
Proceedings of the Royal Society of Edinburgh, 153, 1993–2024, 2023

DOI:10.1017/prm.2022.81

Concentration behaviour of normalized ground
states of the mass critical fractional Schrödinger
equations with ring-shaped potentials

Lintao Liu
School of Mathematics and Statistics, Central South University,
Changsha, Hunan 410083, PR China (liulintao1995@163.com)

Kaimin Teng
Department of Mathematics, Taiyuan University of Technology,
Taiyuan, Shanxi 030024, PR China (tengkaimin2013@163.com)

Jie Yang
School of Mathematics and Computational Science, Huaihua University,
Huaihua, Hunan 418008, PR China (dafeyang@163.com;
math chb@163.com)

Haibo Chen
School of Mathematics and Statistics, Central South University,
Changsha, Hunan 410083, PR China (liulintao1995@163.com)

(Received 08 May 2022; accepted 20 November 2022)

We consider L2-constraint minimizers of the mass critical fractional Schrödinger
energy functional with a ring-shaped potential V (x) = (|x| − M)2, where M > 0 and
x ∈ R

2. By analysing some new estimates on the least energy of the mass critical
fractional Schrödinger energy functional, we obtain the concentration behaviour of
each minimizer of the mass critical fractional Schrödinger energy functional when
a ↗ a∗ = ‖Q‖2s

2 , where Q is the unique positive radial solution of
(−Δ)su + su − |u|2su = 0 in R

2.
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1. Introduction

In this paper, we study the following mass critical fractional Schrödinger equation

(−Δ)su + V (x)u = λu + a|u|2su, inR
2, (1.1)
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where s ∈ ( 1
2 , 1), V : R

2 → R is an external potential function, λ ∈ R and a > 0.
It’s well known that the fractional Laplacian (−Δ)s(s ∈ (0, 1)) can be defined by

(−Δ)sv(x) = C2,sP.V.

∫
R2

v(x) − v(y)
|x − y|2+2s

dy = C2,s lim
ε→0

∫
R2\Bε(x)

v(x) − v(y)
|x − y|2+2s

dy

for v ∈ S(R2), where P.V. denotes a Cauchy principal value, S(R2) is the Schwartz
space of rapidly decaying C∞ function, Bε(x) denotes an open ball of radius ε cen-
tred at x and the normalization constant C2,s = (

∫
R2

1−cos(ζ1)
|ζ|2+2s )−1(see e.g. [5, 17,

24] and reference therein). In fact, there are applications of operator (−Δ)s in some
areas such as fractional quantum mechanics, physics and chemistry, obstacle prob-
lems, optimization and finance, conformal geometry and minimal surfaces, please
see [1, 2, 12, 13, 15, 18] and the references therein for more details.

For equation (1.1), a direct choice is to search for solutions u ∈ Hs(R2) by looking
for critical points of the functional Iλ,a : Hs(R2) → R defined by

Iλ,a =
1
2

∫
R2

(|(−Δ)
s
2 u|2 + (V (x) − λ)|u|2) dx − a

2 + 2s

∫
R2

|u|2+2s dx, (1.2)

where λ ∈ R is fixed and the fractional Sobolev space Hs(R2) can be defined as
follows

Hs(R2) :=
{

u ∈ L2(R2) :
∫

R2
|(−Δ)

s
2 u|2 dx < ∞

}
,

endowed with the norm

‖u‖2
Hs(R2) =

∫
R2

(|(−Δ)
s
2 u|2 + |u|2) dx.

For this approach of finding solutions, we recommend the reader to see [8, 14, 19,
20] for more details. Moreover, (1.1) is also the Euler–Lagrange equation of the
following constrained minimization problem

e(a) := inf
u∈M

Ja(u), (1.3)

where Ja(u) is the mass critical fractional Schrödinger energy functional

Ja(u) =
∫

R2
(|(−Δ)

s
2 u|2 + V (x)|u|2) dx − a

1 + s

∫
R2

|u|2+2s dx, u ∈ E. (1.4)

Here we define

E :=
{

u ∈ Hs(R2) :
∫

R2
V (x)|u|2 dx < ∞

}
, (1.5)

with the norm

‖u‖2 =
∫

R2
(|(−Δ)

s
2 u|2 + V (x)u2) dx,
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and

M :=
{

u ∈ E :
∫

R2
|u|2 dx = 1

}
. (1.6)

Very recently, when V (x) has satisfied the following assumption

(V1) 0 � V (x) ∈ L∞
loc(R

2), lim
|x|→∞

V (x) = ∞ and inf
x∈R2

V (x) = 0,

Du, Tian, Wang and Zhang [6] proved that for all a ∈ [0, a∗), e(a) has at least one
minimizer and has no minimizers if a � a∗, where a∗ = ‖Q‖2s

2 and Q is the unique
positive radial solution of

(−Δ)su + su − |u|2su = 0, in R
2. (1.7)

Moreover, they also obtained that for a ∈ [0, a∗) small enough, e(a) has a unique
nonnegative minimizer.

When s = 1 and replace a by b, system (1.1) reduces to the following Schrödinger
equation

− Δu + V (x)u = λu + b|u|2u, in R
2, (1.8)

For problem (1.8), we can also consider the following constrained minimization
problem

ē(b) := inf
u∈M̄

J̄b(u), (1.9)

where J̄b(u) is defined by

J̄b(u) =
∫

R2
(|∇u|2 + V (x)|u|2) dx − b

2

∫
R2

|u|4 dx, u ∈ Ē.

Here we define

Ē :=
{

u ∈ H1(R2) :
∫

R2
V (x)|u|2 dx < ∞

}
,

and

M̄ :=
{

u ∈ Ē :
∫

R2
|u|2 dx = 1

}
.

There are many works focusing on existence and nonexistence of minimizers for
(1.9). For instance, in [9], Guo and Seiringer proved that there exists a critical
value b∗ > 0 such that (1.9) has at least one minimizer if 0 � b < b∗, and (1.9)
has no minimizers if b � b∗. Moreover, they also studied that the limit behaviour
of minimizers for (1.9) as b ↗ b∗. For more constrained minimization problem of
(1.9), please see [10, 11] and the references therein for more details.

The first purpose of this paper is to consider whether the minimizers of (1.3)
are the ground states of (1.1) and whether the opposite is true? To solve these
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problems, we first give the definition of the ground states of (1.1). Let

Sλ,a :=
{
u ∈ E\{0} : 〈I ′λ,a(u), ϕ〉 = 0, ∀ϕ ∈ E

}
, (1.10)

and

Gλ,a := {u ∈ Sλ,a : Iλ,a(u) � Iλ,a(v), ∀v ∈ Sλ,a} . (1.11)

We say u ∈ E is a ground state of (1.1) if u ∈ Gλ,a. Moreover, for a ∈ [0, a∗), we
define

Ka := {ua : ua is a minimizer of e(a) in (1.3)} . (1.12)

If ua ∈ Ka, we can assume that ua is nonnegative since Ja(u) � Ja(|u|). As men-
tioned in the above introduction, ua satisfies (1.1) with a suitable λ = λa and we
can define

a∗∗ := sup {l > 0 : e(a) has a unique nonnegative minimizer for all a ∈ [0, l)} ,
(1.13)

and 0 < a∗∗ � a∗. Now we state our first main result as follows.

Theorem 1.1. Suppose that (V1) holds. Then, for all a ∈ [0, a∗∗) and for a.e.
a ∈ [a∗∗, a∗), all minimizers of e(a) satisfy (1.1) with the same Lagrange multiplier
λ = λa and Ka = Gλa, a.

Next, we focus on the concentration behaviour of nonnegative minimizers of
(1.3) as a ↗ a∗. To our best knowledge, currently only in [6], the authors have
studied the concentration behaviour of nonnegative minimizers of (1.3) when
V (x) = h(x)Πn

i=1|x − xi|qi , qi ∈ (0, 2 s) and C < h(x) < 1/C for some C > 0 and
all x ∈ R

2. Note that the method in [6] relies heavily on the fact that V (x) has a
finite number of minima {xi ∈ R

2, i = 1, · · ·, n}.
So what happens if V (x) has infinitely many minima. Therefore, another main

purpose of this paper is to study the concentration behaviour of mass critical frac-
tional Schrödinger energy functional with a potential V (x) with infinitely many
minima. Therefore, in order to study this problem, it is assumed that V satisfies
the following explicit expression

V (x) = (|x| − M)2, where M > 0, x ∈ R
2. (1.14)

Obviously, V is a ring-shaped trapping potential and all points in set {x ∈ R
2 :

|x| = M} are minima of V (x). We state our main result as follows.

