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JACKSON NETWORKS WITH
UNLIMITED SUPPLY OF WORK

GIDEON WEISS,∗ The University of Haifa

Abstract

We consider a Jackson network in which some of the nodes have an infinite supply of
work: when all the customers queued at such a node have departed, the node will process
a customer from this supply. Such nodes will be processing jobs all the time, so they
will be fully utilized and experience a traffic intensity of 1. We calculate flow rates for
such networks, obtain conditions for stability, and investigate the stationary distributions.
Standard nodes in this network continue to have product-form distributions, while nodes
with an infinite supply of work have geometric marginal distributions and Poisson inflows
and outflows, but their joint distribution is not of product form.
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Consider a Jackson network [5] with nodes i, service rates µi , exogenous input rates αi ,
and routing probabilities Pij , i, j = 1, . . . , I, j �= i. Denote by Qi(t), t > 0, the number of
items in node i at time t . In addition, assume that a subset of the nodes E ⊆ {1, . . . , I } have
an infinite supply of work, by which we mean the following. For i ∈ E, when Qi(t) = 0, a
new item is picked from an infinite supply of items and is processed by the node at the rate µi .
Upon completion of processing, it is routed according to Pij . At each of the nodes i ∈ E, items
that arrive at the node have preemptive priority over items from the infinite supply. After its
initial processing, an item from the infinite supply is treated like any other item.

We believe that such Jackson networks with an infinite supply of work are a useful and
realistic model for some situations; for example, consider a communications network, where
each node is transmitting messages originating at this node, with an unlimited supply of material
to transmit. In addition, each node also serves to transmit messages that are in transit between
other nodes. Assume that each node gives preemptive priority to messages in transit over its own
messages. When only messages in transit are counted as congestion, this is exactly our system.
A particular computer communication system that works in this way is a MAN (metropolitan
area network) Ethernet RPR (resilient packet ring), in which ring traffic has priority over the
traffic generated at nodes.

The idea of an infinite supply (or backlog) of lower-priority work in a system has been used
frequently, e.g. in [3] and [6]. Jackson networks with an infinite supply of work are a special
case of multiclass queueing networks with virtual infinite buffers, introduced in [2], [8], [9],
and [10].

Recall that all service and interarrival times in a Jackson network are independent and
exponentially distributed. Also, assume that the routing matrix P has spectral radius less than 1,
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so that, with probability 1, every item leaves the system after a finite number of processing steps.
Let Ē = {i : i �∈ E}. We will use λ, µ, and α to denote vectors, and E, Ē, and EĒ, as subscripts,
to denote subvectors or submatrices.

Let λi denote the rate at which items arrive into node i, counting exogenous input or routeing
from other nodes. In equilibrium, the rate at which items depart from node i is λi , i ∈ Ē, and
µi , i ∈ E. Hence, the traffic equations for this system are

λi = αi +
∑

j∈Ē �=i

λjPji +
∑

j∈E �=i

µjPji .

These equations are solved by

λĒ = (I − P �̄
EĒ

)−1(αĒ + P �
EĒ

µE),

λE = αE + P �
EEµE + P �̄

EE
λĒ (1)

= αE + P �̄
EE

(I − P �̄
EĒ

)−1αĒ + (P �
EE + P �̄

EE
(I − P �̄

EĒ
)−1P �

EĒ
)µE,

where I is the identity matrix and P � denotes the transpose of P . Formulae similar to (1) were
derived by Goodman and Massey [4], in a paper on transient Jackson networks, in which nodes
i ∈ E were unstable.

A necessary condition for stability is µ ≥ λ. The nodes with the infinite supply of work
introduce new items into the system at the following rates:

ηE = µE − λE.

It is easy to establish that µ > λ is sufficient for stability, and indeed to partially derive
steady-state distributions.

Proposition 1. Assume that ρi = λi/µi < 1, i = 1, . . . , I .

