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We consider L2-constraint minimizers of the mass critical fractional Schrédinger
energy functional with a ring-shaped potential V(z) = (|z| — M)2, where M > 0 and
x € R?. By analysing some new estimates on the least energy of the mass critical
fractional Schrédinger energy functional, we obtain the concentration behaviour of
each minimizer of the mass critical fractional Schrédinger energy functional when

a / a* = ||Q||3°, where Q is the unique positive radial solution of

(=A)*u + su — |u|?u = 0 in R2.
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1. Introduction
In this paper, we study the following mass critical fractional Schrédinger equation
(—A)*u+V(z)u = M+ alu|**u, inR? (1.1)
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where s € (2, 1), V:R? — R is an external potential function, A € R and a > 0.
It’s well known that the fractional Laplacian (—A)*(s € (0, 1)) can be defined by

(—A)SU(SE):C’ZSP.V/ Mdy Cy s lim Md

Y
o=y 25 oo\, o) T = 9P

for v € S(R?), where P.V. denotes a Cauchy principal value, S(R?) is the Schwartz
space of rapidly decaying C'*° function, B.(x) denotes an open ball of radius ¢ cen-

tred at  and the normalization constant Co s = (. 1‘;'20712@ )" (see e.g. [5, 17,

24| and reference therein). In fact, there are applications of operator (—A)*® in some
areas such as fractional quantum mechanics, physics and chemistry, obstacle prob-
lems, optimization and finance, conformal geometry and minimal surfaces, please
see [1, 2, 12, 13, 15, 18] and the references therein for more details.

For equation (1.1), a direct choice is to search for solutions u € H*(R?) by looking
for critical points of the functional I , : H*(R?) — R defined by

1
/ |u|?T2¢ dz, (1.2)
R2

D= [ (AR + (V@) = V) do -

a
24 2s

where )\ € R is fixed and the fractional Sobolev space H*(R?) can be defined as
follows

H*(R?) := {u e L*R?): | |(—A)2u)?dz < oo} :
]R2
endowed with the norm

ey = [ (=80 + fuf) da

For this approach of finding solutions, we recommend the reader to see [8, 14, 19,
20] for more details. Moreover, (1.1) is also the Euler-Lagrange equation of the
following constrained minimization problem

e(a) := inf J,(u), (1.3)
where J,(u) is the mass critical fractional Schrodinger energy functional
Ja(u) = /RQ(K*A)%“'Q V(@) |uf?) da — 7/ W2 dz, ue B (14)
Here we define
E = {uGHS(RQ) :/]Rz V(x)|u|2dx<oo}, (1.5)

with the norm

Jull? = [ (=830 + Vi)l da,
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and

M::{UGE:/RJuFdx:l}. (1.6)

Very recently, when V' (x) has satisfied the following assumption

(Vi) 0<V(x) € LS. (R, lim V(z)=o00 and inf V(z)=0,

|z|—o0 z€R?

Du, Tian, Wang and Zhang [6] proved that for all a € [0, a*), e(a) has at least one
minimizer and has no minimizers if a > a*, where a* = ||Q||3* and Q is the unique
positive radial solution of

(—A)*u+ su — [u[*u=0, inR? (1.7)

Moreover, they also obtained that for a € [0, a*) small enough, e(a) has a unique
nonnegative minimizer.
When s = 1 and replace a by b, system (1.1) reduces to the following Schrodinger

equation
— Au+V(x)u = Mu + blu*u, in R?, (1.8)
For problem (1.8), we can also consider the following constrained minimization
problem
e(b) := inf Jy(u), (1.9)
ueM

where Jy,(u) is defined by

_ b _
Jo(u) = /}R2(|vu|2 FVE@) ) do— /R ufidz, ue k.

Here we define

E:= {u € H'(R?): /R V(x)|u*dr < oo},

]\Zf::{ueE:/ |u|2da::1}.
R2

There are many works focusing on existence and nonexistence of minimizers for
(1.9). For instance, in [9], Guo and Seiringer proved that there exists a critical
value b* > 0 such that (1.9) has at least one minimizer if 0 < b < b*, and (1.9)
has no minimizers if b > b*. Moreover, they also studied that the limit behaviour
of minimizers for (1.9) as b /' b*. For more constrained minimization problem of
(1.9), please see [10, 11] and the references therein for more details.

The first purpose of this paper is to consider whether the minimizers of (1.3)
are the ground states of (1.1) and whether the opposite is true? To solve these

and
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problems, we first give the definition of the ground states of (1.1). Let

Sxa = {ue€ E\{0}: (I} ,(u),p) =0, VopeE}, (1.10)
and
G)x,a = {u S S)\7a : I,\,a(u) < I)\7a(v), Yu € SA,a} . (1.11)

We say u € E is a ground state of (1.1) if u € G o. Moreover, for a € [0, a*), we
define

K, = {ug : uq is a minimizer of e(a) in (1.3)}. (1.12)

If u, € K,, we can assume that u, is nonnegative since J,(u) > J,(|ul). As men-
tioned in the above introduction, u, satisfies (1.1) with a suitable A = A\, and we
can define

ok

a** :=sup{l > 0:e(a) has a unique nonnegative minimizer for all a € [0,1)},
(1.13)
and 0 < a** < a*. Now we state our first main result as follows.

THEOREM 1.1. Suppose that (Vi) holds. Then, for all a € [0, a**) and for a.e.
a € [a**, a*), all minimizers of e(a) satisfy (1.1) with the same Lagrange multiplier
A=A, and K, =Gy, q-

Next, we focus on the concentration behaviour of nonnegative minimizers of
(1.3) as a /" a*. To our best knowledge, currently only in [6], the authors have
studied the concentration behaviour of nonnegative minimizers of (1.3) when
V(z) = h(x)I2 |z — 24|%, ¢; € (0, 2s) and C < h(z) < 1/C for some C > 0 and
all x € R2. Note that the method in [6] relies heavily on the fact that V(z) has a
finite number of minima {z; € R%, i =1, -- -, n}.

So what happens if V(z) has infinitely many minima. Therefore, another main
purpose of this paper is to study the concentration behaviour of mass critical frac-
tional Schrodinger energy functional with a potential V' (z) with infinitely many
minima. Therefore, in order to study this problem, it is assumed that V' satisfies
the following explicit expression

V(z) = (|Jz| — M)?, ~where M >0,z € R% (1.14)

Obviously, V is a ring-shaped trapping potential and all points in set {z € R?:
|z| = M} are minima of V' (z). We state our main result as follows.