Theorem 1.2. Let V (x) be given by (1.14) and let ua be a nonnegative minimizer of
(1.3) for a < a∗. For any given a sequence {ak} with ak ↗ a∗ as k → ∞, there exists
a subsequence, still denoted by {ak}, such that each uak

has a unique maximum point
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xk and xk → y0 as k → ∞ for some y0 ∈ R
2 satisfying |y0| = M > 0. Moreover,

lim
k→∞

|xk| − M

(a∗ − ak)
1

2+2s

= 0, (1.15)

and

(a∗ − ak)
1

2+2s uak

(
xk + (a∗ − ak)

1
2+2s x

)
k−→

μ0Q

(
μ0|x|
s

1
2s

)

s
1
2s ‖Q‖2

, (1.16)

where μ0 > 0 satisfies

μ0 =

(
s

1
s

‖Q‖2−2s
2 M2

∫
R2

|y0 · x|2Q2 dx

) 1
2+2s

. (1.17)

Remark 1.3. Now, we list some of the difficulties encountered in this study.
(1) In order to prove theorem 1.2, we need to make a direct and accurate estimate

of the mass critical fractional Schrödinger energy functional, however, similarly as
the proof of lemma 5.1 in [6], we can only obtain estimate of the following type

C1(a∗ − a)
2

2+s � e(a) � C2(a∗ − a)
1

1+s as a ↗ a∗, (1.18)

see lemma 4.1 in § 4. Therefore, we need to use the method in [11] to estimate the
mass critical fractional Schrödinger energy functional so that the power 2

2+s on the
left side of (1.18) decreases to 1

1+s , see lemma 4.5 in § 4.
(2) Compared with the Gross–Pitaevskii equations studied in [11], our minimiza-

tion solution sequence does not satisfy the property of exponential decay, so we need
to analyse the decay property of the sequence, see lemma 5.1 in § 5.

The next theorem shows that we can determine exactly the coefficients estimated
in lemma 4.5.

Theorem 1.4. Let V (x) be given by (1.14), then the mass critical fractional
Schrödinger energy e(a) satisfies

lim
a↗a∗

e(a)

(a∗ − a)
1

1+s

=
(s + 1)μ2s

0

s‖Q‖2s
2

, (1.19)

where μ0 is given in (1.17).

Ultimately, we consider the occurrence of a symmetry breaking for the minimizers
of e(a). We have

Theorem 1.5. Let V (x) be given by (1.14). Then there exist two positive constant
a∗ and a∗∗ satisfying a∗∗ � a∗ < a∗ such that

(i) e(a) has a unique nonnegative minimizer which is radially symmetric about
the origin if a ∈ [0, a∗∗).
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(ii) e(a) has infinitely many different nonnegative minimizers, which are not
radially symmetric if a ∈ [a∗, a∗).

Throughout this paper, we shall make use of the following notations.

• For ρ > 0 and z ∈ R
2, Bρ(z) denotes the ball of radius ρ centred at z.

• The symbol ⇀ denotes weak convergence and the symbol → denotes strong
convergence.

• Lq(R2) denotes the usual Lebesgue space with norm ‖u‖q := (
∫

R2 |u|q dx)
1
q ,

1 � q � ∞.

• For any x ∈ R
2, arg x be the angle between x and the positive x-axis, and 〈x, y〉

be the angle between the vectors x and y.

• C, Ci (i = 1, 2, 3 · ··) denotes various positive constants which may vary from
one line to another and which is not important for the analysis of the problem.

The paper is organized as follows. In § 2, we present some preliminaries results.
In § 3, we will prove theorem 1.1. In § 4, we will establish some preparatory energy
estimates. Section 5 is devoted to proving theorems 1.2, 1.4 and 1.5.

2. Preliminaries

In this section, we give some lemmas which will be frequently used throughout
the rest of the paper. First, we give the fractional Gagliardo–Nirenberg–Sobolev
inequality. Taking N = 2 and p = 2 + 2 s in (1.13) in [6], we have

Lemma 2.1. For 2 < p < 2∗s = 2
1−s , the fractional Gagliardo–Nirenberg–Sobolev

inequality

∫
R2

|u|2+2s dx � 1 + s

‖Q‖2s
2

(∫
R2

|(−Δ)
s
2 u|2 dx

)(∫
R2

|u|2 dx

)s

, u ∈ Hs(R2),

(2.1)
is attained at a function Q(x) with the following properties:

(i) Q(x) is radial, positive, and strictly decreasing in |x|.
(ii) Q(x) is a solution of the fractional Schrödinger equation (1.7).

(iii) Q(x) belongs to H2s+1(R2) ∩ C∞(R2) and satisfies

C1

1 + |x|2+2s
� Q(x) � C2

1 + |x|2+2s
, x ∈ R

2. (2.2)

From (1.7) and (2.1), it follows that∫
R2

|(−Δ)
s
2 Q|2 dx =

∫
R2

|Q|2 dx =
1

1 + s

∫
R2

|Q|2+2s dx. (2.3)
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Let η : R
2 → R be a smooth function such that η(x) = 1 for |x| � 1, η(x) = 0 for

|x| � 2, 0 � η � 1 and |∇η| � 2. Define

Qτ (x) = η(x/τ)Q(x), x ∈ R
2, (2.4)

for any τ > 0, where Q(x) is given in lemma 2.1. According to lemma 3.2 in [6], we
have the following result.

Lemma 2.2. Let s ∈ (0, 1). Then the following estimate holds true:∫
R4

|Qτ (x) − Qτ (y)|2
|x − y|2+2s

dxdy �
∫

R4

|Q(x) − Q(y)|2
|x − y|2+2s

dxdy + O(τ−4s),

as τ → ∞.

From [3], we can deduce the following compactness result.

Lemma 2.3. Suppose that (V1) hold. Then the embedding E ↪→ Lq(R2) is compact
for all q ∈ [2, 2∗s).

By [19], we know that the following vanishing lemma for fractional Sobolev space.

Lemma 2.4. Assume that {un} is bounded in Hs(RN ) and it satisfies

lim
n→∞ sup

y∈RN

∫
Bρ(y)

|un(x)|2 dx = 0,

where ρ > 0. Then un → 0 in Lr(RN ) for 2 < r < 2∗s.

3. Normalized ground states

In this section, we give the proof of theorem 1.1. First, we give a smoothness result
about e(a).

Lemma 3.1. Suppose that (V1) holds. Then, for a ∈ (0, a∗), the left and right
derivatives of e(a) always exist in [0, a∗) and satisfy

e′−(a) = − 1
1 + s

αa and e′+(a) = − 1
1 + s

βa,

where

αa := inf
{∫

R2
|ua|2+2s dx : ua ∈ Ka

}
,

βa := sup
{∫

R2
|ua|2+2s dx : ua ∈ Ka

}
,

and Ka is given by (1.12).
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Proof. By (V1), lemma 2.1 and the definition of e(a), we have

0 = inf
x∈R2

V (x) � e(a) � e(0) = δ1, for a ∈ [0, a∗), (3.1)

where δ1 is the first eigenvalue of (−Δ)s + V (x) in E. Moreover, lemma 2.1 also
shows that

e(a) =
∫

R2
(|(−Δ)

s
2 ua|2 + V (x)|ua|2) dx − a

1 + s

∫
R2

|ua|2+2s dx

� a∗

1 + s

∫
R2

|ua|2+2s dx − a

1 + s

∫
R2

|ua|2+2s dx

=
a∗ − a

1 + s

∫
R2

|ua|2+2s dx.

