
Canad. Math. Bull. 2024, pp. 1–18
http://dx.doi.org/10.4153/S0008439524000626
© The Author(s), 2024. Published by Cambridge University Press on behalf of
Canadian Mathematical Society

A note on the space of all Toeplitz
operators

Michał Jasiczak

Abstract. We study Toeplitz operators on the space of all real analytic functions on the real line and
the space of all holomorphic functions on finitely connected domains in the complex plane. In both
cases, we show that the space of all Toeplitz operators is isomorphic, when equipped with the topology
of uniform convergence on bounded sets, with the symbol algebra. This is surprising in view of our
previous results, since we showed that the symbol map is not continuous in this topology on the
algebra generated by all Toeplitz operators. We also show that in the case of the Fréchet space of all
holomorphic functions on a finitely connected domain in the complex plane, the commutator ideal
is dense in the algebra generated by all Toeplitz operators in the topology of uniform convergence on
bounded sets.

1 Introduction

It is a fundamental result in the theory of Toeplitz operators on the Hardy space that
the map defined in the following way

Symb(∑
i
∏

j
TFi j) ∶= ∑

i
∏

j
Fi j

is indeed well defined and can be extended by continuity to the closed (in the algebra
of all bounded operators) algebra generated by all Toeplitz operators. Here, Fi j are
bounded measurable functions. The map Symb factorizes through the Calkin algebra.
Let us recall that a Toeplitz operator on the Hardy space is the operator of the form

TF ∶ f ↦ P+(F ⋅ f ),

where P+ is the Riesz projection and F ∈ L∞(T). We refer the reader to [25] (especially
Theorem 3.1.3) for more on this subject. We also refer the reader to [1]. We cannot
give all the details here. Let us, however, quote the words of Sheldon Axler [1, p 130],
who writes, The symbol map (. . .) was a magical and mysterious homomorphism to
me . . .. In this paper, we continue our study of the symbol map in the case of all real
analytic functions and start the investigation of the case of all functions holomorphic
on finitely connected domains in the plane.

In [18], we investigated the case of all real analytic functions on the real line A(R).
A real analytic function on R is a function, which locally around each point develops
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2 M. Jasiczak

into a Taylor sequence which converges to the function – later on, we shall give more
details concerning real analytic functions. This implies that a real analytic function
is a germ of a holomorphic function on R. We developed the fundamentals of the
theory of Toeplitz operators on this space in [6]. Let us here only recall that a Toeplitz
operators on A(R) is an operator of the form

TF ∶ f ↦ 1
2πi ∫γ

F(ζ) ⋅ f (ζ)
ζ − z

dζ ,(1.1)

where F ∈ X(R) is essentially a function, which is holomorphic in some set U / K,
where U ⊃ R is open (and may be assumed simply connected) and K ⊂ R is compact
(and may be assumed connected). The symbol γ denotes a C∞ smooth Jordan curve
in U and the domain of definition of the function f such that both the point z
and the set K are enclosed by the curve γ. It is a consequence of Cauchy’s theorem
that the definition is correct. That is, it does not depend on the curve γ nor on the
representative F of the symbol. The last statement requires an explanation. Namely,
strictly speaking, the symbol algebra is

X(R) ∶= lim ind H(U / K),

where U runs through open neighborhoods ofR and K through compact subsets ofR.
Formula (1.1) defines a function which is holomorphic on some open neighborhood
of the real line. Hence, it defines a real analytic function on R.

Arguably, the most natural example of the Toeplitz operators which we study is
given by the formula

(T f )(z) = 1
2πi ∫γ

1
∏n

i=0(ζ − x i)
f (ζ)dζ
ζ − z

,

where x0 , x1 , . . . , xn ∈ R are different and γ encloses the points x i and the point z.
This operator turns out to be just the divided difference [z, x0 , . . . , xn]. We refer the
reader to [21] for the definition, which was also recalled in [15, p 2]. Thus, our Toeplitz
operators appear in approximation theory and number theory, since they control the
convergence of the Newton series. The estimates of them are, for instance, behind the
proof of the classical Lindemann’s theorem [11, p 167, Satz 9], which says that π and e
are transcendental numbers. We refer the reader to our previous research, especially
[15, Introduction], for more on this subject.

In [18], we proved that the map Symb is also well defined in the case of the space
A(R). However, we also showed the following result.

Theorem 1.1 The map Symb∶AlgT(R) → X(R) is not continuous when AlgT(R)
is equipped with the topology of uniform convergence on bounded subset of A(R). In
fact, there is no multiplicative linear map φ∶AlgT(R) → X(R) with φ(TF) = F which
is continuous with respect to the topology of uniform convergence on bounded subsets
of A(R).