(i) For nodes i ∈ Ē, the joint steady-state distribution is of product form:

lim
t→∞ P{Qi(t) = ni, I ∈ Ē} =

∏

i∈Ē

(1 − ρi)(ρi)
ni .

(ii) For nodes i ∈ E, the marginal steady-state distribution is

lim
t→∞ P{Qi(t) = m} = (1 − ρi)(ρi)

m, i ∈ E.

(iii) The departure streams from node i ∈ E to all other nodes j �= i are independent Poisson
streams of rates µiPij .

(iv) The arrival streams into node i ∈ E from all other nodes j �= i are independent Poisson
streams of rates λjPji, j ∈ Ē and µjPji, j ∈ E.

The key observation for the proof of this proposition is that each of the nodes i ∈ E works
non-stop, processing items for independent and identically exponentially distributed times at
rate µi . Hence, departures from the nodes with the infinite supply of work consist of independent
Poisson streams. Thus, the subnetwork of nodes i ∈ Ē behaves like a Jackson network with
Poisson inputs.
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Figure 1: A two-node Jackson network with an infinite supply of work.

The difference between the nodes with an infinite supply of work and the standard nodes is
intriguing. For the nodes with an infinite supply of work, all the input and output streams are
Poisson. It is well known [7] that the streams of items moving between nodes in the Jackson
part of the network, i ∈ Ē, are not necessarily Poisson. (All the streams of items entering
and leaving the subnetwork are Poisson, and streams between, say, node i and node j may be
Poisson in some special cases, for example in overtake-free networks. However, in general, the
stream of customers moving from node i to node j in a Jackson network need not be Poisson.)
On the other hand, the product form, i.e. the independence of the queue lengths at different
nodes when observed all at the same time, t , is lost for nodes i ∈ E. It is no longer true that
Qi(t) and Qj(t), i, j ∈ E, in steady state are independent. This loss of independence can be
observed in the following example.

In a recent paper, Adan and Weiss [1] analyzed a two-node Jackson network with an
infinite supply of work, and no exogenous input. This system is depicted in Figure 1. In
Table 1, we list the values of the stationary probabilities for such a symmetric two-node
Jackson network with an infinite supply of work, with µ1 = µ2, p1 = p2 = 0.5, and

Table 1: Stationary distribution of the infinite-supply Jackson network.

n2 n1 = 0 n1 = 1 n1 = 2 n1 = 3 n1 = 4

0 0.151 946 0.151 946 0.094 020 0.050 354 0.025 752
1 0.151 946 0.057 926 0.021 833 0.009 457 0.004 471
2 0.094 020 0.021 833 0.005 688 0.001 918 0.000 802
3 0.050 354 0.009 457 0.001 918 0.000 481 0.000 161
4 0.025 752 0.004 471 0.000 802 0.000 161 0.000 040

Table 2: Product-form joint distribution.

n2 n1 = 0 n1 = 1 n1 = 2 n1 = 3 n1 = 4

0 0.25 0.125 0.062 5 0.031 25 0.015 625
1 0.125 0.062 5 0.031 25 0.015 625 0.007 813
2 0.062 5 0.031 25 0.015 625 0.007 813 0.003 906
3 0.031 25 0.015 625 0.007 813 0.003 906 0.001 953
4 0.015 625 0.007 813 0.003 906 0.001 953 0.000 977
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ρ1 = ρ2 = 0.5. The occupancies of the two queues are clearly not independent under this
distribution. For comparison, in Table 2 we give the corresponding probabilities for a standard
symmetric two-node product-form Jackson network, with ρ = 0.5. The calculations use the
results of [1].

The following intuitive thought may provide an explanation of the dependence between the
two nodes in the system of Figure 1. A large number of items in node 1 indicates that there were
more arrivals than departures in the recent past. Arrivals come from node 2, and departures
go to node 2, so this may indicate more departures and fewer arrivals at node 2 in the recent
past. Thus, observing many customers in node 1 may indicate a small number of customers in
node 2. This form of negative correlation is indeed observed in Table 1.

It is a challenging question to derive similar results in the general case.
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