• PVk � ∀w≤ s(x̄)∀y≤ t(x̄)[G(x̄, y, g(x̄, y,w))→H(x̄, f (x̄, y),w)].

In a similar fashion to what we had n the previous subsubsection, we expect an equivalence
between the provability of

∃y≤ t(x̄)∀z≤ t(x̄)G(x̄, y, z)→∃v≤ s(x̄)∀w≤ s(x̄)H(x̄, v,w)
in PVk and the existence of a deterministic (k, 2)-reduction from (H, s) to (G, t). Unfortunately,
this expected equivalence does not exist, unless a hardness conjecture in complexity theory fails.
Let us first explain this conjecture.

LetU,V ⊆N be two disjointNP-sets. We call a polynomial time computable S⊆N a separator
forU and V , ifU ⊆ S and S∩V =∅. The hardness conjecture we want to use states that there are
two disjoint NP-sets U and V that have no separator.

Example 33. Let U and V be two disjoint NP-sets that have no separator and represent them by the
LPV-formulas ∃y≤ sB(x)B(x, y) and ∃y≤ sC(x)C(x, y), respectively, where B(x, y) and C(x, z) are
two quantifier-free LPV-formulas and sB(x) and sC(x) are two LPV-terms. First, notice that without
loss of generality, we can always assume that sB(x)= sC(x) and ∀x(sB(x)> 0) holds in the standard
model. The reason is that we can replace ∃y≤ sB(x)B(x, y) by

∃y≤ sB(x)+ sC(x)+ 1 [y≤ sB(x)∧ B(x, y)]
and similarly for ∃z≤ sC(x)C(x, z). From now on, denote both sB(x) and sC(x), by the common
name s(x).Moreover, notice that as U ∩V =∅, the formula ∀y≤ s(x)¬B(x, y)∨ ∀z≤ s(x)¬C(x, z)
is true, for any value for x. Now, let

A(x,w, y, z)= (w= 0→¬B(x, y))∧ (w �= 0→¬C(x, z)).
It is clear that the formula

∃w0w1 ≤ s(x)∀y0y1z0z1 ≤ s(x) [A(x,w0, y0, z0)∨A(x,w1, y1, z1)]
logically implies ∃w≤ s(x)∀yz≤ s(x)A(x,w, y, z) and hence the implication is provable in PV.
Unfortunately, in both formulas, some of the quantifier blocks have more than one bounded quan-
tifiers, and hence, the formulas cannot be read as (k, 2)-games. However, using the pairing function
and its projections available in PV, it is not hard to change the formulas to PV-equivalent formulas
in the right form. We will avoid applying this change here as it makes everything unnecessar-
ily complicated. Instead, we keep working with the original formulas as the one and the only
exception in this paper. However, let us emphasize that whatever we claim in this example can
be rewritten in a precise way using the mentioned encoding. Having said that, in the rest of
this example, we pretend that we are working with the two (k, 2)-games (A(x,w, y, z), s(x)) and
(A(x,w0, y0, z0)∨A(x,w1, y1, z1), s(x)) and we show that there is no deterministic (k, 2)-reduction
from the (k, 2)-game (A(x,w, y, z), s(x)) to the (k, 2)-game (A(x,w0, y0, z0)∨A(x,w1, y1, z1), s(x)).
For the sake of contradiction, assume that there are polynomial time computable functions
f (x,w0,w1), g0(x,w0,w1, y, z), g1(x,w0,w1, y, z), h0(x,w0,w1, y, z), and finally h1(x,w0,w1, y, z),
all represented as LPV-terms such that they read w0, w1, y, and z below s(x) and compute w, y0, y1,
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z0, and z1 all below s(x), respectively, satisfying the property
PV� ∀w0w1yz≤ s[(A(x,w0, g0, h0)∨A(x,w1, g1, h1))→A(x, f , y, z)].

(The arguments of the functions are omitted, for simplicity). Therefore, the formula
∀w0w1yz≤ s[(A(x,w0, g0, h0)∨A(x,w1, g1, h1))→A(x, f , y, z)]

is true in the standard model. Substitute w0 = 0 and w1 = 1 and notice that the condition s(x)≥ 1
allows such a substitution. We see that A(x, 0, g0, h0) is equivalent to ¬B(x, g0) and A(x, 1, g1, h1) is
equivalent to ¬C(x, h1). Therefore, the following formula is true:

∀yz≤ s(x)[(¬B(x, g0)∨¬C(x, h1))→A(x, f , y, z)].
Therefore, we have

[∀y≤ s(x)¬B(x, y)∨ ∀z≤ s(x)¬C(x, z)]→∀yz≤ s(x)A(x, f , y, z).
Recall that as U ∩V =∅, we know ∀y≤ s(x)¬B(x, y)∨ ∀z≤ s(x)¬C(x, z) is true. Therefore, we
reach ∀yz≤ s(x)A(x, f , y, z).Now, note that if f (x, 0, 1)= 0, the formula A(x, f , y, z) is equivalent to
¬B(x, y) and if f (x, 0, 1) �= 0, it is equivalent to ¬C(x, z). Therefore, if f (x, 0, 1)= 0, we have ∀y≤
s(x)¬B(x, y) and if f (x, 0, 1) �= 0, we have ∀z≤ s(x)¬C(x, z). We claim that the set S= {x ∈N |
f (x) �= 0} is a separator. First, note that S is polynomial computable as f (x,w0,w1) is a polynomial-
time computable function. Second, it is clear that S is disjoint from V . To show that it includes U,
assume x ∈U and f (x, 0, 1)= 0. Then, ∀y≤ s(x)¬B(x, y) which means that x /∈U. Therefore, we
found a separator which is impossible. Hence, the claimed deterministic (k, 2)-reduction does not
exist.

As we observed in Example 33, deterministic (k, 2)-reductions are not even powerful enough to
capture the pure logical implications between the existence of the winning strategies. To solve the
problem, in the following, we strengthen the notion by relaxing the determinism in the definition.

Definition 34. Let (G(x̄, y, z), t(x̄)) and (H(x̄, v,w), s(x̄)) be two (k, 2)-games. By a (k, 2)-
reduction from (H, s) to (G, t), we mean a finite sequence of LPVk -terms f0(x̄, y), f1(x̄, y,w0), . . .,
fm(x̄, y,w0, . . . ,wm−1) together with an LPVk -term g(x̄, y,w0, . . . ,wm) such that all the following
are provable in PVk:

• ∀w̄≤ s(x̄)∀y≤ t(x̄)[fi(x̄, y,w0, . . . ,wi−1)≤ s(x̄)], for any 0≤ i≤m.
• ∀w̄≤ s(x̄)∀y≤ t(x̄)[g(x̄, y,w0, . . . ,wm)≤ t(x̄)].
• ∀w̄≤ s(x̄)∀y≤ t(x̄)[G(x̄, y, g(x̄, y,w0, . . . ,wm))→ H̄(x̄, y,w0, . . . ,wm)], where the formula
H̄(x̄, y,w0, . . . ,wm) is

∨m
i=0 H(x̄, fi(x̄, y,w0, . . . ,wi−1),wi).

Remark 35. Here is a computational interpretation of a (k, 2)-reduction as a nondeterministic
version of the deterministic (k, 2)-reductions we had before. A (k, 2)-reduction starts with read-
ing the first move y≤ t(x̄) in (G, t) and uses f0 to transform it to a first move v0 ≤ s(x̄) in (H, s).
Then, as before it reads the second move w0 ≤ s(x̄) in (H, s). However, instead of using it to find
a second move in (G, t), it uses f1 to come up with another possible first move v1 ≤ s(x̄) in (H, s)
and asks about its second move w1. It keeps repeating this procedure to finally after m+ 1 many
enquiries, it uses g to compute the second move in (G, t). These computations are in a way that if
the produced play for (G, t) is winning, then one of the produced plays for (H, s) is winning.

The following theorem slightly modifies Herbrand’s theorem, Theorem 2, to connect the PVk-
provability of the implication between the existence of the strategies and the existence of (k, 2)-
reductions.
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Theorem. Let (G(x̄, y, z), t(x̄)) and (H(x̄, v,w), s(x̄)) be two (k, 2)-games. Then
PVk � ∃y≤ t(x̄)∀z≤ t(x̄)G(x̄, y, z)→∃v≤ s(x̄)∀w≤ s(x̄)H(x̄, v,w)

iff there exists a (k, 2)-reduction from (H, s) to (G, t).

Proof. One direction is clear. For the other, assume
PVk � ∃y≤ t(x̄)∀z≤ t(x̄)G(x̄, y, z)→∃v≤ s(x̄)∀w≤ s(x̄)H(x̄, v,w).