THEOREM 1.2. Let V(x) be given by (1.14) and let u, be a nonnegative minimizer of
(1.3) for a < a*. For any given a sequence {ay} with ay, / a* ask — oo, there exists
a subsequence, still denoted by {ay}, such that each u,, has a unique mazimum point
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x1, and T — yo as k — oo for some yo € R? satisfying |yo| = M > 0. Moreover,
lim — 2 — =0, (1.15)

and

(a” —ak)ﬁuak (mk+(a* —ak)ﬁx> — —

where po > 0 satisfies

Sl 2-:25

° 212

= ———— cx|7Q° dx . 1.17
" <||Q||§25M2/Rz'y° | ) o

REMARK 1.3. Now, we list some of the difficulties encountered in this study.

(1) In order to prove theorem 1.2, we need to make a direct and accurate estimate
of the mass critical fractional Schrodinger energy functional, however, similarly as
the proof of lemma 5.1 in [6], we can only obtain estimate of the following type

2

Ci(a* —a)?+s <efa) < Cya” — a)ﬁ asa / a”, (1.18)

see lemma 4.1 in § 4. Therefore, we need to use the method in [11] to estimate the
mass critical fractional Schréodinger energy functional so that the power ﬁ on the
left side of (1.18) decreases to ?187 see lemma 4.5 in § 4.

(2) Compared with the Gross—Pitaevskii equations studied in [11], our minimiza-
tion solution sequence does not satisfy the property of exponential decay, so we need

to analyse the decay property of the sequence, see lemma 5.1 in § 5.

The next theorem shows that we can determine exactly the coefficients estimated
in lemma 4.5.

THEOREM 1.4. Let V() be given by (1.14), then the mass critical fractional
Schrodinger energy e(a) satisfies

1 2s
hm — @ 5+ );"f : (1.19)
a/a* (g* — q)THs s[| QI3

where pg is given in (1.17).

Ultimately, we consider the occurrence of a symmetry breaking for the minimizers
of e(a). We have

THEOREM 1.5. Let V(z) be given by (1.14). Then there exist two positive constant
Gy and Gy Satisfying as. < a. < a* such that

(i) e(a) has a unique nonnegative minimizer which is radially symmetric about
the origin if a € [0, Gy).
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(ii) e(a) has infinitely many different nonnegative minimizers, which are not
radially symmetric if a € [ax, a*).

Throughout this paper, we shall make use of the following notations.

e For p >0 and 2z € R?, B,(z) denotes the ball of radius p centred at z.

e The symbol — denotes weak convergence and the symbol — denotes strong
convergence.

e L9(R?) denotes the usual Lebesgue space with norm ||ullg := ([ |ul? dyc)%7
1< g<oo.

e For any z € R? arg = be the angle between z and the positive x-axis, and (z, y)
be the angle between the vectors x and y.

e C,C; (i=1,2,3 ) denotes various positive constants which may vary from
one line to another and which is not important for the analysis of the problem.

The paper is organized as follows. In § 2, we present some preliminaries results.
In § 3, we will prove theorem 1.1. In § 4, we will establish some preparatory energy
estimates. Section 5 is devoted to proving theorems 1.2, 1.4 and 1.5.

2. Preliminaries

In this section, we give some lemmas which will be frequently used throughout
the rest of the paper. First, we give the fractional Gagliardo—Nirenberg—Sobolev
inequality. Taking N =2 and p =2+ 25 in (1.13) in [6], we have

2

LEMMA 2.1. For 2 <p <2 = 1=, the fractional Gagliardo—Nirenberg—Sobolev
inequality

/R2 |u|?T2% dz < HlQ% (/R2 (—A)3u|2dx> (/R2 |u|? dx) . u€ H*(R?),

(2.1)
is attained at a function Q(x) with the following properties:

(1) Q(x) is radial, positive, and strictly decreasing in |x|.
(ii) Q(x) is a solution of the fractional Schréodinger equation (1.7).
(ili) Q(x) belongs to H**TH(R?) N C*°(R?) and satisfies

_ G
1 + ‘SL’|2+25

Cy 9
< <— 2 R2. 2.2
Q(I) 1+ ‘$|2+2s T e ( )

From (1.7) and (2.1), it follows that

. 1 .
/R2 (~A)5Qdu = /R QFdr = = [ 1QF e (2.3)
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Let n: R? — R be a smooth function such that n(z) =1 for |z| < 1, n(x) =0 for
|z] >2,0<n<1and |Vn| < 2. Define

Q-(z) = n(z/7)Q(x), xR (2.4)

for any 7 > 0, where Q(x) is given in lemma 2.1. According to lemma 3.2 in [6], we
have the following result.

LEMMA 2.2. Let s € (0, 1). Then the following estimate holds true:

[ (@00, [ 0 =G
R4 = R4

4
T — g P dzdy + O(77%),

as T — 00.
From [3], we can deduce the following compactness result.

LEMMA 2.3. Suppose that (Vy) hold. Then the embedding E — L%(R?) is compact
for all g € [2, 2%).

By [19], we know that the following vanishing lemma for fractional Sobolev space.

LEMMA 2.4. Assume that {u,} is bounded in H*(R™) and it satisfies

n—oo yERN

lim sup / [, () * dz = 0,
By(y)
where p > 0. Then u, — 0 in L"(RY) for 2 < r < 27.

3. Normalized ground states

In this section, we give the proof of theorem 1.1. First, we give a smoothness result
about e(a).

LEMMA 3.1. Suppose that (Vi) holds. Then, for a € (0, a*), the left and right
derivatives of e(a) always exist in [0, a*) and satisfy

1
o5 % and e’ (a) = Ba,

CI_(CL):— —m

where

g = inf {/ |t |2 da - ug € Ka} ,
R2

Ba 1= sup {/ |ua|2+25 dz 1 u, € Ka} ,
R2

and K, is given by (1.12).

https://doi.org/10.1017/prm.2022.81 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.81

2000 L. Liu, K. Teng, J. Yang and H. Chen
Proof. By (V1), lemma 2.1 and the definition of e(a), we have

0= inlg V(z) <e(a) <e(0) =461, forae]|0,a), (3.1)
z€R?

where §; is the first eigenvalue of (—A)® 4+ V(x) in E. Moreover, lemma 2.1 also
shows that

e(a)

—A)Su,[? D) dz — a/ 224
L0830l + Vil P de = T [l da

a* 2425 a 2425
> dx — d 3.2
/1+3/R2|u“| ! 1+s/Rz‘u“| ! (32)

_ _“/ lua |22 da.
1+$ R2 N

From (3.1)-(3.2), it follows that

N

/ |'LL |2+28 dax l+s (a) 1+s 61 forae [0, UJ*)~ (33)

a* —a a* —a

For any ay, as € [0, a*), it is easy to see that

e(ar) > e(az / [tay 42 dz, Vg, € Ko, (34)

1+s

and

e(az) > e(ay / |ta, P2 Az, Vg, € Ko, (3.5)

1 + s
y (3.4)—(3.5), we get

lim e(az) = e(ar),
az—aq

which implies that
e(a) € C([0,a*),RT). (3.6)

By using (3.4)(3.5), for ug, € K4, and u,, € K,,, we have

prall R Y

as
1+s

2+25d < o
[ P e < ) = efan) < 2

Without loss of generality, we set 0 < a1 < az < a*, from (3.7), we can see that

g2 de < A Z0) L e, (3
- as X S 1+s - ai )

a2 —ax

C1+s
for Yu,, € K,,, + =1, 2. This shows that

. e(az) —e(ay) 1
- inf Ug, |2 T2 da < < - . 3.9
1+ 5 ua,€Ka, Jp2 e as — a 1—|—85a1 (3.9)
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By (3.3) and lemma 2.3, we know that {u,,} is bounded in E. Up to a subsequence,
we may assume that there exists v € E such that

Ug, — U, in E asaz \, a,
Uqy, — u, in LY(R?) for q € [2,27).