The symbol AlgT(R) stands for the algebra of all Toeplitz operators on the space
A(R). Arguably, the topology of uniform convergence on bounded sets of A(R) is a
most natural topology on the algebra of all continuous linear operators on A(R). We
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A note on the space of all Toeplitz operators 3

emphasize that in general, unlike in the Banach space case, there is no distinguished
topology on the algebra of all continuous linear operators on a locally convex space.
We refer the reader to [20, Chapter Eight] for more information on this subject. We
remark that in [18, Theorem 2], we proved that there is a (Hausdorff) locally convex
topology t on the quotient algebra

AlgT(R)/C(R),

where C(R) is the ideal generated by all commutators, such that

(AlgT(R)/C(R), t)

is isomorphic as a locally convex space and as an algebra with the symbol algebra
X(R). This space carries a natural (Hausdorff) inductive locally convex topology. This
readily implies that the symbol map is indeed well defined.

In view of Theorem 1.1, it seems of interest that we prove in this paper the following
theorem.

Theorem 1.2 LetT(R) denote the space of all Toeplitz operators on the space of all real
analytic functions on the real line. The space T(R), when equipped with the topology of
uniform convergence on bounded sets, is isomorphic with the symbol space X(R).

Next, we turn our attention to the Fréchet space of all holomorphic functions on a
finitely connected domain in C. We recall the setting from [16].

The Jordan curve theorem [21, Theorem 4.14, p 70] says that the complement of any
(closed) Jordan curve has exactly two components, with γ as their common boundary.
One of these components I(γ), called the interior of γ, is bounded, and the other
component E(γ), called the exterior of γ, is unbounded. We shall use this notation
throughout the paper.

Definition 1.1 (Definition 1, [16]) Let γ0 , γ1 , . . . , γn ⊂ C be C∞ smooth Jordan
curves such that I(γ i) ∩ I(γ j) = ∅ for i , j = 1, . . . , n with i ≠ j and

γ1 , . . . , γn ⊂ I(γ0).

Then

D ∶= D(γ0; γ1 , . . . , γn) ∶= I(γ0) ∩ E(γ1) ∩ ⋅ ⋅ ⋅ ∩ E(γn),

and X denotes the Fréchet space H(D) of all functions holomorphic in D.
Let γ1 , . . . γn ⊂ C be C∞ smooth Jordan curves such that I(γ i) ∩ I(γ j) = ∅, i ≠ j.

Then

D ∶= D(γ1 , . . . , γn) ∶= E(γ1) ∩ ⋅ ⋅ ⋅ ∩ E(γn),

and X denotes either the Fréchet space H0(D) of all functions holomorphic in D
which vanish at ∞ or the space H(D) of all functions holomorphic in D (in general,
with no value at ∞).
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4 M. Jasiczak

A Toeplitz operator on the space X is the operator of the form

(TF f )(z) ∶= 1
2πi

n
∑
i=0

∫
(γ i)ε

Fi(ζ) ⋅ f (ζ)
ζ − z

dζ ,(1.2)

if X = H(D), D bounded or X = H0(D), D = E(γ1) ∩ ⋅ ⋅ ⋅ ∩ E(γn) – in this case, the
sum starts with i = 1. The symbol (γ i)ε stands for an appropriate dilatation of the
curve γ i , i = 0, 1, . . . , n, and E(γ i) is the exterior of the curve γ i – recall again Jordan’s
theorem. The symbol space in these cases is

S(D) ∶=
n
⊕
i=0

lim ind H(U i ∩ D),

where U i are open neighborhoods of the curves γ i (again, if D is unbounded, then the
sum starts with i = 1). Thus, each Fi is actually holomorphic in some neighborhood
in D of γ i .

If X = H(D), D = E(γ1) ∩ ⋅ ⋅ ⋅ ∩ E(γn), then the symbol space is

S(D) ∶=
n
⊕
i=0

lim ind H(U i ∩ D) ⊕S∞,

where

S∞ ∶= lim ind H(U / {∞})

and U run through open neighborhoods of ∞ in the Riemann sphere. For

F = F1 ⊕ ⋅ ⋅ ⋅ ⊕ Fn ⊕ F∞ ∈ S(D),

the Toeplitz operator TF ∶ H(D) → H(D) is defined in the following way:

(TF f )(z) ∶= 1
2πi

n
∑
i=1

∫
(γ i)ε

Fi(ζ) ⋅ f (ζ)
ζ − z

dζ + 1
2πi ∫∣ζ∣=R

F∞(ζ) ⋅ f (ζ)
ζ − z

dζ ,

where F∞ is holomorphic in some punctured neighborhood of ∞ and R is sufficiently
large.

We cannot repeat all the information concerning the Toeplitz operators on the
space X = H0(D), H(D). We refer the reader to our previous paper [16] for the details.
Let us only mention here that in order to motivate our study in [16], we introduced
an analog of the Riemann-Hilbert problem in the space X = H(D) and described the
role in it of the Toeplitz operators (1.2).

In this paper, we prove the following result.

Theorem 1.3 Let T(D) denote the space of all Toeplitz operators on the space X. The
space T(D), when equipped with the topology of uniform convergence on bounded sets,
is isomorphic with the symbol space S(D).

We also obtain the following theorem, which we think serves as a motivation for
further study.
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Theorem 1.4 Let X be a space from Definition 1.1. The commutator ideal C(D) is
dense in the algebra generated by all Toeplitz operators on the space X in the topology of
uniform convergence on bounded sets.

