
1 Introduction

This book deals with structures, fixed or floating, in the open sea, unprotected or ill-
protected from the environment, at fixed locations: Forward speed effects (i.e., ships
under sailing conditions) are not considered. One of the main applications considered
is the design of the supports used for oil exploration and exploitation (Figure 1.1).
Many of them are represented in the accompanying figures. As the figures show these
structures come in a wide variety of geometries and sizes. Reference will often be
made to the following supports:

• Jacket (Figure 1.2): a fixed platform, nailed to the sea floor, consisting in an
assembly of tubular members. Jackets are used for oil production in water depths
up to 200 m (roughly) and also as supports for wind turbines.
• Jack-up or self-elevating unit: consisting in a buoyant hull and three or four

movable legs, capable of raising the hull above the sea surface. Jack-ups are used
for drilling at shallow depths. They are also widely used for work at sea, for
instance, for installation of the hubs and blades of wind turbines.
• Gravity base structure (GBS): in concrete, resting on the seabed, also used for oil

and gas production (Figure 1.3) or liquefied natural gas (LNG) storage. Small size
GBSs are nowadays used as supports for offshore wind turbines, for instance, in
the English Channel, off the coast of Normandy (Fécamp wind farm).
• Floating production storage offloading (FPSO): floating support used for oil

production, usually shipshaped and moored via a turret around which they can
freely rotate (Figure 1.4) or, in mild areas, anchored with a spread mooring (Figure
1.5).
• Floating liquefied natural gas (FLNG): similar to FPSO but used for gas

production, with the liquefaction plant onboard. The Prelude FLNG (Figure 6.41),
off the western coast of Australia, is the largest man-made floating structure, with a
displacement of 600,000 tons.
• semi-submersible platform (semi): usually comprising an assembly of four

columns piercing the free surface and two horizontal pontoons. Semis are used for
drilling, occasionally for production or as floatels, and as supports for wind
turbines (Figure 1.6).
• Tension leg platform (TLP): similar to the semis but in excess of buoyancy,

anchored vertically by tethers (Figure 1.7). The vertical motions are thus
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2 1 Introduction

Figure 1.1 Offshore production systems (from Oilfield Publications Limited).

Figure 1.2 Bullwinkle jacket under tow (picture by Lanmon Aerial Photography, courtesy of
Shell Exploration & Production Company).

suppressed, allowing location of the wellheads on the deck. TLPs are also used to
support wind turbines (see Figure 1.8);
• Spar: truncated vertical cylinder of large draft, also used to support wind turbines.

Offshore oil is not the sole field of application considered here. Recent years have
seen the rapid development of wind energy at sea, with the turbines first installed
on fixed foundations and now on floating supports. The recovery of wave energy has
been a long-standing research topic; even though the technology has not yet reached
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Figure 1.3 The Troll GBS under tow (courtesy Equinor).

the economically viable stage, active research is still going on. There are many other
operations taking place in the open sea, such as deep-sea mining, laying telephone
cables, or oceanographic exploration. Fish farming is another marine activity gradually
moving into deeper and less-sheltered areas (Figure 1.9).

To design structures intended to operate at a given location over many years, a
precise knowledge of the prevailing sea conditions is required, not only of the most
extreme waves, wind, and current conditions but also of the daily sea states that cause
fatigue. In areas such as the North Sea, where extreme wave heights can reach 30 m,
waves are the dominant loading factor: They exert cyclic loads that the structures and
foundations must withstand. Floating and elastic structures respond dynamically to
the wave loads. All these wave-induced stresses and responses need to be evaluated
at the design stage. Currents also exert loads on the floaters and on their connections
to the sea floor with a possible dynamic response due to alternate vortex shedding.
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Figure 1.4 The Norne FPSO in the North Sea (courtesy Equinor).

Figure 1.5 The Girassol FPSO off the coast of Angola and its riser towers (courtesy Doris
Engineering).
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1.1 Classification of Offshore Structures 5

Figure 1.6 The floating wind turbine Windfloat 1 during construction in Portugal. Note the
heave plates whose function is to increase the vertical added mass, shifting the heave and pitch
natural periods out of the wave period range. Additional benefit comes from decreased wave
excitation loads and increased viscous damping (courtesy Principle Power, Inc.).

Model testing, covered in Chapter 9, is a route to assess the wave and current
responses of offshore structures. Due to the requirements of offshore oil develop-
ments, theoretical and numerical analyses have made huge progress over the past 50
years. The main purpose of this book is to provide a state-of-the-art survey of present
knowledge and of the numerical tools available to offshore engineers.