By (3.6), we deduce that

e(ar) = lim e(az) = lm Ju,(te,) = Jo, (u) > e(ar),

az\,a1 az\a1
which implies that
Ug, U E€E and ue K,,.
Thus, (3.9) shows that

1 —
/ |u|?T2% dz < liminf elaz) = e(ar)
R2

B 1+s az\a1 a2 — ay
(3.10)
. e(az) —e(ar) 1
< lim sup < — Bay -
as\a1 az — ay 1+s
Moreover, by the definition of 3,, we get
/ [ul?*2* dz < Ba,- (3.11)
R2
In view of (3.10)—(3.11), we can obtain that
1
/ —_— e —
e (ar) = T Sﬂal.
Similarly, we also have
1
! [ —
e’ (a1) = T35 e
[

Proof of theorem 1.1. By using (3.7), we can see that

1
le(a1) — e(az)| < e lag — a1 max {/ g, |22 dx,/ g, |22 da:}
s R2 R2

< %_’_Smax{ﬂal,ﬁaz}mg —a1|, VYaq,as €10,a%),
which implies that e(a) is locally Lipschitz continuous in [0, a*). Thus, by using
Rademacher’s theorem, we know that e(a) is differentiable for a.e. a € [0, a*). More-
over, lemma 3.1 shows that ¢’(a) exists for all a € [0, a**) and a.e. a € [a**, a*)
and
1

_1+8 R2

e'(a) = lu|>T?*dz, Yu € K,. (3.12)

Thus, we know that all minimizers of e(a) have the same L?72¢(R?)-norm. For
a € [0, a*), taking each u, € K, such that ¢'(a) satisfies (3.12), then wu, satisfies
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(1.1) for some Lagrange multiplier A, € R. By (1.1) and (3.12), we have

sa

Ao = e(a) — T

/ [uq|*"% dx = e(a) + sae’(a), (3.13)
R2

which implies that all minimizers of e(a) satisfy equation (1.1) with the same
Lagrange multiplier \,, that is,

(—A)*ug + V(@) ug = Natlg + au2*T  in R? (3.14)

For Vo € E, by (1.2) and (3.14), we deduce that
Balieh) = [ (~D)fu(-8)ipds+ [ V(@)= Auapds

R2
142 _
—a/ u, Cedr =0,
R2

which implies that u, € Sy, o Now, we show that G, , is nonempty. In fact,
according to the definition of G, 4, we only need to show that for any u € Sy, q
one has

I, o(w) = In, a(uq). (3.15)

Let u, € K, and u € Sy, 4, we have

(—A)2u|? dx +/ (V(z) = Ao)|uf*dz = a/ lu|?+2 du, (3.16)
R? R?

|
R2

which implies that

a a sa
T " _ 242s d _ 242s d — 242s d 0.
real) =g [l de = o J e e = gy [ e de >
(3.17)
Similarly, we also have
sa
I, a(te) = = o *T%% da. 3.18
van) = 55 [Pt (318)
Define
0 ! u  with / |u|? dz
=—u w o= .
Vo R2
Clearly, [o, |4|* dz = 1. Thus, we get that J,(@) > Ju(ug). This shows that
1 Aa X 1 Aa
I, a() = = Jo(0) — 55 [ o de > S Ja(ue) — 7/ o |® da = I, a(uq)
@ 2 2 Jo 2 2 Jao -
(3.19)
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Moreover, by using (3.16), we deduce that

1

3o IR R + (V@) = Aluf)da

a 242
- g [

a 1 1
=—"(1 - = 2428 Q. 3.20
2+250( e O’S> R2 [ . (8:20)

I)\cua(’&') =

Let g(o) == 1(1+s— ) It is easy to check that g(o) achieves the unique global
maximum at o = 1. (3 7), (3.19) and (3.20), we deduce that

~ a .
Iy, a(tua) < Iy, o) = 5 259(0) g |22 dz

a
1 2+28d

sa
T2+ 25 Ju [ul*2* da = Iy, a(w),

N

which shows that (3.15) holds. Hence, G, , is nonempty.
Next, we prove that K, = G, .. For any given a € [0, a*), consider any u, € K,
and u € Gy, 4. Clearly, u € Sy, . From (3.17)—(3.20), it follows that

2 ja25 [ul*2* da = Iy, a(w) < Ix, a(ua)
a 1 1
g[ aA _ 1/ 1 2+2sd 3.21
o) =3 (s = 1) [ apeea, (3.21)
which implies that

1 1
olts _ i L +-<0. (3:22)

s

Define h(o) := o'*% — 12255 + 1 Taking the derivative of h(c), we have

W) <0, 0<o<l,
W(e)=0, o=1, (3.23)
W(o) >0, o>1.

By (3.22)-(3.23), we know that o =1, that is, [p. |u|*dz = 1. Therefore, (3.21)
shows that

Iy, o(u) =1, a(ug) and Jg(u) = Jo(uq).

This implies that v € K, and u, € G, 4. O
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4. Estimates in the energy e(a) as a /" a*

In this section, we mainly establish the following estimates on the energy e(a) as

a /" a*.