Define G̃(x̄, y, z) as [y≤ t(x̄)∧ (z≤ t(x̄)→G(x̄, y, z))] and H̃(x̄, v,w) as [v≤ s(x̄)∧ (w≤ s(x̄)→
H(x̄, v,w))]. Now, by moving the quantifiers, we have

PVk � ∀y∃vz∀w[G̃(x̄, y, z)→ H̃(x̄, v,w)].
Using the pairing function available in PV, we can make two variables v and z into one variable,
apply Herbrand’s theorem, Theorem 2 and then retrieve y and z again, by projections. Therefore,
there are LPVk-terms g0(x̄, y), h0(x̄, y), g1(x̄, y,w0), h1(x̄, y,w0), . . ., gm(x̄, y,w0, . . . ,wm−1) and
hm(x̄, y,w0, . . . ,wm−1) such that

PVk �
m∨
i=0

[G̃(x̄, y, gi(x̄, y,w0, . . . ,wi−1))→ H̃(x̄, hi(x̄, y,w0, . . . ,wi−1),wi)].

Define g′(x̄, y,w0, . . . ,wm) by cases: if G̃(x̄, y, g0(x̄, y)) is false, define g′ as g0(x̄, y); if
G̃(x̄, y, g0(x̄, y)) is true but G̃(x̄, y, g1(x̄, y,w0)) is false, define g′ as g1(x̄, y,w0); if both
G̃(x̄, y, g0(x̄, y)) and G̃(x̄, y, g1(x̄, y,w0)) are true but G̃(x̄, y, g2(x̄, y,w0,w1)) is false, define g′ as
g2(x̄, y,w0,w1) and so on. Finally, if all of G(x̄, y, gi(x̄, y,w0, . . . ,wi−1))’s are true, define g′ as 0:

g′(x̄, y,w0, . . . ,wm)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g0(x̄, y) ¬G̃(x̄, y, g0(x̄, y))
g1(x̄, y,w0) G̃(x̄, y, g0(x̄, y)),¬G̃(x̄, y, g1(x̄, y,w0))
. . . . . .
0 o.w.

Note that g′ is defined in a way that unless
∧m

i=0 G̃(x̄, y, gi(x̄, y,w0, . . . ,wi−1)) is true, we always
have ¬G̃(x̄, y, g′(x̄, y,w0, . . . ,wm)). Therefore, it is easy to see that

PVk � [G̃(x̄, y, g′(x̄, y,w0, . . . ,wm))→
m∧
i=0

G̃(x̄, y, gi(x̄, y,w0, . . . ,wi−1))],

and hence

PVk � [G̃(x̄, y, g′(x̄, y,w0, . . . ,wm))→
m∨
i=0

H̃(x̄, hi(x̄, y,w0, . . . ,wi−1),wi)].

Define

fi(x̄, y,w0, . . . ,wi−1)=
{
hi(x̄, y,w0, . . . ,wi−1) hi(x̄, y,w0, . . . ,wi−1)≤ s(x̄)
0 hi(x̄, y,w0, . . . ,wi−1)> s(x̄)

for any 0≤ i≤m and set

g(x̄, y,w0, . . . ,wm)=
{
g′(x̄, y,w0, . . . ,wm) g′(x̄, y,w0, . . . ,wm)≤ t(x̄)
0 g′(x̄, y,w0, . . . ,wm)> t(x̄)

It is clear that PVk � fi(x̄, y,w0, . . . ,wi−1)≤ s(x̄), for any 0≤ i≤m and PVk �
g(x̄, y,w0, . . . ,wm)≤ t(x̄). It is also clear that

∀y≤ t(x̄)[G(x̄, y, g(x̄, y,w0, . . . ,wm))→ G̃(x̄, y, g′(x̄, y,w0, . . . ,wm))]
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and
∀w̄≤ s(x̄)[H̃(x̄, hi(x̄, y,w0, . . . ,wi−1),wi)→H(x̄, y, fi(x̄, y,w0, . . . ,wi−1),wi)]

are provable in PVk. Therefore, we reach the implication ∀w̄≤ s(x̄)∀y≤
t(x̄)[G(x̄, y, g(x̄, y,w0, . . . ,wm))→∨m

i=0 H(x̄, fi(x̄, y,w0, . . . ,wi−1),wi)] in PVk. �

Definition 36. Let k≥ 2 be a natural number, A(x̄, y, z) ∈ �̂b
k−1 be an LPVk -formula and t(x̄) and

r(x̄) be two LPV-terms. By a PLS(k,2)-program for the pair (A(x̄, y, z), r(x̄)), we mean a (k, 2)-game
(G(x̄, u, v,w), s(x̄)) (read u as a parameter) and

• an initial sequence i(x̄,w) of LPVk -terms as a (k, 2)-reduction from the game (G(x̄, 0, v,w), s(x̄))
to (�, s(x̄)),

• a sequence N(x̄, u, v,w) of LPVk -terms as a (k, 2)-reduction from the game (G(x̄, u+
1, v,w), s(x̄)) to (G(x̄, u, v,w), s(x̄)),

• a sequence p(x̄, v, z) of LPVk -terms as a (k, 2)-reduction from the game (A(x̄, y, z), r(x̄)) to
(G(x̄, t(x̄), v,w), s(x̄)). Here, we pretend that A(x̄, y, z) is a quantifier-free LPVk -formula.