(3.2)

From (3.1)–(3.2), it follows that∫
R2

|ua|2+2s dx � 1 + s

a∗ − a
e(a) � 1 + s

a∗ − a
δ1 for a ∈ [0, a∗). (3.3)

For any a1, a2 ∈ [0, a∗), it is easy to see that

e(a1) � e(a2) +
a2 − a1

1 + s

∫
R2

|ua1 |2+2s dx, ∀ua1 ∈ Ka1 , (3.4)

and

e(a2) � e(a1) +
a1 − a2

1 + s

∫
R2

|ua2 |2+2s dx, ∀ua2 ∈ Ka2 . (3.5)

By (3.4)–(3.5), we get

lim
a2→a1

e(a2) = e(a1),

which implies that

e(a) ∈ C([0, a∗), R+). (3.6)

By using (3.4)–(3.5), for ua1 ∈ Ka1 and ua2 ∈ Ka2 , we have

a2 − a1

1 + s

∫
R2

|ua1 |2+2s dx � e(a1) − e(a2) � a2 − a1

1 + s

∫
R2

|ua2 |2+2s dx. (3.7)

Without loss of generality, we set 0 < a1 < a2 < a∗, from (3.7), we can see that

− 1
1 + s

∫
R2

|ua2 |2+2s dx � e(a2) − e(a1)
a2 − a1

� − 1
1 + s

∫
R2

|ua1 |2+2s dx, (3.8)

for ∀uai
∈ Kai

, i = 1, 2. This shows that

− 1
1 + s

inf
ua2∈Ka2

∫
R2

|ua2 |2+2s dx � e(a2) − e(a1)
a2 − a1

� − 1
1 + s

βa1 . (3.9)
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By (3.3) and lemma 2.3, we know that {ua2} is bounded in E. Up to a subsequence,
we may assume that there exists u ∈ E such that{

ua2 ⇀ u, in E as a2 ↘ a1,
ua2 → u, in Lq(R2) for q ∈ [2, 2∗s).

By (3.6), we deduce that

e(a1) = lim
a2↘a1

e(a2) = lim
a2↘a1

Ja2(ua2) � Ja1(u) � e(a1),

which implies that

ua2 → u ∈ E and u ∈ Ka1 .

Thus, (3.9) shows that

− 1
1 + s

∫
R2

|u|2+2s dx � lim inf
a2↘a1

e(a2) − e(a1)
a2 − a1

� lim sup
a2↘a1

e(a2) − e(a1)
a2 − a1

� − 1
1 + s

βa1 .

(3.10)

Moreover, by the definition of βa, we get∫
R2

|u|2+2s dx � βa1 . (3.11)

In view of (3.10)–(3.11), we can obtain that

e′+(a1) = − 1
1 + s

βa1 .

Similarly, we also have

e′−(a1) = − 1
1 + s

αa1 .

�

Proof of theorem 1.1. By using (3.7), we can see that

|e(a1) − e(a2)| � 1
1 + s

|a2 − a1|max
{∫

R2
|ua1 |2+2s dx,

∫
R2

|ua2 |2+2s dx

}

� 1
1 + s

max{βa1 , βa2}|a2 − a1|, ∀a1, a2 ∈ [0, a∗),

which implies that e(a) is locally Lipschitz continuous in [0, a∗). Thus, by using
Rademacher’s theorem, we know that e(a) is differentiable for a.e. a ∈ [0, a∗). More-
over, lemma 3.1 shows that e′(a) exists for all a ∈ [0, a∗∗) and a.e. a ∈ [a∗∗, a∗)
and

e′(a) = − 1
1 + s

∫
R2

|u|2+2s dx, ∀u ∈ Ka. (3.12)

Thus, we know that all minimizers of e(a) have the same L2+2s(R2)-norm. For
a ∈ [0, a∗), taking each ua ∈ Ka such that e′(a) satisfies (3.12), then ua satisfies
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(1.1) for some Lagrange multiplier λa ∈ R. By (1.1) and (3.12), we have

λa = e(a) − sa

1 + s

∫
R2

|ua|2+2s dx = e(a) + sae′(a), (3.13)

which implies that all minimizers of e(a) satisfy equation (1.1) with the same
Lagrange multiplier λa, that is,

(−Δ)sua + V (x)ua = λaua + au2s+1
a , in R

2 (3.14)

For ∀ϕ ∈ E, by (1.2) and (3.14), we deduce that

〈I ′λa,a(ua), ϕ〉 =
∫

R2
(−Δ)

s
2 ua(−Δ)

s
2 ϕ dx +

∫
R2

(V (x) − λa)uaϕ dx

− a

∫
R2

u1+2s
a ϕ dx = 0,

which implies that ua ∈ Sλa, a. Now, we show that Gλa, a is nonempty. In fact,
according to the definition of Gλa, a, we only need to show that for any u ∈ Sλa, a

one has

Iλa,a(u) � Iλa,a(ua). (3.15)

Let ua ∈ Ka and u ∈ Sλa, a, we have

∫
R2

|(−Δ)
s
2 u|2 dx +

∫
R2

(V (x) − λa)|u|2 dx = a

∫
R2

|u|2+2s dx, (3.16)

which implies that

Iλa,a(u) =
a

2

∫
R2

|u|2+2s dx − a

2 + 2s

∫
R2

|u|2+2s dx =
sa

2 + 2s

∫
R2

|u|2+2s dx > 0.

(3.17)
Similarly, we also have

Iλa,a(ua) =
sa

2 + 2s

∫
R2

|ua|2+2s dx. (3.18)

Define

û =
1√
σ

u with σ =
∫

R2
|u|2 dx.

Clearly,
∫

R2 |û|2 dx = 1. Thus, we get that Ja(û) � Ja(ua). This shows that

Iλa,a(û) =
1
2
Ja(û) − λa

2

∫
R2

|û|2 dx � 1
2
Ja(ua) − λa

2

∫
R2

|ua|2 dx = Iλa,a(ua).

(3.19)
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Moreover, by using (3.16), we deduce that

Iλa,a(û) =
1
2σ

∫
R2

[|(−Δ)
s
2 u|2 + (V (x) − λa)|u|2] dx

− a

(2 + 2s)σ1+s

∫
R2

|u|2+2s dx

=
a

2 + 2s

1
σ

(
1 + s − 1

σs

)∫
R2

|u|2+2s dx. (3.20)

Let g(σ) := 1
σ (1 + s − 1

σs ). It is easy to check that g(σ) achieves the unique global
maximum at σ = 1. By (3.17), (3.19) and (3.20), we deduce that

Iλa,a(ua) � Iλa,a(û) =
a

2 + 2s
g(σ)

∫
R2

|u|2+2s dx

� a

2 + 2s
g(1)

∫
R2

|u|2+2s dx

=
sa

2 + 2s

∫
R2

|u|2+2s dx = Iλa,a(u),

which shows that (3.15) holds. Hence, Gλa, a is nonempty.
Next, we prove that Ka = Gλa, a. For any given a ∈ [0, a∗), consider any ua ∈ Ka

and u ∈ Gλa, a. Clearly, u ∈ Sλa, a. From (3.17)–(3.20), it follows that

sa

2 + 2s

∫
R2

|u|2+2s dx = Iλa,a(u) � Iλa,a(ua)

� Iλa,a(û) =
a

2 + 2s

1
σ

(
1 + s − 1

σs

)∫
R2

|u|2+2s dx, (3.21)

which implies that

σ1+s − 1 + s

s
σs +

1
s

� 0. (3.22)

Define h(σ) := σ1+s − 1+s
s σs + 1

s . Taking the derivative of h(σ), we have

⎧⎨
⎩

h′(σ) < 0, 0 < σ < 1,
h′(σ) = 0, σ = 1,
h′(σ) > 0, σ > 1.

(3.23)

By (3.22)–(3.23), we know that σ = 1, that is,
∫

R2 |u|2 dx = 1. Therefore, (3.21)
shows that

Iλa,a(u) = Iλa,a(ua) and Ja(u) = Ja(ua).

This implies that u ∈ Ka and ua ∈ Gλa, a. �
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4. Estimates in the energy e(a) as a ↗ a∗

In this section, we mainly establish the following estimates on the energy e(a) as
a ↗ a∗.

Lemma 4.1. Let V (x) be given by (1.14). Then there exist two constants C1, C2 > 0,
independent of a, s, such that

C1(a∗ − a)
2

2+s � e(a) � C2(a∗ − a)
1

1+s , as a ↗ a∗. (4.1)

Proof. For any κ > 0 and u ∈ E with ‖u‖2
2 = 1, by lemma 2.1, we have

Ja(u) �
∫

R2
(|x| − M)2|u|2 dx +

a∗ − a

1 + s

∫
R2

|u|2+2s dx

= κ +
∫

R2
[(|x| − M)2 − κ]|u|2 dx +

a∗ − a

1 + s

∫
R2

|u|2+2s dx

� κ − s

(1 + s)(a∗ − a)
1
s

∫
R2

[κ − (|x| − M)2]1+
1
s

+ dx, (4.2)

where [·]+ = max{0, ·} denotes the positive part. Taking the variable r = M +√
κ sin θ with −π

2 � θ � π
2 , by direct computation, we deduce that∫

R2
[κ − (|x| − M)2]1+

1
s

+ dx = 2π

∫ M+
√

κ

M−√
κ

[κ − (r − M)2]1+
1
s rdr

= 2πκ1+ 1
s

∫ π
2

−π
2

(cos θ)2+
2
s (M +

√
κ sin θ)

√
κ cos θdθ � Cκ

2+3s
2s , (4.3)

for κ > 0 small enough. Taking κ = (a∗−a
2Cs )

2
2+s in (4.2) and (4.3), we have

Ja(u) �
(

a∗ − a

2Cs

) 2
2+s

− sC

(1 + s)(a∗ − a)
1
s

(
a∗ − a

2Cs

) 2+3s
s(2+s)

� (a∗ − a)
2

2+s
1

2
2

2+s C
2s

2+s

(
1 − s

1 + s

1
2

1
s

)
. (4.4)

Clearly, we know that 1 − s
1+s

1

2
1
s

> 0 since s ∈ ( 1
2 , 1). Hence, (4.4) shows that

e(a) � C1(a∗ − a)
2

2+s , as a ↗ a∗.