LEMMA 4.1. Let V(x) be given by (1.14). Then there exist two constants Cy, Co > 0,
independent of a, s, such that

Cl(a*—a)% < e(a) <02(a*—a)1+%, asa /a”. (4.1)

Proof. For any x> 0 and u € E with [|ul|3 = 1, by lemma 2.1, we have

Ja(u)>/ (|| — M)2|ul? dz + & ’“/ |u[2+25 dar
R2 R2

1+s

:H/ (2] = M)? — r][ul? do + & _“/ u[2+20 dg
R2 1+s R2

_; e — (lzl — 21+% " .
" (1+s)(a*_a)i/RJ (2] = M)*],"* da, (4.2)

where []; = max{0, -} denotes the positive part. Taking the variable r = M +
VEsinf with =% < 6 < 7, by direct computation, we deduce that

M+R

J = el = 0P =2 [ o aP
= M—/&
= 2mstt /2 (cos 9)2+%(M + VK sin0)/k cos 0df < Cm2§fs7 (4.3)

for k > 0 small enough. Taking xk = (“25“)% in (4.2) and (4.3), we have

2

243s
a* —a)?ts sC a* —a) @t
Ja u) = - 1
( ) ( 20's > (1+s)(a*—a)§ ( 20's )

2 1 S 1
> (a" —a)7+s 1-— — . 4.4
(@*=a) 20( 1+32;) (4.4)

Clearly, we know that 1 — 1_“;52% > 0 since s € (1, 1). Hence, (4.4) shows that

e(a) = Cy(a™ — a)ﬁ,as a,/ a*.

On the other hand, set a cut-off function n € C§°(R?) such that (z) = 1 for |z| < 1,
n(xz) =0 for |z] > 2,0 < n<1and |Vn| < 2. Define

T — X0

u(z) = AR,Tmn ( - ) Qr(z — 20)), (4.5)

where 29 € R?, R, 7 > 0 and Ap . > 0 is chosen so that [,, [u|*dz = 1. First, we
show that limp, oo Ar, = 1. In fact, by (4.5) and lemma 2.1, we can see that

1 1

=7 [ () @) =1+ O(Rr) ) s B = (46
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Now, taking R =1 in (4.5), from lemma 2.1, lemma 2.2 and (4.6), it follows that
[P ae - o [l

< ol [/ ()10 o~ s [ 10 a0

)tA;|Q2+2de4-O(T“)]. (4.7)

m Kl I

Moreover, from lemma 2.1, by direct computation, we get
C C
— M)*lul*d gf/ QP dx < = 4.8
el =an2ifas < 5 [ jaPlopdr < (48)
In view of (4.7) and (4.8), we can deduce that
25, * c —4s
e(a) < Ct°%(a* —a) + = +O(r7%). (4.9)

Taking 7 = (a* — a)_ﬁ in (4.9), we get
e(a) < Ca(a™ — a)ﬁ,as a/ a”.
U

Similar to the proofs of lemma 2.2 and 2.3 in [11], we can obtain the following
two main results, which are extensions of the classical local problem in [11] to the
nonlocal problem.

LEMMA 4.2. Let V(z) be given by (1.14) and suppose u, is a nonnegative minimizer
of (1.3), then there exists a constant K > 0, independent of a, s, such that

S 1 S
0< K(a"—a) %% < / [ug|* T2 da < E(a* —a) ™, asa S a*.  (4.10)
R2

Proof. From (4.2), it follows that

e(a) = Jo(ug) =

a —a 2425
d
1 + s /R2 ‘Ua| s

which implies that the upper bounded of (4.10) since lemma 4.1.
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Moreover, for any 0 < b < a < a*, we have

a—b 2425
< = .
e(b) < Jp(ug) =e(a) + T /]R2 [t dz

Then, lemma 4.1 shows that

1

(b) —e(a) _ Cifa” — b)7ts — Cy(a* —a)TH
a—b = a—0b '

1

2425 40 > €
1+3 Rzlua| vz

(4.11)

Taking b = a — C3(a* — a)% in (4.11), where C5 > 0 is large enough such that
2
C1C5"™ > 2C5. Then, we can see that

/ [ug|?*?¢ dz > C(a* — a) "=,
RQ

which implies that the lower bounded of (4.10). O

LEMMA 4.3. Let V(z) be given by (1.14) and suppose u, is a nonnegative minimizer
of (1.3), and set

€% = [(—A)Zu,|? da. (4.12)
R2
Then, we have

(i) €¢a 0 asa /a*.

(ii) There exist a sequence {ye, } C R? and positive constants Rg, 1 such that the

sequence
We () 1= €qtiq(€q® + €aYe, ) (4.13)
satisfies
hminf/ lwa|*dx =7 > 0. (4.14)
asa” JBp,(0)

(iii) The sequence {eay.,} is bounded uniformly for e, — 0. Moreover, for any
sequence {ap} with ap / a*, there exists a convergent subsequence, still
denoted by {ay}, such that

T = €0,Ye,, — To, a8 ax S a’, (4.15)

for some xg € R? being a global minimum point of V(x), i.e., |xo| = M > 0.
Furthermore, we also have

k B B _
a, — T —— —|r — 4.16
w e Q||2Q< Tl y0|> (4.16)

in H*(R?) for some yo € R? and 31 > 0.
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Proof. (i) By lemma 2.1 and lemma 4.1, we deduce that
/ V(2)|ue|? dz < e(a) < Co(a* — a) T ,as a / a*, (4.17)
RQ
and

0< |(—A)%ua|2dx—L/ 1 [242% dar
R2 R2

1+s
—e -2 202 4z < e(a) L% 0 4.18
s [ P <o) 2 (1.13)
Lemma 4.2 implies that
/ lug|*T% dx — +o0, as a / a*. (4.19)
R2
By (4.18)-(4.19), we have
€% a e(a)
O < < - X 07 *,
Jge lual?t?ode 145 = [o, [ug?T25 da — 0 asasa
that is,
6—25 *
fR2|ua|2+25dx_>1—|—37 aSa/aa
which implies that
1
0< —e, 2 < / |ua |72 do < me, %, asa /' a”, (4.20)
m R2

where m = max{2, a*}. Thus, from (4.20) and lemma 4.2, there exist C3, Cy >0
such that

s

C3(a* —a) 5% < e, <Cy(a* —a) 5, asa /a*, (4.21)

a

which implies that ¢, — 0 as a /" a*.
(1) Set

We () 1= €quq (). (4.22)
By (4.12) and (4.20), we have
s 1
\(—A)ﬂba|2dx:/ Ga2dz =1, — g/ (o[22 Az < m. (4.23)
R2 R2 m R2

Next, we show that there exist a sequence {y., } C R? and Ry, n > 0 such that

liminf/ o |*dz > n > 0. (4.24)
BRU (Yeq)

€q—0
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Suppose by contradiction, for any R > 0, there exists a sequence {w,, } with a /" a*
such that

lim sup/ g, |* dz = 0.
Br(y)

k—oo y€ER2

From lemma 2.4, we get that ,, —— 0 in L"(R2) for 2 < r < 2*. Hence, t,, —— 0
in L?*25(R?), which contradicts with (4.23). Therefore, from (4.22) and (4.24), we
have

hminf/ lwa|*dx =1 > 0.
a/a” JBp,(0)

(7i7) From (4.13) and (4.17), it follows that

/ (|$|*M)2|ua|2dl”:/ (|ea + €aye,| — M)?|wa|*dz — 0, asa /a*.
R2 R2

(4.25)
Now, we prove that

1im0 l€aye,| = M. (4.26)

Indeed, assume by contradiction that there exist a constant o > 0 and a subsequence
{a,} with a, /" a* as n — oo such that

€ni=¢€,, — 0, and |leyye, | — M| >a >0, asn— occ.