By PLS(k,2), we mean the class of all the pairs (A(x̄, y, z), r(x̄)) for which there exists a PLS(k,2)-
program. By PLSp(k,2), we mean the class of all the pairs (A(x̄, y, z), r(x̄)) for which there exists a
PLS(k,2)-program with polynomial length, that is, t(x̄)= q(|x̄|), for some polynomial q.

One can read a (polynomial) PLS(k,2)-program as (a polynomially) an exponentially long
sequence of reductions between 2-turn games, starting with an explicit winning strategy for the
first game, where all the functions and predicates live in the k-th level of the polynomial hierarchy
verified in PVk.

Similar to what we had in the last subsubsection, we can finally witness provability in Tk
2 (resp.

Sk2) by (resp. polynomial) PLS(k,2)-programs.

Corollary 37. Let k≥ 2, A(x̄, y, z) ∈ �̂b
k−2 and r(x̄) be an LPV-term:

(i) Sk2 � ∀x̄∃y≤ r(x̄)∀z≤ r(x)A(x̄, y, z) iff (A(x̄, y, z), r(x̄)) ∈ PLSp(k−1,2).
(ii) Tk

2 � ∀x̄∃y≤ r(x̄)∀z≤ r(x̄)A(x̄, y, z) iff (A(x̄, y, z), r(x̄)) ∈ PLS(k−1,2).
Proof. The proof is similar to that of Corollary 30. Therefore, we only explain the main ingredi-
ents for (i). For the right to left, assume that there is a PLS(k,2)-program for (A(x̄, y, z), r(x̄)) with
the length q(|x̄|), for some polynomial q. We use Theorem 8 to transform the existence of the
reductions in the PLS(k,2)-program to the following provable implications:

• PVk−1 � ∃v≤ s(x̄)∀w≤ s(x̄)G(x̄, 0, v,w).
• PVk−1 � ∃v≤ s(x̄)∀w≤ s(x̄)G(x̄, u, v,w)→∃v≤ s(x̄)∀w≤ s(x̄)G(x̄, u+ 1, v,w).
• PVk−1 � ∃v≤ s(x̄)∀w≤ s(x̄)G(x̄, q(|x̄|), v,w)→∃y≤ r(x̄)∀z≤ r(x̄)A(x̄, y, z).

As any quantifier-free LPVk−1 -formula can be interpreted as an LPV-formula in �̂b
k−1 and

PVk−1 can be interpreted in Sk−12 , we can pretend that all the above implications are prov-
able in Sk2 and G ∈ �̂b

k−1. Therefore, we can assume that ∃v≤ s(x̄)∀w≤ s(x̄)G(x̄, u, v,w) ∈ �̂b
k .

Using LInd in Sk2 on the formula ∃v≤ s(x̄)∀w≤ s(x̄)G(x̄, u, v,w), we reach Sk2 � ∃y≤ r(x̄)∀z≤
r(x̄)A(x̄, y, z). Conversely, we assume that Sk2 � ∃y≤ r(x̄)∀z≤ r(x̄)A(x̄, y, z). Hence, ∀y≤ r(x̄)∃z≤
r(x̄)¬A(x̄, y, z)→⊥ is provable in Sk2. Since A ∈ �̂b

k−2, the formula ∀y≤ r(x̄)∃z≤ r(x̄)¬A(x̄, y, z)
is in �̂b

k. Hence, by Theorem 6, we have ∀y≤ r(x̄)∃z≤ r(x̄)¬A(x̄, y, z)�p
k ⊥. Call the k-flow
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(H(u, x̄), t(x̄)), where t(x̄)= q(|x̄|), for some polynomial q. Without loss of generality, write
H(u, x̄) in the form ∀v≤ s(x̄)∃w≤ s(x̄)J(x̄, u, v,w), where J ∈ �̂b

k−2. As k≥ 2, the theory PV is
a subtheory of PVk−1. Therefore, moving the implications in the definition of the k-flow from PV
to PVk−1, we have:

• PVk−1 � [∀y≤ r(x̄)∃z≤ r(x̄)¬A(x̄, y, z)]→∀v≤ s(x̄)∃w≤ s(x̄)J(x̄, 0, v,w).
• PVk−1 � ∀v≤ s(x̄)∃w≤ s(x̄)J(x̄, q(|x̄|), v,w)→⊥.
• PVk−1 � ∀v≤ s(x̄)∃w≤ s(x̄)J(x̄, u, v,w)→∀v≤ s(x̄)∃w≤ s(x̄)J(x̄, u+ 1, v,w).