Given the wide variety of the considered structures, some kind of classification is
required. This is proposed in the following section, with criteria based first on their
geometry and then on their types of wave responses.

1.1 Classification of Offshore Structures

1.1.1 Large or Small Bodies

Among the constitutive elements of offshore structures, there is a fairly recurrent
geometrical form: the circular cylinder. Circular cylinders come in a wide range of
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Figure 1.7 The Heidrun Tension Leg Platform in the North Sea (courtesy Equinor).

diameters: a few centimeters in the case of umbilicals and mooring lines, around a
meter for the risers and jacket bars, 10 to 30 m for the columns of semi-submersible
platforms and TLPs.

These cylindrical elements are subjected to the flow induced by waves and currents.
A circular cylinder is poorly streamlined: When subjected to current alone massive

separation occurs (see Figure 1.10). Whether the boundary layers are laminar or tur-
bulent, and where they separate, depends on the Reynolds number Re = UC D/ν,
where UC is the current velocity, D the diameter, and ν the kinematic viscosity,
ν � 10−6 m2 s−1 for sea water. Typically UC ∼ 1 m/s; therefore, the Reynolds numbers
that we are concerned with range from 104 for cables and umbilicals 10 mm in diam-
eter up to 107 for 10 m columns of semi-submersibles. It will be seen in Chapter 4
that it is for Reynolds numbers around 105 that the flow is the most intricate, with
transition from laminar to turbulent taking place near the separation point.

In spite of its geometric simplicity, numerical modeling of a steady uniform flow
around a circular cylinder at high Reynolds numbers (larger than 105) is still a
challenge.
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Figure 1.8 The wind turbine floater developed by SBM Offshore, to be installed at the
Provence Grand Large site, off the Gulf of Fos near Marseille (courtesy SBM Offshore).

Wave-induced flow differs fundamentally from current, in that it reverses periodi-
cally as the waves pass by. If one considers a vertical pile subjected to a regular wave,
and if we isolate a slice of this pile, the situation presents a strong similarity to the two-
dimensional problem of a cylinder in uniform oscillatory flow of velocity Aω cosωt.
Experiments show that a fundamental parameter is the ratio A/D of the amplitude of
flow motion A to the diameter D.

When the amplitude A is large compared to the diameter D, the flow has a strong
similarity to the steady current case: At each half cycle, a wake is emitted and carried
far away. The difference is that, when the flow reverses, the wake travels back to the
cylinder, meaning incoming vorticity and turbulence. Conversely, when the ratio A/D
is small, the fluid particles at the cylinder wall do not travel a long enough distance for
the boundary layer to separate (see Figure 1.11). The thickness of the boundary layer,
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Figure 1.9 Dry transport of the Havfarm fish farm “Jostein Albert” (photo: Nordlaks/Deadline
Media).

Figure 1.10 Uniform flow over a circular cylinder. Re = 10,000 (from van Dyke, 1982.
Photograph by Thomas Corke and Hassan Nagib).

in laminar flow, is of the order
√
ν/ω, that is, for wave periods T = 2π/ω in-between

5 s and 20 s, 1 to 2 mm, quite negligible compared to the diameter in most cases.
The outer flow is then adequately modeled by potential flow theory, that is, assuming
perfect fluid and irrotationality, the streamlines being the same whether the flow is
from left to right or right to left (Figure 1.12).

In place of the ratio A/D, the Keulegan–Carpenter number KC defined as KC =

AωT/D = 2 πA/D is usually taken as the discriminating parameter. The boundary
between attached flow and separated flow depends on the KC value, but also on the
Reynolds number or, equivalently, on the Stokes parameter β = Re/KC = D2/(ν T ).
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Figure 1.11 Navier–Stokes calculations at Re = 9,500 (from S. Etienne, 1999). The fluid is at
rest and the flow starts impulsively at t = 0. The successive plots show the vorticity at times
UC t/D going from 0.5 to 3. The boundary layer separates when the incoming flow has
traveled between 0.5 and 1 diameter.

When the Stokes parameter is larger than about 105 (meaning a diameter larger than
1 m), separation does not occur until KC exceeds 4 or 5. Referring to a semicolumn
with a 20 m diameter, KC = 5 means a wave amplitude around 15 m, close to the
design wave in the North Sea!