On the other hand, set a cut-off function η ∈ C∞
0 (R2) such that η(x) = 1 for |x| � 1,

η(x) = 0 for |x| � 2, 0 � η � 1 and |∇η| � 2. Define

u(x) := AR,τ
τ

‖Q‖2
η

(
x − x0

R

)
Q(τ(x − x0)), (4.5)

where x0 ∈ R
2, R, τ > 0 and AR,τ > 0 is chosen so that

∫
R2 |u|2 dx = 1. First, we

show that limRτ→∞ AR,τ = 1. In fact, by (4.5) and lemma 2.1, we can see that

1
A2

R,τ

=
1

‖Q‖2
2

∫
R2

η2
( x

Rτ

)
Q2(x) dx = 1 + O((Rτ)−2−4s), as Rτ → ∞. (4.6)
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Now, taking R = 1 in (4.5), from lemma 2.1, lemma 2.2 and (4.6), it follows that

∫
R2

|(−Δ)
s
2 u|2 dx − a

1 + s

∫
R2

|u|2+2s dx

� τ2s

‖Q‖2
2

[∫
R2

|(−Δ)
s
2 Q|2 dx − a

(1 + s)‖Q‖2s
2

∫
R2

|Q|2+2s dx + O(τ−4s)
]

=
τ2s

(1 + s)‖Q‖2
2

[(
1 − a

‖Q‖2s
2

)∫
R2

|Q|2+2s dx + O(τ−4s)
]

. (4.7)

Moreover, from lemma 2.1, by direct computation, we get

∫
R2

(|x| − M)2|u|2 dx � C

τ2

∫
R2

|x|2|Q|2 dx � C

τ2
. (4.8)

In view of (4.7) and (4.8), we can deduce that

e(a) � Cτ2s(a∗ − a) +
C

τ2
+ O(τ−4s). (4.9)

Taking τ = (a∗ − a)−
1

2+2s in (4.9), we get

e(a) � C2(a∗ − a)
1

1+s , as a ↗ a∗.

�

Similar to the proofs of lemma 2.2 and 2.3 in [11], we can obtain the following
two main results, which are extensions of the classical local problem in [11] to the
nonlocal problem.

Lemma 4.2. Let V (x) be given by (1.14) and suppose ua is a nonnegative minimizer
of (1.3), then there exists a constant K > 0, independent of a, s, such that

0 < K(a∗ − a)−
s

2+2s �
∫

R2
|ua|2+2s dx � 1

K
(a∗ − a)−

s
1+s , as a ↗ a∗. (4.10)

Proof. From (4.2), it follows that

e(a) = Ja(ua) � a∗ − a

1 + s

∫
R2

|ua|2+2s dx,

which implies that the upper bounded of (4.10) since lemma 4.1.

https://doi.org/10.1017/prm.2022.81 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.81


2006 L. Liu, K. Teng, J. Yang and H. Chen

Moreover, for any 0 < b < a < a∗, we have

e(b) � Jb(ua) = e(a) +
a − b

1 + s

∫
R2

|ua|2+2s dx.

Then, lemma 4.1 shows that

1
1 + s

∫
R2

|ua|2+2s dx � e(b) − e(a)
a − b

� C1(a∗ − b)
2

2+s − C2(a∗ − a)
1

1+s

a − b
. (4.11)

Taking b = a − C3(a∗ − a)
2+s
2+2s in (4.11), where C3 > 0 is large enough such that

C1C
2

2+s

3 > 2C2. Then, we can see that∫
R2

|ua|2+2s dx � C(a∗ − a)−
s

2+2s ,

which implies that the lower bounded of (4.10). �

Lemma 4.3. Let V (x) be given by (1.14) and suppose ua is a nonnegative minimizer
of (1.3), and set

ε−2s
a :=

∫
R2

|(−Δ)
s
2 ua|2 dx. (4.12)

Then, we have

(i) εa → 0 as a ↗ a∗.

(ii) There exist a sequence {yεa
} ⊂ R

2 and positive constants R0, η such that the
sequence

wa(x) := εaua(εax + εayεa
) (4.13)

satisfies

lim inf
a↗a∗

∫
BR0 (0)

|wa|2 dx � η > 0. (4.14)

(iii) The sequence {εayεa
} is bounded uniformly for εa → 0. Moreover, for any

sequence {ak} with ak ↗ a∗, there exists a convergent subsequence, still
denoted by {ak}, such that

x̄ := εak
yεak

→ x0, as ak ↗ a∗, (4.15)

for some x0 ∈ R
2 being a global minimum point of V (x), i.e., |x0| = M > 0.

Furthermore, we also have

wak

k−→ β1

s
1
2s ‖Q‖2

Q

(
β1

s
1
2s

|x − ȳ0|
)

(4.16)

in Hs(R2) for some ȳ0 ∈ R
2 and β1 > 0.
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Proof. (i) By lemma 2.1 and lemma 4.1, we deduce that∫
R2

V (x)|ua|2 dx � e(a) � C2(a∗ − a)
1

1+s , as a ↗ a∗, (4.17)

and

0 �
∫

R2
|(−Δ)

s
2 ua|2 dx − a

1 + s

∫
R2

|ua|2+2s dx

= ε−2s
a − a

1 + s

∫
R2

|ua|2+2s dx � e(a)
a↗a∗
−→ 0. (4.18)

Lemma 4.2 implies that∫
R2

|ua|2+2s dx → +∞, as a ↗ a∗. (4.19)

By (4.18)–(4.19), we have

0 � ε−2s
a∫

R2 |ua|2+2s dx
− a

1 + s
� e(a)∫

R2 |ua|2+2s dx
→ 0, as a ↗ a∗,

that is,

ε−2s
a∫

R2 |ua|2+2s dx
→ a∗

1 + s
, as a ↗ a∗,

which implies that

0 <
1
m

ε−2s
a �

∫
R2

|ua|2+2s dx � mε−2s
a , as a ↗ a∗, (4.20)

where m = max{ 2
a∗ , a∗}. Thus, from (4.20) and lemma 4.2, there exist C3, C4 > 0

such that

C3(a∗ − a)−
s

2+2s � ε−2s
a � C4(a∗ − a)−

s
1+s , as a ↗ a∗, (4.21)

which implies that εa → 0 as a ↗ a∗.
(ii) Set

w̃a(x) := εaua(εax). (4.22)

By (4.12) and (4.20), we have∫
R2

|(−Δ)
s
2 w̃a|2 dx =

∫
R2

|w̃a|2 dx = 1,
1
m

�
∫

R2
|w̃a|2+2s dx � m. (4.23)

Next, we show that there exist a sequence {yεa
} ⊂ R

2 and R0, η > 0 such that

lim inf
εa→0

∫
BR0 (yεa )

|w̃a|2 dx � η > 0. (4.24)
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Suppose by contradiction, for any R > 0, there exists a sequence {w̃ak
} with a ↗ a∗

such that

lim
k→∞

sup
y∈R2

∫
BR(y)

|w̃ak
|2 dx = 0.

From lemma 2.4, we get that w̃ak

k−→ 0 in Lr(R2) for 2 < r < 2∗s. Hence, w̃ak

k−→ 0
in L2+2s(R2), which contradicts with (4.23). Therefore, from (4.22) and (4.24), we
have

lim inf
a↗a∗

∫
BR0 (0)

|wa|2 dx � η > 0.

(iii) From (4.13) and (4.17), it follows that∫
R2

(|x| − M)2|ua|2 dx =
∫

R2
(|εax + εayεa

| − M)2|wa|2 dx → 0, as a ↗ a∗.

