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Distributionally robust optimization (DRO) studies decision problems under uncer-
tainty where the probability distribution governing the uncertain problem parameters
is itself uncertain. A key component of any DRO model is its ambiguity set, that
is, a family of probability distributions consistent with any available structural or
statistical information. DRO seeks decisions that perform best under the worst dis-
tribution in the ambiguity set. This worst case criterion is supported by findings
in psychology and neuroscience, which indicate that many decision-makers have a
low tolerance for distributional ambiguity. DRO is rooted in statistics, operations re-
search and control theory, and recent research has uncovered its deep connections to
regularization techniques and adversarial training in machine learning. This survey
presents the key findings of the field in a unified and self-contained manner.
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1. Introduction
Traditionally, mathematical optimization studies problems of the form

inf
𝑥∈X

ℓ(𝑥),

where a decision 𝑥 is sought from the set X ⊆ R𝑛 of feasible solutions that min-
imizes a loss function ℓ : R𝑛 → R. With its early roots in the development of
calculus by Isaac Newton, Gottfried Wilhelm Leibniz, Pierre de Fermat and others
in the late seventeenth century, mathematical optimization has a rich history that
involves contributions from numerous mathematicians, economists, engineers and
scientists. The birth of modern mathematical optimization is commonly credited to
George Dantzig, whose simplex algorithm developed in 1947 solves linear optimiz-
ation problems where ℓ is affine andX is a polyhedron (Dantzig 1956). Subsequent
milestones include the development of the rich theory of convex analysis (Rockafel-
lar 1970) as well as the discovery of polynomial-time solution methods for linear
(Khachiyan 1979, Karmarkar 1984) and broad classes of nonlinear convex optim-
ization problems (Nesterov and Nemirovskii 1994).

Classical optimization problems are deterministic, that is, all problem data are as-
sumed to be known with certainty. However, most decision problems encountered
in practice depend on parameters that are corrupted by measurement errors or
that are revealed only after a decision must be determined and committed. A
naïve approach to modelling uncertainty-affected decision problems as determ-
inistic optimization problems would be to replace all uncertain parameters with
their expected values or with appropriate point predictions. However, it has long
been known and well documented that decision-makers who replace an uncertain
parameter of an optimization problem with its mean value fall victim to the ‘flaw of
averages’ (Savage, Scholtes and Zweidler 2006, Savage 2012). In order to account
for uncertainty realizations that deviate from the mean value, Beale (1955) and

https://doi.org/10.1017/S0962492924000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000084


Distributionally robust optimization 581

Dantzig (1955) independently introduced stochastic programs of the form

inf
𝑥∈X
EP [ℓ(𝑥, 𝑍)], (1.1)

which explicitly model the uncertain problem parameters 𝑍 as a random vector
that is governed by a probability distribution P, and where a decision is sought that
performs best in expectation (or, subsequently, according to some risk measure).
Since then, stochastic programming has grown into a mature field (Birge and
Louveaux 2011, Shapiro, Dentcheva and Ruszczyński 2009), and it provides the
theoretical underpinnings of the empirical risk minimization principle in machine
learning (Bishop 2006, Hastie, Tibshirani and Friedman 2009).

Despite their success in theory and practice, stochastic programs suffer from at
least two shortcomings. Firstly, the assumption that the probability distribution P is
known precisely is unrealistic in many practical settings, and stochastic programs
can be sensitive to mis-specifications of this distribution. This effect has been
described by different communities as the optimizer’s curse (Smith and Winkler
2006), the error-maximization effect of optimization (Michaud 1989, DeMiguel
and Nogales 2009), the optimization bias (Shapiro 2003) or overfitting (Bishop
2006, Hastie et al. 2009). Secondly, evaluating the expected loss of a fixed decision
requires computing a multi-dimensional integral, which is provably hard already for
embarrassingly simple loss functions and distributions. Hence stochastic programs
suffer from the curse of dimensionality, that is, their computational complexity
generically displays an exponential dependence on the dimension of the random
vector 𝑍 . To alleviate both shortcomings, Soyster (1973) proposed modelling
uncertainty-affected decision problems as robust optimization problems of the form

inf
𝑥∈X

sup
𝑧∈Z

ℓ(𝑥, 𝑧).

Robust optimization replaces the probabilistic description of the uncertain problem
parameters with a set-based description and seeks for decisions that perform best
in view of the worst anticipated parameter realization 𝑧 from within an uncertainty
set Z . After an extended period of neglect, the ideas of Soyster (1973) have been
revisited and substantially extended in the late 1990s onwards by Kouvelis and Yu
(1997), El Ghaoui, Oustry and Lebret (1998), El Ghaoui and Lebret (1998a,b),
Ben-Tal and Nemirovski (1998, 1999a,b), Bertsimas and Sim (2004) and others.
For reviews of the robust optimization literature, we refer to Ben-Tal, El Ghaoui
and Nemirovski (2009), Rustem and Howe (2009) and Bertsimas and den Hertog
(2022). We point out that similar ideas have been developed independently in the
areas of robust stability (Horn and Johnson 1985, Doyle, Glover, Khargonekar and
Francis 1989, Green and Limebeer 1995), which investigates whether a system
remains stable in the face of parameter variations, and robust control (Zames 1966,
Khalil 1996, Zhou, Doyle and Glover 1996), which designs systems that maintain
a desirable performance in the presence of parameter variations. For textbook
introductions to robust stability and control, we refer to Zhou and Doyle (1999) and
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Dullerud and Paganini (2001). Hansen and Sargent (2008) adapt robust control
techniques to economic problems affected by model uncertainty, where they design
policies that perform well across a range of possible model mis-specifications.

While robust optimization reduces the informational and computational burden
that plagues stochastic programs, its equal treatment of all parameter realizations
within the uncertainty set and its exclusive focus on worst-case scenarios can
make it overly conservative for practical applications. These concerns prompted
researchers to study distributionally robust optimization problems of the form

inf
𝑥∈X

sup
P∈P
EP [ℓ(𝑥, 𝑍)], (1.2)

which model the uncertain problem parameters 𝑍 as a random vector that is gov-
erned by some distribution P from within an ambiguity set P , and where a decision
is sought that performs best in view of its expected value under the worst distribution
P ∈ P . Distributionally robust optimization (DRO) thus blends the distributional
perspective of stochastic programming with the worst-case focus of robust optim-
ization. Herbert E. Scarf is commonly credited with pioneering this approach in
his study on newsvendor problems where the uncertain demand distribution is only
characterized through its mean and variance (Scarf 1958). Subsequently, Dupačová
(1966, 1987, 1994) and Shapiro and Kleywegt (2002) have studied DRO problems
whose ambiguity sets specify the support, some lower-order moments, independ-
ence patterns or other structural properties of the unknown probability distribution.
Ermoliev, Gaivoronski and Nedeva (1985) and Gaivoronski (1991) have developed
early solution approaches for DRO problems over moment ambiguity sets. The
advent of modern DRO is often attributed to the works of Bertsimas and Popescu
(2002, 2005), who derive probability inequalities under partial distributional in-
formation and apply their techniques to option pricing problems, of El Ghaoui,
Oks and Oustry (2003) and Calafiore and El Ghaoui (2006), who study DRO prob-
lems where a quantile of the objective function should be minimized, or a set of
uncertainty-affected constraints should be satisfied with high probability, across all
probability distributions with known moment bounds, and of Delage and Ye (2010),
who study similar DRO problems with a worst-case expected value objective.

Early research on DRO has primarily focused on moment ambiguity sets, which
contain all distributions on a prescribed support setZ that satisfy finitely many mo-
ment constraints. In contrast to stochastic programs, DRO problems with moment
ambiguity sets sometimes exhibit favourable scaling with respect to the dimen-
sion of the random vector 𝑍 . However, strikingly different distributions can share
identical moments. As a consequence, moment ambiguity sets always include a
wide range of distributions, including some implausible ones that can safely be ruled
out when ample historical data is available. This prompted Ben-Tal et al. (2013)
and Wang, Glynn and Ye (2016) to introduce ambiguity sets that contain all distri-
butions in some neighbourhood of a prescribed reference distribution (typically the
empirical distribution that is formed from historical data). These neighbourhoods
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can be defined with respect to a discrepancy function between probability distri-
butions such as a 𝜙-divergence (Csiszár 1963) or a Wasserstein distance (Villani
2008). Unlike moment ambiguity sets, discrepancy-based ambiguity sets have a
tunable size parameter (e.g. a radius) and can thus be shrunk to a singleton that
contains only the reference distribution. If the reference distribution converges to
the unknown true distribution and the size parameter decays to 0 as more historical
data becomes available, then the DRO problem eventually reduces to the classical
stochastic program under the true distribution. Early work on discrepancy-based
ambiguity sets relies on the assumption that 𝑍 is a discrete random vector with a
finite support set Z . Extensions to discrepancy-based DRO problems with generic
(possibly continuous) random vectors are due to Mohajerin Esfahani and Kuhn
(2018), Zhao and Guan (2018), Blanchet and Murthy (2019), Zhang, Yang and
Gao (2024b) and Gao and Kleywegt (2023), who construct ambiguity sets using
optimal transport discrepancies. We refer to Kuhn, Mohajerin Esfahani, Nguyen
and Shafieezadeh-Abadeh (2019) and Rahimian and Mehrotra (2022) for prior
surveys of the DRO literature.

Historically, the term ‘distributional robustness’ has its roots in robust statistics.
The term was coined by Huber (1981) to describe methods aimed at making
robust decisions in the presence of outlier data points. This idea expanded upon
earlier works by Box (1953, 1979), who explores robustness in situations where the
underlying distribution deviates from normality, a common assumption underlying
many statistical models. To address the challenges posed by outliers, statisticians
have developed several contamination models, each offering a unique approach
to mitigating data irregularities. The Huber contamination model, introduced
by Huber (1964, 1968) and further developed by Hampel (1968, 1971), assumes
that the observed data is drawn from a mixture of the true distribution and an
arbitrary contaminating distribution. Neighbourhood contamination models define
deviations from the true distribution in terms of statistical distances such as the total
variation (Donoho and Liu 1988) or Wasserstein distances (Zhu, Jiao and Steinhardt
2022a, Liu and Loh 2023). More recently, data-dependent adaptive contamination
models allow for a fraction of the observed data points to be replaced with points
drawn from an arbitrary distribution (Diakonikolas et al. 2019, Zhu et al. 2022a).
Interestingly, the optimistic counterpart of a DRO model, which optimizes in view
of the best (as opposed to the worst) distribution in the ambiguity set, recovers
many estimators from robust statistics (Blanchet, Li, Lin and Zhang 2024b, Jiang
and Xie 2024). For a survey of recent advances in algorithmic robust statistics we
refer to Diakonikolas and Kane (2023).

Robust and distributionally robust optimization have found manifold applications
in machine learning. For example, popular regularizers from the machine learning
literature are known to admit a robustness interpretation, which offers theoretical
insights into the strong empirical performance of regularization in practice (Xu,
Caramanis and Mannor 2009, Shafieezadeh-Abadeh, Kuhn and Mohajerin Esfahani
2019, Li, Lin, Blanchet and Nguyen 2022, Gao, Chen and Kleywegt 2024b).

https://doi.org/10.1017/S0962492924000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000084


584 D. Kuhn, S. Shafiee and W. Wiesemann

Likewise, optimistic counterparts of DRO models that optimize in view of the
best (as opposed to the worst) distribution in the ambiguity set give rise to upper
confidence bound algorithms that are ubiquitous in the bandit and reinforcement
learning literature (Blanchet et al. 2024b, Jiang and Xie 2024). DRO is also related
to adversarial training, which aims to improve the generalization performance of a
machine learning model by training it in view of adversarial examples (Goodfellow,
Shlens and Szegedy 2015). Adversarial examples are perturbations of existing data
points that are designed to mislead a model into making incorrect predictions.

There are also deep connections between DRO and extensions of stochastic (dy-
namic) programming that replace the expected value with coherent risk measures.
Similar to the expected value, a risk measure maps random variables to exten-
ded real numbers. In contrast to the expected value, which is risk-neutral since
it weighs positive and negative outcomes equally, risk measures most commonly
assign greater weights to negative outcomes and thus account for the risk aversion
frequently observed among decision-makers. Artzner, Delbaen, Eber and Heath
(1999) and Delbaen (2002) show that risk measures satisfying the axioms of co-
herence as well as a Fatou property can be equivalently represented as worst-case
expectations over specific sets of distributions. In other words, there is a direct
link between optimizing worst-case expectations (as done in DRO) and optimizing
coherent risk measures. A similar representation theorem has been developed for
a class of nonlinear expectations, the so-called 𝐺-expectations that are based on
the solution of a backward stochastic differential equation, in the financial math-
ematics literature (Peng 1997, 2007a,b, 2019). Peng (2023) shows that sublinear
𝐺-expectations are equivalent to worst-case expectations over specific families of
distributions, thus creating a bridge between the theory of𝐺-expectations and DRO.

Philosophically, DRO is related to the principle of ambiguity aversion, under
which individuals prefer known risks over unknown risks even when the unknown
risks promise potentially higher rewards. In the economics literature, the distinction
between risky outcomes whose probabilities are known and ambiguous outcomes
whose probabilities are (partially) unknown goes back to at least Keynes (1921) and
Knight (1921). The concept of ambiguity aversion has been widely popularized
through the Ellsberg paradox (Ellsberg 1961), a thought experiment under which
people are asked to choose between betting on an urn with a known distribution of
coloured balls (e.g. 50 red and 50 blue) and an urn with an unknown distribution
of the same coloured balls (i.e. the proportion of red to blue is unknown). Despite
the potential for equal or better odds, many people prefer to bet on the urn with
the known distribution, that is, they display ambiguity aversion. The Ellsberg
paradox challenges classical expected utility theory, and it has led to extensions
such as the maxmin expected utility theory (Gilboa and Schmeidler 1989) that serve
as theoretical underpinnings of DRO. Ambiguity aversion has subsequently been
identified in countless empirical economic studies across financial markets (Epstein
and Miao 2003, Bossaerts, Ghirardato, Guarnaschelli and Zame 2010), insurance
markets (Cabantous 2007), individual decision-making (Dimmock, Kouwenberg

https://doi.org/10.1017/S0962492924000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000084


Distributionally robust optimization 585

and Wakker 2016), macroeconomic policy (Hansen and Sargent 2010), auctions
(Salo and Weber 1995) and games of trust (Li, Turmunkh and Wakker 2019b).

There is also substantial medical and neuroscientific evidence that supports the
presence of ambiguity aversion. Hsu et al. (2005) found that the amygdala, a key
emotional processing centre in the brain, becomes more active when individuals
are confronted with ambiguity compared to situations with known probabilities,
indicating its role in driving ambiguity aversion. A meta-analysis by Krain et al.
(2006) highlights the involvement of the prefrontal cortex, which is responsible for
higher-order cognitive control, rational decision-making and emotional regulation,
in processing ambiguity. In addition, a meta-analysis of Wu et al. (2021) shows that
processing risk and ambiguity both rely on the anterior insula. Risk processing ad-
ditionally activates the dorsomedial prefrontal cortex and ventral striatum, whereas
ambiguity processing specifically engages the dorsolateral prefrontal cortex, in-
ferior parietal lobe, and right anterior insula. This supports the notion that distinct
neural mechanisms are engaged when individuals face ambiguous versus risky de-
cisions. Genetic factors may influence an individual’s tendency toward ambiguity
aversion. He et al. (2010) link certain genetic polymorphisms to the perform-
ance of individuals in decision-making under risk and ambiguity. In a separate
study, Buckert, Schwieren, Kudielka and Fiebach (2014) examine how hormonal
changes, such as higher cortisol levels which are linked to stress and anxiety, affect
decision-making under risk and ambiguity. These findings collectively suggest that
perceptions of risk and ambiguity are not just a cognitive phenomenon but also in-
fluenced by brain structures and genetic and hormonal factors that shape individual
differences in decision-making under ambiguity. Finally, we mention Hartley and
Somerville (2015) and Blankenstein, Crone, van den Bos and van Duĳvenvoorde
(2016), who examine how ambiguity aversion differs between children, adolescents
and adults, and Hayden, Heilbronner and Platt (2010), who observed that rhesus
macaque monkeys also exhibit ambiguity aversion when offered the choice between
risky and ambiguous games of large and small juice outcomes.

The remainder of this survey is structured as follows. A significant part of our
analysis is dedicated to studying the worst-case expectation supP∈P EP [ℓ(𝑥, 𝑍)],
which constitutes the objective function of the DRO problem (1.2). Evaluating this
expression typically requires the solution of a semi-infinite optimization problem
over infinitely many variables that characterize the probability distribution P, sub-
ject to finitely many constraints imposed by the ambiguity set P . This problem,
which we refer to as nature’s subproblem, is the key feature that distinguishes the
DRO problem (1.2) from deterministic, stochastic and robust optimization prob-
lems. Sections 2 and 3 review commonly studied ambiguity sets P and their
topological properties, focusing especially on conditions under which nature’s sub-
problem attains its optimal value. Sections 4 and 5 develop a duality theory for
nature’s subproblem that allows us to upper-bound or equivalently reformulate the
worst-case expectation with a semi-infinite optimization problem over finitely many
dual decision variables that are subjected to infinitely many constraints. This duality
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framework lays the foundations for the analytical solution of nature’s subproblem
in Section 6, which relies on constructing primal and dual feasible solutions that
yield the same objective value and thus enjoy strong duality. Sections 7 and 8 lever-
age the same duality theory to develop equivalent reformulations and conservative
approximations of nature’s subproblem as well as the overall DRO problem (1.2).
Section 9 demonstrates how the duality theory gives rise to numerical solution
techniques for nature’s subproblem and the full DRO problem. Finally, Section 10
reviews the statistical guarantees enjoyed by different ambiguity sets.

Length restrictions dictated difficult trade-offs in the choice of topics covered
by this survey. We decided to focus on the most commonly used ambiguity sets
and to only briefly review other possible choices, such as marginal ambiguity sets,
ambiguity sets with structural constraints (including, for example, symmetry and
unimodality), Sinkhorn ambiguity sets or conditional relative entropy ambiguity
sets. Likewise, we do not cover the important but somewhat more advanced topics
of distributionally favourable optimization and decision randomization. Finally, we
focus on single-stage problems where the uncertainty is fully resolved after the here-
and-now decision 𝑥 ∈ X is taken; two-stage and multi-stage DRO problems, where
uncertainty unfolds over time and recourse decisions are possible, are reviewed by
Delage and Iancu (2015) and Yanıkoğlu, Gorissen and den Hertog (2019).

1.1. Notation

All vector spaces considered in this paper are defined over the real numbers. For
brevity, we simply refer to them as ‘vector spaces’ instead of ‘real vector spaces’.
We use R = R ∪ {−∞,∞} to denote the extended reals. The effective domain
of a function 𝑓 : R𝑑 → R is defined as dom( 𝑓 ) = {𝑧 ∈ R𝑑 : 𝑓 (𝑧) < ∞}, and the
epigraph of 𝑓 is defined as epi( 𝑓 ) = {(𝑧, 𝛼) ∈ R𝑑 × R : 𝑓 (𝑧) ≤ 𝛼}. We say that
𝑓 is proper if dom( 𝑓 ) ≠ ∅ and 𝑓 (𝑧) > −∞ for all 𝑧 ∈ R𝑑 . The convex conjugate
of 𝑓 is the function 𝑓 ∗ : R𝑑 → R defined by 𝑓 ∗(𝑦) = sup𝑧∈R𝑑 𝑦⊤𝑧 − 𝑓 (𝑧). A
convex function 𝑓 is called closed if it is proper and lower semicontinuous or if
it is identically equal to +∞ or to −∞. One can show that 𝑓 is closed if and only
if it coincides with its bi-conjugate 𝑓 ∗∗, that is, with the conjugate of 𝑓 ∗. If 𝑓 is
proper, convex and lower semicontinuous, then its recession function 𝑓∞ : R𝑑 → R
is defined by 𝑓∞(𝑧) = lim𝛼→∞ 𝛼−1( 𝑓 (𝑧0 + 𝛼𝑧) − 𝑓 (𝑧0)), where 𝑧0 is any point in
dom( 𝑓 ) (Rockafellar 1970, Theorem 8.5). The perspective of 𝑓 is the function
𝑓 𝜋 : R𝑑 × R→ R defined by 𝑓 𝜋(𝑧, 𝑡) = 𝑡 𝑓 (𝑧/𝑡) if 𝑡 > 0, 𝑓 𝜋(𝑧, 𝑡) = 𝑓∞(𝑧) if 𝑡 = 0
and 𝑓 𝜋(𝑧, 𝑡) = ∞ if 𝑡 < 0. One can show that 𝑓 𝜋 is proper, convex and lower
semicontinuous (Rockafellar 1970, p. 67). When there is no risk of confusion, we
occasionally use 𝑡 𝑓 (𝑧/𝑡) to denote 𝑓 𝜋(𝑧, 𝑡) even if 𝑡 = 0. The indicator function
𝛿Z : R𝑑 → R of a set Z ⊆ R𝑑 is defined by 𝛿Z (𝑧) = 0 if 𝑧 ∈ Z and 𝛿Z (𝑧) = ∞ if
𝑧 ∉ Z . The conjugate 𝛿∗Z of 𝛿Z is called the support function of Z . Thus it satisfies
𝛿∗Z (𝑦) = sup𝑧∈Z 𝑦⊤𝑧. Random objects are denoted by capital letters (e.g. 𝑍) and
their realizations are denoted by the corresponding lowercase letters (e.g. 𝑧). For
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any closed set Z ⊆ R𝑑 , we use M(Z) to denote the space of all finite signed Borel
measures on Z , while M+(Z) stands for the convex cone of all (non-negative)
Borel measures in M(Z), and P(Z) stands for the convex set of all probability
distributions in M+(Z). The expectation operator with respect to P ∈ P(Z) is
defined by EP [ 𝑓 (𝑍)] =

∫
Z 𝑓 (𝑧) dP(𝑧) for any Borel function 𝑓 : Z → R. If the

integrals of the positive and the negative parts of 𝑓 both evaluate to ∞, then we
define EP [ 𝑓 (𝑍)] ‘adversarially’. That is, we set EP [ 𝑓 (𝑍)] = ∞ (−∞) if the integral
appears in the objective function of a minimization (maximization) problem. The
Dirac probability distribution that assigns unit probability to 𝑧 ∈ Z is denoted as 𝛿𝑧 .
The Dirac distribution 𝛿𝑧 should not be confused with the indicator function 𝛿{𝑧}
of the singleton {𝑧}. For any P ∈ P(Z) and any Borel-measurable transformation
𝑓 : Z → Z ′ between Borel sets Z ⊆ R𝑑 and Z ′ ⊆ R𝑑′ , we let P ◦ 𝑓 −1 denote
the pushforward distribution of P under 𝑓 . Thus, if 𝑍 is a random vector on Z
governed by P, then 𝑓 (𝑍) is a random vector on Z ′ governed by P ◦ 𝑓 −1. The
closure, the interior and the relative interior of a set Z ⊆ R𝑑 are denoted by cl(Z),
int(Z) and rint(Z), respectively. We use R𝑑+ and R𝑑++ to denote the non-negative
orthant in R𝑑 and its interior. In addition, we use S𝑑 to denote the space of all
symmetric matrices in R𝑑×𝑑 . The cone of positive semidefinite matrices in S𝑑 is
denoted by S𝑑+ , and S𝑑++ stands for its interior, that is, the set of all positive definite
matrices in S𝑑 . The truth value 1E of a logical statement evaluates to 1 if E is true
and to 0 otherwise. The set of all natural numbers {1, 2, 3, . . .} is denoted by N,
and [𝑛] = {1, . . . , 𝑛} stands for the set of all integers up to 𝑛 ∈ N.