It appears therefore legitimate to tackle the wave interaction with massive struc-
tures within the frame of a theory that assumes perfect fluid and irrotational flow:
the potential flow theory. The characteristic dimensions of these “large bodies” are
comparable to the wave lengths. As a result, when they interact with the structure,
the incoming waves are significantly altered: they are “diffracted.” When the structure
responds to the waves, due to its motion another wave system is emitted, or “radiated.”
By means of some simplifying assumptions, potential flow theory offers the possibil-
ity to solve these diffraction and radiation problems, and to derive wave loads and
responses.

In the absence of the body, it is also potential flow theory, which is used to describe
the kinematics of the incoming waves.
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10 1 Introduction

Figure 1.12 Oscillating flow around a circular cylinder. Limiting cases A	 D (left) and
A
 D (right).

It is worth noting that, when a steady current coexists with an oscillatory flow,
and the Keulegan–Carpenter number is low, the flow does not separate as long as
the current velocity UC is lower than the amplitude Aω of the oscillatory velocity.
Potential flow theory is therefore applicable to the joint wave and current interaction
with a large body, as long as the current velocity is smaller than the orbital velocities.

In contrast to large bodies, “small bodies” have characteristic dimensions smaller
than or comparable to the amplitude of the fluid motion. They are therefore small com-
pared to the wave lengths, with the result that diffraction effects are limited and that,
locally, in the vicinity of a jacket bar slice, for example, the incident flow can be con-
sidered as uniform. The drawback is that the flow separates: Potential flow theory can
no longer be applied; other numerical tools are required that solve the Navier–Stokes
equations. The state-of-the-art is not to do Computational Fluid Dynamics (CFD) com-
putations, but to relate, somewhat empirically, the local loads to the acceleration and
velocity of the local incident flow, via the famous Morison formula. The inertia and
drag coefficients that occur in this formulation are derived from representative tests.

The paradox is that the Morison equation, despite its imperfections, enables one to
take into account a much more “refined” incident flow than the diffraction-radiation
theory, limited to Stokes wave theories at first and second orders: The calculation of
the hydrodynamic loading on jackets is usually done using third- or fifth-order Stokes
theory or the stream function model.

It should not be concluded from the above that a given structure belongs to one of
two categories. It can be both a large body and a small body, its constituent elements
belonging to the two categories (the truss spars by example); it can be a small body
under certain wave conditions and a large body in others (semi-submersibles).
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1.1 Classification of Offshore Structures 11

1.1.2 Types of Loadings and Responses

Energetic wave periods cover a range going roughly from 3 to 20 s. At these periods
(more especially in the range of 8–16 s), the waves exert high loads on floating (or
deformable) structures, inducing responses at the same periods, and with amplitudes
more or less linearly related to the wave amplitude. Catastrophic responses can result
in cases of resonance.

A technique often used to limit this type of response is to shift the natural periods
out of the range of the wave periods. This is one reason to employ soft moorings: The
natural periods in surge, sway, and yaw of floating structures are typically higher than
a minute. Likewise, semisubmersibles platforms are designed in such a way that their
natural periods in heave, roll, and pitch be above the local wave periods. Conversely,
tension leg platforms have very stiff vertical moorings, and natural periods in heave,
roll, and pitch of usually less than 3 or 4 s.

It would be naive to believe that such a strategy eliminates all risks of resonance.
Practically, one always observes some response at the natural periods, no matter how
far they are from the wave periods. Nonlinear mechanisms are the underlying cause of
these responses, which can be of very high amplitudes when the associated damping
ratios are low.

The most well-known of these nonlinear mechanisms results from extending to
“second order” wave loading. In irregular waves, when the free surface elevation is
written as

η I (x, y, t) =
∑

i

Ai cos(ki x cos β + ki y sin β − ωi t + θi ) (1.1)

(with A2
i = 2 S(ωi ) Δω, S(ω) being the wave spectrum),

the linear, or first-order, loads are obtained as:

F (1) (t) = �
⎧

⎪

⎨

⎪

⎩

∑

i

Ai f (1) (ωi , β) e−iωi t+i θi
⎫

⎪

⎬

⎪

⎭

(1.2)

Equivalently, in the frequency domain:

SF (1) (ω) = S(ω) ‖ f (1) (ω, β)‖2 (1.3)

f (1) (ω, β) being the complex transfer function, or RAO (Response Amplitude Oper-
ator). The free surface elevation and the linear loading cover the same range of
frequencies.