(4.25)
Now, we prove that

lim
εa→0

|εayεa
| = M. (4.26)

Indeed, assume by contradiction that there exist a constant α > 0 and a subsequence
{an} with an ↗ a∗ as n → ∞ such that

εn := εan
→ 0, and ||εnyεn

| − M | � α > 0, as n → ∞.

By (4.14) and Fatou’s lemma, we can see that

lim
n→∞

∫
R2

(|εnx + εnyεn
| − M)2|wan

|2 dx � α2

2
η > 0,

which gives a contradiction by (4.25). Thus, (4.26) shows that {εayεa
} is bounded

uniformly as εa → 0 and (4.15) holds true.
Next, we prove that (4.16) holds. Since ua is a nonnegative minimizer of (1.3),

we have

(−Δ)sua + (|x| − M)2ua = λaua + au2s+1
a , in R

2, (4.27)

where λa ∈ R is a Lagrange multiplier. Moreover, we also have

λa = e(a) − sa

1 + s

∫
R2

|ua|2+2s dx. (4.28)

From (4.20), (4.28) and lemma 4.1, we can see that there exist C5, C6 > 0,
independent of a, s, such that

−C5 < ε2s
a λa < −C6 < 0, as a ↗ a∗.

By (4.13) and (4.27), we deduce that

(−Δ)swa + ε2s
a (|εax + εayεa

| − M)2wa = ε2s
a λawa + aw2s+1

a , in R
2. (4.29)
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Passing if necessary to a subsequence of {ak}, still denoted by {ak}, we may assume
that {

ε2s
k λak

k−→ −β2
1 < 0, for some β1 > 0,

wak

k
⇀ w0 � 0, in Hs(R2).

From the boundedness of {εayεa
}, by passing to the weak limit of (4.29), we get

(−Δ)sw0 = −β2
1w0 + a∗w2s+1

0 , in R
2. (4.30)

Clearly, (4.14) implies that w0 �≡ 0. Similar argument to the proof of proposition
4.4 in [21], we know that w0 ∈ C1,α for some α ∈ (0, 1). Then, by lemma 3.2 in [7],
we have

(−Δ)sw0(x) = −1
2
C(2, s)

∫
R2

w0(x + y) + w0(x − y) − 2w0(x)
|x − y|2+2s

dxdy, ∀x ∈ R
2.

Next, we show that w0 > 0. Assume by contradiction that there exists x0 ∈ R
2 such

that w0(x0) = 0, then we can see that

(−Δ)sw0(x0) = −1
2
C(2, s)

∫
R2

w0(x0 + y) + w0(x0 − y)
|x0 − y|2+2s

dxdy < 0,

since w0 � 0 and w0 �≡ 0. However, it is easy to see that

(−Δ)sw0(x0) = −β2
1w0(x0) + a∗w2s+1

0 (x0) = 0,

which gives a contradiction. Hence w0 > 0 for all x ∈ R
2. Now, by (4.30) and Q is

the unique positive radial solution of (1.7), we can deduce that

w0(x) =
β1

s
1
2s ‖Q‖2

Q

(
β1

s
1
2s

|x − ȳ0|
)

, for some ȳ0 ∈ R
2. (4.31)

By simple computation, we know that ‖w0‖2
2 = 1. From the norm preservation, we

get that wak

k−→ w0 in L2(R2). Hence, by the boundedness of {wak
} in Hs(R2), we

have

wak

k−→ w0, in Lp(R2) for p ∈ [2, 2∗s).

Therefore, in view of (4.29) and (4.30), we know that wak

k−→ w0 in Hs(R2), and
thus (4.16) holds. �

Lemma 4.4. Under the assumptions of lemma 4.3, and let {ak} be given by lemma
4.3-(iii). Then, for any R > 0, there exists C(R) > 0, independent of ak, s, such
that

lim
εak

→0

1
ε2ak

∫
BR(0)

(|εak
x + εak

yεak
| − M)2|wak

|2 dx � C(R).
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Proof. The proof is parallel to lemma 2.4 in [11], for the reader’s convenience, we
give a brief proof. From lemma 4.3, we know that εak

yεak

k−→ x0 with |x0| = M > 0.
Hence. we get

yεak

k−→ ∞, (4.32)

which implies that

2x · yεak

|x|2 + |yεak
|2

k−→ 0, uniformly forx ∈ BR(0). (4.33)

Without loss of generality, we may assume that x0 = (M, 0). Then, arg yεak

k−→ 0.
By setting 0 < θ < π

16 small enough, we get that

− θ < argyεak
< θ, as εak

→ 0. (4.34)

Let

Δ1
εak

: =
{

x ∈ BR(0) :
√

|x|2 + |yεak
|2 � M

εak

}

=

{
x ∈ BR(0) : |x|2 �

(
M

εak

)2

− |yεak
|2
}

, (4.35)

and

Δ2
εak

: =
{

x ∈ BR(0) :
√

|x|2 + |yεak
|2 >

M

εak

}

=

{
x ∈ BR(0) :

(
M

εak

)2

− |yεak
|2 < |x|2 < R2

}
. (4.36)

Clearly, BR(0) = Δ1
εak

∪ Δ2
εak

and Δ1
εak

∩ Δ2
εak

= ∅. Next, we consider the following
two cases.

Case 1: |Δ1
εak

| � πR2

2 . It is easy to check that B R√
2
(0) ⊂ Δ1

εak
. Let

Δ1 :=
(
B R√

2
(0)\BR

2
(0)
)
∩
{

x :
π

2
+ 2θ < argx <

3π

2
− 2θ

}
⊂ Δ1

εak
.

By simple computation, we get

|Δ1| =
(π − 4θ)R2

8
. (4.37)

By (4.34), we have

x · yεak
= |x||yεak

| cos〈x, yεak
〉 < 0, for x ∈ Δ1, (4.38)

and

| cos〈x, yεak
〉| > − cos(

π

2
+ θ), for x ∈ Δ1. (4.39)
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Moreover, by (4.33) and the Taylor expansion, we have

1
ε2ak

(|εak
x + εak

yεak
| − M)2 =

(
|x + yεak

| − M

εak

)2

=

∣∣∣∣∣
√

|x|2 + |yεak
|2
√

1 +
2x · yεak

|x|2 + |yεak
|2 − M

εak

∣∣∣∣∣
2

=

∣∣∣∣∣
√

|x|2 + |yεak
|2
(

1 +
x · yεak

|x|2 + |yεak
|2 + O

(
1

|yεak
|2
))

− M

εak

∣∣∣∣∣
2

=

∣∣∣∣∣∣
√

|x|2 + |yεak
|2 +

x · yεak√
|x|2 + |yεak

|2
− M

εak

+ O

(
1

|yεak
|

)∣∣∣∣∣∣
2

. (4.40)

From (4.35), (4.38), (4.39) and (4.40), it follows that

√
|x|2 + |yεak

|2 +
x · yεak√

|x|2 + |yεak
|2

− M

εak

+ O

(
1

|yεak
|

)

�
x · yεak√

|x|2 + |yεak
|2

+ O

(
1

|yεak
|

)
�

x · yεak

2
√

|x|2 + |yεak
|2

�
|x||yεak

| cos
(

π
2 + θ

)
2
√

|x|2 + |yεak
|2

, for x ∈ Δ1. (4.41)

Hence, by (4.32), (4.39) and (4.40), we have

1
ε2ak

(|εak
x + εak

yεak
| − M)2 �

cos2(π
2 + θ)|x|2

8
, for x ∈ Δ1,

which implies that

lim
εak

→0

1
ε2ak

∫
BR(0)

(|εak
x + εak

yεak
| − M)2|wak

|2 dx

� lim
εak

→0

1
ε2ak

∫
Δ1

(|εak
x + εak

yεak
| − M)2|wak

|2 dx

�
cos2 11π

20

8

∫
Δ1

|x|2|w0|2 dx := C(R) > 0,

where θ = π
20 .

Case 2: |Δ2
εak

| � πR2

2 . Clearly, B0(R)\B R√
2
(0) ⊂ Δ2

εak
. Set

Δ2 :=

(
BR(0)\B R√

2
(0)

)
∩
{

x : −π

2
+ 2θ < argx <

π

2
− 2θ

}
⊂ Δ2

εak
.

The rest of the proof is very similar to the case 1, we omit it. �
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Lemma 4.5. There exist two positive constants C7 and C8, independent of a, s,
such that

C7(a∗ − a)
1

1+s � e(a) � C8(a∗ − a)
1

1+s , as a ↗ a∗.