2. Ambiguity sets
An ambiguity setP is a family of probability distributions on a common measurable
space. Throughout this paper we assume that P ⊆ P(Z), where P(Z) denotes
the entirety of all Borel probability distributions on a closed set Z ⊆ R𝑑 . This
section reviews popular classes of ambiguity sets. For each class, we first give a
formal definition and provide historical background information. Subsequently, we
exemplify important instances of ambiguity sets and highlight how they are used.

2.1. Moment ambiguity sets

A moment ambiguity set is a family of probability distributions that satisfy finitely
many (generalized) moment conditions. Formally, it can thus be represented as

P = {P ∈ P(Z) : EP [ 𝑓 (𝑍)] ∈ F }, (2.1)

where 𝑓 : Z → R𝑚 is a Borel-measurable moment function, and F ⊆ R𝑚 is an
uncertainty set. By definition, the moment ambiguity set (2.1) thus contains all
probability distributions P supported on Z whose generalized moments EP [ 𝑓 (𝑍)]
are well-defined and belong to the uncertainty set F . Ambiguity sets of the
type (2.1) were first studied by Isii (1960, 1962) and Karlin and Studden (1966)
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to establish the sharpness of generalized Chebyshev inequalities. The following
subsections review popular instances of the moment ambiguity set.

2.1.1. Support-only ambiguity sets
The support-only ambiguity set contains all probability distributions supported on
Z ⊆ R𝑑 , that is, P = P(Z). It can be viewed as an instance of (2.1) with 𝑓 (𝑧) = 1
and F = {1}. Any DRO problem with ambiguity set P(Z) is ostensibly equivalent
to a classical robust optimization problem with uncertainty set Z , that is,

inf
𝑥∈X

sup
P∈P(Z)

EP [ℓ(𝑥, 𝑍)] = inf
𝑥∈X

sup
𝑧∈Z

ℓ(𝑥, 𝑧).

For a comprehensive review of the theory and applications of robust optimization
we refer to Ben-Tal and Nemirovski (1998, 1999a, 2000, 2002), Bertsimas and Sim
(2004), Ben-Tal et al. (2009), Bertsimas, Brown and Caramanis (2011), Ben-Tal,
den Hertog and Vial (2015a) and Bertsimas and den Hertog (2022).

If the uncertainty set Z covers a fraction of 1− 𝜀 of the total probability mass of
some distribution P, then the worst-case loss sup𝑧∈Z ℓ(𝑥, 𝑧) is guaranteed to exceed
the (1 − 𝜀)-quantile of ℓ(𝑥, 𝑍) under P. This can be achieved by leveraging prior
structural information or statistical data from P. For example, P(𝑍 ∈ Z) ≥ 1 − 𝜀
may hold (with certainty) if Z is an appropriately sized intersection of half-spaces
and ellipsoids and if 𝑍 has independent, symmetric, unimodal and/or sub-Gaussian
components under P (Bertsimas and Sim 2004, Janak, Lin and Floudas 2007, Ben-
Tal et al. 2009, Li, Ding and Floudas 2011, Bertsimas, den Hertog and Pauphilet
2021). Alternatively, it may hold (with high confidence) if Z is constructed from
independent samples fromP by using statistical hypothesis tests (Postek, den Hertog
and Melenberg 2016, Bertsimas, Gupta and Kallus 2018b,a), quantile estimation
(Hong, Huang and Lam 2020) or learning-based methods (Han, Shang and Huang
2021, Goerigk and Kurtz 2023, Wang, Becker, Van Parys and Stellato 2023).

2.1.2. Markov ambiguity sets
Markov’s inequality provides an upper bound on the probability that a non-negative
univariate random variable 𝑍 with mean 𝜇 ≥ 0 exceeds a positive threshold 𝜏 > 0.
Formally, it states that P(𝑍 ≥ 𝜏) ≤ 𝜇/𝜏 for every possible probability distribution
of 𝑍 in the ambiguity set P = {P ∈ P(R+) : EP [𝑍] = 𝜇}. If 𝜇 ≤ 𝜏, then
Markov’s inequality is sharp, that is, there exists a probability distribution P★ ∈ P
for which the inequality holds as an equality. Indeed, the distribution P★ = (1 −
𝜇/𝜏)𝛿0 + 𝜇/𝜏𝛿𝜏 , where 𝛿𝑧 is the Dirac distribution that places point mass as 𝑧 ∈ R,
is an element of P and satisfies P(𝑍 ≥ 𝜏) = 𝜇/𝜏. These insights imply that
supP∈P P(𝑍 ≥ 𝜏) = 𝜇/𝜏 and that the supremum is attained by P★ whenever 𝜇 ≤ 𝜏.
Thus Markov’s bound can be interpreted as the optimal value of a DRO problem.
It is therefore common to refer to P as a Markov ambiguity set. More generally,
we define the Markov ambiguity set corresponding to a closed support set Z ⊆ R𝑑
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and a mean vector 𝜇 ∈ R𝑑 as a family of multivariate distributions of the form

P = {P ∈ P(Z) : EP [𝑍] = 𝜇}. (2.2)

Thus the Markov ambiguity set (2.2) contains all distributions supported on Z that
share the same mean vector 𝜇. However, these distributions may have dramatically
different shapes and higher-order moments. Worst-case expectations over Markov
ambiguity sets are sometimes used as efficiently computable upper bounds on
the expected cost-to-go functions in stochastic programming. If the cost-to-go
functions are concave in the uncertain problem parameters, then these worst-case
expectations are closely related to Jensen’s inequality (Jensen 1906); see also
Section 6.1. If the cost-to-go functions are convex and Z is a polyhedron, on
the other hand, then these worst-case expectations are related to the Edmundson–
Madansky inequality (Edmundson 1956, Madansky 1959); see also Section 6.2.

2.1.3. Chebyshev ambiguity sets
Chebyshev’s inequality provides an upper bound on the probability that a univariate
random variable 𝑍 with finite mean 𝜇 ∈ R and variance 𝜎2 > 0 deviates from its
mean by more than 𝑘 > 0 standard deviations. Formally, it states that P(|𝑍 − 𝜇 | ≥
𝑘𝜎) ≤ 1/𝑘2 for every possible probability distribution of 𝑍 in the ambiguity set
P = {P ∈ P(R) : EP [𝑍] = 𝜇, EP [𝑍2] = 𝜎2 + 𝜇2}. Chebyshev’s inequality is sharp
if 𝑘 ≥ 1. Indeed, one readily verifies that the distribution

P★ =
1

2𝑘2 𝛿𝜇−𝑘𝜎 +
(

1 − 1
𝑘2

)
𝛿𝜇 +

1
2𝑘2 𝛿𝜇+𝑘𝜎

is an element of P and satisfies P(|𝑍 − 𝜇 | ≥ 𝑘𝜎) = 1/𝑘2. These insights imply that
supP∈P P(|𝑍 − 𝜇 | ≥ 𝑘𝜎) = 1/𝑘2 and that the supremum is attained for 𝑘 ≥ 1. Thus
Chebyshev’s bound can be interpreted as the optimal value of a DRO problem. It is
therefore common to refer to P as a Chebyshev ambiguity set. More generally, we
define the Chebyshev ambiguity set corresponding to a closed support set Z ⊆ R𝑑 ,
mean vector 𝜇 ∈ R𝑑 and second-order moment matrix 𝑀 ∈ S𝑑+ , 𝑀 ⪰ 𝜇𝜇⊤, as

P = {P ∈ P(Z) : EP [𝑍] = 𝜇, EP [𝑍𝑍⊤] = 𝑀}. (2.3)

Thus the Chebyshev ambiguity set (2.3) contains all distributions supported on Z
that share the same mean vector 𝜇 and second-order moment matrix 𝑀 (and thus
also the same covariance matrix Σ = 𝑀 − 𝜇𝜇⊤ ∈ S𝑑+ ). However, these distributions
may have dramatically different shapes and higher-order moments.

The Chebyshev ambiguity set (2.3) captures the distributional information rel-
evant for multivariate Chebyshev inequalities (Lal 1955, Marshall and Olkin 1960,
Tong 1980, Rujeerapaiboon, Kuhn and Wiesemann 2018). In operations research,
Chebyshev ambiguity sets are routinely used since the seminal work of Scarf (1958)
on the distributionally robust newsvendor, which is widely perceived as the first
paper on DRO. Since then a wealth of DRO models with Chebyshev ambiguity
sets have emerged in the context of newsvendor and portfolio selection problems.
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These models involve a wide range of different decision criteria such as the expec-
ted value (Gallego and Moon 1993, Natarajan and Linyi 2007, Popescu 2007), the
value-at-risk (El Ghaoui et al. 2003, Xu, Caramanis and Mannor 2012b, Zymler,
Kuhn and Rustem 2013a,b, Rujeerapaiboon, Kuhn and Wiesemann 2016, Yang
and Xu 2016, Zhang, Jiang and Shen 2018), the conditional value-at-risk (Nata-
rajan, Sim and Uichanco 2010, Chen, He and Zhang 2011, Zymler et al. 2013b,
Hanasusanto, Kuhn, Wallace and Zymler 2015a), spectral risk measures (Li 2018)
and distortion risk measures (Cai, Li and Mao 2023, Pesenti, Wang and Wang
2024), as well as minimax regret criteria (Yue, Chen and Wang 2006, Perakis and
Roels 2008). Besides this, Chebyshev ambiguity sets have found numerous ap-
plications in option and stock pricing (Bertsimas and Popescu 2002), statistics and
machine learning (Lanckriet, El Ghaoui, Bhattacharyya and Jordan 2001, 2002,
Strohmann and Grudic 2002, Huang et al. 2004, Bhattacharyya 2004, Farnia and
Tse 2016, Nguyen et al. 2019, Rontsis, Osborne and Goulart 2020), stochastic
programming (Birge and Wets 1986, Dulá and Murthy 1992, Dokov and Morton
2005, Bertsimas, Doan, Natarajan and Teo 2010, Natarajan, Teo and Zheng 2011),
control (Van Parys, Kuhn, Goulart and Morari 2015, Yang 2018, Xin and Goldberg
2021, 2022), the operation of power systems (Xie and Ahmed 2017, Zhao and
Jiang 2017), complex network analysis (Van Leeuwaarden and Stegehuis 2021,
Brugman, Van Leeuwaarden and Stegehuis 2022), queuing systems (van Eekelen,
Hanasusanto, Hasenbein and van Leeuwaarden 2025), healthcare (Mak, Rong and
Zhang 2015, Shehadeh, Cohn and Jiang 2020) and extreme event analysis (Lam
and Mottet 2017), among others.

2.1.4. Chebyshev ambiguity sets with uncertain moments
Working with Chebyshev ambiguity sets is appropriate when the first- and second-
order moments of P are known, while all higher-order moments are unknown. In
practice, however, even the first- and second-order moments are never known with
absolute certainty. Instead, they must be estimated from statistical data and are thus
subject to estimation errors. This prompted El Ghaoui et al. (2003) to introduce a
Chebyshev ambiguity set with uncertain moments, which can be represented as

P = {P ∈ P(Z) : (EP [𝑍],EP [𝑍𝑍⊤]) ∈ F }. (2.4)

Here F ⊆ R𝑑 × S𝑑+ is a convex set that captures the moment uncertainty. Clearly,
P can be expressed as a union of crisp Chebyshev ambiguity sets, that is, we have

P =
⋃

(𝜇,𝑀)∈F
{P ∈ P(Z) : EP [𝑍] = 𝜇, EP [𝑍𝑍⊤] = 𝑀}.

Note that the Chebyshev ambiguity set with uncertain moments encapsulates the
support-only ambiguity set, the Markov ambiguity set and the Chebyshev ambiguity
set as special cases. They are recovered by setting F = R𝑑 × S𝑑+ ,F = {𝜇} × S𝑑+ ,
and F = {𝜇} × {𝑀}, respectively.
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El Ghaoui et al. (2003) capture the uncertainty in the moments using the box

F = {(𝜇, 𝑀) ∈ R𝑑 × S𝑑+ : 𝜇 ≤ 𝜇 ≤ 𝜇, 𝑀 ⪯ 𝑀 ⪯ 𝑀}

parametrized by the moment bounds 𝜇, 𝜇 ∈ R𝑑 and 𝑀, 𝑀 ∈ S𝑑+ .
Given noisy estimates �̂� and Σ̂ for the unknown mean vector and covariance

matrix of P, respectively, Delage and Ye (2010) propose the ambiguity set

P =

{
P ∈ P(Z) : (EP [𝑍] − �̂�)⊤Σ̂−1(EP [𝑍] − �̂�) ≤ 𝛾1

EP [(𝑍 − �̂�)(𝑍 − �̂�)⊤] ⪯ 𝛾2Σ̂

}
.

By construction,P contains all distributions onZ whose first-order moments reside
in an ellipsoid with centre �̂� and whose second-order moments (relative to �̂�) reside
in a semidefinite cone with apex 𝛾2Σ̂. An elementary calculation reveals that

EP [(𝑍 − �̂�)(𝑍 − �̂�)⊤] = EP [𝑍𝑍⊤] − EP [𝑍] �̂�⊤ − �̂�EP [𝑍]⊤ + �̂��̂�⊤.

Thus P can be viewed as a Chebyshev ambiguity set with uncertain moments.
Indeed, P is an instance of (2.4) if we define the moment uncertainty set as

F =

{
(𝜇, 𝑀) ∈ R𝑑 × S𝑑+ : (𝜇 − �̂�)⊤Σ̂(𝜇 − �̂�) ≤ 𝛾1

𝑀 − 𝜇�̂�⊤ − �̂�𝜇⊤ + �̂��̂�⊤ ⪯ 𝛾2Σ̂

}
.

Delage and Ye (2010) show that if �̂� and Σ̂ are set to the sample mean and the
sample covariance matrix constructed from a finite number of independent samples
from P, respectively, then one can tune the size parameters 𝛾1 ≥ 0 and 𝛾2 ≥ 1 to
ensure that P belongs to P with any desired confidence.

Chebyshev as well as Markov ambiguity sets with uncertain moments have
found various applications ranging from control (Nakao, Jiang and Shen 2021)
to integer stochastic programming (Bertsimas, Natarajan and Teo 2004, Cheng,
Delage and Lisser 2014), portfolio optimization (Natarajan et al. 2010), extreme
event analysis (Bai, Lam and Zhang 2023b) and mechanism design and pricing
(Bergemann and Schlag 2008, Bandi and Bertsimas 2014, Koçyiğit, Iyengar, Kuhn
and Wiesemann 2020, Koçyiğit, Rujeerapaiboon and Kuhn 2022, Chen, Hu and
Wang 2024b, Bayrak, Koçyiğit, Kuhn and Pınar 2025, Anunrojwong, Balseiro and
Besbes 2024), among many others.

The uncertainty set F for the first- and second-order moments of P often corres-
ponds to a neighbourhood of a nominal mean–covariance pair (�̂�, Σ̂) with respect
to some measure of discrepancy. For example, matrix norms such as the Frobenius
norm, the spectral norm or the nuclear norm (Bernstein 2009, § 9) provide nat-
ural measures to quantify the dissimilarity of covariance matrices. The discrep-
ancy between two mean–covariance pairs (𝜇, Σ) and (�̂�, Σ̂) can also be defined
as the discrepancy between the normal distributions N (𝜇, Σ) and N (�̂�, Σ̂) with
respect to a probability metric or an information-theoretic divergence such as the
Kullback–Leibler divergence (Kullback 1959), the Fisher–Rao distance (Atkinson
and Mitchell 1981) or other spectral divergences (Zorzi 2014).
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As we will discuss in more detail in Section 2.3, the 2-Wasserstein distance
between two normal distributionsN (𝜇, Σ) andN (�̂�, Σ̂) coincides with the Gelbrich
distance between the underlying mean–covariance pairs (𝜇, Σ) and (�̂�, Σ̂). In the
following, we first provide a formal definition of the Gelbrich distance and then
exemplify how it can be used to define a moment uncertainty set F .

Definition 2.1 (Gelbrich distance). The Gelbrich distance between two mean–
covariance pairs (𝜇, Σ) and (�̂�, Σ̂) in R𝑑 × S𝑑+ is given by

G((𝜇, Σ), (�̂�, Σ̂)) =
√︃
∥𝜇 − �̂�∥22 + Tr

(
Σ + Σ̂ − 2(Σ̂1/2ΣΣ̂1/2)1/2

)
.

The Gelbrich distance is non-negative, symmetric and subadditive, and it van-
ishes if and only if (𝜇, Σ) = (�̂�, Σ̂). Thus it represents a metric on R𝑑 × S𝑑+ (Givens
and Shortt 1984, p. 239). When 𝜇 = �̂�, then the Gelbrich distance collapses to the
Bures distance between Σ and Σ̂, which was conceived as a measure of dissimilarity
between density matrices in quantum information theory. The Bures distance is
known to induce a Riemannian metric on the space of positive semidefinite matrices
(Bhatia, Jain and Lim 2018, 2019). When Σ and Σ̂ are simultaneously diagon-
alizable, then their Bures distance coincides with the Hellinger distance between
their spectra. The Hellinger distance is closely related to the Fisher–Rao metric
ubiquitous in information theory (Liese and Vajda 1987). Even though the Gelbrich
distance is non-convex, the squared Gelbrich distance is jointly convex in both of
its arguments. This is an immediate consequence of the following proposition,
discovered by Olkin and Pukelsheim (1982), Dowson and Landau (1982), Givens
and Shortt (1984) and Panaretos and Zemel (2020).

Proposition 2.2 (SDP representation of the Gelbrich distance). For any mean–
covariance pairs (𝜇, Σ) and (�̂�, Σ̂) in R𝑑 × S𝑑+ , we have

G2((𝜇, Σ), (�̂�, Σ̂)) =


min

𝐶∈R𝑑×𝑑
∥𝜇 − �̂�∥22 + Tr(Σ + Σ̂ − 2𝐶)

s.t.
[
Σ 𝐶

𝐶⊤ Σ̂

]
⪰ 0.

(2.5)

Proof. Throughout the proof we keep 𝜇, �̂� and Σ fixed and treat Σ̂ as a parameter.
We also use 𝑓 (Σ̂) as shorthand for the left-hand side of (2.5) and 𝑔(Σ̂) as shorthand
for the right-hand side of (2.5). Elementary manipulations show that

𝑔(Σ̂) = ∥𝜇 − �̂�∥22 + Tr(Σ + Σ̂) −


max

𝐶∈R𝑑×𝑑
Tr(2𝐶)

s.t.
[
Σ 𝐶

𝐶⊤ Σ̂

]
⪰ 0.

(2.6)

The maximization problem in (2.6) is dual to the following minimization problem:

inf
𝐴11,𝐴22∈S𝑑

Tr(𝐴11Σ) + Tr(𝐴22Σ̂)

s.t.
[
𝐴11 𝐼𝑑
𝐼𝑑 𝐴22

]
⪰ 0
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Strong duality holds because 𝐴11 = 𝐴22 = 2𝐼𝑑 constitutes a Slater point for the dual
problem (Ben-Tal and Nemirovski 2001, Theorem 2.4.1). The existence of a Slater
point further implies that the primal maximization problem in (2.6) as well as the
minimization problem in (2.5) are solvable. By Bernstein (2009, Corollary 8.2.2),
both 𝐴11 and 𝐴22 must be positive definite in order to be dual feasible. Thus they
are invertible. We can therefore employ a Schur complement argument (Ben-Tal
and Nemirovski 2001, Lemma 4.2.1) to simplify the dual problem to

inf
𝐴11⪰𝐴−1

22 ≻0
Tr(𝐴11Σ) + Tr(𝐴22Σ̂) = inf

𝐴22≻0
Tr(𝐴−1

22 Σ) + Tr(𝐴22Σ̂), (2.7)

where the equality holds because Σ ⪰ 0. The optimal value of the resulting min-
imization problem is concave and upper semicontinuous in Σ̂ because it constitutes
a pointwise infimum of affine functions of Σ̂. Thus 𝑔(Σ̂) is convex and lower semi-
continuous. We now show that if Σ̂ ≻ 0, then the convex minimization problem
over 𝐴22 in (2.7) can be solved in closed form. To this end, we construct a positive
definite matrix 𝐴★22 that satisfies the problem’s first-order optimality condition

Σ̂ − 𝐴−1
22 Σ𝐴

−1
22 = 0 ⇐⇒ 𝐴22Σ̂𝐴22 − Σ = 0.