Proceeding to second order, supplementary loads are obtained that take place at the
sums and differences of the carrier frequencies:

• difference frequency component:

F (2)
− (t) = �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

i

∑

j

Ai Aj f (2)
− (ωi ,ω j , β) ei [−(ωi−ω j ) t+θi−θ j ]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(1.4)

https://doi.org/10.1017/9781009198059.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009198059.003


12 1 Introduction

Wave  frequency

First order
Second order.  Difference frequency

Second order.  Sum frequency

Figure 1.13 Spectra of the first- and second-order loads.

• sum frequency component:

F (2)
+ (t) = �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

i

∑

j

Ai Aj f (2)
+ (ωi ,ω j , β) ei [−(ωi+ω j ) t+θi+θ j ]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(1.5)

The complex quantities f (2)
− and f (2)

+ are known as Quadratic Transfer Functions
(QTFs). In the frequency domain the spectra of the second-order loads take the forms:

S
F (2)
−

(Ω) = 8
∫ ∞

0
S(ω) S(ω +Ω) ‖ f (2)

− (ω,ω +Ω, β)‖2 dω (1.6)

S
F (2)
+

(Ω) = 8
∫ Ω/2

0
S(ω) S(Ω − ω) ‖ f (2)

+ (ω,Ω − ω, β)‖2 dω (1.7)

A qualitative illustration is provided by Figure 1.13, which shows typical shapes of
SF (1) , S

F (2)
−

, and S
F (2)
+

vs the frequency ω. It can be seen that S
F (2)
−

covers the complete
low-frequency domain, from ω = 0 up to the wave frequencies. The second-order
difference frequency loads actually are a first approximation of the low-frequency part
of the nonlinear wave loads. In a similar way, S

F (2)
+

covers a large part of the high-
frequency range, beyond the wave frequencies.

As their names suggest, these second-order loads are much lower in magnitude
than the first-order loads. But they can lead to very large responses, in resonant condi-
tions. This is the case of the horizontal movements of moored structures that typically
have natural periods longer than one minute. At such periods linear theory provides
no excitation; but the second-order of approximation yields low-frequency loads,
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Figure 1.14 The Eiko Maru storage tanker in the Arabian Gulf (from Molin & Bureau, 1980).

Figure 1.15 Eiko Maru tanker. Tension records in the bow hawsers (from Molin & Bureau,
1980).

so-called slowly-varying drift forces, that fluctuate in time roughly following the wave
envelope signal.

Despite the fact that the loads are much weaker, the resulting slow-drift motions are
much greater in amplitude than the first-order responses. Illustrations are provided in
the following figures:

Figure 1.14 shows the storage tanker Eiko Maru in the Arabian Gulf. Figure 1.15 is
a record of the bow hawsers tensions obtained by TotalEnergies in the late seventies.
The dominant period in the record is close to 400 s, which is easily found to coincide
with the natural period in surge, accounting for the combined stiffnesses of the hawsers
and buoy anchoring (Molin & Bureau, 1980).

Figure 1.16 shows experimental records from tests, at Cehipar, on a large rectangu-
lar barge model (5 m long). Having their resonant frequencies in the wave frequency
range, the time traces of the heave and roll responses look very similar to the wave
elevation, whereas the sway motion is dominated by its slow-drift component, at its
natural frequency.
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Barge Test

Wave

Sway

Heave

Roll

Figure 1.16 Model tests on a rectangular barge model in irregular beam waves. Time traces of
the free surface elevation (top), sway, heave, and roll (bottom) motions.

Figure 1.17 Model tests on a bottle-shaped model. Time traces of the free surface elevation
(top), heave, and surge (bottom) motions.

Slow-drift motion may also occur for the vertical degrees of freedom, heave, roll,
and pitch, when their natural frequencies are below the wave frequency range. Figure
1.17 shows experimental records of the heave and surge responses of a bottle-shaped
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Figure 1.18 Model tests on a tension leg platform (PLTB 1,000). Time series of the tension
in a tether.

model, where the low-frequency component of the heave response by far exceeds the
wave frequency response.