Recall that the commutator ideal in AlgT(D) is the ideal generated by commuta-
tors

[TF , TG] = TF ○ TG − TG ○ TF

with F , G ∈ S(D).
We intend this paper to be rather short. This is why we chose not to provide a

separate background section and rather give extensive explanations in the proofs.
We refer the reader to our previous papers, especially [6], [15], and [18], for more
information. Let us here, however, recall the definition of a real analytic function. We
say that f ∶R → C is real analytic if for every x0, the function f can be developed into
a Taylor series

f (x) =
∞

∑
n=0

an(x − x0)n ,(1.3)

convergent for ∣x − x0∣ < δx0 , δx0 > 0 to the function f. The series converges for com-
plex numbers ∣z − x0∣ < δx0 . Thus, every real analytic function is actually holomorphic
in some open neighborhood of the real line. Formally,

A(R) = lim ind H(U),(1.4)

where A(R) denotes the space of all real analytic functions on the real line and H(U)
is the Fréchet space of all functions holomorphic in the set U. We remark that in PDE’s,
real analytic functions are real-valued, since the equations have real coefficients, but
in view of (1.4), it is natural to assume that they are complex-valued. Equation (1.4)
is used to equip the space A(R) with a locally convex topology. This is the strongest
locally convex topology which makes all inclusions

H(U) ↪ A(R)

continuous. This topology is called the inductive topology. We remark that there is
also the projective topology. This is the weakest locally convex topology which makes
every restriction

A(R) → H(K)

continuous. The symbol H(K) stands for the space of all germs of holomorphic
functions on the compact set K ⊂ R. It is a fundamental result of Martineau [22,
Proposition 1.9, Theorem 1.2] that the inductive and the projective topology are
equal. The space A(R) with this topology is a locally convex space. Although this
topology is not metrizable, the most important tools of functional analysis, such as the
Hahn-Banach theorem, the open mapping/closed graph theorem, and the uniform
boundedness principle, are available. We refer the reader to [5] for a very intuitive
introduction to the theory of real analytic functions and operators on the spaces of
these functions. We emphasize that the Toeplitz operators are not the only operators
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studied on this space. In fact, a lot is known about the composition operators and,
especially, the differential operators on this space. Probably the most important result
is the one of Hörmander [12], which characterizes the differential operators with
constant coefficients which are surjective on the spaces of real analytic functions.
We also refer the reader to [8] for a more formal introduction to real analytic
functions.

As for the case of the Toeplitz operators on finitely connected domains in C, we
refer the reader to our paper [16].

The paper is a part of the project the aim of which is to study classical operators
on locally convex spaces of analytic functions. We defined the Toeplitz operators on
A(R) in [6]. In the consecutive papers [13], [14], and [15], we studied the Fredholm
property, invertibility, and one-sided invertibility of these operators. In this paper,
and also [18], we turn our attention to the space of all Toeplitz operators and the
algebra generated by all Toeplitz operators. The motivation of course comes from
the Hardy space case and the fundamental theorem of Douglas [10, Theorem 7.11].
Essentially, this theorem says that the symbol map is well defined in the Hardy space
case and can be extended by continuity to the closed algebra generated by all Toeplitz
operators.

The starting point for our study was the research of Domański and Langenbruch
[7]. The authors considered the operators on the space of all real analytic functions
the eigenvalues of which are just monomials. These operators are called the Hadamard
multipliers. In some sense, the Hadamard multipliers are the operators the matrix of
which is diagonal. Let us remark here only that the situation is more complicated, since
by the fundamental result of Domański and Vogt [9], the spaceA(R)has no basis. The
idea to study Hadamard multipliers turned out be very fruitful. We refer the reader to
our previous papers for the extensive bibliography. Let us write, however, that it is just
one step from diagonal matrices to Toeplitz matrices, and we made this step in our
papers and studied Toeplitz operators on the space of all real analytic functions and
entire functions and on the space of all functions holomorphic on finitely connected
domains in C. Let us also remark that we proved an analog of Theorem 1.2 in the
cases of all entire functions in [17, Main Theorem 2]. The method of the proof is,
however, different. The one which we present in the current paper is in some sense
more natural and straightforward, since we do not use the results of Mujica [24] and
Vogt [27], which give the explicit form of seminorms on the spaces H(K).

This note is divided into three sections. In the next one, we consider the case of
the space A(R), and we prove Theorem 1.2. The third section is devoted to the spaces
H0(D), H(D) on finitely connected domains inC. We prove therein Theorem 1.3 and
Theorem 1.4.

As far as the functional analysis background is concerned, we refer the reader to
the fundamental book by Meise and Vogt [23]. The beautiful theory of the Toeplitz
operators on the Hardy spaces is presented in the classical monograph by Böttcher
and Silbermann [4] and more recent books by Nikolski [25] and [26]. We do not
need to say that we are motivated by the classical theory. The subject of locally convex
spaces of holomorphic functions and operators between them is a well-established
topic. We refer the reader to the recent book of Bonet, Jornet, and Sevilla-Peris [3] for
the panorama of research.
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2 The case of real analytic functions

Our first aim is to give the proof of Theorem 1.2. We recall also the necessary
definitions.