Indeed, multiplying the quadratic equation on the right from both sides with Σ̂1/2

yields the equivalent equation (Σ̂1/2𝐴22Σ̂
1/2)2 = Σ̂1/2ΣΣ̂1/2. As Σ̂ ≻ 0, this

equation is uniquely solved by 𝐴★22 = Σ̂−1/2(Σ̂1/2ΣΣ̂1/2)1/2Σ̂−1/2. Substituting
𝐴★22 into (2.7) reveals that the optimal value of the dual minimization problem is
given by 2 Tr((Σ̂1/2ΣΣ̂1/2)1/2). Substituting this value into (2.6) then shows that
𝑔(Σ̂) = 𝑓 (Σ̂) whenever Σ̂ ≻ 0.

It remains to be shown that 𝑔(Σ̂) = 𝑓 (Σ̂) if Σ̂ is singular. To this end, we
recall from Nguyen, Shafieezadeh-Abadeh, Kuhn and Mohajerin Esfahani (2023b,
Lemma A.2) that the matrix square root is continuous on S𝑑+ , which implies that
𝑓 (Σ̂) is continuous on S𝑑+ . For any singular Σ̂ ⪰ 0, we thus have

𝑓 (Σ̂) = lim inf
Σ̂′→Σ̂, Σ̂′≻0

𝑓 (Σ̂′) = lim inf
Σ̂′→Σ̂, Σ̂′≻0

𝑔(Σ̂′) = 𝑔(Σ̂).

Here the first equality exploits the continuity of 𝑓 , and the second equality holds
because 𝑓 (Σ̂′) = 𝑔(Σ̂′) for every Σ̂′ ≻ 0. The third equality follows from the
convexity and lower semicontinuity of 𝑔, which imply that the limit inferior can
neither be larger nor smaller than 𝑔(Σ̂), respectively. This completes the proof.

Proposition 2.2 shows that the squared Gelbrich distance coincides with the
optimal value of a tractable semidefinite program. This makes the Gelbrich distance
attractive for computation. As a by-product, the proof of Proposition 2.2 reveals
that the squared Gelbrich distance is convex as well as continuous on its domain.

Following Nguyen, Shafiee, Filipović and Kuhn (2021), we can now introduce
the Gelbrich ambiguity set as an instance of the Chebyshev ambiguity set (2.4)
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with uncertain moments. The corresponding moment uncertainty set is given by

F =

{
(𝜇, 𝑀) ∈ R𝑑 × S𝑑+ : ∃Σ ∈ S

𝑑
+ with 𝑀 = Σ + 𝜇𝜇⊤,

G((𝜇, Σ), (�̂�, Σ̂)) ≤ 𝑟

}
, (2.8)

where (�̂�, Σ̂) is a nominal mean–covariance pair, and the radius 𝑟 ≥ 0 serves as a
tunable size parameter. Below we refer to F as the Gelbrich uncertainty set. The
next proposition establishes basic topological and computational properties of F .

Proposition 2.3 (Gelbrich uncertainty set). The uncertainty set F defined in
(2.8) is convex and compact. In addition, it admits the semidefinite representation

F =

(𝜇, 𝑀) ∈ R𝑑 × S𝑑+ :

∃𝐶 ∈ R𝑑×𝑑 , 𝑈 ∈ S𝑑+ with
∥ �̂�∥22 − 2𝜇⊤ �̂� + Tr(𝑀 + Σ̂ − 2𝐶) ≤ 𝑟2,[
𝑀 −𝑈 𝐶

𝐶⊤ Σ̂

]
⪰ 0,

[
𝑈 𝜇

𝜇⊤ 1

]
⪰ 0

.
Proof. The proof exploits the semidefinite representation of the squared Gelbrich
distance established in Proposition 2.2. Note first that if 𝑀 = Σ + 𝜇𝜇⊤, then

∥𝜇 − �̂�∥22 + Tr(Σ + Σ̂ − 2𝐶) = ∥ �̂�∥22 − 2𝜇⊤ �̂� + Tr(𝑀 + Σ̂ − 2𝐶).

By Proposition 2.2, the Gelbrich uncertainty set F can thus be represented as

F =

(𝜇, 𝑀) ∈ R𝑑 × S𝑑+ :

∃𝐶 ∈ R𝑑×𝑑 with
∥ �̂�∥22 − 2𝜇⊤ �̂� + Tr(𝑀 + Σ̂ − 2𝐶) ≤ 𝑟2,[
𝑀 − 𝜇𝜇⊤ 𝐶

𝐶⊤ Σ̂

]
⪰ 0

.
A standard Schur complement argument further reveals that[
𝑀 − 𝜇𝜇⊤ 𝐶

𝐶⊤ Σ̂

]
⪰ 0 ⇐⇒ ∃𝑈 ∈ S𝑑+ with

[
𝑀 −𝑈 𝐶

𝐶⊤ Σ̂

]
⪰ 0,

[
𝑈 𝜇

𝜇⊤ 1

]
⪰ 0.

Hence the Gelbrich uncertainty set F admits the semidefinite representation given
in the proposition statement. Convexity is evident from this representation, which
expresses F as the projection of a set defined by conic inequalities in a lifted space.

It remains to be shown that F is compact. To this end, we define

V = {(𝜇, Σ) ∈ R𝑑 × S𝑑+ : G((𝜇, Σ), (�̂�, Σ̂)) ≤ 𝑟}

as the ball of radius 𝑟 around (�̂�, Σ̂) with respect to the Gelbrich distance. Note
that F = 𝑓 (V), where the transformation 𝑓 : R𝑑 × S𝑑+ → R𝑑 × S𝑑+ is defined by
𝑓 (𝜇, Σ) = (𝜇, Σ + 𝜇𝜇⊤). We will now prove that V is compact. As 𝑓 is continuous
and as compactness is preserved under continuous transformations, this will readily
imply that F is compact. Clearly, V is closed because the Gelbrich distance is
continuous. To show that V is also bounded, fix any (𝜇, Σ) ∈ V . By the definition
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of the Gelbrich distance, we have ∥𝜇 − �̂�∥ ≤ 𝑟2. In addition, we find

Tr
(
(Σ̂1/2ΣΣ̂1/2)1/2)
= max
𝐶∈R𝑑×𝑑

{
Tr(𝐶) :

[
Σ 𝐶

𝐶⊤ Σ̂

]
⪰ 0

}
≤ max
𝐶∈R𝑑×𝑑

{
Tr(𝐶) : 𝐶2

𝑖 𝑗 ≤ Σ𝑖𝑖Σ̂ 𝑗 𝑗 ∀𝑖, 𝑗 ∈ [𝑑]
}

≤
√︃

Tr(Σ) Tr(Σ̂),

where the equality has been established in the proof of Proposition 2.2. The two
inequalities follow from a relaxation of the linear matrix inequality, which exploits
the observation that all second principal minors of a positive semidefinite matrix
are non-negative, and from the Cauchy–Schwarz inequality. Thus Σ satisfies(

Tr(Σ)1/2 − Tr(Σ̂)1/2 )2 ≤ Tr
(
Σ + Σ̂ − 2(Σ̂1/2ΣΣ̂1/2)1/2) ≤ 𝑟2,

where the second inequality holds because (𝜇, Σ) ∈ V . We may therefore conclude
that Tr(Σ) ≤ (𝑟 +Tr(Σ̂)1/2)2, which in turn implies that 0 ⪯ Σ ⪯ (𝑟 + (Tr(Σ̂))1/2)2𝐼𝑑 .
In summary, we have shown that both 𝜇 and Σ belong to bounded sets. As
(𝜇, Σ) ∈ V was chosen arbitrarily, this proves that V is indeed bounded and thus
compact.

Proposition 2.2 shows that the uncertainty set F is convex. This is surprising
because F = 𝑓 (V), where the Gelbrich ball V in the space of mean–covariance
pairs is convex thanks to Proposition 2.2 and where 𝑓 is a quadratic bĳection.
Indeed, convexity is usually only preserved under affine transformations.

Gelbrich ambiguity sets were introduced by Nguyen et al. (2021) in the context
of robust portfolio optimization. They have also found use in machine learning
(Bui, Nguyen and Nguyen 2022, Vu, Tran, Yue and Nguyen 2022, Nguyen, Bui and
Nguyen 2023a), estimation (Nguyen et al. 2023b), filtering (Shafieezadeh-Abadeh,
Nguyen, Kuhn and Mohajerin Esfahani 2018, Kargin, Hajar, Malik and Hassibi
2024b) and control (McAllister and Mohajerin Esfahani 2024, Al Taha, Yan and
Bitar 2023, Hajar, Kargin and Hassibi 2023, Hakobyan and Yang 2024, Taşkesen,
Iancu, Koçyiğit and Kuhn 2024, Kargin, Hajar, Malik and Hassibi 2024a,c,d).

2.1.5. Mean-dispersion ambiguity sets
If K ⊆ R𝑘 is a proper convex cone and 𝑣1, 𝑣2 ∈ R𝑘 , then the inequality 𝑣1 ⪯K 𝑣2
means that 𝑣2 − 𝑣1 ∈ K. Also, a function 𝐺 : R𝑚 → R𝑘 is called K-convex if

𝐺(𝜃𝑣1 + (1 − 𝜃)𝑣2) ⪯K 𝜃𝐺(𝑣1) + (1 − 𝜃)𝐺(𝑣2) for all 𝑣1, 𝑣2 ∈ R𝑚, 𝜃 ∈ [0, 1] .

The mean-dispersion ambiguity set corresponding to a convex closed support set
Z ⊆ R𝑑 , a mean vector 𝜇 ∈ R𝑑 , a K-convex dispersion function𝐺 : R𝑚 → R𝑘 and
a dispersion bound 𝑔 ∈ R𝑘 is defined as

P = {P ∈ P(Z) : EP [𝑍] = 𝜇, EP [𝐺(𝑍)] ⪯K 𝑔}. (2.9)
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The mean-dispersion ambiguity set is highly expressive, that is, it can model various
stylized features of the unknown probability distribution. For example, if ∥ · ∥ is a
norm on R𝑑 , 𝐺(𝑧) = ∥𝑧 − 𝜇∥ is convex in the usual sense, and 𝑔 = 𝜎 ∈ R+, then all
distributions P ∈ P have a mean absolute deviation from the mean that is bounded
by 𝜎. Alternatively, if𝐺(𝑧) = (𝑧− 𝜇)(𝑧− 𝜇)⊤ is S𝑑+ -convex and 𝑔 = Σ ∈ S𝑑+ , then P
reduces to a Chebyshev ambiguity set with moment uncertainty. Specifically, the
covariance matrix of any P ∈ P is bounded by Σ in Loewner order. Wiesemann,
Kuhn and Sim (2014) show that the ambiguity set P , which contains distributions
of the 𝑑-dimensional random vector 𝑍 , is closely related to the lifted ambiguity set

Q = {Q ∈ P(C) : EQ [𝑍] = 𝜇, EQ [𝑈] = 𝑔}

with support set C = {(𝑧, 𝑢) ∈ Z × R𝑘 : 𝐺(𝑧) ⪯K 𝑢}, which contains joint distribu-
tions of 𝑍 and an auxiliary𝑚-dimensional random vector𝑈. Indeed, one can prove
that P = {Q𝑍 : Q ∈ Q}, where Q𝑍 denotes the marginal distribution of 𝑍 under Q.
As the loss function depends only on 𝑍 but not on 𝑈, this reasoning implies that
the inner worst-case expectation problem in (1.2) satisfies

sup
P∈P
EP [ℓ(𝑥, 𝑍)] = sup

Q∈Q
EQ [ℓ(𝑥, 𝑍)] .

Hence one can replace the original ambiguity set P with the lifted ambiguity set Q.
This is useful because Q constitutes a simple Markov ambiguity set that specifies
only the support set C and the mean (𝜇, 𝑔) of the joint random vector (𝑍,𝑈). In
addition, one can show that Z is convex because Z is convex and 𝐺 is K-convex.
In summary, DRO problems with mean-dispersion ambiguity sets of the form (2.9)
can systematically be reduced to DRO problems with Markov ambiguity sets.

A more general class of mean-dispersion ambiguity sets can be used to shape the
moment generating function of 𝑍 under P. Specifically, Chen, Sim and Xu (2019)
introduce the entropic dominance ambiguity set

P = {P ∈ P(Z) : EP [𝑍] = 𝜇, log(EP [exp(𝜃⊤(𝑍 − 𝜇))]) ≤ 𝑔(𝜃) ∀𝜃 ∈ R𝑑},

where 𝑔 : R𝑑 → R is a convex and twice continuously differentiable function sat-
isfying 𝑔(0) = 0 and ∇𝑔(0) = 0. The constraints parametrized by 𝜃 impose a
continuum of upper bounds on the cumulant generating function (i.e. the logar-
ithmic moment generating function) of the centred random variable 𝑍 − 𝜇 under P.
The choice of 𝑔 determines the specific class of distributions included in the ambi-
guity set. For example, if 𝑔(𝜃) = 𝜎2𝜃⊤𝜃/2 for some 𝜎 > 0, then the ambiguity set
contains only sub-Gaussian distributions with variance proxy 𝜎2. Sub-Gaussian
distributions are probability distributions whose tails are bounded by the tails of a
Gaussian distribution. They play a significant role in probability theory and stat-
istics, particularly in the study of concentration inequalities and high-dimensional
phenomena (Vershynin 2018, Wainwright 2019).

The entropic dominance ambiguity set imposes infinitely many constraints on P.
Chen et al. (2019) show that worst-case expectation problems over this ambiguity
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set can be reformulated as semi-infinite conic programs. They propose a cutting-
plane algorithm to solve these conic programs efficiently. The entropic dominance
ambiguity set has also found applications in the study of nonlinear and PDE-
constrained DRO problems (Milz and Ulbrich 2020, 2022). Generalized entropic
dominance ambiguity sets are considered by Chen et al. (2024a).

2.1.6. Higher-order moment ambiguity sets
Markov and Chebyshev ambiguity sets only impose conditions on the first- and/or
second-order moments of P. DRO problems with such ambiguity sets are often
tractable. In this section we briefly comment on moment ambiguity sets that impose
conditions on higher-order (polynomial) moments of P, which generically lead to
NP-hard DRO problems (Popescu 2005, Propositions 4.5 and 4.6).

Assume now that Z is a closed semi-algebraic set defined as the feasible set of
finitely many polynomial inequalities. In addition, define the monomial of order
𝛼 ∈ Z𝑑+ in 𝑧 ∈ R𝑑 as the function

∏𝑑
𝑖=1 𝑧

𝛼𝑖
𝑖

, which we denote more compactly as
𝑧𝛼. The higher-order moment ambiguity set induced by a finite index set A ⊆ Z𝑑+
and the moment bounds 𝑚𝛼 ∈ R, 𝛼 ∈ A, is then given by

P = {P ∈ P(Z) : EP [𝑍𝛼] ≤ 𝑚𝛼 ∀𝛼 ∈ A}.

Evaluating the worst-case expectation of a polynomial function (or the characteristic
function of a semi-algebraic set) over all distributions in P thus amounts to solving
a generalized moment problem. This moment problem as well as its dual constitute
semi-infinite linear programs, which can be recast as finite-dimensional conic
optimization problems over certain moment cones and the corresponding dual cones
of non-negative polynomials (Karlin and Studden 1966, Zuluaga and Pena 2005).
Even though NP-hard in general, these conic problems can be approximated by
increasingly tight sequences of tractable semidefinite programs by using tools from
polynomial optimization (Parrilo 2000, 2003, Lasserre 2001, 2009). This general
technique gives rise to worst-case expectation bounds and generalized Chebyshev
inequalities with respect to the ambiguity set P (Bertsimas and Sethuraman 2000,
Lasserre 2002, Popescu 2005, Lasserre 2008). In addition, it leads to tight bounds
on worst-case risk measures (Natarajan, Pachamanova and Sim 2009a).

2.2. 𝜙-divergence ambiguity sets

The dissimilarity between two probability distributions is often quantified in terms
of a 𝜙-divergence, which is uniquely determined by an entropy function 𝜙.

Definition 2.4 (Entropy functions). An entropy function 𝜙 : R → R is a lower
semicontinuous convex function with 𝜙(1) = 0 and 𝜙(𝑠) = +∞ for all 𝑠 < 0.

Note that any entropy function 𝜙 is continuous relative to its domain. In fact, this
is true for any univariate convex lower semicontinuous function. We emphasize,
however, that multivariate convex lower semicontinuous functions can have points
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of discontinuity within their domains (Rockafellar and Wets 2009, Example 2.38).
The notion of a 𝜙-divergence relies on the perspective 𝜙𝜋 of the entropy function 𝜙.

Definition 2.5 (𝜙-divergences (Csiszár 1963, 1967, Ali and Silvey 1966)). The
(generalized) 𝜙-divergence of P ∈ P(Z) with respect to P̂ ∈ P(Z) is given by

D𝜙(P, P̂) =
∫
Z
𝜙𝜋
(

dP
d𝜌

(𝑧),
dP̂
d𝜌

(𝑧)
)

d𝜌(𝑧),

where 𝜙 is an entropy function and 𝜌 ∈M+(Z) is any dominating measure. This
means that P and P̂ are absolutely continuous with respect to 𝜌, that is, P, P̂ ≪ 𝜌.

By the definition of 𝜙𝜋 and our convention that 0𝜙(𝑠/0) should be interpreted as
the recession function 𝜙∞(𝑠), D𝜙(P, P̂) can be recast as

D𝜙(P, P̂) =
∫
Z

dP̂
d𝜌

(𝑧) · 𝜙
( dP

d𝜌 (𝑧)
dP̂
d𝜌 (𝑧)

)
d𝜌(𝑧).

A dominating measure 𝜌 always exists, but it must depend on P and P̂. For example,
one may set 𝜌 = P + P̂. The absolute continuity conditions P ≪ 𝜌 and P̂ ≪ 𝜌

ensure that the Radon–Nikodym derivatives dP/d𝜌 and dP̂/d𝜌 are well-defined,
respectively. The following proposition derives a dual representation of a generic
𝜙-divergence, which reveals that D𝜙(P, P̂) is in fact independent of the choice of 𝜌.

Proposition 2.6 (Dual representation of 𝜙-divergences). We have

D𝜙(P, P̂) = sup
𝑓 ∈F

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝜙∗( 𝑓 (𝑧)) dP̂(𝑧),

where F denotes the family of all bounded Borel functions 𝑓 : Z → dom(𝜙∗).

Proof. As the entropy function 𝜙(𝑠) is proper, convex and lower semicontinuous
on R and as 0𝜙(𝑠/0) is interpreted as the recession function 𝜙∞(𝑠), the perspective
function 𝜙𝜋(𝑠, 𝑡) = 𝑡𝜙(𝑠/𝑡) is proper, convex and lower semicontinuous on R×R+.
By Rockafellar (1970, Theorem 12.2), 𝜙𝜋(𝑠, 𝑡) can therefore be expressed as the
conjugate of its conjugate. Note that the conjugate of 𝜙𝜋(𝑠, 𝑡) satisfies

(𝜙𝜋)∗( 𝑓 , 𝑔) = sup
𝑠∈R, 𝑡∈R+

𝑓 𝑠 + 𝑔𝑡 − 𝑡𝜙(𝑠/𝑡)

= sup
𝑡∈R+

𝑔𝑡 + 𝑡𝜙∗( 𝑓 )

=

{
0 if 𝑓 ∈ dom(𝜙∗) and 𝑔 + 𝜙∗( 𝑓 ) ≤ 0,
+∞ otherwise,

for all 𝑓 , 𝑔 ∈ R. The second equality in the above expression follows from
Rockafellar (1970, Theorem 16.1). As 𝜙𝜋(𝑠, 𝑡) = sup 𝑓 ,𝑔∈R 𝑠 𝑓 + 𝑡𝑔 − (𝜙𝜋)∗( 𝑓 , 𝑔)
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by virtue of Rockafellar (1970, Theorem 12.2), the 𝜙-divergence is thus given by

D𝜙(P, P̂) =
∫
Z

sup
𝑓 ,𝑔∈R

{
dP
d𝜌

(𝑧) · 𝑓 + dP̂
d𝜌

(𝑧) · 𝑔 − (𝜙𝜋)∗( 𝑓 , 𝑔)
}

d𝜌(𝑧)

=

∫
Z

sup
𝑓 ∈dom(𝜙∗)

{
dP
d𝜌

(𝑧) · 𝑓 − dP̂
d𝜌

(𝑧) · 𝜙∗( 𝑓 )
}

d𝜌(𝑧)

= sup
𝑓 ∈F

∫
Z

{
dP
d𝜌

(𝑧) · 𝑓 (𝑧) − dP̂
d𝜌

(𝑧) · 𝜙∗( 𝑓 (𝑧))
}

d𝜌(𝑧),

where the second equality exploits our explicit formula for (𝜙𝜋)∗ derived above,
while the third equality follows from Rockafellar and Wets (2009, Theorem 14.60).
This theorem applies because the function ℎ : dom(𝜙∗) × Z → R defined by

ℎ( 𝑓 , 𝑧) =
dP
d𝜌

(𝑧) · 𝑓 − dP̂
d𝜌

(𝑧) · 𝜙∗( 𝑓 )

is continuous in 𝑓 and Borel-measurable in 𝑧, thus constituting a Carathéodory
integrand in the sense of Rockafellar and Wets (2009, Example 14.29). The claim
then follows immediately from the definition of Radon–Nikodym derivatives.