As J ∈ �̂b
k−2, in PVk−1, we can pretend that J is a quantifier-free LPVk−1 -formula. Define

G(x̄, u, v,w) as ¬J(x̄, q(|x̄|)−̇u, v,w). Therefore, we have:
• PVk−1 � ∃v≤ s(x̄)∀w≤ s(x̄)G(x̄, q(|x̄|), v,w)→∃y≤ r(x̄)∀z≤ r(x̄)A(x̄, y, z).
• PVk−1 � ∃v≤ s(x̄)∀w≤ s(x̄)G(x̄, 0, v,w).
• PVk−1 � ∃v≤ s(x̄)∀w≤ s(x̄)G(x̄, u, v,w)→∃v≤ s(x̄)∀w≤ s(x̄)G(x̄, u+ 1, v,w).

Finally, it is enough to use Theorem 8 to get a PLS(k−1,2)-program for the pair (A(x̄, y, z), r(x̄))
with the length q(|x̄|). Hence, (A(x̄, y, z), r(x̄)) ∈ PLSp(k−1,2). �

It is worth putting Corollary 37 for the concrete case k= 2 into plain words. Here, the corollary
characterizes the T2

2-provability (resp. S
2
2-provability) of a formula in the form ∀x̄∃y≤ r(x̄)∀z≤

r(x)A(x̄, y, z), where A is a polynomial time computable predicate represented as a quantifier-free
LPV-formula by the existence of an exponentially (resp. polynomially) long sequence of poly-
nomial time reductions between polynomial time games starting on an explicit polynomial time
winning strategy in the first game.
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Krajíček, J., Pudlák, P. and Takeuti, G. (1991). Bounded arithmetic and the polynomial hierarchy. In: International Symposium
on Mathematical Logic and Its Applications (Nagoya, 1988), vol. 52, 143–153.

Krajíček, J., Skelley, A. and Thapen, N. (2007). NP search problems in low fragments of bounded arithmetic. Journal of
Symbolic Logic 72 (2) 649–672.

Kreisel, G. (1952). On the interpretation of non-finitist proofs. II. Interpretation of number theory. Applications. Journal of
Symbolic Logic 17 (1) 43–58.

Paris, J. B. and Wilkie, A. J. (1981). 0 sets and induction. In: Open Days in Model Theory and Set Theory, 237–248.
Rathjen, M. (1999). The realm of ordinal analysis. In: Sets and Proofs (Leeds 1997), Cambridge, Cambridge University Press,

vol. 258, 219–279, London Mathematical Society Lecture Note series
Skelley, A. and Thapen, N. (2011). The provably total search problems of bounded arithmetic. Proceedings of the London

Mathematical Society (3) 103 (1) 106–138.
Tabatabai, A. A. (2018). In the light of intuitionism: two investigations in proof theory. Phd thesis, Charles University.
Takeuti, G. and Zaring, W. M. (1982). Introduction to Axiomatic Set Theory, vol. 1, New York, Springer Science & Business

Media.
Thapen, N. (2011). Higher complexity search problems for bounded arithmetic and a formalized no-gap theorem. Archive for

Mathematical Logic 50 (7-8) 665–680.
Troelstra, A. S. (1998). Realizability. In:Handbook of Proof Theory, vol. 137, Amsterdam, North-Holland, 407–473, Studies in

Logic and the Foundations of Mathematics.

Cite this article: Akbar Tabatabai A. (2024). Witnessing flows in arithmetic. Mathematical Structures in Computer Science.
https://doi.org/10.1017/S0960129524000185

https://doi.org/10.1017/S0960129524000185 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000185
https://doi.org/10.1017/S0960129524000185

	
	Introduction
	
	Ordinal flows
	k-flows

	Preliminaries
	Polynomial-Time Ordinal Representations
	A polynomial-time representation for "026E30F varepsilon _0

	Ordinal Flows and Arithmetic
	The system "026E30F textrmTI("026E30F forall _1, "026E30F prec )
	A proof system for "026E30F textrmTI("026E30F forall _1, "026E30F prec )


	Ordinal flows
	Ordinal local search programs
	k-Flows and Bounded Arithmetic

	Sequent calculi for bounded arithmetic
	Bounded Quantifier Rules:
	Induction Rules:
	k-flows
	Reductions and "026E30F textrmPLS_(k, l)-programs

	The game interpretation
	The case l=1
	The case l=2