Proof of Theorem 1.2 Recall that the symbol space X(R) is the inductive limit of
the spaces H(U / K),

lim ind H(U / K),

where U run through open neighborhoods of the real line and K are compact subsets
of R and the linking maps are just the inclusions. We remark that when we restrict
attention to simply connected open neighborhoods of R and to connected compact
subsets, we obtain the same symbol space X(R). In [6, p 12], we showed that the
inductive locally convex topology of this system exists; that is, it is Hausdorff. Not
very precise, we may write

X(R) = ⋃
U ,K

H(U / K).

That is, roughly speaking, an element of X(R) is a function F holomorphic in some
set U / K, U ⊃ R open, K ⊂ R compact. It follows from Cauchy’s integral formula that

F(z) = 1
2πi ∫�

F(ζ)
ζ − z

dζ − 1
2πi ∫γ

F(ζ)
ζ − z

dζ ∶= F+(z) + F−(z),

where � is a C∞ smooth Jordan curve such that both z and K are contained in the
interior I(�) and γ is a C∞ smooth Jordan curve such that K ⊂ I(γ) and z ∈ E(γ) –
the exterior of the curve γ. Observe that F+ defines a function holomorphic in U and
F− defines a function holomorphic inC∞ / K which vanishes at ∞. It is a consequence
of Liouville’s theorem that this decomposition is unique. That is,

H(U / K) ≅ H(U) ⊕ H0(C∞ / K),(2.1)

where H(U) is the space of all holomorphic in the set U and H0(C / K) is the space of
functions holomorphic in C / K which vanish at ∞. These spaces are Fréchet spaces
when equipped with the topology of uniform convergence on compact sets. One
immediately notices that decomposition (2.1) holds not only algebraically, but also
topologically. This implies that

lim ind H(U / K) ≅ lim ind H(U) ⊕ lim ind H0(C∞ / K)

in the category of locally convex spaces. We refer the reader to [6, Section 3] for the
details. Recall that

lim ind H(U) ≅ A(R).

Furthermore, the space

lim ind H0(C∞ / K),
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sometimes denoted H0(C /R), is algebraically and topologically isomorphic with the
dual space A(R)′b , equipped with the topology of uniform convergence on bounded
sets of A(R),

A(R)
′

b ≅ lim ind H0(C∞ / K).(2.2)

The duality between A(R) and lim ind H0(C∞ / K) is given by

( f , F) ↦ ⟨ f , F⟩ ∶= ∫
γ

f (z)F(z)dz.

Here, f is real analytic, so holomorphic in some open set U ⊃ R (which may be
assumed simply connected), and F is holomorphic in C∞ / K for some compact set
K ⊂ R (which may be assumed connected), and vanishes at ∞. The C∞ smooth
Jordan curve γ is contained in U and satisfies K ⊂ I(γ). The definition is correct.
It depends neither on the representatives of f and F chosen nor the curve γ. The
fact the isomorphism (2.2) holds true is a consequence of the fundamental Köthe-
Grothendieck-da Silva duality. We refer the reader to [19, pp 372–378] for the details.
We conclude that

X(R) ≅ A(R) ⊕A(R)
′

b

both algebraically and topologically.
Let F ∈ A(R) be represented by a function (denoted by the same symbol) F ∈

H(U / K). Let also F+, F− be the corresponding decomposition (2.1). Let p be a
continuous seminorm on the space A(R). Then, trivially,

p(F+) = p(TF+(1)).

In other words,

p(F+) = sup
f ∈B1

p(TF+( f )),

where B1 = {1} ⊂ A(R) is a bounded set. Furthermore,

TF+(1)(z) = 1
2πi ∫γ

F+(ζ)
ζ − z

dζ = 1
2πi ∫γ

F(ζ)
ζ − z

dζ ,

since F− vanishes at ∞. That is,

p(F+) = sup
f ∈B1

p(TF( f )).

Consider now the function F−. Recall that

lim ind H0(C∞ / K) ≅ A(R)
′

b .

As a result, for every continuous seminorm r on lim ind H0(C∞ / K), there is a
bounded set B2 ⊂ A(R) such that

r(F−) ≤ C sup
f ∈B2

∣⟨ f , F−⟩∣.
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A note on the space of all Toeplitz operators 9

By Cauchy’s theorem, we have

sup
f ∈B2

∣⟨ f , F−⟩∣ = sup
f ∈B2

∣ ∫
γ

f (z)F−(z)dz∣

= sup
f ∈B2

∣ ∫
γ

f (z)F(z)dz∣ = sup
f ∈B2

∣ ∫
γ

f (z)z ⋅ F(z)
z − 0

dz∣,

since we may choose the curve γ to enclose the set K and (for instance) the point 0.
As a result,

sup
f ∈B2

∣⟨ f , F−⟩∣ = sup
f ∈B′2

∣(TF f )(0)∣,

where B
′

2 = {z ⋅ f ∶ f ∈ B}. Notice that the set B
′

2 is bounded inA(R). Indeed, the oper-
ator of multiplication Mz ∶A(R) ∋ f ↦ z f ∈ A(R) is continuous, since it factorizes
through the operator of multiplication by z, denoted again by Mz , on every space
H(U). The operator Mz is obviously continuous on H(U). We have B

′

2 = Mz(B2).
The evaluation at 0 is continuous on the space A(R). Hence, there is a continuous

seminorm q on A(R) such that

sup
f ∈B′2

∣(TF f )(0)∣ ≤ sup
f ∈B′2

q(TF f ).