Proposition 2.6 reveals that D𝜙(P, P̂) is jointly convex in P and P̂. If 𝜙(𝑠)
grows superlinearly with 𝑠, that is, if the asymptotic growth rate 𝜙∞(1) is infinite,
then D𝜙(P, P̂) is finite if and only if dP/d𝜌(𝑧) = 0 for 𝜌-almost all 𝑧 ∈ Z with
dP̂/d𝜌(𝑧) = 0. Put differently, D𝜙(P, P̂) is finite if and only if P ≪ P̂. In this
special case, the chain rule for Radon–Nikodym derivatives implies that

dP
d𝜌

/ dP̂
d𝜌

=
dP
dP̂
.

If 𝜙∞(1) = ∞, the 𝜙-divergence thus admits the more common (but less general)
representation

D𝜙(P, P̂) =

∫
Z 𝜙

(
dP
dP̂

(𝑧)
)

dP̂(𝑧) if P ≪ P̂,

+∞ otherwise.

We are now ready to define the 𝜙-divergence ambiguity set as

P = {P ∈ P(Z) : D𝜙(P, P̂) ≤ 𝑟}. (2.10)

This set contains all probability distributions P supported onZ whose 𝜙-divergence
with respect to some prescribed reference distribution P̂ is at most 𝑟 ≥ 0.

Remark 2.7 (Csiszár duals). The family of generalized 𝜙-divergences (which
may adopt finite values even if P 3 P̂) is invariant under permutations of P and
P̂. Formally, we have D𝜙(P, P̂) = D𝜓(P̂, P), where 𝜓 denotes the Csiszár dual of
𝜙 defined by 𝜓(𝑠) = 𝜙𝜋(1, 𝑠) = 𝑠𝜙(1/𝑠) (Ben-Tal, Ben-Israel and Teboulle 1991,
Lemma 2.3). One readily verifies that if 𝜙 is a valid entropy function in the sense
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Table 2.1. Examples of entropy functions and their Csiszár duals.

Divergence 𝜙(𝑠) (𝑠 ≥ 0) 𝜓(𝑠) (𝑠 ≥ 0) 𝜙∞(1) 𝜓∞(1)

Kullback–Leibler 𝑠 log(𝑠) − 𝑠 + 1 − log(𝑠) + 𝑠 − 1 ∞ 1
Likelihood − log(𝑠) + 𝑠 − 1 𝑠 log(𝑠) − 𝑠 + 1 1 ∞
Total variation 1

2 |𝑠 − 1| 1
2 |𝑠 − 1| 1

2
1
2

Pearson 𝜒2 (𝑠 − 1)2 1
𝑠
(𝑠 − 1)2 ∞ 1

Neyman 𝜒2 1
𝑠
(𝑠 − 1)2 (𝑠 − 1)2 1 ∞

Cressie–Read for 𝛽 ∈ (0, 1)
𝑠𝛽 − 𝛽𝑠 + 𝛽 − 1

𝛽(𝛽 − 1)
𝑠1−𝛽 − 𝛽 + 𝛽𝑠 − 𝑠

𝛽(𝛽 − 1)
1

1 − 𝛽
1
𝛽

Cressie–Read for 𝛽 > 1
𝑠𝛽 − 𝛽𝑠 + 𝛽 − 1

𝛽(𝛽 − 1)
𝑠1−𝛽 − 𝛽 + 𝛽𝑠 − 𝑠

𝛽(𝛽 − 1)
∞ 1

𝛽 − 1

of Definition 2.4, then 𝜓 is also a valid entropy function. This relationship shows
that, even though 𝜙-divergences are generically asymmetric, we do not sacrifice
generality by focusing on divergence ambiguity sets of the form (2.10), with the
nominal distribution P̂ being the second argument of the divergence. From the
discussion after Proposition 2.6 it is clear that if 𝜙∞(1) = ∞, then all distributions
P in the 𝜙-divergence ambiguity set (2.10) satisfy P ≪ P̂. Similarly, if the Csiszár
dual of 𝜙 satisfies𝜓∞(1) = ∞, then all distributions P in the 𝜙-divergence ambiguity
set satisfy P̂ ≪ P. Table 2.1 lists common entropy functions and their Csiszár duals.
We emphasize that the family of Cressie–Read divergences includes the (scaled)
Pearson 𝜒2-divergence for 𝛽 = 2, the Kullback–Leibler divergence for 𝛽 → 1 and
the likelihood divergence for 𝛽→ 0 as special cases.

The DRO literature often focuses on the restricted 𝜙-divergence ambiguity set

P = {P ∈ P(Z) : P ≪ P̂, D𝜙(P, P̂) ≤ 𝑟} (2.11)

introduced by Ben-Tal et al. (2013). Unlike the standard 𝜙-divergence ambiguity
set (2.10), it contains only distributions that are absolutely continuous with respect
to the reference distribution P̂ even if 𝜙∞(1) < ∞. Ben-Tal et al. (2013) study
DRO problems over restricted 𝜙-divergence ambiguity sets under the assumption
that the reference distribution P̂ is discrete. In this case, the absolute continuity
constraint P ≪ P̂ ensures that the ambiguity set contains only discrete distributions
supported on the atoms of P̂, and thus nature’s worst-case expectation problem
reduces to a finite convex program. Ben-Tal et al. (2013) further develop a duality
theory for this problem class. Shapiro (2017) extends this duality theory to general
reference distributions P̂ that are not necessarily discrete. Hu, Hong and So (2013)
and Jiang and Guan (2016) show that any distributionally robust individual chance
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constraint with respect to a restricted 𝜙-divergence ambiguity set is equivalent to
a classical chance constraint under the reference distribution P̂ but with a rescaled
confidence level. A classification of various 𝜙-divergences and an analysis of the
structural properties of the corresponding 𝜙-divergence ambiguity sets is provided
by Bayraksan and Love (2015) under the assumption that Z is finite. Below we
review popular instances of the standard and restricted 𝜙-divergence ambiguity sets.

2.2.1. Kullback–Leibler ambiguity sets
The Kullback–Leibler divergence is the 𝜙-divergence corresponding to the entropy
function that satisfies 𝜙(𝑠) = 𝑠 log(𝑠) − 𝑠 + 1 for all 𝑠 ≥ 0; see also Table 2.1. As
𝜙∞(1) = +∞, it thus admits the following equivalent definition.

Definition 2.8 (Kullback–Leibler divergence). The Kullback–Leibler divergence
of P ∈ P(Z) with respect to P̂ ∈ P(Z) is given by

KL(P, P̂) =

∫
Z

log
(

dP
dP̂

(𝑧)
)

dP(𝑧) if P ≪ P̂,

+∞ otherwise.

We now review a famous variational formula for the Kullback–Leibler diver-
gence.

Proposition 2.9 (Donsker and Varadhan 1983). The Kullback–Leibler divergence
of P with respect to P̂ satisfies

KL(P, P̂) = sup
𝑓 ∈F

∫
Z
𝑓 (𝑧) dP(𝑧) − log

(∫
Z

e 𝑓 (𝑧) dP̂(𝑧)
)
, (2.12)

where F denotes the family of all bounded Borel functions 𝑓 : Z → R𝑑 .

Proof. The convex conjugate of the entropy function 𝜙 inducing the Kullback–
Leibler divergence satisfies 𝜙∗(𝑡) = exp(𝑡) − 1 with dom(𝜙∗) = R. Thus the dual
representation of generic 𝜙-divergences established in Proposition 2.6 implies that

KL(P, P̂) = sup
𝑓 ∈F

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z

(
e 𝑓 (𝑧) − 1

)
dP̂(𝑧),

where F denotes the family of all bounded Borel functions 𝑓 : Z → R. Note that
F is invariant under constant shifts. That is, if 𝑓 (𝑧) is a bounded Borel function,
then so is 𝑓 (𝑧) + 𝑐 for any constant 𝑐 ∈ R. Without loss of generality, we may thus
optimize over both 𝑓 ∈ F and 𝑐 ∈ R in the above maximization problem to obtain

KL(P, P̂) = sup
𝑓 ∈F

sup
𝑐∈R

∫
Z

( 𝑓 (𝑧) + 𝑐) dP(𝑧) −
∫
Z

(
e 𝑓 (𝑧)+𝑐 − 1

)
dP̂(𝑧).

For any fixed 𝑓 ∈ F , the inner maximization problem over 𝑐 is uniquely solved by

𝑐★ = − log
(∫

Z
e 𝑓 (𝑧) dP̂(𝑧)

)
.
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Substituting this expression back into the objective function yields (2.12).

Proposition 2.9 establishes a link between the Kullback–Leibler divergence and
the entropic risk measure. This connection will become useful in Section 4.3.

The Kullback–Leibler ambiguity set of radius 𝑟 ≥ 0 around P̂ ∈ P(Z) is given by

P = {P ∈ P(Z) : KL(P, P̂) ≤ 𝑟}. (2.13)

As 𝜙∞(1) = +∞, all distributions P ∈ P are absolutely continuous with respect to P̂.
Thus P coincides with the restricted Kullback–Leibler ambiguity set. El Ghaoui
et al. (2003) derive a closed-form expression for the worst-case value-at-risk of
a linear loss function when P̂ is a Gaussian distribution. Hu and Hong (2013)
use similar techniques to show that any distributionally robust individual chance
constraint with respect to a Kullback–Leibler ambiguity set is equivalent to a
classical chance constraint with a rescaled confidence level. Calafiore (2007)
studies worst-case mean-risk portfolio selection problems when P̂ is a discrete
distribution. The Kullback–Leibler ambiguity set has also found applications in
least-squares estimation (Levy and Nikoukhah 2004), hypothesis testing (Levy
2008, Gül and Zoubir 2017), filtering (Levy and Nikoukhah 2012, Zorzi 2016,
2017a,b), the theory of risk measures (Ahmadi-Javid 2012, Postek et al. 2016) and
extreme value analysis (Blanchet, He and Murthy 2020), among many others.

2.2.2. Likelihood ambiguity sets
As the Kullback–Leibler divergence fails to be symmetric, it gives rise to two strictly
different ambiguity sets. The Kullback–Leibler ambiguity set from Section 2.2.1 is
obtained by fixing the second argument of the Kullback–Leibler divergence to the
reference distribution P̂ and considering all distributions P with KL(P, P̂) ≤ 𝑟. An
alternative ambiguity set is obtained by using P̂ as the first argument and setting

P = {P ∈ P(Z) : KL(P̂, P) ≤ 𝑟}. (2.14)

We refer to P as the likelihood ambiguity set centred at P̂ ∈ P(Z). Indeed, the
likelihood or Burg-entropy divergence of P ∈ P(Z) with respect to P̂ ∈ P(Z)
is usually defined as the reverse Kullback–Leibler divergence KL(P̂, P). This
terminology is based on the following intuition. If Z is a discrete set and

P̂ =
1
𝑁

𝑁∑︁
𝑖=1

𝛿 �̂�𝑖

is the empirical distribution corresponding to 𝑁 independent samples {𝑧𝑖}𝑁𝑖=1 from
an unknown distribution on Z , then it is natural to construct the family of all
distributions on Z that make the observed data achieve a prescribed level of like-
lihood. This distribution family corresponds to a superlevel set of the likelihood
function L(P) =

∏𝑁
𝑖=1 P(𝑍 = 𝑧𝑖) over P(Z). One can show that any such superlevel
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set coincides with a sublevel set of the likelihood divergence KL(P̂, P). Thus it
constitutes a likelihood ambiguity set of the form (2.14). We emphasize that this
correspondence does not easily carry over to situations where Z fails to be discrete.

Likelihood ambiguity sets were originally introduced by Wang et al. (2016) in the
context of static DRO, and they were used by Wiesemann, Kuhn and Rustem (2013)
in the context of robust Markov decision processes. Bertsimas et al. (2018a,b)
show that the likelihood ambiguity set contains all distributions that pass a G-test
of goodness-of-fit at a prescribed significance level.

Likelihood ambiguity sets display several statistical optimality properties even if
Z is uncountable. To explain these properties, we consider the task of evaluating a
(1−𝜂)-upper confidence bound on the expected value of some loss function under an
unknown distribution Pwhen 𝑁 independent samples from P are given. Leveraging
the empirical likelihood theorem by Owen (1988), Lam (2019) shows a desirable
property of the likelihood ambiguity set centred around the empirical distribution P̂:
The associated worst-case expected loss provides the least conservative confidence
bound for a constant significance level 𝜂 asymptotically when the radius 𝑟 decays
at the rate 1/𝑁 . Similar guarantees for a broader class of 𝜙-divergences are
reported by Duchi, Glynn and Namkoong (2021). In addition, Van Parys, Mohajerin
Esfahani and Kuhn (2021) leverage Sanov’s large deviation principle (Cover and
Thomas 2006, Theorem 11.4.1) to prove that the worst-case expected loss with
respect to a likelihood ambiguity set of constant radius 𝑟 around P̂ provides the
least conservative confidence bound for a decaying significance level 𝜂 ∝ e−𝑟𝑁
asymptotically for large 𝑁 . Gupta (2019) further shows that a likelihood ambiguity
set of radius 𝑟 ∝ 𝑁−1/2 around P̂ represents the smallest convex ambiguity set that
satisfies a Bayesian robustness guarantee.

2.2.3. Total variation ambiguity sets
The total variation distance of two distributions P, P̂ ∈ P(Z) is the maximum
absolute difference between the probabilities assigned to any event by P and P̂.

Definition 2.10 (Total variation distance). The total variation distance is the
function TV : P(Z) × P(Z)→ [0, 1] defined by

TV(P, P̂) = sup{|P(B) − P̂(B)| : B ⊆ Z is a Borel set}.

The total variation distance is ostensibly symmetric and satisfies the identity of
indiscernible as well as the triangle inequality. Thus it constitutes a metric on
P(Z). In addition, the total variation distance is an instance of a 𝜙-divergence.

Proposition 2.11. The total variation distance coincides with the 𝜙-divergence
induced by the the entropy function with 𝜙(𝑠) = 1

2 |𝑠 − 1| for all 𝑠 ≥ 0.

Proof. The conjugate entropy function evaluates to 𝜙∗(𝑡) = max{𝑡,− 1
2 } if 𝑡 ≤ 1

2
and to 𝜙∗(𝑡) = +∞ if 𝑡 > 1

2 . By Proposition 2.6, the 𝜙-divergence corresponding to
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the given entropy function thus admits the dual representation

D𝜙(P, P̂) = sup
𝑓 ∈F

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z

max
{
𝑓 (𝑧),−1

2

}
dP̂(𝑧), (2.15)

where F denotes the family of all bounded Borel functions 𝑓 : Z → (−∞, 1
2 ].

As clipping any 𝑓 ∈ F from below at −1
2 creates a new function in F with a

non-inferior objective value, we can in fact restrict attention to Borel functions
𝑓 : Z → [−1

2 ,
1
2 ]. The objective function in (2.15) then simplifies to∫

Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑓 (𝑧) dP̂(𝑧).

This simplified objective function remains unchanged when 𝑓 is shifted by a
constant. In summary, we may therefore conclude that (2.15) is equivalent to

D𝜙(P, P̂) = sup
𝑓 ∈F ′

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑓 (𝑧) dP̂(𝑧), (2.16)

where F ′ denotes the family of all Borel functions 𝑓 : Z → [0, 1]. Moreover, as
the objective function of the maximization problem in (2.16) is linear in 𝑓 , we can
further restrict F ′ to contain only binary Borel functions 𝑓 : Z → {0, 1} without
sacrificing optimality. As there is a one-to-one correspondence between Borel sets
and their characteristic functions, we finally obtain the desired identity

D𝜙(P, P̂) = sup{|P(B) − P̂(B)| : B ⊆ Z is a Borel set}.
Hence the claim follows.

The total variation ambiguity set of radius 𝑟 ≥ 0 around P̂ ∈ P(Z) is given by

P = {P ∈ P(Z) : TV(P, P̂) ≤ 𝑟}.
Most of the existing literature focuses on the restricted total variation ambiguity
set, which contains all distributions P ∈ P that satisfy P ≪ P̂. Jiang and Guan
(2018, Theorem 1) and Shapiro (2017, Example 3.7) show that the worst-case ex-
pected loss with respect to a restricted total variation ambiguity set coincides with
a combination of a conditional value-at-risk and the essential supremum of the loss
with respect to P̂; see also Section 6.10. Rahimian, Bayraksan and Homem-de-
Mello (2019a,b, 2022) study the worst-case distributions of DRO problems over
unrestricted total variation ambiguity sets when Z is finite. The total variation am-
biguity set is related to Huber’s contamination model from robust statistics (Huber
1981), which assumes that a fraction 𝑟 ∈ (0, 1) of all samples in a statistical dataset
are drawn from an arbitrary contaminating distribution. Hence the total vari-
ation distance between the target distribution to be estimated and the contaminated
data-generating distribution is at most 𝑟 . It is thus natural to use a total variation
ambiguity set of radius 𝑟 around some estimated distribution as the search space for
the target distribution (Nishimura and Ozaki 2004, 2006, Bose and Daripa 2009,
Duchi, Hashimoto and Namkoong 2023, Tsang and Shehadeh 2024).
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2.2.4. 𝜒2-divergence ambiguity set
The 𝜒2-divergence is the 𝜙-divergence corresponding to the entropy function that
satisfies 𝜙(𝑠) = (𝑠 − 1)2 for all 𝑠 ≥ 0; see also Table 2.1. As 𝜙∞(1) = +∞, it thus
admits the following equivalent definition.

Definition 2.12 (𝜒2-divergence). The 𝜒2-divergence of P ∈ P(Z) with respect
to P̂ ∈ P(Z) is given by

𝜒2(P, P̂) =


∫
Z

(
dP
dP̂

(𝑧) − 1
)2

dP̂(𝑧) if P ≪ P̂,

+∞ otherwise.

The 𝜒2-divergence admits the following dual representation.

Proposition 2.13. The 𝜒2-divergence of P with respect to P̂ satisfies

𝜒2(P, P̂) = sup
𝑓 ∈F

(EP [ 𝑓 (𝑍)] − EP̂ [ 𝑓 (𝑍)])2

VP̂ [ 𝑓 (𝑍)] ,

where F is shorthand for the family of all bounded Borel functions 𝑓 : Z → R,
and VP̂ [ 𝑓 (𝑍)] stands for the variance of 𝑓 (𝑍) under P̂. If VP̂ [ 𝑓 (𝑍)] = 0, then the
above fraction is interpreted as 0 if EP [ 𝑓 (𝑍)] = EP̂ [ 𝑓 (𝑍)] and as +∞ otherwise.

Proof. The convex conjugate of the entropy function inducing the 𝜒2-divergence
satisfies 𝜙∗(𝑡) = 𝑡2/4+ 𝑡 if 𝑡 ≥ −2 and 𝜙∗(𝑡) = −1 if 𝑡 < −2, and its domain is given
by dom(𝜙∗) = R. Consequently, Proposition 2.6 implies that

𝜒2(P, P̂) = sup
𝑓 ∈F

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z

(
𝑓 (𝑧)2

4
+ 𝑓 (𝑧)

)
dP̂(𝑧),

where F denotes the family of all bounded Borel functions 𝑓 : Z → R. Note that
we have replaced 𝜙∗( 𝑓 (𝑧)) with 𝑓 (𝑧)2/4 + 𝑓 (𝑧) in the second integral. This may be
done without loss of generality. Indeed, if the function 𝑓 (𝑧) adopts values below
−2, then it is (weakly) dominated by the function 𝑓 ′(𝑧) = max{ 𝑓 (𝑧),−2}. Note
also that F is invariant under constant shifts. That is, if 𝑓 (𝑧) is a bounded Borel
function, then so is 𝑓 (𝑧) + 𝑐 for any constant 𝑐 ∈ R. An elementary calculation
reveals that, for any fixed 𝑓 ∈ F , the optimal shift is 𝑐★ = −EP̂ [ 𝑓 (𝑍)]. Hence we
may replace 𝑓 (𝑧) with 𝑓 (𝑧) − EP̂ [ 𝑓 (𝑍)] in the above expression, which yields

𝜒2(P, P̂) = sup
𝑓 ∈F
EP [ 𝑓 (𝑍)] − EP̂ [ 𝑓 (𝑍)] −

VP̂ [ 𝑓 (𝑍)]
4

.

Note that the set F is also invariant under scaling. That is, if 𝑓 (𝑧) is a bounded
Borel function, then so is 𝑐 𝑓 (𝑧) for any constant 𝑐 ∈ R. We may thus optimize
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separately over 𝑓 ∈ F and 𝑐 ∈ R in the above maximization problem to obtain

𝜒2(P, P̂) = sup
𝑓 ∈F

sup
𝑐∈R

(EP [ 𝑓 (𝑍)] − EP̂ [ 𝑓 (𝑍)])𝑐 −
VP̂ [ 𝑓 (𝑍)]

4
𝑐2

= sup
𝑓 ∈F

(EP [ 𝑓 (𝑍)] − EP̂ [ 𝑓 (𝑍)])2

VP̂ [ 𝑓 (𝑍)] .

Note that the inner maximization problem over 𝑐 simply evaluates the conjugate
of the convex quadratic function VP̂ [ 𝑓 (𝑍)]𝑐2/4 at EP [ 𝑓 (𝑍)] − EP̂ [ 𝑓 (𝑍)], which is
available in closed form. Thus the claim follows.