The sum frequency second-order loads are considered responsible for the spring-
ing1 behavior of Tension Leg Platforms, in sea states having peak periods around twice
the heave, roll, and pitch natural periods. An example is shown in Figure 1.18 where
tension fluctuations can be seen at a period of 5 s, when the peak period of the wave
spectrum is 11 s. These experimental results are from an early TLP design, rather opti-
mistic. Most existing TLPS have their natural periods somewhat lower, in the range
2–4 s. With these stiffer moorings, vibratory responses, known as ringing,2 may still
be observed in sea states having peak periods 4, 5, or 6 times larger than the natural
periods, due to higher than second-order nonlinear wave loads. The ringing behavior
was first discovered during the model tests undertaken for the Heidrun TLP and it was
subsequently established that it is also a concern for deep water GBSs.

An example of ringing response is provided in Figure 1.20, which shows the effect
of a steep wave group passing by an idealized GBS, a vertical cylinder, shown in Fig-
ure 1.19. The cylinder is connected to its foundation via an elastic steel plate, yielding
a natural period of 0.44 s for the bending mode. The wave group has a mean period
around 2 s; as it interacts with the cylinder, the third wave in the group, steeper and
higher than the previous ones, triggers a vibratory response at the bending frequency.

With TLPs, springing is a concern to the fatigue life of the tethers, while ringing
must be accounted for in design conditions. Obviously, to predict ringing numerically
a second-order theory is insufficient when the ratio between resonant frequency and
wave frequency is so wide. A third-order theory would exhibit loads taking place at
frequencies ωi + ω j + ωk , probably still below the target frequency range.

It should be noted that other nonlinear phenomena, parametric instabilities, for
instance, can induce resonant responses at frequencies different from the wave

1 The coining springing was originally introduced to describe an elastic response of ship hulls.
2 Another type of vibratory response of ship hulls.

https://doi.org/10.1017/9781009198059.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009198059.003


16 1 Introduction

Figure 1.19 Model tests on a vibrating cylinder.

frequencies. A well-known case for ships is parametric roll that may occur when the
wave encounter frequency is twice the roll natural frequency.

The determination, or at least the estimate, of its natural frequencies, is an important
prerequisite in the hydrodynamic analysis of a system. It is also useful to have a proper
estimate of the associated damping ratios.

1.2 Book Outline

The contents of this book are organized as follows:
Chapter 2 deals with environmental conditions. The main environmental factors

are the waves (as measured, for instance, with a waverider buoy), the wind, and the
current. The sea state concept is introduced, together with short-term and long-term
statistics. The basic sea state parameters, that is, the significant wave height, mean
wave periods, wave spectra, mean wind speeds, etc., are presented.

Chapter 3 presents the wave theories used in offshore engineering. Relatively deep
water is assumed, so shallow water wave theories, such as cnoidal or solitary waves,
are not covered. The classical Stokes perturbation method is introduced and first-,
second-, third-, and fifth-order wave models are described, together with the stream
function method.

Chapter 4 is devoted to the wave and current loads on small, or slender, bodies.
The Morison equation is introduced and its limitations, in complex wave flows, and in
waves and current, are highlighted.
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Figure 1.20 Model tests on a vibrating cylinder. Time series of the free surface elevation
(top, in mm) and of the bending moment at the foundation (bottom, in m kN).

Chapter 5 addresses hydroelastic instabilities, such as Vortex-Induced Vibrations
(VIVs), galloping, flutter, and Wake-Induced Oscillations (WIOs).

Chapters 6–8 are devoted to large bodies, and potential flow theory is applied
throughout.

Chapter 6 deals with linear theory. The diffraction-radiation problem is introduced
and different techniques of resolution are described. A wide range of applications
are proposed, such as wave energy recovery, coupling between sloshing in tanks
and sea-keeping, moonpool and gap resonances, etc. Illustrative comparisons with
experimental results are presented.

Chapter 7 is devoted to second-order effects: drift forces in regular waves, sum
and difference frequency loads in irregular waves, and high- and low-frequency
wave responses. The different sources of damping involved in slow-drift motion are
identified and tentatively quantified.

Chapter 8 covers some other types of nonlinear loads and responses: ringing loads,
third-order runups, parametric instabilities, hydrodynamic impact, and hydrodynamics
of perforated structures.

Finally, Chapter 9 covers model testing.
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Four appendices follow. The first summarizes the foundations of potential flow the-
ory, the second deals with hydrostatics, the third with damped mass spring oscillators,
and the last with the boundary integral equation method.

The reader should have a good background in mathematics and, preferably, in fluid
mechanics. For those not acquainted with potential flow theory, the first appendix
should be sufficient to provide the basic knowledge.
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