Proof. By lemma 4.1, it suffices to prove that there exists a C > 0, independent of
a, s, such that

e(a) � C(a∗ − a)
1

1+s , as a ↗ a∗. (4.42)

From lemma 4.3, we know that for any sequence {ak} with ak ↗ a∗, there exists
a convergent subsequence, still denoted by {ak}, such that wak

→ w0 > 0 in
L2+2s(R2), where w0 satisfies (4.31). Thus, there exists M1 > 0, independent of
ak, s, such that ∫

R2
|uak

|2+2s dx � M1, as ak ↗ a∗. (4.43)

Lemma 4.4 shows that there exists M2 > 0, independent of ak, s, such that∫
B1(0)

(|εkx + εkyεk
| − M)2|wak

|2 dx � M2ε
2
k, as ak ↗ a∗. (4.44)

In view of (4.43)–(4.44), we deduce that

e(ak) = Jak
(uak

) =
1

ε2s
k

[∫
R2

|(−Δ)
s
2 wak

|2 dx − a∗

1 + s

∫
R2

|wak
|2+2s dx

]

+
a∗ − ak

(1 + s)ε2s
k

∫
R2

|wak
|2+2s dx +

∫
R2

(|εkx + εkyεk
| − M)2|wak

|2 dx

� a∗ − ak

(1 + s)ε2s
k

M1 + M2ε
2
k

�
{

M1

1 + s

[
sM1

(1 + s)M2

]− s
1+s

+ M2

[
sM1

(1 + s)M2

] 1
1+s

}
(a∗ − ak)

1
1+s ,

as ak ↗ a∗ and here the last equality is achieved at

εk =
[
sM1(a∗ − ak)

(1 + s)M2

] 1
2+2s

.

Thus, (4.42) holds for the subsequence {ak}. Actually, the above argument can be
carried out for any subsequence {ak} satisfying ak ↗ a∗, which then implies that
(4.42) holds for all a ↗ a∗. �

Now, by using lemma 4.5, instead of using lemma 4.1 in the proof of lemma 4.2,
and taking b = a − C3(a∗ − a), we have

Corollary 4.6. Let V (x) be given by (1.14) and suppose ua is a nonnegative
minimizer of (1.3), then there exists a constant M > 0, independent of a, s, such
that

0 < M(a∗ − a)−
s

1+s �
∫

R2
|ua|2+2s dx � 1

M
(a∗ − a)−

s
1+s , as a ↗ a∗.
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5. Concentration behaviour

In this last section we study the concentration behaviour of normalized ground
states and give the proofs of theorems 1.2, 1.4 and 1.5. Let ua is a nonnegative
minimizer of (1.3), we define

εa := (a∗ − a)
1

2+2s . (5.1)

By lemma 2.1, we deduce that

e(a) �
(
1 − a

a∗
)∫

R2
|(−Δ)

s
2 ua|2 dx +

∫
R2

(|x| − M)2|ua|2 dx.

Hence, from lemma 4.5, it follows that∫
R2

|(−Δ)
s
2 ua|2 dx � Cε−2s

a and
∫

R2
(|x| − M)2|ua|2 dx � Cε2

a. (5.2)

Similar to the proof of (4.14), for εa given by (5.1), we get that there exist a sequence
{yεa

} ⊂ R
2 and R0, η > 0 such that

lim inf
a↗a∗

∫
BR0 (0)

|wa|2 dx � η > 0, (5.3)

where

wa(x) := εaua(εax + εayεa
). (5.4)

Moreover, by (5.2) and corollary 4.6, we have∫
R2

|(−Δ)
s
2 wa|2 dx � C and M �

∫
R2

|wa|2+2s dx � 1
M

. (5.5)

Lemma 5.1. For any given sequence {ak} with ak ↗ a∗, let εk := εak
= (a∗ −

ak)
1

2+2s > 0, uk(x) = uak
(x) be a nonnegative minimizer of (1.3), and wk := wak

�
0 be defined by (5.4). Then, there is a subsequence, still denoted by {ak}, such that

zk := εkyεk

k−→ y0, for some y0 ∈ R
2 and |y0| = M. (5.6)

Moreover, for any ρ > 0 small enough, we have

uk(x) =
1
εk

wk

(
x − zk

εk

)
k−→ 0. for any x ∈ Bc

ρ(y0). (5.7)

Proof. We divide the proof into four steps. Step 1. By (4.27) and (5.4), we get

(−Δ)swk + ε2s
k (|εkx + εkyεk

| − M)2wk = ε2s
k λkwk + akw2s+1

k , in R
2, (5.8)

where λk ∈ R
2 is a Lagrange multiplier. Similar to the proof of lemma 4.3-(iii), we

know that (5.6) holds.
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Step 2. For all k, we assume that vk � 0 satisfies

(−Δ)svk − ε2s
k λkvk = akw2s+1

k , in R
2. (5.9)

Next, we prove that ‖vk‖∞ � C, for all k. In fact, (5.8) shows that

(−Δ)swk − ε2s
k λkwk � akw2s+1

k , in R
2. (5.10)

From (5.9) and (5.10), it is easy to see that

0 � wk � vk, a.e. in R
2 and for all k. (5.11)

For β � 1 and T > 0, let

ϕ(t) =

⎧⎨
⎩

0, t � 0,
tβ , 0 < t < T,
βT β−1(t − T ) + T β , t � T.

Clearly, ϕ is convex and Lipschitz continuous, we get

(−Δ)sϕ(vk) � ϕ′(vk)(−Δ)svk, (5.12)

in the weak sense. By using Sobolev inequality, (5.11), (5.12), the fact λk < 0,
ϕ′(vk)ϕ(vk) � βv2β−1

k , vkϕ′(vk) � βϕ(vk) and integrating by parts, we deduce that

‖ϕ(vk)‖2
2∗

s
� C

∫
R2

|(−Δ)
s
2 ϕ(vk)|2 dx = C

∫
R2

ϕ(vk)(−Δ)sϕ(vk) dx

� C

∫
R2

ϕ(vk)ϕ′(vk)(−Δ)svk dx

= C

∫
R2

ϕ(vk)ϕ′(vk)(ε2s
k λkvk + akw2s+1

k ) dx

� C

∫
R2

ϕ(vk)ϕ′(vk)(1 + v
2∗

s−1
k ) dx

= C

(∫
R2

ϕ(vk)ϕ′(vk) dx +
∫

R2
ϕ(vk)ϕ′(vk)v2∗

s−1
k dx

)

� Cβ

(∫
R2

v2β−1
k dx +

∫
R2

(ϕ(vk))2v2∗
s−2

k dx

)
, (5.13)

where C > 0 independent of k and β.
Note that β � 1 and that ϕ(vk) is linear when vk � T , then we have∫

R2
(ϕ(vk))2v2∗

s−2
k dx =

∫
{vk�T}

(ϕ(vk))2v2∗
s−2

k dx +
∫
{vk>T}

(ϕ(vk))2v2∗
s−2

k dx

� T 2β−2

∫
R2

v
2∗

s

k dx + C

∫
R2

v
2∗

s

k dx < +∞,

which implies that
∫

R2(ϕ(vk))2v2∗
s−2

k dx is well defined for every T .
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Now, we let β in (5.13) such that 2β − 1 = 2∗s and define β1 = 2∗
s+1
2 . Let R > 0

be fixed later, by Hölder’s inequality, we have

∫
R2

(ϕ(vk))2v2∗
s−2

k dx

=
∫
{vk�R}

(ϕ(vk))2v2∗
s−2

k dx +
∫
{vk>R}

(ϕ(vk))2v2∗
s−2

k dx

� R2∗
s−1

∫
{vk�R}

(ϕ(vk))2

vk
dx

+

(∫
{vk>R}

v
2∗

s

k dx

) 2∗s−2
2∗s (∫

R2
(ϕ(vk))2

∗
s dx

) 2
2∗s

. (5.14)

Similar to the proof of lemma 4.3-(iii), we know that {vk} converges strongly in
Hs(R2), then {vk} converges strongly in L2∗

s (R2), so we can choose R sufficiently
large such that

(∫
{vk>R}

v
2∗

s

k dx

) 2∗s−2
2∗s

� 1
2Cβ1

. (5.15)

From (5.13)–(5.15), it follows that

(∫
R2

(ϕ(vk))2
∗
s dx

) 2
2∗s

� 2Cβ1

(∫
R2

v
2∗

s

k dx + R2∗
s−1

∫
R2

(ϕ(vk))2

vk
dx

)
. (5.16)