By (4.14) and Fatou’s lemma, we can see that

2
. «
lim (lenw + E7Ly€n‘ - M)2|wan|2 dz > —n >0,

n—oo [po 2

which gives a contradiction by (4.25). Thus, (4.26) shows that {€,y., } is bounded
uniformly as e, — 0 and (4.15) holds true.

Next, we prove that (4.16) holds. Since u, is a nonnegative minimizer of (1.3),
we have

(=A)°ug + (|2] — M)*uq = Attg + au?*,  in R? (4.27)

where A\, € R is a Lagrange multiplier. Moreover, we also have

Ao =e o0 d 4.2
)= 755 [ P e (1.28)

From (4.20), (4.28) and lemma 4.1, we can see that there exist Cs, Cg > 0,
independent of a, s, such that

—O5 <X\, < —Cs <0, asa /a*.
By (4.13) and (4.27), we deduce that

(=AY wa + €25 (e + €aye, | — M)*wa = €2 Xgwa + aw?* ™ in R?. (4.29)
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Passing if necessary to a subsequence of {ay}, still denoted by {ay}, we may assume
that

€25 \ay LN —2 <0, for some 3 >0,
Wa,, w0, in H*(R?).

From the boundedness of {€,y., }, by passing to the weak limit of (4.29), we get
(—A)*wy = —Biwg + a*wi*™t,  in R2. (4.30)

Clearly, (4.14) implies that wgy # 0. Similar argument to the proof of proposition
4.4 in [21], we know that wg € C1® for some a € (0, 1). Then, by lemma 3.2 in [7],
we have

1 wo(z +y) + wo(z —y) — 2wo() 2
—A)? =-;0(2 R2.
(=A)%wo(x) 20( ) /]R2 e dedy, Vze

Next, we show that wg > 0. Assume by contradiction that there exists xo € R? such
that wo(xg) = 0, then we can see that

1 wo (o +y) + wo(To — ¥)
_A) ~ Lo
(~8) wo(zo) = —5C(2,5) /R sy <0,

since wy > 0 and wy #Z 0. However, it is easy to see that
(—A)Sw()(.'l,‘o) = —ﬁ%wo(.’lﬁo) + a*wSSJrl(xo) = 07

which gives a contradiction. Hence wy > 0 for all x € R%. Now, by (4.30) and Q is
the unique positive radial solution of (1.7), we can deduce that

wo(z) = #Q (ﬁ“x - y0|> ,for some 7 € R%. (4.31)
EQls ° \s®

By simple computation, we know that ||wg||3 = 1. From the norm preservation, we

get that wg, 5w in L?(R?). Hence, by the boundedness of {w,, } in H*(R?), we
have

Wa,, £, wo, in LP(R?) for p € [2,27).

Therefore, in view of (4.29) and (4.30), we know that w,, £, wo in H*(R?), and
thus (4.16) holds. O

LEMMA 4.4. Under the assumptions of lemma 4.3, and let {a} be given by lemma
4.3-(iit). Then, for any R > 0, there exists C(R) > 0, independent of ay, s, such
that

Jim 7/ (lea + aties, | — M)l |2 do > C(R).
Br(0)
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Proof. The proof is parallel to lemma 2.4 in [11], for the reader’s convenience, we

give a brief proof. From lemma 4.3, we know that €q, ye,, LN 2o with |xg] = M > 0.
Hence. we get

Yeo, — 00, (4.32)
which implies that

2% Ye,,

k .
W — 0, uniformly forx € Bg(0). (4.33)
€ay,

Without loss of generality, we may assume that xo = (M, 0). Then, arg Yeu, 0.
By setting 0 < 6 < J¢ small enough, we get that

— 0 <argye,, <0,as e, — 0. (4.34)
Let
ol i={e e Ba): \flol + i P < 22
M\? k
- { € B laP < (2] ., } , (1.35)
and

M
Afak s = {:c € Br(0) : (/|x)> + \yeak\Q > 6}

ak

— {x € Bgr(0) : <6M> — ye,, > < |z* < RZ} : (4.36)

Qg

Clearly, Br(0) = Aiak U Afak and Alak N Af% = (). Next, we consider the following
two cases. )
Case 1: |Aiak\ > T Tt is easy to check that B%(O) C Aiuk. Let
2

3
Al .— (B%(O)\Bg(())) N {1‘ : g +20 <argr < ?ﬂ —20} C Aiak.

By simple computation, we get

A = % (4.37)
By (4.34), we have
T Yeo, = |2||Ye,, | cOS(z, e, ) <0, for € AL (4.38)
and
| cos(, Ye,, )| > — cos(g +6), forxe Al (4.39)
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Moreover, by (4.33) and the Taylor expansion, we have

1 M\?
o+ oyt | — M) = (|x+yeak -Z)

ag ag

Y, M
= x2+ Ve, ]_+ 7%
VI e, \/ T
e, 1 M
= [P F e P (14 o2 10 -
o |2 |2+|yea,€|2 Yea, 2 €ay
2
Y, M 1
= [P F e Pt e Mo (L
€ay, ‘yfakl

2% + |Ye, |2

2

2

From (4.35), (4.38), (4.39) and (4.40), it follows that

€a M 1
V1 e, 2 e 40—
Eak ‘yﬁak‘

22 + [Ye,, 2

X - T -
. Vo O( 1 ) . Yeu,
122+ lye,, 12 Wewrl ) 2, [ + Jye, |2

_ lallye, [ o5 (5 +6)

2¢/12% + [Yea, I

Hence, by (4.32), (4.39) and (4.40), we have

, for z € AL

cos?(5 + 0)|x|?

3 , for z € A,

1
T(‘eakx + Eakyeak| - M)2 >

ag

which implies that

lim —/ (|€akx—|—6aky€ak|_ M)?|w,, |* dz

> 1 2z — M)? 2d

=z lm (|€akx+€akyeak| )7 wa,|” da
Al ’

> —20 N |z|?|wo|? dz := C(R) > 0,

where 6 = .
Case 2: |A? | > ”TRZ. Clearly, BO(R)\B%(O) C AZ . Set
2

A? = <BR(O)\B\1}(O)> N {x : —g +20 < argxr < % - 29} C Azak

The rest of the proof is very similar to the case 1, we omit it.
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LEMMA 4.5. There exist two positive constants C7 and Cs, independent of a, s,
such that

C7(a* —a) < e(a) < Cg(a™ —a) ™5, asa / at.