We conclude that for every continuous seminorm r on X(R), there are continuous
seminorms p and q on A(R) such that

r(F) ≤ C( sup
f ∈B1

p(TF f ) + sup
f ∈B′2

q(TF f ))

≤ C sup
f ∈B3

(max{p, q})(TF f ),

where B3 ∶= {1} ∪ B
′

2 and max{p, q} is a continuous seminorm on A(R). We showed
that the map

T(R) ∋ TF ↦ F ∈ X(R)

is continuous as a map from the space of all Toeplitz operators equipped with the
topology tub of uniform convergence on bounded sets to the symbol space.

We prove now that the assignment

H(U / K) ∋ F ↦ TF ∈ L(A(R))

is continuous for every U ⊃ R open and K ⊂ R compact. In view of [23, Proposition
24.7], this implies that the assignment

X(R) ∋ F ↦ TF ∈ (T(R), tub)

is continuous.
Let now B ⊂ A(R) be bounded. It is a very important fact that there exists an open

set V ⊃ R such that B ⊂ H(V) and B is bounded in H(V) – see [5, Corollary 1.22] and
also [23, Proposition 25.19]. Inductive limits which possess this property are called
regular.
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10 M. Jasiczak

The embedding

H(V ∩ U) ↪ A(R)

is continuous by definition of the inductive topology of the spaceA(R). Therefore, for
every continuous seminorm p on the space A(R), there is a compact set L ⊂ V ∩ U
such that

p( f ) ≤ C sup
z∈L

∣ f (z)∣

for every f ∈ H(V ∩ U). Choose now a C∞ smooth Jordan curve γ contained V ∩ U
such that K ∪ L ⊂ I(γ). Then

sup
f ∈B

p(TF f ) ≤ C sup
f ∈B

sup
z∈L

∣ 1
2πi ∫γ

F(ζ) ⋅ f (ζ)
ζ − z

dζ∣

≤ C sup
ζ∈γ

∣ f (ζ)∣ sup
ζ∈γ

∣F(ζ)∣ ≤ C sup
γ

∣F∣.

Observe that the estimate is uniform, since the curve γ is the same for every function
f ∈ B. This is a consequence of the fact that B is bounded.

We proved that

(T(R), tub) ≅ X(R)

as locally convex spaces. ∎

3 The case of the space of all holomorphic functions on a finitely
connected domain in C.

Proof of Theorem 1.3 We first consider the case of the space X = H(D), when
D = I(γ0) ∩ E(γ1) ∩ ⋅ ⋅ ⋅ ∩ E(γn) and the space X = H0(D), when D = E(γ1) ∩ ⋅ ⋅ ⋅ ∩
E(γn). The curves γ0 , γ1 , . . . , γn are assumed to satisfy the assumptions of Defini-
tion 1.1.

Recall that in these cases,

S(D) =
n
⊕
i=0

lim ind H(U i ∩ D)

is the symbol space. In the case of the space X = H0(D) with D unbounded, the term
containing H(U0 ∩ D) is absent. The same remark concerns the arguments given
below.

Again by Cauchy’s theorem and Liouville’s theorem, we have

H(U0 ∩ D) ≅ H(I(γ0)) ⊕ H0(E(γ0) ∪ U0),

where U0 is an open neighborhood of the curve γ0. Similarly,

H(U i ∩ D) ≅ H0(E(γ i)) ⊕ H(I(γ i) ∪ U i), i = 1, . . . , n,
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where this time U i is an open neighborhood of the curve γ i . As a result,

lim ind H(U0 ∩ D) ≅ H(I(γ0)) ⊕ H0(I(γ0)c)
= H(I(γ0)) ⊕ H0(E(γ0)),

and

lim ind H(U i ∩ D) ≅ H0(E(γ i)) ⊕ H(E(γ i)c)
= H0(E(γ i)) ⊕ H(I(γ i))

for i = 1, . . . , n. We remark that unfortunately there is a misprint in [16, (18)] – the
symbol H(I(γ i)c) appears instead of H(E(γ i)c) = H(I(γ i)). Recall that if K ⊂ C∞

is compact, then H(K) stands for the space of all germs of holomorphic functions on
K. In particular, H(I(γ0)c) = H(E(γ0)) and H(E(γ i)c) = H(H(I(γ i))) are spaces
of germs. These spaces carry the natural inductive topologies. We refer the reader
to [2] for more information on this subject. Furthermore, it follows from Cauchy’s
integral formula and Liouville’s theorem

H(D) ≅ H(I(γ0)) ⊕ H0(E(γ1)) ⊕ ⋅ ⋅ ⋅ ⊕ H0(E(γn))

and, by the Köthe-Grothendieck-da Silva duality,

H(D)
′

b ≅ H0(I(γ0)c) ⊕ H(E(γ1)c) ⊕ ⋅ ⋅ ⋅ ⊕ H(E(γn)c).