As the 𝜒2-divergence fails to be symmetric, it gives rise to two complementary
ambiguity sets, which differ according to whether the reference distribution P̂ ∈
P(Z) is used as the first or the second argument of the 𝜒2-divergence. Lam (2018)
defines the Pearson 𝜒2-ambiguity set of radius 𝑟 ≥ 0 around P̂ as

P = {P ∈ P(Z) : 𝜒2(P, P̂) ≤ 𝑟} (2.17)

in order to analyse operations and service systems with dependent data. Philpott,
de Matos and Kapelevich (2018) develop a stochastic dual dynamic programming
algorithm for solving distributionally robust multistage stochastic programs with a
Pearson ambiguity set. In the context of static DRO, Duchi and Namkoong (2019)
show that robustification with respect to a Pearson ambiguity set is closely related
to variance regularization. Note that as 𝜙∞(1) = +∞, the Pearson ambiguity set
coincides with its restricted version, which contains only distributions P ≪ P̂.

Klabjan, Simchi-Levi and Song (2013) define the Neyman 𝜒2-ambiguity set as

P = {P ∈ P(Z) : 𝜒2(P̂, P) ≤ 𝑟}

in order to formulate robust lot-sizing problems. Hanasusanto and Kuhn (2013) use
a Neyman ambiguity set with finite Z in the context of robust data-driven dynamic
programming. Finally, Hanasusanto et al. (2015a) use the same ambiguity set to
model the uncertainty in the mixture weights of multimodal demand distributions.

2.3. Optimal transport ambiguity sets

Optimal transport theory offers a natural way to quantify the difference between
probability distributions and gives rise to a rich family of ambiguity sets. To explain
this, we first introduce the notion of a transportation cost function.

Definition 2.14 (Transportation cost function). A lower semicontinuous func-
tion 𝑐 : Z × Z → [0, +∞] with 𝑐(𝑧, 𝑧) = 0 for all 𝑧 ∈ Z is a transportation cost
function.

Every transportation cost function induces an optimal transport discrepancy.

Definition 2.15 (Optimal transport discrepancy). The optimal transport dis-
crepancy OT𝑐 : P(Z)×P(Z)→ [0, +∞] associated with any given transportation
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cost function 𝑐 is defined by

OT𝑐(P, P̂) = inf
𝛾∈Γ(P,P̂)

E𝛾 [𝑐(𝑍, �̂�)], (2.18)

where Γ(P, P̂) represents the set of all couplings 𝛾 of P and P̂, that is, all joint
probability distributions of 𝑍 and �̂� with marginals P and P̂, respectively.

By definition, we have 𝛾 ∈ Γ(P, P̂) if and only if 𝛾((𝑍, �̂�) ∈ B × Z) = P(𝑍 ∈ B)
and 𝛾((𝑍, �̂�) ∈ Z × B̂) = P̂(�̂� ∈ B̂) for all Borel sets B, B̂ ⊆ Z . If the probab-
ility distributions P and P̂ are visualized as two piles of sand, then any coupling
𝛾 ∈ Γ(P, P̂) can be interpreted as a transportation plan, that is, an instruction for
morphing P̂ into the shape of P by moving sand between various origin–destination
pairs in Z . Indeed, for any fixed origin 𝑧 ∈ Z , the conditional probability
𝛾(𝑧 ≤ 𝑍 ≤ 𝑧 + d𝑧 | �̂� = 𝑧) determines the proportion of the sand located at 𝑧
that should be moved to (an infinitesimally small rectangle at) the destination 𝑧. If
the cost of moving one unit of probability mass from 𝑧 to 𝑧 amounts to 𝑐(𝑧, 𝑧), then
OT𝑐(P, P̂) is the minimal amount of money that is needed to morph P̂ into P. We
now provide a dual representation for generic optimal transport discrepancies.

Proposition 2.16 (Kantorovich duality I). We have

OT𝑐(P, P̂) =


sup
𝑓 ∈L1(P), 𝑔∈L1(P̂)

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑔(𝑧) dP̂(𝑧)

s.t. 𝑓 (𝑧) − 𝑔(𝑧) ≤ 𝑐(𝑧, 𝑧) ∀𝑧, 𝑧 ∈ Z ,
(2.19)

where L1(P) and L1(P̂) denote the sets of all Borel functions from Z to R that are
integrable with respect to P and P̂, respectively.

The dual problem (2.19) represents the profit maximization problem of a third
party that redistributes the sand from P̂ to P on behalf of the problem owner by
buying sand at the origin 𝑧 at unit price 𝑔(𝑧) and selling sand at the destination 𝑧
at unit price 𝑓 (𝑧). The constraints ensure that it is cheaper for the problem owner
to use the services of the third party instead of moving the sand without external
help at the transportation cost 𝑐(𝑧, 𝑧) for every origin–destination pair (𝑧, 𝑧). The
optimal price functions 𝑓★ and 𝑔★, if they exist, are termed Kantorovich potentials.

Proof of Proposition 2.16. For a general proof we refer to Villani (2008, The-
orem 5.10 (i)). We prove the claim under the simplifying assumption that Z is
compact. In this case, the family C(Z × Z) of all continuous (and thus bounded)
functions 𝑓 : Z ×Z → R equipped with the supremum norm constitutes a Banach
space. Its topological dual is the spaceM(Z×Z) of all finite signed Borel measures
on Z × Z equipped with the total variation norm (Folland 1999, Corollary 7.18).
This means that for every continuous linear functional 𝜑 : C(Z × Z) → R there
exists 𝛾 ∈M(Z × Z) such that

𝜑( 𝑓 ) =
∫
Z×Z

𝑓 (𝑧, 𝑧) d𝛾(𝑧, 𝑧) for all 𝑓 ∈ C(Z × Z).
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We first use the Fenchel–Rockafellar duality theorem to show that

OT𝑐(P, P̂) =


sup
𝑓 ,𝑔∈C(Z)

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑔(𝑧) dP̂(𝑧)

s.t. 𝑓 (𝑧) − 𝑔(𝑧) ≤ 𝑐(𝑧, 𝑧) ∀𝑧, 𝑧 ∈ Z ,
(2.20)

that is, we prove that strong duality holds if the price functions 𝑓 and 𝑔 in the dual
problem are restricted to the space C(Z) of continuous functions from Z to R. To
this end, we re-express the maximization problem in (2.20) more compactly as

sup
ℎ∈C(Z×Z)

−𝜙(ℎ) − 𝜓(ℎ), (2.21)

where the convex functions 𝜙, 𝜓 : C(Z × Z)→ (−∞, +∞] are defined by

𝜙(ℎ) =

{
0 if − ℎ(𝑧, 𝑧) ≤ 𝑐(𝑧, 𝑧) ∀𝑧, 𝑧 ∈ Z ,
+∞ otherwise,

and

𝜓(ℎ) =


∫
Z

∫
Z
ℎ(𝑧, 𝑧) dP(𝑧) dP̂(𝑧)

{
if ∃ 𝑓 , 𝑔 ∈ C(Z) with
ℎ(𝑧, 𝑧) = 𝑔(𝑧) − 𝑓 (𝑧) ∀𝑧, 𝑧 ∈ Z ,

+∞ otherwise.

Note that (2.21) can be viewed as the conjugate of 𝜙 +𝜓 with respect to the pairing
of C(Z × Z) and M(Z × Z) evaluated at the zero measure. Note also that 𝜙 is
continuous at the constant function ℎ0 ≡ 1 because the transportation cost function
𝑐 is non-negative. In addition, ℎ0 belongs to the domain of 𝜓. The Fenchel–
Rockafellar duality theorem (Brezis 2011, Theorem 1.12) thus ensures that the
conjugate of the sum of the proper convex functions 𝜙 and 𝜓 coincides with the
infimal convolution of their conjugates 𝜙∗ and 𝜓∗. Hence (2.21) equals

(𝜙 + 𝜓)∗(0) = inf
𝛾∈M(Z×Z)

𝜙∗(−𝛾) + 𝜓∗(𝛾). (2.22)

It remains to evaluate the conjugates of 𝜙 and 𝜓. For any 𝛾 ∈M(Z × Z) we have

𝜙∗(−𝛾) = sup
ℎ∈C(Z×Z)

{
−
∫
Z×Z

ℎ(𝑧, 𝑧) d𝛾(𝑧, 𝑧) : − ℎ(𝑧, 𝑧) ≤ 𝑐(𝑧, 𝑧) ∀𝑧, 𝑧 ∈ Z
}

=


∫
Z×Z

𝑐(𝑧, 𝑧) d𝛾(𝑧, 𝑧) if 𝛾 ∈M+(Z × Z),

+∞ otherwise,

where M+(Z×Z) stands for the cone of finite Borel measures on Z×Z . Indeed, if
𝛾 ∈M+(Z ×Z), then the second equality follows from the monotone convergence
theorem, which applies because 𝑐 is lower semicontinuous and can thus be written
as the pointwise limit of a non-decreasing sequence of continuous functions (see
also Lemma 3.1 below). On the other hand, if 𝛾 ∉ M+(Z × Z), then the second
equality holds because every 𝛾 ∈M(Z×Z) is a Radon measure, which ensures that
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the measure of any Borel set can be approximated with the integral of a continuous
function. Similarly, for any 𝛾 ∈M(Z × Z) one readily verifies that

𝜓∗(𝛾) =

{
0 if 𝛾 ∈ Γ(P, P̂),
+∞ otherwise.

Substituting the above formulas for 𝜙∗ and 𝜓∗ into (2.22) yields (2.20).
Relaxing the requirement 𝑓 , 𝑔 ∈ C(Z) to 𝑓 ∈ L1(P) and 𝑔 ∈ L1(P̂) on the

right-hand side of (2.20) immediately leads to the upper bound

OT𝑐(P, P̂) ≤


sup
𝑓 ∈L1(P), 𝑔∈L1(P̂)

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑔(𝑧) dP̂(𝑧)

s.t. 𝑓 (𝑧) − 𝑔(𝑧) ≤ 𝑐(𝑧, 𝑧) ∀𝑧, 𝑧 ∈ Z .
(2.23)

On the other hand, it is clear that

OT𝑐(P, P̂) = inf
𝛾∈M+(Z×Z)

sup
𝑓 ∈L1(P),𝑔∈L1(P̂)

∫
Z×Z

(𝑐(𝑧, 𝑧) − 𝑓 (𝑧) + 𝑔(𝑧)) d𝛾(𝑧, 𝑧)

+
∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑔(𝑧) dP̂(𝑧).

Interchanging the order of minimization and maximization in the above expression
and then evaluating the inner infimum in closed form yields

OT𝑐(P, P̂) ≥


sup
𝑓 ∈L1(P), 𝑔∈L1(P̂)

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑔(𝑧) dP̂(𝑧)

s.t. 𝑓 (𝑧) − 𝑔(𝑧) ≤ 𝑐(𝑧, 𝑧) ∀𝑧, 𝑧 ∈ Z .
(2.24)

Combining (2.23) with (2.24) proves (2.19), and thus the claim follows.

The dual optimal transport problem (2.19) constitutes a linear program over the
price functions 𝑓 ∈ L1(P) and 𝑔 ∈ L1(P̂), and its objective function is linear in
P and P̂. As pointwise suprema of linear functions are convex, OT𝑐(P, P̂) is thus
jointly convex in P and P̂. Problem (2.19) can be further simplified by invoking the
𝑐-transform 𝑓 𝑐 : Z → (−∞, +∞] of the price function 𝑓 , which is defined by

𝑓 𝑐(𝑧) = sup
𝑧∈Z

𝑓 (𝑧) − 𝑐(𝑧, 𝑧). (2.25)

The constraints of the dual problem (2.19) can now be re-expressed as

𝑔(𝑧) ≥ 𝑓 (𝑧) − 𝑐(𝑧, 𝑧) for all 𝑧, 𝑧 ∈ Z ⇐⇒ 𝑔(𝑧) ≥ 𝑓 𝑐(𝑧) for all 𝑧 ∈ Z .

Note that problem (2.19) seeks a price function 𝑔 that is as small as possible. As
𝑔 is lower-bounded by 𝑓 𝑐, this suggests that 𝑔 = 𝑓 𝑐 at optimality. Conversely,
defining the 𝑐-transform 𝑔𝑐 : Z → [−∞, +∞) of the price function 𝑔 through

𝑔𝑐(𝑧) = inf
�̂�∈Z

𝑔(𝑧) + 𝑐(𝑧, 𝑧), (2.26)
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the constraint of problem (2.19) can be re-expressed as

𝑓 (𝑧) ≤ 𝑔(𝑧) + 𝑐(𝑧, 𝑧) for all 𝑧, 𝑧 ∈ Z ⇐⇒ 𝑓 (𝑧) ≤ 𝑔𝑐(𝑧) for all 𝑧 ∈ Z .

This suggests that 𝑓 = 𝑔𝑐 at optimality. Note that 𝑓 𝑐 and 𝑔𝑐 may fail to be integrable
with respect to P̂ and P, respectively. If 𝑓 ∈ L1(P) and 𝑔 ∈ L1(P̂), however, then one
can verify that the integrals

∫
Z 𝑓 𝑐(𝑧) dP̂(𝑧) < +∞ and

∫
Z 𝑔

𝑐(𝑧) dP(𝑧) > −∞ exist
as extended real numbers. The above insights culminate in the following corollary,
which we state without proof. For details see Villani (2008, Theorem 5.10 (i)).

Corollary 2.17 (Kantorovich duality II). We have

OT𝑐(P, P̂) = sup
𝑓 ∈L1(P)

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑓 𝑐(𝑧) dP̂(𝑧)

= sup
𝑔∈L1(P̂)

∫
Z
𝑔𝑐(𝑧) dP(𝑧) −

∫
Z
𝑔(𝑧) dP̂(𝑧),

where the 𝑐-transforms 𝑓 𝑐 and 𝑔𝑐 are defined in (2.25) and (2.26), respectively. In
addition, the first (second) supremum does not change if we require that 𝑓 = 𝑔𝑐

(𝑔 = 𝑓 𝑐) for some function 𝑔 : Z → (−∞, +∞] ( 𝑓 : Z → [−∞, +∞)).

Given any transportation cost function 𝑐, reference distribution P̂ ∈ P(Z) and
transportation budget 𝑟 ≥ 0, the optimal transport ambiguity set is defined as

P = {P ∈ P(Z) : OT𝑐(P, P̂) ≤ 𝑟}. (2.27)

By construction, P contains all probability distributions P that can be obtained
by reshaping the reference distribution P̂ at a finite cost of at most 𝑟 ≥ 0. The
optimal transport ambiguity set was first studied by Pflug and Wozabal (2007),
who propose a successive linear programming algorithm to solve robust mean-risk
portfolio selection problems when Z is finite. Postek et al. (2016) leverage tools
from conjugate duality theory to develop an exact solution method for the same
problem class. Wozabal (2012) and Pflug and Pichler (2014, § 7.1) reformulate
DRO problems with optimal transport ambiguity sets over uncountable support sets
Z ⊆ R𝑑 as finite-dimensional non-convex programs and address them with methods
from global optimization. Mohajerin Esfahani and Kuhn (2018) and Zhao and
Guan (2018) use specialized duality results to show that these DRO problems are
in fact equivalent to generalized moment problems that admit exact reformulations
as finite-dimensional convex programs. Blanchet and Murthy (2019), Gao and
Kleywegt (2023) and Zhang et al. (2024b) show that the underlying duality results
remain valid even when Z is a Polish space. For recent surveys of the theory and
applications of DRO with optimal transport ambiguity sets we refer to Kuhn et al.
(2019) and Blanchet, Murthy and Nguyen (2021).
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2.3.1. 𝑝-Wasserstein ambiguity sets
It is common to set the transportation cost function 𝑐 in Definition 2.15 to the 𝑝th
power of some metric on Z . In this case, the 𝑝th root of the optimal transport
discrepancy is termed the 𝑝-Wasserstein distance.

Definition 2.18 (𝑝-Wasserstein distance). Assume that 𝑑(·, ·) is a metric on Z
and 𝑝 ∈ [1, +∞) is a prescribed exponent. Then the 𝑝-Wasserstein distance
W𝑝 : P(Z) × P(Z)→ [0, +∞] corresponding to 𝑑 and 𝑝 is defined via

W𝑝(P, P̂) = inf
𝛾∈Γ(P,P̂)

(E𝛾 [𝑑(𝑍, �̂�)𝑝])1/𝑝 .

Definition 2.18 implies that if 𝑐(𝑧, 𝑧) = 𝑑(𝑧, 𝑧)𝑝, then𝑊 𝑝
𝑝 (P, P̂) = OT𝑐(P, P̂). In

the following we use P𝑝(Z) = {P ∈ P(Z) : EP [𝑑(𝑍, 𝑧0)𝑝] < ∞} to denote the
family of all distributions on Z with finite 𝑝th moment. As 𝑑 is a metric, P𝑝(Z) is
independent of the choice of the reference point 𝑧0 ∈ Z . The 𝑝-Wasserstein distance
constitutes a metric on P𝑝(Z). Indeed, it is evident that 𝑊𝑝(P, P̂) is symmetric
and vanishes if and only if P = P̂. The proof that 𝑊𝑝(P, P̂) obeys the triangle
inequality requires a glueing lemma for transportation plans and is therefore more
intricate; see e.g. Villani (2008, § 1). The 𝑝-Wasserstein distance further metrizes
the weak convergence of distributions and the convergence of their 𝑝th moments.
This means that 𝑊𝑝(P, P̂𝑁 ) converges to 0 if and only if P̂𝑁 converges weakly
to P and EP̂𝑁 [𝑑(𝑍, 𝑧0)𝑝] converges to EP [𝑑(𝑍, 𝑧0)𝑝] as 𝑁 grows (Villani 2008,
Theorem 6.9). Furthermore, the 𝑝-Wasserstein distance enjoys attractive measure
concentration properties. Specifically, if P̂𝑁 represents the empirical distribution
obtained from 𝑁 independent samples from P, then the rate at which P̂𝑁 converges
to P in 𝑝-Wasserstein distance admits sharp asymptotic and finite-sample bounds
(Fournier and Guillin 2015, Weed and Bach 2019).

As the 𝑝-Wasserstein distance constitutes the 𝑝th root of an optimal transport
discrepancy, Proposition 2.16 and Corollary 2.17 readily imply that it admits a dual
representation. For 𝑝 = 1 this dual representation becomes particularly simple.
Indeed, one can show that the 1-Wasserstein distance coincides with the integral
probability metric generated by all test functions that are Lipschitz-continuous with
respect to the metric 𝑑 and have Lipschitz modulus at most 1.

Corollary 2.19 (Kantorovich–Rubinstein duality). We have

W1(P, P̂) = sup
𝑓 ∈L1(P), lip( 𝑓 )≤1

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑓 (𝑧) dP̂(𝑧).

Proof. Corollary 2.17 implies that

W1(P, P̂) = sup
𝑓 ∈L1(P)

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑓 𝑐(𝑧) dP̂(𝑧).

In addition, it ensures that the supremum does not change if we restrict the search
space to functions that are representable as 𝑓 = 𝑔𝑐 for some 𝑔 : Z → (−∞, +∞].
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By (2.26), we thus have 𝑓 (𝑧) = inf �̂�∈Z 𝑔(𝑧) + 𝑑(𝑧, 𝑧). For any fixed 𝑧 ∈ Z , the
auxiliary function 𝑓�̂�(𝑧) = 𝑔(𝑧) + 𝑑(𝑧, 𝑧) is ostensibly 1-Lipschitz with respect to
the metric 𝑑. As infima of 1-Lipschitz functions remain 1-Lipschitz, we thus find
lip( 𝑓 ) ≤ 1. In summary, we have shown that restricting attention to 1-Lipschitz
functions does not reduce the supremum of the dual optimal transport problem.
Next, we prove that lip( 𝑓 ) ≤ 1 implies that 𝑓 𝑐 = 𝑓 . Indeed, for any 𝑧 ∈ Z we have

𝑓 (𝑧) ≤ sup
𝑧∈Z

𝑓 (𝑧) − 𝑑(𝑧, 𝑧) ≤ sup
𝑧∈Z

𝑓 (𝑧) + 𝑑(𝑧, 𝑧) − 𝑑(𝑧, 𝑧) = 𝑓 (𝑧),

where the two inequalities hold because 𝑑(𝑧, 𝑧) = 0 and lip( 𝑓 ) ≤ 1, respectively.
This implies via (2.25) that 𝑓 (𝑧) = sup𝑧∈Z 𝑓 (𝑧) − 𝑑(𝑧, 𝑧) = 𝑓 𝑐(𝑧) for all 𝑧 ∈ Z .
Hence 𝑓 𝑐 coincides with 𝑓 whenever lip( 𝑓 ) ≤ 1, and thus the claim follows.

The 𝑝-Wasserstein ambiguity set of radius 𝑟 ≥ 0 around P̂ ∈ P(Z) is defined as

P = {P ∈ P(Z) : W𝑝(P, P̂) ≤ 𝑟}. (2.28)

Pflug, Pichler and Wozabal (2012) study robust portfolio selection problems, where
the uncertainty about the asset return distribution is captured by a 𝑝-Wasserstein
ball. They prove that – as 𝑟 approaches infinity – it becomes optimal to distribute
one’s capital equally among all available assets. Hence this result reveals that the
popular 1/𝑁-investment strategy widely used in practice (DeMiguel, Garlappi and
Uppal 2009) is optimal under extreme ambiguity. Pflug et al. (2012), Pichler (2013)
and Wozabal (2014) further show that, for a broad range of convex risk measures,
the worst-case portfolio risk across all distributions in a 𝑝-Wasserstein ball equals
the nominal risk under P̂ plus a regularization term that scales with the Wasserstein
radius 𝑟; see also Section 8.3.