Proof. By lemma 4.1, it suffices to prove that there exists a C' > 0, independent of
a, s, such that

e(a) > Cla* —a)T, asa / a*. (4.42)

From lemma 4.3, we know that for any sequence {aj} with ar /" a*, there exists
a convergent subsequence, still denoted by {aj}, such that wg, — wy >0 in
L?T25(R?), where wq satisfies (4.31). Thus, there exists M; > 0, independent of
ak, S, such that

/ |ta, P72 dx > My, as ap /" a”. (4.43)
R2

Lemma 4.4 shows that there exists My > 0, independent of ag, s, such that
/ (lex + €rye, | — M)*|wa, |> do > Maet, as ai, /" a*. (4.44)
B1(0)
In view of (4.43)—(4.44), we deduce that

1 s a* s
elan) = Joy (o) = 35 | [ 1) Fun Pas = 2 [
k

a* — ag

2+2s 2 2
o [ a2 et [ (o + ] = M), da

a* —ay 9
S T

s 1
M1 5M1 R SM1 14s 1
> My | )T,
{1+s [(1+3)M2} * 2{(1+3)MJ }(a ax)

as ar /" a* and here the last equality is achieved at

sMi(a* — ag) =
&= |————= .
i (1+ s) M,

Thus, (4.42) holds for the subsequence {ay}. Actually, the above argument can be
carried out for any subsequence {ay} satisfying ay " a*, which then implies that
(4.42) holds for all a /" a*. O

Now, by using lemma 4.5, instead of using lemma 4.1 in the proof of lemma 4.2,
and taking b = a — Cs(a* — a), we have

COROLLARY 4.6. Let V(x) be given by (1.14) and suppose u, is a nonnegative
minimizer of (1.3), then there exists a constant M > 0, independent of a, s, such
that

s 1 s
0< M(a® —a) T+ g/ lug|*T?*de < —(a* —a) =, asa S a*.
R2 M
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5. Concentration behaviour

In this last section we study the concentration behaviour of normalized ground
states and give the proofs of theorems 1.2, 1.4 and 1.5. Let u, is a nonnegative
minimizer of (1.3), we define

£q = (a* — a) 777 . (5.1)

By lemma 2.1, we deduce that

e(a) > (1 - %) / |(_A)%ua\2dx+/ (|| = M)2|ua|? dz.
a R2 R2
Hence, from lemma 4.5, it follows that

(—A)iug[2dz < Ce=2* and / (2] = M)2ua2dz < C2. (5.2)
R2 R2

Similar to the proof of (4.14), for £, given by (5.1), we get that there exist a sequence
{ye, } € R? and Rg, n > 0 such that

hminf/ lwg|? dz =1 >0, (5.3)
a/a" JBr,(0)
where

wa(x) = 5aua(5ax + gayaa)' (54)

Moreover, by (5.2) and corollary 4.6, we have

s 1
(—A)iw,2dz <C and M </ a2 dz < . (5.5)

R2 R2 M
LEMMA 5.1. For any given sequence {ar} with ay / a*, let e :=¢e,, = (a* —
ak)ﬁ > 0, ug(z) = uq, () be a nonnegative minimizer of (1.3), and wy := wq, =
0 be defined by (5.4). Then, there is a subsequence, still denoted by {ay}, such that

2k 1= EkYe, LN Yo, for some yo € R? and |yo| = M. (5.6)
Moreover, for any p > 0 small enough, we have

ug(z) = 1wk<

€k

Xr — Z

) +,0. foranyze B7(yo)- (5.7)
€k

Proof. We divide the proof into four steps. Step 1. By (4.27) and (5.4), we get
(=A)*wy, + €7° (|ex® + exye, | — M) 2wy = e3* Mpwy, + apwt?, in R?, (5.8)

where )\, € R? is a Lagrange multiplier. Similar to the proof of lemma 4.3-(iii), we
know that (5.6) holds.
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Step 2. For all k, we assume that vy > 0 satisfies

(—A)*vg — ex*Apvy = apwi*t!
Next, we prove that ||vg|l < C, for all k. In fact, (5.

(—A)wy — 6%5)\]{(1};@ < akwisﬂ

From (5.9) and (5.10), it is easy to see that

in R2.

)

8) shows that

in R2.

9

0 < wy, < v, ae. in R? and for all k.

For 3> 1and T > 0, let

0,
‘P(t) = tﬁ’

BTA=1(t —T) + TP,

t<0,
0<t<T,
t>T.

Clearly, ¢ is convex and Lipschitz continuous, we get

(=) p(vr) < ¢ (vr)(—=A) v,

in the weak sense. By using Sobolev inequality, (5.11), (5.12), the fact A\ <0,
@ (vk)p(vg) < ﬁvk Lok (v) < Be(vy) and integrating by parts, we deduce that

s

<C | o(vr)e (ve)(—A) vy dz

R2

C/ [(—A)= Uk)\QdJU—C/ (vk)(—=A)*¢(vy) da

= C/ (vr)¢’ (vp) (€35 Mgy, + apw ) da
R2

N

¢ [ 0@ o0+ da

=C ( L etg@de+ [ ewe ™ dsv)

<Cp (/R viﬁ—lder/R?(@(vk)) v, dx)

where C' > 0 independent of k£ and /.

Note that S > 1 and that ¢(vg) is linear when vy,

> T, then we have

(5.10)

(5.11)

(5.12)

(5.13)

2 27 -2
[ = [ e e [ (o)

< TQB’Q/ vi: de +C
R2

R2

o
v,* do < +o0,

which implies that [y, (<,o(vk))21},z:72 dx is well defined for every T
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Now, we let 5 in (5.13) such that 26 — 1 = 2% and define 5 = 2T+1 Let R>0
be fixed later, by Holder’s inequality, we have

/]R2 ((vr)) vy 2 da
_ / ((v)) 20} 2 da + / (o(vok) 20} 2 da
{vix, <R} {vip,>R}

2
<R2:_1/ (p(vr)) dr
{vk <R} Vk

+ (/{vk>R} vie dx) N </RQ(30(vk))2: dx) * . (5.14)

Similar to the proof of lemma 4.3-(ii7), we know that {v;} converges strongly in
H*(R?), then {v;} converges strongly in L% (R?), so we can choose R sufficiently
large such that

*
27 —2

22
2% s 1
v da < . (5.15)
(/{vk,>R} r > 2CH

From (5.13)—(5.15), it follows that

</Rz(80(vk))2: dx>22-’5 <206 </Rz v dx+R23‘1/Rz Ww) . (5.16)