We conclude [16, Proposition 4.1] that, as locally convex spaces,

S(D) ≅ H(D) ⊕ H(D)
′

b .(3.1)

At this moment, we can essentially repeat the arguments which justified Theorem 1.2.
Indeed, let F ∈ S(D) be a symbol and let F+ ∈ H(D) the holomorphic function part
corresponding to the decomposition (3.1). Furthermore, assume that p is a continuous
seminorm on the space H(D). Then

p(F+) = p(TF+(1))

and

TF+(1)(z) = 1
2πi

n
∑
i=0

∫
(γ i)ε

F+(ζ)
ζ − z

dζ = 1
2πi

n
∑
i=0

∫
(γ i)ε

F(ζ)
ζ − z

dζ .(3.2)

Here, F = F+ ⊕ F− with

F− = F−0 ⊕ ⋅ ⋅ ⋅ ⊕ F−n

∈ H0(E(γ0) ∪ U0)) ⊕ H(I(γ1) ∪ U1)) ⊕ ⋅ ⋅ ⋅ ⊕ H(I(γn) ∪ Un).

Indeed, for instance,

∫
(γ0)ε

F−0(ζ)
ζ − z

dζ = 0,

since z ∈ I((γ0)ε) and F−0 vanishes in ∞.
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That is,

p(F+) = sup
f ∈B1

p(TF f ),

where B1 = {1}.
Let f ∈ H(D). Then, by Cauchy’s theorem,

n
∑
i=0

∫
(γ i)ε

f (z)F+(z)dz = 0

and, as a result,
1

2πi

n
∑
i=0

∫
(γ i)ε

f (z)F−i(z)dz = 1
2πi

n
∑
i=0

∫
(γ i)ε

f (z)(F−i(z) + F+(z))dz

= 1
2πi

n
∑
i=0

∫
(γ i)ε

f (z)Fi(z)dz.

Let now B2 ⊂ H(D) be a bounded set. Then, for some point a ∈ D,

sup
f ∈B2

∣⟨ f , F−⟩∣ = sup
f ∈B2

∣ 1
2πi

n
∑
i=0

∫
(γ i)ε

f (z)F−i(z)dz∣

= sup
f ∈B2

∣ 1
2πi

n
∑
i=0

∫
(γ i)ε

f (z)Fi(z)dz∣ = sup
f ∈B2

∣ 1
2πi

n
∑
i=0

∫
(γ i)ε

f (z)(z − a)Fi(z)
z − a

dz∣.

The one point set {a} is compact. Also, the set { f (z)(z − a)∶ f ∈ B2} is bounded in
H(D). It follows from (3.1) that for every continuous seminorm on S(D), say r, there
are continuous seminorms p and q on H(D) and H(D)′b , respectively, such that

r(F) ≤ C(p(F+) + q(F−)).

Hence, for every continuous seminorm r on S(D), we have

r(F) ≤ C(p(F+) + q(F−)) ≤ C(sup
f ∈B1

p(TF f ) + sup
f ∈B′2

sup
z∈{a}

∣(TF f )(z)∣)

≤ C sup
f ∈B3

sup
z∈K∪{a}

∣(TF f )(z)∣,

where B3 = {1} ∪ B
′

2 and we assumed that p( f ) = supz∈K ∣ f (z)∣ for some K ⊂ D
compact.

The fact that the assignment

S(D) ∋ F ↦ TF ∈ (T(D), tub)

is continuous is elementary. One simply shows that the map
n
⊕
i=0

H(U i ∩ D) ∋ F =
n
⊕
i=0

Fi ↦ TF ∈ (T(D), tub)

is continuous for every neighborhood U i of γ i . In view of the definition of the
inductive topology, this shows that F ↦ TF is continuous as a map from S(D) to
(T(D), uub).
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Let B ⊂ H(D) be a bounded set and K ⊂ D compact. Then, for a sufficiently small
ε > 0,

sup
f ∈B

sup
z∈K

∣(TF f )(z)∣ = sup
f ∈B

sup
z∈K

∣ 1
2πi

n
∑
i=0

∫
(γ i)ε

Fi(ζ) ⋅ f (ζ)
ζ − z

dζ∣

≤ C sup{∣ f (z)∣∶ z ∈ (γ0)ε ∪ ⋅ ⋅ ⋅ ∪ (γn)ε , f ∈ B} max
i=0,. . . ,n

sup{∣Fi(z)∣∶ z ∈ (γ i)ε}

≤ C max
i=0,. . . ,n

sup{∣Fi(z)∣∶ z ∈ (γ i)ε}.

Let us now consider the case X = H(D), when D = E(γ1) ∩ ⋅ ⋅ ⋅ ∩ E(γn). First of
all, by Cauchy’s integral formula and Liouville’s theorem,

H(D) ≅ H0(E(γ1)) ⊕ ⋅ ⋅ ⋅ ⊕ H0(E(γn)) ⊕ H(C).