The Wasserstein ambiguity set corresponding to 𝑝 = 1 enjoys particular prom-
inence in DRO. The Kantorovich–Rubinstein duality can be used to construct a
simple upper bound on the worst-case expectation of a Lipschitz-continuous loss
function across all distributions in a 1-Wasserstein ball. This upper bound is given
by the sum of the expected loss under the nominal distribution P̂ plus a regular-
ization term that consists of the Lipschitz modulus of the loss function weighted
by the radius 𝑟 of the ambiguity set. Shafieezadeh-Abadeh, Mohajerin Esfahani
and Kuhn (2015) demonstrate that this upper bound is exact for distributionally
robust logistic regression problems. However, this exactness result extends in fact
to many linear prediction models with convex (Chen and Paschalidis 2018, 2019,
Blanchet, Kang and Murthy 2019b, Shafieezadeh-Abadeh et al. 2019, Wu, Li and
Mao 2022) and even non-convex loss functions (Gao et al. 2024b, Ho-Nguyen and
Wright 2023). More generally, 1-Wasserstein ambiguity sets have found numerous
applications in diverse areas such as two-stage and multi-stage stochastic program-
ming (Zhao and Guan 2018, Hanasusanto and Kuhn 2018, Duque and Morton
2020, Bertsimas, Shtern and Sturt 2023), chance-constrained programming (Chen,
Kuhn and Wiesemann 2024c, Xie 2021, Ho-Nguyen, Kılınç-Karzan, Küçükyavuz
and Lee 2022, Shen and Jiang 2023), inverse optimization (Mohajerin Esfahani,
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Shafieezadeh-Abadeh, Hanasusanto and Kuhn 2018), statistical learning (Blanchet,
Glynn, Yan and Zhou 2019a, Zhu et al. 2022b), hypothesis testing (Gao, Xie, Xie
and Xu 2018), contextual stochastic optimization (Zhang, Yang and Gao 2024a),
transportation (Sun, Xie and Witten 2023), control (Cherukuri and Cortés 2019,
Yang 2020, Boskos, Cortés and Martínez 2020, Li and Martínez 2020, Coulson,
Lygeros and Dörfler 2021, Aolaritei, Lanzetti, Chen and Dörfler 2022a, Terpin
et al. 2022, Terpin, Lanzetti and Dörfler 2024) and power systems analysis (Wang
et al. 2018, Ordoudis, Nguyen, Kuhn and Pinson 2021), among others.

The Wasserstein ambiguity set corresponding to 𝑝 = 2 also enjoys wide pop-
ularity. Before reviewing its various uses, we highlight an interesting connection
between the 2-Wasserstein distance and the Gelbrich distance introduced in Sec-
tion 2.1.4 (see Definition 2.1). As pointed out by Gelbrich (1990, Theorem 2.1),
the 2-Wasserstein distance between two probability distributions provides an upper
bound on the Gelbrich distance between their mean–covariance pairs.

Theorem 2.20 (Gelbrich bound). Assume thatZ is equipped with the Euclidean
metric 𝑑(𝑧, 𝑧) = ∥𝑧−𝑧∥2. For any distributionsP, P̂ ∈ P(Z) with finite mean vectors
𝜇, �̂� ∈ R𝑑 and covariance matrices Σ, Σ̂ ∈ S𝑑+ , respectively, we have

W2(P, P̂) ≥ G((𝜇, Σ), (�̂�, Σ̂)).

Proof. By definition, the squared 2-Wasserstein distance satisfies

W2
2(P, P̂) = inf

𝛾∈Γ(P,P̂)

∫
Z×Z
∥𝑧 − 𝑧∥22 d𝛾(𝑧, 𝑧)

=


inf ∥𝜇 − �̂�∥22 + Tr[Σ + Σ̂ − 2𝐶]
s.t. 𝛾 ∈ Γ(P, P̂), 𝐶 ∈ R𝑑×𝑑∫

Z×Z

[
𝑧 − 𝜇
𝑧 − �̂�

] [
𝑧 − 𝜇
𝑧 − �̂�

]⊤
d𝛾(𝑧, 𝑧) =

[
Σ 𝐶

𝐶⊤ Σ̂

]
,

[
Σ 𝐶

𝐶⊤ Σ̂

]
⪰ 0.

Note that the new decision variable 𝐶 is uniquely determined by the transportation
plan 𝛾, that is, it represents the cross-covariance matrix of 𝑍 and �̂� under 𝛾. Thus
its presence does not enlarge the feasible set. Note also that the linear matrix
inequality in the last expression is redundant because the second-order moment
matrix of 𝛾 is necessarily positive semidefinite. Thus its presence does not reduce
the feasible set. Finally, note that the integral of the quadratic function

∥𝑧 − 𝑧∥22 = ∥𝜇 − �̂�∥22 + ∥𝑧 − 𝜇∥
2
2 + ∥𝑧 − �̂�∥

2
2 − 2(𝑧 − 𝜇)⊤(𝑧 − �̂�)

+ 2(𝜇 − �̂�)⊤(𝑧 − 𝜇) − 2(𝜇 − �̂�)⊤(𝑧 − �̂�)

with respect to 𝛾 is uniquely determined by the first- and second-order moments
of 𝛾 and evaluates to ∥𝜇 − �̂�∥22 + Tr[Σ + Σ̂ − 2𝐶]. Relaxing the last optimization
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problem by removing all constraints that involve 𝛾 then yields

W2
2(P, P̂) ≥


min

𝐶∈R𝑑×𝑑
∥𝜇 − �̂�∥22 + Tr[Σ + Σ̂ − 2𝐶]

s.t.
[
Σ 𝐶

𝐶⊤ Σ̂

]
⪰ 0.

By Proposition 2.2, the optimal value of the resulting semidefinite program amounts
to G2((𝜇, Σ), (�̂�, Σ̂)). The claim follows by taking square roots on both sides.

The proof of Theorem 2.20 reveals that the squared Gelbrich distance coincides
with the minimum of a relaxed optimal transport problem, which only requires
the marginals of the transportation plan 𝛾 to have the same first- and second-order
moments as P and P̂, respectively. Gelbrich’s inequality may be useful when the
exact 2-Wasserstein distance is inaccessible. Indeed, computing the 2-Wasserstein
distance between a discrete and a continuous distribution is #P-hard already when
the discrete distribution has only two atoms (Taşkesen, Shafieezadeh-Abadeh and
Kuhn 2023a). Computing the 2-Wasserstein distance may even be #P-hard when
both distributions are discrete (Taşkesen, Shafieezadeh-Abadeh, Kuhn and Natara-
jan 2023b). If both P and P̂ are Gaussian, then Gelbrich’s inequality collapses to
an equality. Thus the 2-Wasserstein distance between two Gaussian distributions
matches the Gelbrich distance between their mean vectors and covariance matrices
(Givens and Shortt 1984, Proposition 7). This classical result, which actually pred-
ates Gelbrich’s inequality, is now recognized as an immediate consequence of a
celebrated optimality condition for optimal transport problems by Brenier (1991).
Using Brenier’s optimality condition, one can prove more generally that if P̂ is
a positive semidefinite affine pushforward of P, that is, if there exists an affine
function 𝑓 (𝑧) = 𝐴𝑧 + 𝑏 with 𝐴 ∈ S𝑑+ and 𝑏 ∈ R𝑑 such that P̂ = P ◦ 𝑓 −1, then the 2-
Wasserstein distance between P and P̂ again matches the Gelbrich distance between
their mean vectors and covariance matrices (Nguyen et al. 2021, Theorem 2).

The 2-Wasserstein ambiguity set has found applications in machine learning
(Sinha, Namkoong and Duchi 2018, Blanchet et al. 2019b, Blanchet, Murthy
and Si 2022b, Blanchet, Murthy and Zhang 2022c), inverse optimization (Mo-
hajerin Esfahani et al. 2018), two-stage stochastic programming (Hanasusanto and
Kuhn 2018), estimation and filtering (Shafieezadeh-Abadeh et al. 2018, Nguyen
et al. 2023b, Kargin et al. 2024b), portfolio optimization (Blanchet, Chen and Zhou
2022a, Nguyen et al. 2021) and control theory (Al Taha et al. 2023, Hajar et al.
2023, Hakobyan and Yang 2024, Taşkesen et al. 2024, Kargin et al. 2024a,c,d).

2.3.2. Lévy–Prokhorov ambiguity sets
The Lévy–Prokhorov distance is one of the most widely used probability metrics
because it metrizes the topology of weak convergence on P(Z). We assume below
that 𝑑(·, ·) is a continuous metric on Z . For any set B ⊆ Z and 𝑟 ≥ 0, we use

B𝑟 = {𝑧 ∈ Z : ∃𝑧′ ∈ B with 𝑑(𝑧, 𝑧′) ≤ 𝑟} (2.29)
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to denote the 𝑟-neighbourhood of B. The dependence of B𝑟 on the metric 𝑑 is
notationally suppressed because 𝑑 is usually obvious from the context. With these
preparations, we are now ready to define the Lévy–Prokhorov distance.

Definition 2.21 (Lévy–Prokhorov distance). For any metric 𝑑(·, ·) on Z , the
Lévy–Prokhorov distance LP : P(Z) × P(Z)→ [0, 1] induced by 𝑑 is defined via

LP(P, P̂) = inf{𝑟 ≥ 0: P(B) ≤ P̂(B𝑟 ) + 𝑟 for all Borel sets B ⊆ Z},

where B𝑟 is defined in (2.29).

The Lévy–Prokhorov distance is bounded by 1 and vanishes if and only if
its arguments match. In addition, one can easily show that it satisfies the triangle
inequality. However, it appears to be asymmetric. The next proposition reveals that
the Lévy–Prokhorov distance is closely linked to the theory of optimal transport.

Proposition 2.22 (Strassen 1965). If the transportation cost function 𝑐𝑟 corres-
ponding to 𝑟 ≥ 0 is defined by 𝑐𝑟 (𝑧, 𝑧) = 1𝑑(𝑧,�̂�)>𝑟 for all 𝑧, 𝑧 ∈ Z , then

LP(P, P̂) = inf{𝑟 ≥ 0: OT𝑐𝑟 (P, P̂) ≤ 𝑟}.

Proof. Note that 𝑐𝑟 is lower semicontinuous because the metric 𝑑 is continuous by
assumption. By Proposition 2.16, OT𝑐𝑟 (P, P̂) thus admits the dual representation

sup
𝑓 ∈L1(P), 𝑔∈L1(P̂)

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑔(𝑧) dP̂(𝑧)

s.t. 𝑓 (𝑧) − 𝑔(𝑧) ≤ 1𝑑(𝑧,�̂�)>𝑟 ∀𝑧, 𝑧 ∈ Z .
(2.30)

Here, for any fixed 𝑔, it is optimal to push 𝑓 up such that for all 𝑧 ∈ Z we have

𝑓 (𝑧) = inf
�̂�∈Z

𝑔(𝑧) + 1𝑑(𝑧,�̂�)>𝑟 =⇒ inf
�̂�∈Z

𝑔(𝑧) ≤ 𝑓 (𝑧) ≤ 1 + inf
�̂�∈Z

𝑔(𝑧). (2.31a)

Also, for any fixed 𝑓 , it is optimal to push 𝑔 down such that for all 𝑧 ∈ Z we have

𝑔(𝑧) = sup
𝑧∈Z

𝑓 (𝑧) − 1𝑑(𝑧,�̂�)>𝑟 =⇒ sup
𝑧∈Z

𝑓 (𝑧) − 1 ≤ 𝑔(𝑧) ≤ sup
𝑧∈Z

𝑓 (𝑧). (2.31b)

Combining the upper bound on 𝑔(𝑧) in (2.31b) with the upper bound on 𝑓 (𝑧) in
(2.31a) further implies that 𝑔(𝑧) ≤ sup𝑧∈Z 𝑓 (𝑧) ≤ 1 + inf𝑧′∈Z 𝑔(𝑧′). At optimality,
(2.31a) and (2.31b) must hold simultaneously, and thus we have

inf
𝑧′∈Z

𝑔(𝑧′) ≤ 𝑓 (𝑧) ≤ 1 + inf
𝑧′∈Z

𝑔(𝑧′) and inf
𝑧′∈Z

𝑔(𝑧′) ≤ 𝑔(𝑧) ≤ 1 + inf
𝑧′∈Z

𝑔(𝑧′)

for all 𝑧, 𝑧 ∈ Z . Note that, as both P and P̂ are probability distributions, the objective
function of the dual optimal transport problem (2.30) remains invariant under the
substitutions 𝑓 (𝑧) ← 𝑓 (𝑧) − inf𝑧′∈Z 𝑔(𝑧′) and 𝑔(𝑧) ← 𝑔(𝑧) − inf𝑧′∈Z 𝑔(𝑧′). In the
following, we may thus assume without loss of generality that 0 ≤ 𝑓 (𝑧) ≤ 1 for all
𝑧 ∈ Z and that 0 ≤ 𝑔(𝑧) ≤ 1 for all 𝑧 ∈ Z .
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As 𝑓 and 𝑔 are now normalized to [0, 1], they admit the integral representations

𝑓 (𝑧) =
∫ 1

0
1 𝑓 (𝑧)≥𝜏 d𝜏 for all 𝑧 ∈ Z , 𝑔(𝑧) =

∫ 1

0
1𝑔(�̂�)≥𝜏 d𝜏 for all 𝑧 ∈ Z .

Next, one can show that 𝑓 and 𝑔 satisfy the constraints in (2.30) if and only if

1 𝑓 (𝑧)≥𝜏 − 1𝑔(�̂�)≥𝜏 ≤ 1𝑑(𝑧,�̂�)>𝑟 for all 𝑧, 𝑧 ∈ Z , 𝜏 ∈ [0, 1] . (2.32)

Note first that (2.32) is trivially satisfied unless its left-hand side evaluates to 1
and its right-hand side evaluates to 0. This happens if and only if 𝑓 (𝑧) ≥ 𝜏 and
𝑔(𝑧) < 𝜏 for some 𝜏 ∈ [0, 1] and 𝑧, 𝑧 ∈ Z with 𝑑(𝑧, 𝑧) ≤ 𝑟 . This is impossible,
however, because it implies that 𝑓 (𝑧)− 𝑔(𝑧) > 0 for some 𝑧, 𝑧 with 𝑑(𝑧, 𝑧) ≤ 𝑟 , thus
contradicting the constraints in (2.30). Hence the constraints in (2.30) imply (2.32).
The converse implication follows immediately from the integral representations of
𝑓 and 𝑔.

Finally, note that 1 𝑓 (𝑧)≥𝜏 and 1𝑔(�̂�)≥𝜏 are the characteristic functions of the Borel
sets B = {𝑧 ∈ Z : 𝑓 (𝑧) ≥ 𝜏} and C = {𝑧 ∈ Z : 𝑔(𝑧) ≥ 𝜏}, respectively. Note also
that (2.32) holds if and only if C ⊇ B𝑟 . Recalling their integral representations, we
may thus conclude that the functions 𝑓 and 𝑔 are feasible in (2.30) if and only if
they represent convex combinations of (infinitely many) characteristic functions of
the form 1𝑧∈B and 1�̂�∈C for some Borel sets B and C with C ⊇ B𝑟 . As the objective
function of (2.30) is linear in 𝑓 and 𝑔, its supremum does not change if we restrict
the feasible set to such characteristic functions. Hence (2.30) reduces to

OT𝑐𝑟 (P, P̂) = sup{P(B) − P̂(C) : B, C ⊆ Z are Borel sets with C ⊇ B𝑟 }.

Clearly, it is always optimal to set C = B𝑟 , and thus the claim follows.

While Proposition 2.22 follows from Strassen (1965, Theorem 11), the proof
shown here parallels that of Villani (2003, Theorem 1.27). As a by-product,
Proposition 2.22 reveals that the Lévy–Prokhorov distance is symmetric, which is
not evident from its definition. Thus it indeed constitutes a metric.

The Lévy–Prokhorov ambiguity set of radius 𝑟 ≥ 0 around P̂ ∈ P(Z) is defined as

P = {P ∈ P(Z) : LP(P, P̂) ≤ 𝑟}.

For our purposes, the most important implication of Proposition 2.22 is that P can
be viewed as special instance of an optimal transport ambiguity set, that is, we have

P = {P ∈ P(Z) : OT𝑐𝑟 (P, P̂) ≤ 𝑟}

for any radius 𝑟 ≥ 0. Lévy–Prokhorov ambiguity sets were first introduced in the
context of chance-constrained programming (Erdoğan and Iyengar 2006). They
also naturally emerge in data-driven decision-making and the training of robust
machine learning models (Pydi and Jog 2021, Bennouna and Van Parys 2023, Ben-
nouna, Lucas and Van Parys 2023). We close this section with a useful corollary,
which follows immediately from the last part of the proof of Proposition 2.22.
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Corollary 2.23. If the transportation cost function 𝑐𝑟 corresponding to 𝑟 ≥ 0 is
defined by 𝑐𝑟 (𝑧, 𝑧) = 1𝑑(𝑧,�̂�)>𝑟 for all 𝑧, 𝑧 ∈ Z , then we have

OT𝑐𝑟 (P, P̂) = sup{P(B) − P̂(B𝑟 ) : B ⊆ Z is a Borel set},
where the 𝑟-neighbourhood B𝑟 is defined in (2.29).

2.3.3. Total variation ambiguity sets revisited
In Section 2.2.3 we showed that the total variation distance constitutes an instance
of a 𝜙-divergence; see Proposition 2.11. We can now demonstrate that the total
variation distance is also an instance of an optimal transport discrepancy.

Proposition 2.24. If 𝑐(𝑧, 𝑧) = 1𝑧≠�̂� for all 𝑧, 𝑧 ∈ Z , then we have

TV(P, P̂) = OT𝑐(P, P̂) = inf
𝛾∈Γ(P,P̂)

𝛾(𝑍 ≠ �̂�).

Proof. By Definition 2.10, the total variation distance satisfies

TV(P, P̂) = sup{|P(B) − P̂(B)| : B ⊆ Z is a Borel set}
= sup{P(B) − P̂(B) : B ⊆ Z is a Borel set}
= OT𝑐(P, P̂),

where the second equality holds because the complement of any Borel set is again
a Borel set. The third equality follows from Corollary 2.23 for 𝑟 = 0, which
applies because 𝑐(𝑧, 𝑧) = 1𝑑(𝑧,�̂�)>0 for any (continuous) metric 𝑑 on Z . Since
𝑐(𝑧, 𝑧) = 1𝑧≠�̂� , we also have

OT𝑐(P, P̂) = inf
𝛾∈Γ(P,P̂)

E𝛾
[
1𝑍≠�̂�

]
= inf
𝛾∈Γ(P,P̂)

𝛾(𝑍 ≠ �̂�).

This observation completes the proof.

Proposition 2.24 readily implies that any total variation ambiguity set can also
be viewed as a special instance of an optimal transport ambiguity set.

2.3.4. ∞-Wasserstein ambiguity sets
Section 2.3.1 focuses exclusively on 𝑝-Wasserstein distances corresponding to finite
exponents 𝑝 ∈ [1,∞). The∞-Wasserstein distance requires special treatment.

Definition 2.25 (∞-Wasserstein distance). The∞-Wasserstein distance

W∞ : P(Z) × P(Z)→ [0,∞]
corresponding to a continuous metric 𝑑(·, ·) on Z is

W∞(P, P̂) = inf
𝛾∈Γ(P,P̂)

ess sup𝛾 [𝑑(𝑍, �̂�)], (2.33)

where the essential supremum of 𝑑(𝑍, �̂�) under 𝛾 is given by

ess sup𝛾 [𝑑(𝑍, �̂�)] = inf
𝜏∈R
{𝜏 : 𝛾(𝑑(𝑍, �̂�) > 𝜏) = 0}.
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Definition 2.25 makes sense because the∞-Wasserstein distance can be obtained
from the 𝑝-Wasserstein distance in the limit when 𝑝 tends to infinity.

Proposition 2.26 (Givens and Shortt 1984). For any P, P̂ ∈ P(Z) we have

W∞(P, P̂) = lim
𝑝→∞

W𝑝(P, P̂) = sup
𝑝≥1

W𝑝(P, P̂).

Proof. If 𝑝 ≥ 𝑞 ≥ 1, then 𝑓 (𝑡) = 𝑡𝑞/𝑝 is concave on R+. This implies that

W𝑝(P, P̂) = inf
𝛾∈Γ(P,P̂)

(E𝛾 [𝑑(𝑍, �̂�)𝑝]𝑞/𝑝)1/𝑞

≥ inf
𝛾∈Γ(P,P̂)

(E𝛾 [𝑑(𝑍, �̂�)𝑞])1/𝑞

= W𝑞(P, P̂)

thanks to Jensen’s inequality. Hence W𝑝(P, P̂) is non-decreasing in the exponent
𝑝 as long as 𝑝 ∈ [1,∞). In addition, for any transportation plan 𝛾 ∈ Γ(P, P̂) and
exponent 𝑝 ∈ [1,∞), the definition of the essential supremum readily implies that

(E𝛾 [𝑑(𝑍, �̂�)𝑝])1/𝑝 ≤ ess sup𝛾 [𝑑(𝑍, �̂�)𝑝]1/𝑝 = ess sup𝛾 [𝑑(𝑍, �̂�)] .

Minimizing both sides of this inequality across all 𝛾 ∈ Γ(P, P̂) further implies that
W𝑝(P, P̂) ≤ W∞(P, P̂) for all 𝑝 ∈ [1,∞). In summary, we may thus conclude that

lim
𝑝→∞

W𝑝(P, P̂) = sup
𝑝≥1

W𝑝(P, P̂) ≤ W∞(P, P̂).