Thus, by applying ¢(vy) < vfl and letting T'— oo, we have

2
27 6 % 2; 2r -1 2;
v, da <2006, v, do + R% v, dr | < oo,
R2 R2 R2

which implies that

v € L%EPL(R). (5.17)

Assume that g > ;. By taking 7' — oo in (5.13), we can see that
2%
(/ visﬂdx> T <op (/ viﬁflder/ viﬁ+23_2 dx) . (5.18)
R2 R2 R2

28-1 _ 1. m
= VgUk »

Let
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22((2:1;) and m = 23 — 1 — . Moreover, $ > (31 implies that 0 < I, m <

2%, by using Young’s inequality, we get

_ ! . 2r ] 2%
/ vi’g Yo < — vis dz + =2 / v,js "dz
R2 2* 2* R2

s JR2 s

g/ ’U’i: dx+/ v25+2:_2dx

R2 R2

<C (1 +/ v,§5+2§‘2dx> . (5.19)
R

In view of (5.18) and (5.19), we have

( / v dx) <Cp (1 + / 2 dm) : (5.20)
R2 R2
which shows that

1 1
* 2F(B-1) . 2(68-1)
<1+/ visgdx> < (Cﬂ)wﬁl—l) <1+/ ’uiﬂHS de) . (5.21)
R? R?

Iterating this argument, we obtain

1
. T Big1—D
2*3; s \Pit1
1+ vkéﬁ‘“ dx
]Rz

. 1 — 2*ﬁi ﬁ
< (Cﬂl-i-l) 204110 [ 1 4 ’Uks dx s (522)
R2

where | =

|
) *‘”

where
2% .

Setting C;11 = CB;41 and

1
* g 25(B;—1)
K; = <1+/ g d:c) .
R2

We can see that there exists a constant C' > 0 independent of i , such that

1
Kip1 < Hﬁiicf“’“” K < CK;.
Hence, we have
lvelloo < C,  for all k.

Step 3. We prove that wg(z) — 0 as |z| — oo uniformly in k.
In fact, we rewrite problem (5.9) as follows

(—A)*v + v, = hy(z), = €R?

where hy(z) = v + sisAkvk + akwiSH. Thus, step 2 shows that hy € L°°(R?) and
is uniformly bounded. From interpolation inequality and {vj} converges strongly in
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H*(R?), we know that hj, — h in L9(R?) for ¢ € [2, +o0). Thus, by [8], we deduce
that

vp = | Kz —y)h(y)dy,
Rz
where /C is a Bessel potential and it satisfies
(K1) K is positive, radially symmetric and smooth in R?\{0}.
(K2) There exists a C' > 0 such that (z) < W% for x € R?\{0}.
(K3) K € L"(R?) for r € [1, 1£5).
Now, for any ¢ > 0, we have

w < [ K=y
- / K (@ — ) lhi(y)dy + / K(x — )i (y)dy.
{lo—yl>1} {Js—yl<1}

By step 1 and (K2), we can see that

1

{lo—yl> 1} [& = y[>+2

J/ K(z = y)lhi(y)ldy < CC dy = ¢, (5.23)
{le—y|>1}

Moreover, by using Holder’s inequality and (K3), we deduce that

/ K(z — o) h(w)]dy
{lz—yl<1}

<[ K-glhobdys [ K-y
{lo—yl<1} {lz—yl<1}

<</ |/C|2dy> (/ |hk—h|2dy> +</ |K|2dy> ( / |h|2dy> ,
R2 R2 R2 {lz—yl<&}

which implies that there exist Ky € N and Ry > 0 independent of { > 0 such that

/ K(x — y)lhe()dy < ¢,k > Ko and [z] > Ro,  (5.24)
{lz—yl<Z}

where we have used the fact s > 1 so that 2 < 1~ and (f{lx*yKl} |h2dy)z — 0
¢
as |x| — oo. Thus, by (5.23) and (5.24), we know that

/ K(z — y)|h(y)ldy < CC2 +¢, Wk > Ko and |2| > Ro
R?

On the other hand, for all k € {1, 2, - - -, Ky — 1}, there exists R > 0 such that

1
2

(/ hk|2dy> < ¢, as |z| = Ry,
{lz—yl<1}
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which implies that

/’Ku—mmuwmy<c@ﬂg/ K (- )i (y) dy
R2 {

le—yl<1}

<CC* + Kz(/ |hk|2dy>
{lz—yl<L}
<O +0).

1
2

Thus, setting R = max{Ro, R1, - - -Rk,—1}, we conclude that
0<u < [ Ko plhldy < CE* +0), forall o] > B,
]R2

which implies

lim vg(z) =0, uniformly in k. (5.25)

|z|—o0

From (5.11) and (5.25), it follows that

lim wy(x) =0, uniformly in k. (5.26)

|z]— o0

Step 4. Combining step 2, step 3 and the proof of theorem 1.1 in [22], we can

get that
< ¢ for all
Wk(.T) RS W, or all k. (527)
For any = € By(yo), (5.6) shows that
2=zl _ =yl o o &
> > — . 5.28
Ek 25k 25k oo ( )

From (5.27) and (5.28), it follows that

T — 2 1 C
e <;1 T—Zk |242s
k K1+ [E2EE
1 C k
<——“ __F0 VeeB(y).
S e T4 [ 2P ™ € Bylw)

k

up(2) = (

€k

Inspired by [25], we now prove theorem 1.2.

Proof of theorem 1.2. Set g, := (a* — ak)ﬁ > 0, where aj, /" a*. Define uy(x) :=
Uq, () is a nonnegative minimizer of (1.3). Moreover, we set z; be any local
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maximum point of uy. Clearly, we have

a1
up(Zr) = (2"“) ) > Ce, . (5.29)
Hence, from (5.29) and lemma 5.1, it follows that
2 5 yo € R2 with |yo| = M. (5.30)
Let
Wy, = epug(epx + Zk). (5.31)

By (5.8), we deduce that
(=A@ + €25 (|ep + 21| — M)*@), = e2° Ny + arp@2* ™+, in R2. (5.32)

Next, we prove that {#-*:} CR? is bounded uniformly in k. Assume by
contradiction that |5’“E;kz’“| — 00 as k — o0o. (5.27) shows that

_ 1 Zk — 2k C 1 1
ug(Zr) = 6kwk< o ) < wiT EENpE o(ex '), as k — oo,

which implies a contradiction by (5.29). Thus, there exists ; > 0, independent of
k, such that, [#—=E] < %. By (5.3), we can see that

lim ‘wk|2 dzx
ko0 BR0+R1 (0)

(5.33)

= lim i \wk|2dx>/ lwg[* dz =1 > 0,
=00 Brgin (E572) B2 (0

where we have used the fact wg(x) = wy(z + Ekg’kz’“ ). Similar to the argument of

lemma 4.3-(ii7), we know that there exists a subsequence, still denoted by {wy,}, of
{wy} such that