By the Köthe-Grothendieck-da Silva duality,

H(D)
′

b ≅ H(E(γ1)c) ⊕ ⋅ ⋅ ⋅ ⊕ H(E(γn)c) ⊕ H0(∞),

where the symbol H0(∞) is the space of germs of holomorphic functions on ∞ which
vanish at ∞. That is,

H0(∞) = lim ind H0(U / {∞})
and U run through open in the Riemann sphere neighborhoods of ∞. We again
conclude that also in this case,

S(D) ≅ H(D) ⊕ H(D)
′

b .

This is the key observation. Essentially at this moment, the above arguments can be
repeated verbatim. Some care has to be taken with the S∞ term. We provide some
comments only. Observe that if F−∞ ∈ H0(∞), then

1
2πi ∫∣ζ∣=R

F−∞(ζ)
ζ − z

dζ ≡ 0.

Also, if F+ ∈ H(D), then by Cauchy’s theorem,

1
2πi

n
∑
i=1

∫
(γ i)ε

f (ζ)F+(ζ)dζ + 1
2πi ∫∣ζ∣=R

f (ζ)F+(ζ)dζ ≡ 0

for every f ∈ H(D).
These two observations allow us to repeat the whole argument. This completes the

proof of Theorem 1.3. ∎

Proof of Theorem 1.4 Assume that

D = I(γ0) ∩ E(γ1) ∩ ⋅ ⋅ ⋅ ∩ E(γn),

where γ0 , γ1 , . . . , γn are C∞ smooth Jordan curves which satisfy the assumptions from
Definition 1.1. In order to prove the theorem, it suffices to show that there exists
a sequence Cn of elements in the commutator ideal C(D) which converges to the
identity operator in the topology of uniform convergence on bounded sets. Indeed,
assume that Cn ∈ C(D) and Cn → I in this topology. Let T ∈ AlgT(D) be an element
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of the Toeplitz algebra. Then, for every bounded set B ⊂ H(D) and every compact set
K ⊂ D,

sup
f ∈B

sup
z∈K

∣(T f )(z) − (Cn T f )(z)∣ = sup
z∈K

sup
g∈T(B)

∣g(z) − (Cn g)(z)∣ → 0,

since the image of the set B under the operator T is bounded.
We shall construct a compact exhaustion of the set D and the operators Cn together.

Let Φ0 be the Riemann map of the simply connected set I(γ0) and Φ i , i = 1, . . . , n the
Riemann maps of E(γ i). That is,

Φ0∶ I(γ0) → D,

and

Φ i ∶ E(γ i) → D

with Φ i(∞) = 0 for i = 1, . . . , n. There is τ0 ∈ [0, 1) such that the C∞ smooth Jordan
curve γ0

t ∶= Φ−1
0 (∣w∣ = t) is contained in D for τ0 < t < 1. Similarly, for every i =

1, . . . , n, there is τ i such that γ i
t ∶= Φ−1

i (∣w∣ = t) is contained in D for τ i < t < 1. Put

Kt ∶= I(γ0
t ) ∩ E(γ1

t) ∩ ⋅ ⋅ ⋅ ∩ E(γn
t )

for t0 ∶= maxi τ i < t < 1. The sets (Kt) form a compact exhaustion of the domain D.
Hence, the seminorms

pK t( f ) ∶= sup
z∈K t

∣ f (z)∣, f ∈ H(D)

for t0 < t < 1 form a fundamental system of seminorms in H(D). Also, the boundary
of Kt is

γ0
t ∪ γ1

t ∪ ⋅ ⋅ ⋅ ∪ γn
t .

Furthermore, for every f ∈ H(D),

f (z) =
n
∑
i=0

1
2πi ∫γ i

t

f (ζ)
ζ − z

dζ ,

provided z ∈ int Kt . Consider the projections

H(D) ∋ f ↦ 1
2πi ∫γ t

i

f (ζ)
ζ − z

dζ ,

i = 0, 1, . . . , n, z ∈ D and t chosen in such a way that z ∈ I(γt
0) ∩ E(γ t

1) ∩ ⋅ ⋅ ⋅ ∩ E(γ t
n).

Denote them by Pi . Then

P0∶ H(D) → H(I(γ0)),

and

Pi ∶ H(D) → H0(E(γ i))
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for i = 1, . . . , n. Observe that the operator Pi is the Toeplitz operators with the symbol

0 ⊕ ⋅ ⋅ ⋅ ⊕ 0⊕
i
1 ⊕0 ⊕ ⋅ ⋅ ⋅ ⊕ 0.

Also, by Cauchy’s integral formula,

P0 + P1 + ⋅ ⋅ ⋅ + Pn = I.

When f ∈ H(D), we shall write f i , i = 0, 1, . . . , n to denote Pi f .
Let Ai

m be the Toeplitz operator the symbol of which is

0 ⊕ ⋅ ⋅ ⋅ ⊕ 0⊕
i

(Φ i)m ⊕0 ⊕ ⋅ ⋅ ⋅ ⊕ 0,

and let B i
m be the Toeplitz operator with the symbol

0 ⊕ ⋅ ⋅ ⋅ ⊕ 0⊕
i
1

(Φ i)m ⊕0 ⊕ ⋅ ⋅ ⋅ ⊕ 0.