It remains to be shown that the last inequality in fact holds as an equality. To see
this, fix some tolerance 𝜀 > 0. For any 𝑝 ∈ N, let 𝛾𝑝 ∈ Γ(P, P̂) be a coupling
with E𝛾𝑝 [𝑑(𝑍, �̂�)𝑝]1/𝑝 = W𝑝(P, P̂). Note that 𝛾𝑝 exists because, as we will
see in Corollary 3.16 and Proposition 3.3 below, Γ(P, P̂) is weakly compact and
E𝛾 [𝑑(𝑍, �̂�)𝑝] is weakly lower semicontinuous in 𝛾. Next, let {𝛾𝑝( 𝑗)} 𝑗∈N be a
subsequence that converges weakly to some coupling 𝛾∞ ∈ Γ(P, P̂), which exists
again because Γ(P, P̂) is weakly compact. We proceed by case distinction.

Case 1. If ess sup𝛾∞ [𝑑(𝑍, �̂�)] is finite, define the open set

B = {(𝑧, 𝑧) ∈ Z × Z : 𝑑(𝑧, 𝑧) > ess sup𝛾∞ [𝑑(𝑍, �̂�)] − 𝜀},

and note that 𝛾∞(B) > 0 by the definition of the essential supremum. We then find

W𝑝( 𝑗)(P, P̂) ≥
(∫

B
𝑑(𝑧, 𝑧)𝑝( 𝑗) d𝛾𝑝( 𝑗)(𝑧, 𝑧)

)1/(𝑝( 𝑗))

≥ 𝛾𝑝( 𝑗)(B)1/(𝑝( 𝑗))(ess sup𝛾∞ [𝑑(𝑍, �̂�)] − 𝜀)

≥ 𝛾𝑝( 𝑗)(B)1/(𝑝( 𝑗))(W∞(P, P̂) − 𝜀).
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Since B is open and 𝛾𝑝( 𝑗) converges weakly to 𝛾∞ as 𝑗 grows, the Portmanteau
theorem (Billingsley 2013, Theorem 2.1 (iiv)) implies that lim inf 𝑗→∞ 𝛾𝑝( 𝑗)(B) ≥
𝛾∞(B) > 0. Thus 𝛾𝑝( 𝑗)(B)1/𝑝( 𝑗) converges to 1 as 𝑗 grows, and we obtain

lim
𝑝→∞

W𝑝(P, P̂) ≥ W∞(P, P̂) − 𝜀.

As this inequality holds for any tolerance 𝜀 > 0, the above reasoning finally implies
that W𝑝(P, P̂) indeed converges to W∞(P, P̂) for large 𝑝.

Case 2. If ess sup𝛾∞ [𝑑(𝑍, �̂�)] = ∞, then we replace ess sup𝛾∞ [𝑑(𝑍, �̂�)] in the
definition of the open set B with an arbitrarily large constant. Proceeding as in
Case 1 eventually reveals that lim𝑝→∞W𝑝(P, P̂) = W∞(P, P̂) = ∞.

To develop some intuition for Proposition 2.26, consider the optimal transport
problem in the definition of W𝑝(P, P̂). If 𝑝 > 1, then the cost 𝑐(𝑧, 𝑧) = 𝑑(𝑧, 𝑧)𝑝
of transporting one unit of probability mass from 𝑧 to 𝑧 grows superlinearly with
the distance 𝑑(𝑧, 𝑧). Hence, parts of the distribution P̂ that are transported further
under an optimal transportation plan contribute more to W𝑝(P, P̂). In addition, as 𝑝
tends to infinity, eventually only the portion of the distribution P̂ that is transported
the furthest has an impact on W∞(P, P̂). Even more, only the largest transportation
distance matters, whereas the amount of probability mass transported is irrelevant.

Despite Proposition 2.26, the optimal transport problems in the definitions of
the Wasserstein distances of order 𝑝 < ∞ and of order 𝑝 = ∞ are fundamentally
different. Indeed, if 𝑝 < ∞, then the objective functionE𝛾 [𝑑(𝑍, �̂�)𝑝] of the optimal
transport problem is linear in the transportation plan 𝛾. If 𝑝 = ∞, on the other
hand, then the objective function ess sup𝛾 [𝑑(𝑍, �̂�)] is not even convex, but rather
quasi-convex, in 𝛾 (Jylhä 2015, Lemma 2.2); see also Champion, De Pascale and
Juutinen (2008). Thus∞-Wasserstein distances require a more subtle treatment.

The next proposition relates the ∞-Wasserstein distance to a standard optimal
transport problem. Therefore it has computational relevance.

Proposition 2.27. If the transportation cost function 𝑐𝑟 corresponding to 𝑟 ≥ 0
is defined by 𝑐𝑟 (𝑧, 𝑧) = 1𝑑(𝑧,�̂�)>𝑟 for all 𝑧, 𝑧 ∈ Z , then we have

W∞(P, P̂) = inf{𝑟 ≥ 0: OT𝑐𝑟 (P, P̂) ≤ 0}.

Proof. Recall that OT𝑐𝑟 (P, P̂) = inf{E𝛾 [𝑐𝑟 (𝑍, �̂�)] : 𝛾 ∈ Γ(P, P̂)}. Note that
the underlying optimal transport problem is solvable because Γ(P, P̂) is weakly
compact and because E𝛾 [𝑑(𝑍, �̂�)𝑝] is weakly lower semicontinuous in 𝛾 thanks to
Corollary 3.16 and Proposition 3.3 below, respectively. Therefore we have

inf{𝑟 ≥ 0: OT𝑐𝑟 (P, P̂) ≤ 0}
= inf{𝑟 ≥ 0: ∃𝛾 ∈ Γ(P, P̂) with E𝛾 [𝑐𝑟 (𝑍, �̂�)] = 0}
= inf
𝛾∈Γ(P,P̂), 𝑟∈R+

{𝑟 : 𝛾 [𝑑(𝑍, �̂�) > 𝑟] = 0}

= W∞(P, P̂),
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where the first equality holds because OT𝑐𝑟 (P, P̂) is non-negative and because the
underlying optimal transport problem is solvable. The second equality follows
from the definitions of 𝑐𝑟 and the∞-Wasserstein distance.

Combining Proposition 2.27 with Corollary 2.23 immediately yields the follow-
ing equivalent characterization of the∞-Wasserstein distance.

Corollary 2.28 (Givens and Shortt 1984). The∞-Wasserstein distance satisfies

W∞(P, P̂) = inf{𝑟 ≥ 0: P(B) ≤ P̂(B𝑟 ) for all Borel sets B ⊆ Z},
where the 𝑟-neighbourhood B𝑟 is defined in (2.29).

The∞-Wasserstein ambiguity set of radius 𝑟 ≥ 0 around P̂ ∈ P(Z) is defined as

P = {P ∈ P(Z) : W∞(P, P̂) ≤ 𝑟}. (2.34)

Proposition 2.27 implies that P coincides with an optimal transport ambiguity set
with transportation cost function 𝑐𝑟 (𝑧, 𝑧) = 1𝑑(𝑧,�̂�)>𝑟 , that is, we have

P = {P ∈ P(Z) : OT𝑐𝑟 (P, P̂) ≤ 0}.
DRO with ∞-Wasserstein ambiguity sets has strong connections to adversarial
machine learning (Gao, Chen and Kleywegt 2017, García Trillos and García Trillos
2022, García Trillos and Murray 2022, García Trillos and Jacobs 2023, Bungert,
García Trillos and Murray 2023, Bungert, Laux and Stinson 2024, Gao et al. 2024b,
Pydi and Jog 2024, Frank and Niles-Weed 2024a,b) and kernel density estimation
(Xu, Caramanis and Mannor 2012a). In addition,∞-Wasserstein ambiguity sets are
used in two- and multi-stage stochastic programming (Xie 2020, Bertsimas, Shtern
and Sturt 2022, Bertsimas et al. 2023), portfolio optimization (Nguyen et al. 2024)
and robust learning (Nguyen et al. 2020, Wang, Nguyen and Hanasusanto 2024d).

2.4. Other ambiguity sets

There exist several ambiguity sets that cannot be classified as moment, 𝜙-divergence
or optimal transport ambiguity sets. In the following we offer a brief overview of
these ambiguity sets without providing extensive mathematical details.

2.4.1. Marginal ambiguity sets
Marginal ambiguity sets specify the marginal distributions of multiple subvectors
of 𝑍 without detailing their joint distribution. The simplest example of a marginal
ambiguity set is the Fréchet ambiguity set, which specifies the marginal distribu-
tions of all individual components of 𝑍 but provides no information about their
copula. Thus the Fréchet ambiguity set is parametrized by 𝑑 marginal cumulative
distribution functions 𝐹𝑖 : R→ [0, 1], 𝑖 ∈ [𝑑], and can be represented as

P = {P ∈ P(R𝑑) : P(𝑍𝑖 ≤ 𝑧𝑖) = 𝐹𝑖(𝑧𝑖) ∀𝑧𝑖 ∈ R, ∀𝑖 ∈ [𝑑]}. (2.35)

Here 𝐹𝑖 is an arbitrary cumulative distribution function, that is, a right-continuous,
non-decreasing function with lim𝑧𝑖→−∞ 𝐹𝑖(𝑧𝑖) = 0 and lim𝑧𝑖→+∞ 𝐹𝑖(𝑧𝑖) = 1.
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Fréchet ambiguity sets are relevant for probabilistic logic. Imagine that each
𝑍𝑖 represents a binary variable that evaluates to 1 if a certain event occurs and to 0
otherwise, and assume that the probability of each event is known, whereas the joint
distribution of all events is unknown. In this setting, Boole (1854) was interested in
computing bounds on the probability of a composite event encoded by a Boolean
function of the variables 𝑍𝑖 , 𝑖 ∈ [𝑑]. Almost a century later, Fréchet (1935) derived
explicit inequalities for the probabilities of such composite events, which are now
called Fréchet inequalities. Note that these Fréchet inequalities can be obtained by
minimizing or maximizing the probability of the composite event over all distribu-
tions in a Fréchet ambiguity set with Bernoulli marginals. More recently, there has
been growing interest in generalized Fréchet inequalities, which bound the risk of
general (not necessarily Boolean) functions of 𝑍 with respect to all distributions
in a Fréchet ambiguity set with general (not necessarily Bernoulli) marginals. For
example, a wealth of Fréchet inequalities for the risk of a sum of random variables
have emerged in finance and risk management (Rüschendorf 1983, 1991, Embrechts
and Puccetti 2006, Wang and Wang 2011, Wang, Peng and Yang 2013, Puccetti
and Rüschendorf 2013, Van Parys, Goulart and Embrechts 2016a, Blanchet, Lam,
Liu and Wang 2024a). In addition, Natarajan, Song and Teo (2009b) derive sharp
bounds for the worst-case expectation of a piecewise affine functions over a Fréchet
ambiguity set. We highlight that Fréchet ambiguity sets are also relevant because
they coincide with the feasible sets of multi-marginal optimal transport problems,
which can sometimes be solved in polynomial time (Pass 2015, Altschuler and
Boix-Adsera 2023, Natarajan, Padmanabhan and Ramachandra 2023).

General marginal ambiguity sets specify the marginal distributions of several
(possibly overlapping) subsets of the set {𝑍𝑖 : 𝑖 ∈ [𝑑]} of random variables. How-
ever, checking whether such an ambiguity set is non-empty is NP-complete even if
each 𝑍𝑖 is a Bernoulli random variable and each subset accommodates merely two
elements (Honeyman, Ladner and Yannakakis 1980, Georgakopoulos, Kavvadias
and Papadimitriou 1988). Computing worst-case expectations over marginal am-
biguity sets is thus intractable unless the subsets of random variables with known
marginals are disjoint (Doan and Natarajan 2012) or if the corresponding overlap
graph displays a running intersection property (Doan, Li and Natarajan 2015).

Marginal ambiguity sets are attractive because, given limited statistical data, it
is far easier to estimate low-dimensional marginals than their global dependence
structure. However, even univariate marginals cannot be estimated exactly. For this
reason, several researchers study marginal ambiguity sets that provide only limited
information about the marginals such as bounds on marginal moments or marginal
dispersion measures (Bertsimas et al. 2004, Bertsimas, Natarajan and Teo 2006a,b,
Chen, Sim, Sun and Teo 2010, Mishra, Natarajan, Tao and Teo 2012, Natarajan,
Sim and Uichanco 2018).

A related stream of literature focuses on ambiguity sets under which the ran-
dom variables 𝑍𝑖 , 𝑖 ∈ [𝑑], are independent and governed by ambiguous marginal
distributions. For example, the Hoeffding ambiguity set contains all joint distri-
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butions on a box with independent (and completely unknown) marginals, whereas
the Bernstein ambiguity set contains all distributions from within the Hoeffding
ambiguity set subject to marginal moment bounds (Nemirovski and Shapiro 2007,
Hanasusanto et al. 2015a). Bernstein ambiguity sets that constrain the mean
as well as the mean-absolute deviation of each marginal are used to derive safe
tractable approximations for distributionally robust chance-constrained programs
(Postek, Ben-Tal, den Hertog and Melenberg 2018), two-stage integer programs
(Postek et al. 2018, Postek, Romeĳnders, den Hertog and van der Vlerk 2019) and
queueing systems (Wang, Prasad, Hanasusanto and Hasenbein 2024e).

DRO with marginal ambiguity sets has close connections to submodularity and to
the theory of comonotonicity in risk management (Tchen 1980, Rüschendorf 2013,
Bach 2013, 2019, Natarajan et al. 2023, Long, Qi and Zhang 2024). It has a broad
range of diverse applications ranging from discrete choice modelling (Natarajan
et al. 2009b, Mishra et al. 2014, Chen et al. 2022, Ruan, Li, Murthy and Natarajan
2023) to queuing theory (van Eekelen, den Hertog and van Leeuwaarden 2022),
transportation (Wang, Chen and Liu 2020, Shehadeh 2023), chance-constrained
programming (Xie, Ahmed and Jiang 2022), scheduling (Mak et al. 2015), invent-
ory management (Liu, Chen, Wang and Wang 2024a), the analysis of complex
networks (Chen, Padmanabhan, Lim and Natarajan 2020, Van Leeuwaarden and
Stegehuis 2021, Brugman et al. 2022) and mechanism design (Carroll 2017, Gravin
and Lu 2018, Chen et al. 2024b, Wang, Liu and Zhang 2024c, Wang 2024). For
further details we refer to the comprehensive monograph by Natarajan (2021).

2.4.2. Mixture ambiguity sets and structural ambiguity sets
LetΘ ⊆ R𝑚 be a Borel set and P𝜃 ∈ P(Z) a parametric distribution that is uniquely
determined by 𝜃 ∈ Θ. Assume that P𝜃 (𝑍 ∈ B) is a Borel-measurable function of 𝜃
for every fixed Borel set B ⊆ Z . The parametric distribution family {P𝜃 : 𝜃 ∈ Θ}
can then be used as a mixture family, which induces the mixture ambiguity set

P =

{∫
Θ

P𝜃 dQ(𝜃) : Q ∈ P(Θ)
}
. (2.36)

Thus P contains all distributions that can be represented as mixtures of the dis-
tributions P𝜃 , 𝜃 ∈ Θ. Put differently, for every P ∈ P there exists a mixture
distribution Q ∈ P(Θ) with P(𝑍 ∈ B) =

∫
Θ
P𝜃 (𝑍 ∈ B) dQ(𝜃) for all Borel sets

B ⊆ Z . This construction ensures that P ⊆ P(Z) is convex. For example, if P𝜃 is
a Gaussian distribution whose mean and covariance matrix are encoded by 𝜃, then
P contains (possibly continuous) mixtures of Gaussians. Mixture ambiguity sets
corresponding to compact parameter sets Θ are studied by Lasserre and Weisser
(2021), who develop a semidefinite programming-based hierarchy of increasingly
tight inner approximations for the feasible set of a distributionally robust chance
constraint.

Note thatP can be viewed as the convex hull of the parametric distribution family
{P𝜃 : 𝜃 ∈ Θ}. A classical result in convex analysis due to Minkowski asserts that
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any compact convex subset of a Euclidean vector space coincides with the convex
hull of its extreme points. Choquet theory (Phelps 1965) seeks similar extreme
point representations for convex compact subsets of topological vector spaces. For
example, if {P𝜃 : 𝜃 ∈ Θ} is the set of all extreme distributions of a weakly compact
convex ambiguity set P , then (2.36) constitutes a Choquet representation of P .

Families of distributions that share certain structural properties sometimes admit
a Choquet representation of the form (2.36). For example, let P be the family of
all distributions P ∈ P(R𝑑) that are point symmetric about the origin. This means
that P(𝑍 ∈ B) = P(−𝑍 ∈ B) for every Borel set B ⊆ R𝑑 . One can then show that
all extreme distributions of P are representable as P𝜃 = 1

2𝛿+𝜃 +
1
2𝛿−𝜃 for some

𝜃 ∈ R𝑑 . Thus P admits a Choquet representation of the form (2.36). As another
example, let P be the family of all distributions P ∈ P(R𝑑) that are 𝛼-unimodal
about the origin for some 𝛼 > 0. This means that 𝑡𝛼P(𝑍 ∈ B/𝑡) is non-decreasing
in 𝑡 > 0 for every Borel set B ⊆ R𝑑 . One can then show that every extreme
distribution of P is a distribution P𝜃 supported on the line segment from 0 to
𝜃 ∈ R𝑑 with the property that P𝜃 (∥𝑍 ∥2 ≤ 𝑡∥𝜃∥2) = 𝑡𝛼 for all 𝑡 ∈ [0, 1]. Thus
P again admits a Choquet representation of the form (2.36). We remark that 𝑑-
unimodal distributions on R𝑑 are also called star-unimodal. One readily verifies
that a distribution with a continuous probability density function is star-unimodal
if and only if the density function is non-increasing along each ray emanating from
the origin. In addition, one can show that the family of all 𝛼-unimodal distributions
converges – in a precise sense – to the family of all possible distributions on R𝑑
as 𝛼 tends to infinity. For more information on structural distribution families and
their Choquet representations, we refer to Dharmadhikari and Joag-Dev (1988).

The moment ambiguity sets of Section 2.1 are known to contain discrete distribu-
tions with only very few atoms; see Section 7. However, uncertainties encountered
in real physical, technical or economic systems are unlikely to follow such dis-
crete distributions. Instead, they are often expected to be unimodal. Hence an
effective means to eliminate the pathological discrete distributions from a moment
ambiguity set is to intersect it with the structural ambiguity set of all 𝛼-unimodal
distributions for some 𝛼 > 0. Popescu (2005) combines ideas from Choquet theory
and sums-of-squares polynomial optimization to approximate worst-case expecta-
tions over the resulting intersection ambiguity sets by a hierarchy of increasingly
accurate bounds, each of which is computed by solving a tractable semidefinite
program. Van Parys, Goulart and Kuhn (2016b) and Van Parys, Goulart and
Morari (2019) extend this approach and establish exact semidefinite programming
reformulations for the worst-case probability of a polyhedron and the worst-case
conditional value-at-risk of a piecewise linear convex loss function across all 𝛼-
unimodal distributions in a Chebyshev ambiguity set; see also Hanasusanto, Roitch,
Kuhn and Wiesemann (2015b). Li, Jiang and Mathieu (2019a) demonstrate that
these semidefinite programming reformulations can sometimes be simplified to
highly tractable second-order cone programs. Complementing moment informa-
tion with structural information generally leads to less conservative DRO models
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as Li, Jiang and Mathieu (2016) demonstrate in the context of a power system
application. Lam, Liu and Zhang (2021) consider another basic notion of distri-
butional shape known as ortho-unimodality and build a corresponding Choquet
representation to address multivariate extreme event estimation. More recently,
Lam, Liu and Singham (2024) combine Choquet theory with importance sampling
and likelihood ratio techniques for modelling distribution shapes.

2.4.3. Non-standard 𝜙-divergence and optimal transport ambiguity sets
A wealth of non-standard 𝜙-divergences and optimal transport discrepancies have
been proposed to measure the dissimilarity between probability distributions. They
offer great flexibility in designing ambiguity sets with complementary computa-
tional and statistical properties. Non-standard distance measures notably include
smoothed 𝜙-divergences (Zeitouni and Gutman 1991, Yang and Chen 2018, Liu,
Van Parys and Lam 2023) as well as combinations of 𝜙-divergences and op-
timal transport discrepancies (Reid and Williamson 2011, Dupuis and Mao 2022,
Van Parys 2024). In addition, they include coherent Wasserstein distances (Li
and Mao 2022) and Sinkhorn divergences (Wang, Gao and Xie 2021), as well as
divergences based on causal optimal transport (Analui and Pflug 2014, Pflug and
Pichler 2014, Yang et al. 2022, Gao, Arora and Huang 2024a, Jiang and Obloj
2024), outlier-robust optimal transport (Nietert, Goldfeld and Shafiee 2024a,b),
mixed-feature optimal transport (Selvi, Belbasi, Haugh and Wiesemann 2022, Bel-
basi, Selvi and Wiesemann 2023), cluster-based optimal transport (Wang, Becker,
Van Parys and Stellato 2024a), partial optimal transport (Esteban-Pérez and Mor-
ales 2022), sliced optimal transport (Olea, Rush, Velez and Wiesel 2022), multi-
marginal optimal transport (Lau and Liu 2022, García Trillos, Jacobs and Kim
2023, Rychener, Esteban-Pérez, Morales and Kuhn 2024) and constrained condi-
tional moment optimal transport (Li et al. 2022, Blanchet, Kuhn, Li and Taşkesen
2023, Sauldubois and Touzi 2024).