Thus, by applying ϕ(vk) � vβ1
k and letting T → ∞, we have

(∫
R2

v
2∗

sβ1
k dx

) 2
2∗s

� 2Cβ1

(∫
R2

v
2∗

s

k dx + R2∗
s−1

∫
R2

v
2∗

s

k dx

)
< ∞,

which implies that

vk ∈ L2∗
sβ1(R2). (5.17)

Assume that β > β1. By taking T → ∞ in (5.13), we can see that

(∫
R2

v
2∗

sβ
k dx

) 2
2∗s

� Cβ

(∫
R2

v2β−1
k dx +

∫
R2

v
2β+2∗

s−2
k dx

)
. (5.18)

Let

v2β−1
k = vl

kvm
k ,
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where l = 2∗
s(2∗

s−1)
2(β−1) and m = 2β − 1 − l. Moreover, β > β1 implies that 0 < l, m <

2∗s , by using Young’s inequality, we get∫
R2

v2β−1
k dx � l

2∗s

∫
R2

v
2∗

s

k dx +
2∗s − l

2∗s

∫
R2

v
2∗s m

2∗s−l

k dx

�
∫

R2
v
2∗

s

k dx +
∫

R2
v
2β+2∗

s−2
k dx

� C

(
1 +

∫
R2

v
2β+2∗

s−2
k dx

)
. (5.19)

In view of (5.18) and (5.19), we have(∫
R2

v
2∗

sβ
k dx

) 2
2∗s

� Cβ

(
1 +

∫
R2

v
2β+2∗

s−2
k dx

)
, (5.20)

which shows that(
1 +

∫
R2

v
2∗

sβ
k dx

) 1
2∗s (β−1)

� (Cβ)
1

2(β−1)

(
1 +

∫
R2

v
2β+2∗

s−2
k dx

) 1
2(β−1)

. (5.21)

Iterating this argument, we obtain(
1 +

∫
R2

v
2∗

sβi+1
k dx

) 1
2∗s (βi+1−1)

� (Cβi+1)
1

2(βi+1−1)

(
1 +

∫
R2

v
2∗

sβi

k dx

) 1
2(βi−1)

, (5.22)

where

2βi+1 + 2∗s − 2 = 2∗sβi and βi+1 = (
2∗s
2

)i(βi − 1) + 1.

Setting Ci+1 = Cβi+1 and

Ki =
(

1 +
∫

R2
v
2∗

sβi

k dx

) 1
2∗s (βi−1)

.

We can see that there exists a constant C > 0 independent of i , such that

Ki+1 � Πi+1
i=2C

1
2(βi−1)

i K1 � CK1.

Hence, we have

‖vk‖∞ � C, for all k.

Step 3. We prove that wk(x) → 0 as |x| → ∞ uniformly in k.
In fact, we rewrite problem (5.9) as follows

(−Δ)svk + vk = hk(x), x ∈ R
2,

where hk(x) = vk + ε2s
k λkvk + akw2s+1

k . Thus, step 2 shows that hk ∈ L∞(R2) and
is uniformly bounded. From interpolation inequality and {vk} converges strongly in
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Hs(R2), we know that hk → h in Lq(R2) for q ∈ [2, +∞). Thus, by [8], we deduce
that

vk =
∫

R2
K(x − y)hk(y)dy,

where K is a Bessel potential and it satisfies
(K1) K is positive, radially symmetric and smooth in R

2\{0}.
(K2) There exists a C > 0 such that K(x) � C

|x|2+2s for x ∈ R
2\{0}.

(K3) K ∈ Lr(R2) for r ∈ [1, 1
1−s ).

Now, for any ζ > 0, we have

0 � vk �
∫

R2
K(x − y)|hk(y)|dy

=
∫
{|x−y|� 1

ζ }
K(x − y)|hk(y)|dy +

∫
{|x−y|< 1

ζ }
K(x − y)|hk(y)|dy.

By step 1 and (K2), we can see that∫
{|x−y|� 1

ζ }
K(x − y)|hk(y)|dy � Cζ

∫
{|x−y|� 1

ζ }

1
|x − y|2+2s

dy = Cζ2s. (5.23)

Moreover, by using Hölder’s inequality and (K3), we deduce that∫
{|x−y|< 1

ζ }
K(x − y)|hk(y)|dy

�
∫
{|x−y|< 1

ζ }
K(x − y)|hk − h|dy +

∫
{|x−y|< 1

ζ }
K(x − y)|h|dy

�
(∫

R2
|K|2dy

) 1
2
(∫

R2
|hk − h|2dy

) 1
2

+

(∫
R2

|K|2dy

) 1
2
(∫

{|x−y|< 1
ζ }

|h|2dy

) 1
2

,

which implies that there exist K0 ∈ N and R0 > 0 independent of ζ > 0 such that∫
{|x−y|< 1

ζ }
K(x − y)|hk(y)|dy � ζ,∀k � K0 and |x| � R0, (5.24)

where we have used the fact s > 1
2 so that 2 < 1

1−s and (
∫
{|x−y|< 1

ζ } |h|2dy)
1
2 → 0

as |x| → ∞. Thus, by (5.23) and (5.24), we know that∫
R2

K(x − y)|hk(y)|dy � Cζ2s + ζ, ∀k � K0 and |x| � R0.

On the other hand, for all k ∈ {1, 2, · · ·, K0 − 1}, there exists Rk > 0 such that

(∫
{|x−y|< 1

ζ }
|hk|2dy

) 1
2

� ζ, as |x| � Rk,
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which implies that∫
R2

K(x − y)|hk(y)|dy � Cζ2s +
∫
{|x−y|< 1

ζ }
K(x − y)|hk(y)|dy

� Cζ2s + ‖K‖2

(∫
{|x−y|< 1

ζ }
|hk|2dy

) 1
2

� C(ζ2s + ζ).

Thus, setting R = max{R0, R1, · · ·RK0−1}, we conclude that

0 � vk �
∫

R2
K(x − y)|hk(y)|dy � C(ζ2s + ζ), for all |x| � R,

which implies

lim
|x|→∞

vk(x) = 0, uniformly in k. (5.25)

From (5.11) and (5.25), it follows that

lim
|x|→∞

wk(x) = 0, uniformly in k. (5.26)

Step 4. Combining step 2, step 3 and the proof of theorem 1.1 in [22], we can
get that

wk(x) � C

1 + |x|2+2s
, for all k. (5.27)

For any x ∈ Bc
ρ(y0), (5.6) shows that

|x − zk|
εk

� |x − y0|
2εk

� ρ

2εk

k−→ +∞. (5.28)

From (5.27) and (5.28), it follows that

uk(x) =
1
εk

wk

(
x − zk

εk

)
� 1

εk

C

1 + |x−zk

εk
|2+2s

� 1
εk

C

1 + | ρ
2εk

|2+2s

k−→ 0, ∀x ∈ Bc
ρ(y0).

�

Inspired by [25], we now prove theorem 1.2.

Proof of theorem 1.2. Set εk := (a∗ − ak)
1

2+2s > 0, where ak ↗ a∗. Define uk(x) :=
uak

(x) is a nonnegative minimizer of (1.3). Moreover, we set z̄k be any local
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maximum point of uk. Clearly, we have

uk(z̄k) �
(
−λk

ak

) 1
2s

� Cε−1
k . (5.29)

Hence, from (5.29) and lemma 5.1, it follows that

z̄k
k−→ y0 ∈ R

2 with |y0| = M. (5.30)

Let

w̄k := εkuk(εkx + z̄k). (5.31)

By (5.8), we deduce that

(−Δ)sw̄k + ε2s
k (|εkx + z̄k| − M)2w̄k = ε2s

k λkw̄k + akw̄2s+1
k , in R

2. (5.32)

Next, we prove that { z̄k−zk

εk
} ⊂ R

2 is bounded uniformly in k. Assume by
contradiction that | z̄k−zk

εk
| → ∞ as k → ∞. (5.27) shows that

uk(z̄k) =
1
εk

wk

(
z̄k − zk

εk

)
� C

εk

1
1 + | z̄k−zk

εk
|2+2s

= o(ε−1
k ), as k → ∞,

which implies a contradiction by (5.29). Thus, there exists R1 > 0, independent of
k, such that, | z̄k−zk