Observe that

A0
m , B0

m ∶ H(D) → H(I(γ0)),(3.3)

and

Ai
m , B i

m ∶ H(D) → H0(E(γ i)),(3.4)

for i = 1, . . . , n.
Let

Am ∶=
n
∑
i=0

Ai
m ○ Pi

and

Bm ∶=
n
∑
i=0

B i
m ○ Pi .

Then

Am( f )(z) =
n
∑
i=0

1
2πi ∫γ t

i

Φm
i (ζ) ⋅ f i(ζ)

ζ − z
dζ =

n
∑
i=0

Φm
i (z) ⋅ f i(z)

by Cauchy’s integral formula and

(Bm f )(z) =
n
∑
i=0

1
2πi ∫γ t

i

Φ−m
i (ζ) ⋅ f i(ζ)

ζ − z
dζ .

Notice that

Pj(
n
∑
i=0

Φm
i ⋅ f i) = Φm

j ⋅ f j

for j = 0, 1, . . . , n.
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Consequently,

(Bm ○ Am)( f )(z) =
n
∑
i=0

1
2πi ∫γ t

i

Φ−m
i (ζ) ⋅ Φm

i (ζ) ⋅ f i(ζ)
ζ − z

dζ

=
n
∑
i=0

1
2πi ∫γ t

i

f i(ζ)
ζ − z

dζ = f0(z) + f1(z) + ⋅ ⋅ ⋅ + fn(z) = f (z).

That is, Bm ○ Am = I for every m ∈ N and, as a result,

I − [Bm , Am] = Am ○ Bm .

Furthermore, it follows from (3.3) and (3.4) that

(Am ○ Bm f )(z) =
n
∑
i=0

Φm
i (z) ⋅ 1

2πi ∫γ t
i

Φ−m
i (ζ) ⋅ f i(ζ)

ζ − z
dζ .

We show that for every bounded set B ⊂ H(D) and every compact set Kt , t0 < t < 1,
it holds that

sup
f ∈B

sup
z∈K t

∣(Am ○ Bm f )(z)∣ → 0,

as m → ∞. For a fixed t choose t1 with t0 < t < t1 < 1. Then

sup
f ∈B

sup
z∈K t

∣
n
∑
i=0

Φm
i (z) 1

2πi ∫γ t1
i

Φ−m
i (ζ) ⋅ f i(ζ)

ζ − z
dζ ∣ ≤ c(n + 1)( t

t1
)

m
→ 0

as m → ∞.
It remains to notice that [Bm , Am] belongs to the commutator idealC(D). Observe

that

[Bm , Am] =
n
∑
i=0

[B i
m , Ai

m] ○ Pi .

That is, [Bm , Am] is of the form
n
∑
i=0

[TFi , TG i ] ○ TH i

for the symbols Fi , G i , and H i defined above.
The proof in the case X = H0(D), D = E(γ1) ∩ ⋅ ⋅ ⋅ ∩ E(γn) is the same. Some

comment is needed when X = H(D) for such a domain D. Then the projection

P∞∶ H(D) → H(C)

is defined by the formula

(P∞ f )(z) ∶= 1
2πi ∫∣ζ∣=R

f (ζ)
ζ − z

dζ

for R > 0 appropriately large. This is a Toeplitz operator with the symbol 0 ⊕ 1. A
compact exhaustion of the domain D is now
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E(γ t
1) ∩ ⋅ ⋅ ⋅ ∩ E(γ t

n) ∩ {∣ζ ∣ ≤ r},

where the C∞ smooth Jordan curves γ t
i were defined above.

The Toeplitz operators A∞m and B∞m are defined in the following way:

(A∞m f )(z) ∶= zm f (z)

(B∞m f )(z) ∶= 1
2πi ∫∣ζ∣=R

1
ζm

f (ζ)
ζ − z

dζ

and

Am ∶=
n
∑
i=1

Ai
m ○ Pi + A∞m ○ P∞

Bm ∶=
n
∑
i=1

B i
m ○ Pi + B∞m ○ P∞,

with Ai
m , B i

m as before. Most of the arguments can now be repeated. Again, a comment
is needed in the ∞ case. Observe that for every B ⊂ H(D) bounded,

sup
f ∈B

sup
z∈K

∣(A∞m ○ B∞m f )(z)∣

= sup
f ∈B

sup
z∈K

∣ 1
2πi

zm ⋅ ∫
∣ζ∣=R

1
ζm

f (ζ)
ζ − z

dζ ∣ ≤ C( r
R
)

m
→ 0,

as m → ∞. Here,

K = E(γ t
1) ∩ ⋅ ⋅ ⋅ ∩ E(γ t

n) ∩ {∣ζ ∣ ≤ r}

and r < R. This suffices to complete the argument. ∎
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[8] P. Domański and D. Vogt, Linear topological properties of the space of analytic functions on the real
line, North-Holland Math. Stud., Vol. 189, North-Holland Publishing Co., Amsterdam, 2001,
113–132.
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