25 Nk kL B2 <0, forsome 3> 0, (5.34)
W — 1wy > 0, in H*(R?), '
where wq satisfies
(=A)*wg = =By + a*wg',  in R% (5.35)

Note from (5.33) that wo # 0. Thus, similar to the proof of lemma 4.3-(iii), we
know that wy > 0 in R2. Since the origin is a critical point of wy,, we get that the
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origin is also a critical point of @wy. By (5.35) and @ is the unique positive radial
solution of (1.7), for the above 3 > 0, we can deduce that

(@) = 1 @(éﬂ) (5.36)

sA|Qfs T \ s

Clearly, we know that @y > ( 2’(2 2* )% at each local maximum point. Hence, lemma
5.1 implies that all the local maximum points of Wy, stay in a finite ball in R?. By

(5.26) and the definition of wy,, we can get that

|0k |loo < C,  uniformly as k — +oc. (5.37)

Next, we prove that {@y} is bounded uniformly in C2%(R?) for some 0 < a < 1.
In fact, we rewrite (5.32) as follows

(=A)swy(x) = fr(z), in R?, (5.38)

where fi(2) = —e2*(|erz + 2| — M)Wy + e2* My, + apw* . Since e2%(|epx +
Zk| — M)? is locally Lipschitz continuous in R? and (5.37), we have

| fe(2)]loo < C, uniformly as k — +oc. (5.39)
From (5.37), (5.38), (5.39) and lemma 2.3 in [23], we know that
wy, € CH*(R?), for a < 25 — 1, (5.40)

and

@kl creme) < Cllwklloo + [1fx(@)]loc) < C- (5.41)

From (5.40) and (5.41), it follows that
[fe(@)llep g2y < C, uniformly as k — +oo. (5.42)

Thus, by (5.37), (5.38), (5.42) and lemma 4.4 in [4], we know that {wy} is bounded
uniformly in C12 i (R?) for some 0 < a < 1. Thus, we may assume that there exists
Wy € Cr%(R?) such that @y, — 1o in C2_(R?) as k — oo. Moreover, (5.34) shows
that QI)O = wWy.

Since the origin is the only critical point of wg, then the content of the appeal
discussion shows that all local maximum points of {@;} must approach the origin
and hence stay in a small ball B,(0) as k — co. Letting ¢ > 0 small enough such that
w{ (1) < 0 for 0 < 7 < p. By lemma 4.2 in [16], we know that {@w;} has no critical
points other than the origin. Therefore, we get that there exists a subsequence of
{ux} concentrating at a unique global minimum point of potential V(x) = (|z| —
M)? in R2.
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Now, we turn to proving (1.15)—(1.17). In fact, by (5.31), we have

1 . - o
e(ar) = Ju (ur) = g2s {/Rz KiA)zwk‘de 145 /]Rz |“’k|2+2 dﬂj
k
52
T / @[+ dar + / (ex + 2] — lyol)?[@x [ dz,  (5.43)
+ s R2 R2

where Z, is the unique global maximum point of u, and 2z, — yo € R? as k — oo
for some |yo| = M > 0.

Next, we prove that {%_kly“l} C R is bounded uniformly for & — co. Assume by
contradiction that there exists a subsequence {ay}, still denoted by {ax} such that
|%ﬁk“”°‘| — 00 as k — oo, by (5.33), for any C' > 0, we have

lim & / (lex + 2] — [yo))?|@x[* do
k R2

— 00

k—o0

2
= lim / <|x + Z—k| - |y0|> lwg|* de > C. (5.44)
R2 Ek €k

From (5.43)—(5.44), it follows that

1

e(a) > Cei = C(a* — ay,) ™+,

holds for any C' > 0, which implies a contradiction by lemma 4.5. Thus, there exists
a subsequence {ay}, still denoted by {aj} such that

2k] — Iyl

— Cy, as k — oo, (5.45)
€k

for some constant Cy. Since @ a radially symmetric function and polynomial decay
as |x| — oo, we then deduce from (5.36) that

. 1 _ B
im 2 [ (w21 — ol do
R2

k—o0 Ek
2
i (ekx+zk|—|zk . |zk|—|yo|> a2 de
k—oo JR2 Ek Ek
2 2
:/RQ (ﬂzoﬁco) |w0|2dx>/R2 y|(}w|€| 0|2 da, (5.46)
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where the equality holds if and only if Cy = 0. By (5.43) and (5.46), we have

. e(ay) T 1 / 2 |2
] > : : d
k13;>(a* —-ak)lig 1%—8'“00H2+23_+ M? R2|y0 #l ol dz
1
=iﬂ25+i/ lyo - #[*|Q[* da 5.47
s’ T QEME e (5.47)

s

1+s tre
<||Q||2 29M2/ |y0 CC‘ |Q|2d£l?> )

where the equality is achieved at

Pn
B =po = (HQHQ%MQ/ lyo - | |Q2dx> :

g B |z —yol
u(x) S% Q||2Q<821< - )

as a trial functional for J,, and minimizes over § > 0. (5.47) shows that

) e(ag) _1+s / 5 B
lim . lyo - z|?|Q|* da . (5.48)
k=20 (a* —ap) T <||Q||§ M2

Therefore, from (5.48), we get the following several conclusions.

(I) B is unique, which is independent of the choice of the subsequence, and takes
the value of pg as above.

(II) Cy =0, that is, (1.15) holds.

Finally, by (5.30), (5.34) and (5.36), we have

WV

We take

(a* — ak)ﬁuak (mk + (a* — ak)ﬁx) — | ) strongly in H*(R?),
2

that is, (1.16) holds. O

Proof of theorem 1.4. In fact, (5.48) shows that (1.19) holds for the subsequence
{ar}. Moreover, the proof of theorem 1.2 shows that (5.48) is correct for all {ax}
with aj /" a*. Therefore, (1.19) holds for all a  a*. O

Proof of theorem 1.5. Tt then follows from theorem 1.2 that all nonnegative mini-
mizers of e(a) concentrate at any point on the ring {x € R? : |z| = M}. This further
implies that there exists a a. satisfying 0 < a. < a* such that for any a € [a., a*),
e(a) has infinitely many different nonnegative minimizers, each of which concen-
trates at a specific global minimum point of potential V' (x) = (|z| — M)?. However,
recall from theorem 1.3-(ii) in [6] that e(a) admits a unique nonnegative minimizer
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u, for all @ > 0 being small enough (a < a*), and noting that the trapping potential
V(z) = (|z| — M)? (M > 0) is radially symmetric. Then similar to the argument
of corollary 1.7 in [6], by rotation u, must be rotational symmetry with respect to
the origin. O
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