εk
| < R1

2 . By (5.3), we can see that

lim
k→∞

∫
BR0+R1 (0)

|w̄k|2 dx

= lim
k→∞

∫
BR0+R1

(
z̄k−zk

εk

) |wk|2 dx �
∫

B
R0+

R1
2

(0)

|wk|2 dx � η > 0,
(5.33)

where we have used the fact w̄k(x) = wk(x + z̄k−zk

εk
). Similar to the argument of

lemma 4.3-(iii), we know that there exists a subsequence, still denoted by {w̄k}, of
{w̄k} such that {

ε2s
k λk

k−→ −β2 < 0, for some β > 0,

w̄k
k−→ w̄0 � 0, in Hs(R2),

(5.34)

where w̄0 satisfies

(−Δ)sw̄0 = −β2w̄0 + a∗w̄2s+1
0 , in R

2. (5.35)

Note from (5.33) that w̄0 �≡ 0. Thus, similar to the proof of lemma 4.3-(iii), we
know that w̄0 > 0 in R

2. Since the origin is a critical point of w̄k, we get that the
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origin is also a critical point of w̄0. By (5.35) and Q is the unique positive radial
solution of (1.7), for the above β > 0, we can deduce that

w̄0(x) =
β

s
1
2s ‖Q‖2

Q

(
β

s
1
2s

|x|
)

. (5.36)

Clearly, we know that w̄k � ( β2

2a∗ )
1
2s at each local maximum point. Hence, lemma

5.1 implies that all the local maximum points of w̄k stay in a finite ball in R
2. By

(5.26) and the definition of w̄k, we can get that

‖w̄k‖∞ � C, uniformly as k → +∞. (5.37)

Next, we prove that {w̄k} is bounded uniformly in C2,α
loc (R2) for some 0 < α < 1.

In fact, we rewrite (5.32) as follows

(−Δ)sw̄k(x) = fk(x), in R
2, (5.38)

where fk(x) = −ε2s
k (|εkx + z̄k| − M)2w̄k + ε2s

k λkw̄k + akw̄2s+1
k . Since ε2s

k (|εkx +
z̄k| − M)2 is locally Lipschitz continuous in R

2 and (5.37), we have

‖fk(x)‖∞ � C, uniformly as k → +∞. (5.39)

From (5.37), (5.38), (5.39) and lemma 2.3 in [23], we know that

w̄k ∈ C1,α(R2), for α < 2s − 1, (5.40)

and

‖w̄k‖C1,α(R2) � C(‖w̄k‖∞ + ‖fk(x)‖∞) � C. (5.41)

From (5.40) and (5.41), it follows that

‖fk(x)‖C1
loc(R

2) < C, uniformly as k → +∞. (5.42)

Thus, by (5.37), (5.38), (5.42) and lemma 4.4 in [4], we know that {w̄k} is bounded
uniformly in C2,α

loc (R2) for some 0 < α < 1. Thus, we may assume that there exists
ŵ0 ∈ C2,α

loc (R2) such that w̄k → ŵ0 in C2
loc(R

2) as k → ∞. Moreover, (5.34) shows
that ŵ0 = w̄0.

Since the origin is the only critical point of w̄0, then the content of the appeal
discussion shows that all local maximum points of {w̄k} must approach the origin
and hence stay in a small ball B
(0) as k → ∞. Letting � > 0 small enough such that
w̄′′

0 (τ) < 0 for 0 < τ < �. By lemma 4.2 in [16], we know that {w̄k} has no critical
points other than the origin. Therefore, we get that there exists a subsequence of
{uk} concentrating at a unique global minimum point of potential V (x) = (|x| −
M)2 in R

2.
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Now, we turn to proving (1.15)–(1.17). In fact, by (5.31), we have

e(ak) = Jak
(uk) =

1
ε2s
k

[∫
R2

|(−Δ)
s
2 w̄k|2 dx − a∗

1 + s

∫
R2

|w̄k|2+2s dx

]

+
ε2
k

1 + s

∫
R2

|w̄k|2+2s dx +
∫

R2
(|εkx + z̄k| − |y0|)2|w̄k|2 dx, (5.43)

where z̄k is the unique global maximum point of uk, and z̄k → y0 ∈ R
2 as k → ∞

for some |y0| = M > 0.
Next, we prove that { |z̄k|−|y0|

εk
} ⊂ R is bounded uniformly for k → ∞. Assume by

contradiction that there exists a subsequence {ak}, still denoted by {ak} such that
| |z̄k|−|y0|

εk
| → ∞ as k → ∞, by (5.33), for any C > 0, we have

lim
k→∞

ε−2
k

∫
R2

(|εkx + z̄k| − |y0|)2|w̄k|2 dx

= lim
k→∞

∫
R2

(
|x +

z̄k

εk
| − |y0|

εk

)2

|w̄k|2 dx � C. (5.44)

From (5.43)–(5.44), it follows that

e(ak) � Cε2
k = C(a∗ − ak)

1
1+s ,

holds for any C > 0, which implies a contradiction by lemma 4.5. Thus, there exists
a subsequence {ak}, still denoted by {ak} such that

|z̄k| − |y0|
εk

→ C0, as k → ∞, (5.45)

for some constant C0. Since Q a radially symmetric function and polynomial decay
as |x| → ∞, we then deduce from (5.36) that

lim
k→∞

1
ε2
k

∫
R2

(|εkx + z̄k| − |y0|)2|w̄k|2 dx

= lim
k→∞

∫
R2

(
|εkx + z̄k| − |z̄k|

εk
+

|z̄k| − |y0|
εk

)2

|w̄k|2 dx

=
∫

R2

(
y0 · x
|y0| + C0

)2

|w̄0|2 dx �
∫

R2

|y0 · x|2
|M |2 |w̄0|2 dx, (5.46)
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where the equality holds if and only if C0 = 0. By (5.43) and (5.46), we have

lim
k→∞

e(ak)

(a∗ − ak)
1

1+s

� 1
1 + s

‖w̄0‖2+2s
2+2s +

1
M2

∫
R2

|y0 · x|2|w̄0|2 dx

=
1

sa∗ β2s +
s

1
s

‖Q‖2
2β

2M2

∫
R2

|y0 · x|2|Q|2 dx

� 1 + s

sa∗

(
s

1
s

‖Q‖2−2s
2 M2

∫
R2

|y0 · x|2|Q|2 dx

) s
1+s

,

(5.47)

where the equality is achieved at

β = μ0 :=

(
s

1
s

‖Q‖2−2s
2 M2

∫
R2

|y0 · x|2|Q|2 dx

) 1
2+2s

.

We take

u(x) =
β

s
1
2s ε‖Q‖2

Q

(
β

s
1
2s

|x − y0|
ε

)

as a trial functional for Ja, and minimizes over β > 0. (5.47) shows that

lim
k→∞

e(ak)

(a∗ − ak)
1

1+s

=
1 + s

sa∗

(
s

1
s

‖Q‖2−2s
2 M2

∫
R2

|y0 · x|2|Q|2 dx

) s
1+s

. (5.48)

Therefore, from (5.48), we get the following several conclusions.
(I) β is unique, which is independent of the choice of the subsequence, and takes

the value of μ0 as above.
(II) C0 = 0, that is, (1.15) holds.
Finally, by (5.30), (5.34) and (5.36), we have

(a∗ − ak)
1

2+2s uak

(
xk + (a∗ − ak)

1
2+2s x

)
k−→

μ0Q

(
μ0|x|
s

1
2s

)

s
1
2s ‖Q‖2

strongly in Hs(R2),

that is, (1.16) holds. �

Proof of theorem 1.4. In fact, (5.48) shows that (1.19) holds for the subsequence
{ak}. Moreover, the proof of theorem 1.2 shows that (5.48) is correct for all {ak}
with ak ↗ a∗. Therefore, (1.19) holds for all a ↗ a∗. �

Proof of theorem 1.5. It then follows from theorem 1.2 that all nonnegative mini-
mizers of e(a) concentrate at any point on the ring {x ∈ R

2 : |x| = M}. This further
implies that there exists a a∗ satisfying 0 < a∗ < a∗ such that for any a ∈ [a∗, a∗),
e(a) has infinitely many different nonnegative minimizers, each of which concen-
trates at a specific global minimum point of potential V (x) = (|x| − M)2. However,
recall from theorem 1.3-(ii) in [6] that e(a) admits a unique nonnegative minimizer
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ua for all a > 0 being small enough (a < a∗), and noting that the trapping potential
V (x) = (|x| − M)2 (M > 0) is radially symmetric. Then similar to the argument
of corollary 1.7 in [6], by rotation ua must be rotational symmetry with respect to
the origin. �

Data availability
All data, models, and code generated or used during the study appear in the
submitted article.
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