2.4.4. Ambiguity sets based on integral probability metrics
Let F be a family of Borel-measurable test functions 𝑓 : Z → R such that 𝑓 ∈ F if
and only if − 𝑓 ∈ F . The integral probability metric generated by F is defined via

DF (P, P̂) = sup
𝑓 ∈F

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝑓 (𝑧) dP̂(𝑧)

for all distributionsP, P̂ ∈ P(Z) under which all test functions 𝑓 ∈ F are integrable.
The underlying maximization problem probes how well the test functions can
distinguish P from P̂. By construction, DF constitutes a pseudo-metric, that is, it is
non-negative and symmetric (because F = −F), vanishes if its arguments match,
and satisfies the triangle inequality. In addition, DF becomes a proper metric if
F separates distributions, in which case DF (P, P̂) vanishes only if P = P̂. The
ambiguity set of radius 𝑟 ≥ 0 around P̂ ∈ P(Z) with respect to DF is defined as

P = {P ∈ P(Z) : DF (P, P̂) ≤ 𝑟}.
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The proof of Proposition 2.11 reveals that the total variation distance is the integral
probability metric generated by all Borel functions 𝑓 : Z → [−1/2, 1/2]; see
(2.16). The Kantorovich–Rubinstein duality established in Corollary 2.19 further
shows that the 1-Wasserstein distance is the integral probability metric generated
by all Lipschitz-continuous functions 𝑓 : Z → R with lip( 𝑓 ) ≤ 1. In addition,
if H is a reproducing kernel Hilbert space of Borel functions 𝑓 : Z → R with
Hilbert norm ∥ · ∥H, then the maximum mean discrepancy distance corresponding
to H is the integral probability metric generated by the standard unit ball F =

{ 𝑓 ∈ H : ∥ 𝑓 ∥H ≤ 1} in H. Maximum mean discrepancy ambiguity sets are
studied by Staib and Jegelka (2019), Zhu, Jitkrittum, Diehl and Schölkopf (2020,
2021), Zeng and Lam (2022) and Iyengar, Lam and Wang (2023). Husain (2020)
uncovers a deep connection between DRO problems and regularized empirical risk
minimization problems, which holds whenever the ambiguity set is defined via an
integral probability metric.

3. Topological properties of ambiguity sets
A fundamental question of theoretical as well as practical interest is whether nature’s
subproblem in (1.2) is solvable or, in other words, whether the inner supremum
in (1.2) is attained. In this section we will investigate under what conditions the
Weierstrass extreme value theorem applies to nature’s subproblem. That is, we will
develop easily checkable conditions under which the ambiguity set P is weakly
compact and the expected loss EP [ℓ(𝑥, 𝑍)] is weakly upper semicontinuous in P.
Throughout this discussion, we assume that Z is a closed subset of R𝑑 .

A classical result by Baire asserts that a function on the real line is lower
semicontinuous if and only if it can be represented as the pointwise supremum of
a non-decreasing sequence of continuous functions (Baire 1905). Below we will
use the following multivariate generalization of this result.

Lemma 3.1 (Stromberg 2015, p. 132). A function 𝑓 : Z → (−∞, +∞] is lower
semicontinuous if and only if there is a non-decreasing sequence of continuous
functions 𝑓𝑖 : Z → R, 𝑖 ∈ N, with 𝑓 (𝑧) = sup𝑖∈N 𝑓𝑖(𝑧) for all 𝑧 ∈ Z .

If 𝑓 is bounded from below, then the continuous functions 𝑓𝑖 can be assumed to be
uniformly bounded. Indeed, if 𝑓 (𝑧) ≥ 0, say, then the continuous function 𝑓𝑖(𝑧) can
be replaced with the bounded continuous function 𝑓 ′

𝑖
(𝑧) = min{max{ 𝑓𝑖(𝑧), 0}, 𝑖}.

The sequence 𝑓 ′
𝑖
, 𝑖 ∈ N, is still non-decreasing and converges pointwise to 𝑓 .

Definition 3.2 (Weak convergence of probability distributions). A sequence of
probability distributions P 𝑗 ∈ P(Z), 𝑗 ∈ N, converges weakly to P ∈ P(Z) if, for
every bounded and continuous function 𝑓 : Z → R, we have

lim
𝑗∈N
EP 𝑗 [ 𝑓 (𝑍)] = EP [ 𝑓 (𝑍)] .
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There is a close link between the continuity properties of the expected value of
𝑓 (𝑍) with respect to the distribution P and the continuity properties of 𝑓 . Recall
that a function 𝐹 : P(Z) → R is weakly continuous if lim𝑖→∞ 𝐹(P𝑖) = 𝐹(P) for
every sequence P𝑖 ∈ P(Z), 𝑖 ∈ N, that converges weakly to P. Weak lower and
upper semicontinuity are defined analogously in the obvious way.

Proposition 3.3 (Continuity of expected values). If 𝑓 : Z → [−∞, +∞] is lower
semicontinuous and bounded from below, then EP [ 𝑓 (𝑍)] is weakly lower semicon-
tinuous in P ∈ P(Z). Conversely, if 𝑓 is upper semicontinuous and bounded from
above, then EP [ 𝑓 (𝑍)] is weakly upper semicontinuous in P ∈ P(Z). Finally, if 𝑓 is
continuous and bounded, then EP [ 𝑓 (𝑍)] is weakly continuous in P ∈ P(Z).

Proof. Assume first that 𝑓 is lower semicontinuous and bounded from below. In
the following, we assume without loss of generality that 𝑓 is in fact non-negative.
Then, by Lemma 3.1, there is a non-decreasing sequence of bounded, continuous
and non-negative functions 𝑓𝑖 , 𝑖 ∈ N, with 𝑓 (𝑧) = sup𝑖∈N 𝑓𝑖(𝑧). If P 𝑗 ∈ P(Z),
𝑗 ∈ N, is any sequence of distributions that converges weakly to P, then we find

lim inf
𝑗∈N

EP 𝑗 [ 𝑓 (𝑍)] = sup
𝑘∈N

inf
𝑗≥𝑘
EP 𝑗

[
sup
𝑖∈N

𝑓𝑖(𝑍)
]

= sup
𝑘∈N

inf
𝑗≥𝑘

sup
𝑖∈N
EP 𝑗 [ 𝑓𝑖(𝑍)]

≥ sup
𝑖∈N

sup
𝑘∈N

inf
𝑗≥𝑘
EP 𝑗 [ 𝑓𝑖(𝑍)]

= sup
𝑖∈N
EP [ 𝑓𝑖(𝜉)]

= EP [ 𝑓 (𝑍)] .
Here, both the second and the last equality follow from the monotone convergence
theorem, which applies because each 𝑓𝑖 is bounded and thus integrable with respect
to any probability distribution and because the 𝑓𝑖 , 𝑖 ∈ N, form a non-decreasing
sequence of non-negative functions. The inequality follows from the interchange of
the supremum over 𝑖 and the infimum over 𝑗 , and the third equality holds because
P 𝑗 converges weakly to P and because 𝑓𝑖 is continuous and bounded. This shows
that EP [ 𝑓 (𝑍)] is weakly lower semicontinuous in P.

The proofs of the assertions regarding weak upper semicontinuity and weak
continuity are analogous and therefore omitted for brevity.

In the following we equip the family P(Z) of all probability distributions on Z
with the weak topology, which is generated by the open sets

𝑈 𝑓 , 𝛿 = {P ∈ P(Z) : |EP [ 𝑓 (𝑍)] | < 𝛿}
encoded by any continuous bounded function 𝑓 : Z → R and tolerance 𝛿 > 0. The
weak topology on P(Z) is metrized by the Prokhorov metric (Billingsley 2013,
Theorem 6.8), and therefore the notions of sequential compactness and compactness
are equivalent on P(Z); see e.g. Munkres (2000, Theorem 28.2).
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Definition 3.4 (Tightness). A family P ⊆ P(Z) of distributions is tight if, for
any tolerance 𝜀 > 0, there is a compact set C ⊆ Z with P(𝑍 ∉ C) ≤ 𝜀 for all P ∈ P .

A classical result by Prokhorov asserts that a distribution family is weakly
compact if and only if it is tight and weakly closed. Prokhorov’s theorem is the key
tool to show that an ambiguity set is weakly compact. We state it without proof.

Theorem 3.5 (Billingsley 2013, Theorem 5.1). A family P ⊆ P(Z) of distribu-
tions is weakly compact if and only if it is tight as well as weakly closed.

In the following we revisit the ambiguity sets of Section 2 one by one and
determine under what conditions they are tight, weakly closed and weakly compact.

3.1. Moment ambiguity sets

The support-only ambiguity sets arguably form the simplest class of moment am-
biguity sets because they impose no moment conditions at all. In fact, all other
ambiguity sets considered in this paper are subsets of a support-only ambiguity set.

Proposition 3.6 (Support-only ambiguity sets). The set P(Z) of all distribu-
tions supported on Z ⊆ R𝑑 is weakly compact if and only if Z is compact.

Proof. Note first that P(Z) is tight if and only if Z is bounded. Indeed, if Z is
bounded, then it is compact because Z is closed thanks to our blanket assumption.
Given any 𝜀 > 0, we may thus set C = Z , which ensures that P(𝑍 ∉ C) = 0 ≤ 𝜀 for
allP ∈ P(Z). HenceP(Z) is tight. IfZ is unbounded, on the other hand, thenP(Z)
trivially fails to be tight. Indeed, for any compact set C ⊆ Z , the complement Z\C
is non-empty because C is bounded and Z is not. Hence there exists a probability
distribution P ∈ P(Z) supported on Z\C such that P(𝑍 ∉ C) = 1.

Next, note that P(Z) is weakly closed if and only if Z is closed. To see this,
assume first that Z is closed. Recall that the indicator function 𝛿Z is defined by
𝛿Z (𝑧) = 0 if 𝑧 ∈ Z and 𝛿Z (𝑧) = +∞ if 𝑧 ∉ Z . Thus, it is lower semicontinuous
and bounded below. By Proposition 3.3, EP [𝛿Z (𝑍)] is therefore weakly lower
semicontinuous in P. If P 𝑗 ∈ P(Z), 𝑗 ∈ N, converges weakly to P, we then have

0 = lim inf
𝑗∈N

EP 𝑗 [𝛿Z (𝑍)] ≥ EP [𝛿Z (𝑍)] ≥ 0,

where the equality holds because P 𝑗 is supported on Z for every 𝑗 ∈ N, and the first
inequality follows from weak lower semicontinuity. This implies that P ∈ P(Z),
and thus P(Z) is weakly closed. Conversely, assume that P(Z) is weakly closed,
and consider a sequence 𝑧 𝑗 ∈ Z , 𝑗 ∈ N, converging to 𝑧. Then the sequence of
Dirac distributions 𝛿𝑧 𝑗 , 𝑗 ∈ N, converges weakly to 𝛿𝑧 , and thus we find

0 = lim inf
𝑗∈N

E 𝛿𝑧 𝑗 [𝛿Z (𝑍)] ≥ E 𝛿𝑧 [𝛿Z (𝑍)] ≥ 0.

Here the first inequality again holds because EP [𝛿Z (𝑍)] is weakly lower semicon-
tinuous in P. This implies that E 𝛿𝑧 [𝛿Z (𝑍)] = 0, which holds if and only if 𝑧 ∈ Z .
Thus Z is closed. Given these insights, the claim follows from Theorem 3.5.
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By using Proposition 3.6, we can now show that a moment ambiguity set of the
form (2.1) is weakly compact whenever the underlying support set Z is compact,
the moment function 𝑓 is continuous and the uncertainty set F is closed.

Proposition 3.7 (Moment ambiguity sets). If Z ⊆ R𝑑 is a compact support set,
𝑓 : Z → R𝑚 is a continuous moment function and F ⊆ R𝑚 is a closed uncertainty
set, then the moment ambiguity set P defined in (2.1) is weakly compact.

Proof. As Z is compact, the support-only ambiguity set P(Z) is weakly compact
by virtue of Proposition 3.6. Consequently, P(Z) is tight and weakly closed. This
readily implies thatP is tight as a subset of a tight set remains tight. Proposition 3.3
further implies that EP [ 𝑓 (𝑍)] is weakly continuous in P. As F is closed and as
the pre-image of any closed set under a continuous transformation is closed, we
may conclude that P 𝑓 = {P ∈ P(R𝑑) : EP [ 𝑓 (𝑍)] ∈ F } is weakly closed. Hence
P = P(Z) ∩ P 𝑓 is weakly closed as the intersection of two weakly closed sets.
Given these insights, the claim follows readily from Theorem 3.5.

The conditions of Proposition 3.7 are only sufficient but not necessary for weak
compactness. The next examples show that moment ambiguity sets can be tight or
weakly compact even if the support setZ or the moment function 𝑓 are unbounded.

Example 3.8 (Markov ambiguity sets). The Markov ambiguity set (2.2) fails to
be tight if Z = R𝑑 . For example, if Z = R and 𝜇 = 0, then for every compact set
C ⊆ R there is a constant 𝑅 > 0 such that the two-point distribution P = 1

2𝛿−𝑅+
1
2𝛿𝑅

is fully supported on the complement of C. However, the Markov ambiguity set
P becomes tight if Z = R+ and 𝜇 = 1. Indeed, in this case Markov’s inequality
implies that P(𝑍 ∉ C) ≤ 𝜀 for every P ∈ P and 𝜀 > 0 if we define C as the compact
interval [0, 1/𝜀]. Even in this case, however, P fails to be weakly closed. Indeed,
the distributions

P𝑖 =
𝑖

𝑖 + 1
𝛿0 +

1
𝑖 + 1

𝛿𝑖+1

belong to P for all 𝑖 ∈ N, but their weak limit P = 𝛿0 is no member of P . If Z is
convex, one can extend this reasoning in the obvious way to show that P is weakly
compact if and only if Z is compact.

The next example shows that Chebyshev ambiguity sets are tight irrespective of
Z . Nevertheless, they are not always weakly compact.

Example 3.9 (Chebyshev ambiguity sets). The Chebyshev ambiguity set P
defined in (2.3) is always tight. To see this, assume without loss of generality that
𝜇 = 0 and 𝑀 = 𝐼𝑑 , which can always be enforced by applying an affine coordinate
transformation. Given any 𝜀 > 0, we can define a compact set C = {𝑧 ∈ Z : ∥𝑧∥2 ≤√︁
𝑑/𝜀}. It is then easy to see that any distribution P ∈ P satisfies

P(𝑍 ∉ C) = P
(
∥𝑍 ∥2 >

√︁
𝑑/𝜀
)
≤ EP

[
∥𝑍 ∥22 · 𝜀/𝑑

]
= 𝜀,
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where the inequality holds because the quadratic function 𝑞(𝑧) = ∥𝑧∥22 · 𝜀/𝑑 ma-
jorizes the characteristic function of Z\C. Hence P is indeed tight. However, P is
not necessarily weakly closed. To see this, suppose that 𝑑 = 1 and that Z = R. In
this case the distributions

P𝑖 =
1

2𝑖2
𝛿−𝑖 +

𝑖2 − 1
𝑖2

𝛿0 +
1

2𝑖2
𝛿𝑖

have zero mean and unit variance for all 𝑖 ∈ N. That is, they all belong to P .
However, they converge weakly to P = 𝛿0, which is not an element of P . Thus P
fails to be weakly compact.

The family of all distributions on R𝑑 with bounded 𝑝th-order moments is always
weakly compact even though ambiguity sets that fix the 𝑝th-order moments to
prescribed values (e.g. the Chebyshev ambiguity set) may not be weakly compact.

Example 3.10 (𝑝th-order moment ambiguity sets). The ambiguity set

P = {P ∈ P(Z) : EP [∥𝑍 ∥ 𝑝] ≤ 𝑅}

induced by any norm ∥ · ∥ on R𝑑 and two parameters 𝑝, 𝑅 > 0 is weakly compact.
Using reasoning similar to Example 3.9, one can show that for any 𝜀 > 0 there
exists a compact set, namely C = {𝑧 ∈ Z : ∥𝑧∥ ≤ (𝑅/𝜀)1/𝑝}, which satisfies
P(𝑍 ∉ C) ≤ 𝜀. Thus P is tight. To see that P is also weakly closed, note that
𝑓 (𝑧) = ∥𝑧∥ 𝑝 is continuous and bounded below. By Proposition 3.3, the expected
value EP [∥𝑍 ∥ 𝑝] is therefore weakly lower semicontinuous in P and has weakly
closed sublevel sets. Therefore P is weakly compact by virtue of Theorem 3.5.

3.2. 𝜙-divergence ambiguity sets

In this section we show that 𝜙-divergence ambiguity sets of the form (2.10) are
weakly compact whenever the entropy function 𝜙 grows superlinearly. Otherwise,
if 𝜙 grows at most linearly, then the corresponding 𝜙-divergence ambiguity sets
generically fail to be weakly compact. Recall that an entropy function 𝜙 in the sense
of Definition 2.4 grows superlinearly if and only if 𝜙∞(1) = ∞; see also Table 2.1.

Lemma 3.11 (Worst-case probability maps). Let P be the 𝜙-divergence ambi-
guity set of radius 𝑟 > 0 around P̂ ∈ P(Z) defined in (2.10), and assume that 𝜙
is continuous at 1 and that 𝜙∞(1) = ∞. Then there is a continuous, concave and
surjective function 𝑝 : [0, 1] → [0, 1] that depends only on 𝜙 and 𝑟 such that

sup
P∈P
P(𝑍 ∈ B) = 𝑝(P̂(𝑍 ∈ B))

for every Borel set B ⊆ Z .

Proof. The proof is constructive. That is, we define the function 𝑝 through

𝑝(𝑡) = inf
𝜆0∈R,𝜆∈R+

𝜆0 + 𝜆𝑟 + 𝑡 · (𝜙∗)𝜋(1 − 𝜆0, 𝜆) + (1 − 𝑡) · (𝜙∗)𝜋(−𝜆0, 𝜆)
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for all 𝑡 ∈ [0, 1]. In the remainder we show that 𝑝 satisfies all desired properties.
By construction, 𝑝 depends only on 𝜙 and 𝑟 and coincides with the lower envelope
of infinitely many linear functions in 𝑡. Hence 𝑝 is concave as well as upper
semicontinuous. By the definition of P and by Theorem 4.15 below, we also have

sup
P∈P
P(𝑍 ∈ B) = sup

P∈P(Z)
{EP [1B(𝑍)] : D𝜙(P, P̂) ≤ 𝑟}

= inf
𝜆0∈R,𝜆∈R+

𝜆0 + 𝜆𝑟 + EP̂ [(𝜙∗)𝜋(1B(𝑍) − 𝜆0, 𝜆)]

= 𝑝(P̂(𝑍 ∈ B)), (3.1)

for any Borel set B, where the last equality follows from the definition of 𝑝. As
the worst-case probability on the left-hand side of (3.1) falls within [0, 1] and as
P̂(𝑍 ∈ B) can adopt any value in [0, 1], it is clear that the range of 𝑝 is a subset
of [0, 1]. Next, we show that 𝑝 is continuous. To this end, note that the concavity
and finiteness of 𝑝 on [0, 1] imply via Rockafellar (1970, Theorem 10.1) that 𝑝 is
continuous on (0, 1). In addition, its upper semicontinuity prevents 𝑝 from jumping
at 0 or at 1. Thus 𝑝 is indeed continuous throughout [0, 1]. Finally, setting B = ∅
or B = Z in (3.1) shows that 𝑝(0) = 0 and 𝑝(1) = 1, respectively. Consequently,
we may conclude that 𝑝 is surjective. This observation completes the proof.

As P̂ ∈ P , the worst-case probability map 𝑝 from Lemma 3.11 satisfies 𝑝(𝑡) ≥ 𝑡
for all 𝑡 ∈ [0, 1], that is, the worst-case probability is never smaller than the nominal
probability. We remark that the map 𝑝 also emerges in the study of distributionally
robust chance constraints over 𝜙-divergence ambiguity sets with 𝜙∞(1) = ∞. In-
deed, any such distributionally robust chance constraint with violation probability
𝜀 ∈ (0, 1) is equivalent to a classical chance constraint under the reference distribu-
tion P̂with (smaller) violation probability 𝑝−1(𝜀); see El Ghaoui et al. (2003), Jiang
and Guan (2016) and Shapiro (2017). We can now show that divergence ambiguity
sets corresponding to superlinear entropy functions are weakly compact.

Proposition 3.12 (𝜙-divergence ambiguity sets). If 𝜙 is an entropy function with
𝜙∞(1) = ∞, then the corresponding 𝜙-divergence ambiguity set P defined in (2.10)
is weakly compact for any closed set Z ⊆ R𝑑 , distribution P̂ ∈ P(Z) and 𝑟 ≥ 0.

Proof. We first show that P is tight. To this end, select any 𝜀 ∈ (0, 1), and
define 𝑝−1(𝜀) as the unique 𝑡 ∈ (0, 1] satisfying 𝑝(𝑡) = 𝜀, where 𝑝 represents the
worst-case probability map from Lemma 3.11. Note that 𝑝−1(𝜀) is well-defined
because 𝑝 is concave and surjective and because 𝑝(0) = 0 and 𝑝(1) = 1. Note also
that 𝑝−1(𝜀) ≤ 𝜀 because 𝑝(𝑡) ≥ 𝑡. Next, select a sufficiently large 𝑅 > 0 such
that P̂(∥𝑍 ∥2 > 𝑅) ≤ 𝑝−1(𝜀), and define a compact set C = {𝑧 ∈ Z : ∥𝑧∥2 ≤ 𝑅}.
Lemma 3.11 applied to B = Z\C then allows us to conclude that

sup
P∈P
P(𝑍 ∉ C) = 𝑝(P̂(𝑍 ∉ C)) ≤ 𝑝(𝑝−1(𝜀)) = 𝜀,
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where the inequality follows from the monotonicity of 𝑝 and choice of 𝑅. We have
thus shown that P(𝑍 ∉ C) ≤ 𝜀 for all P ∈ P , and thus P is tight.

It remains to be shown that P is weakly closed. To this end, recall first that
P(Z) is weakly closed because Z is closed; see Proposition 3.6. Next, recall from
Proposition 2.6 that any 𝜙-divergence admits a dual representation of the form

D𝜙(P, P̂) = sup
𝑓 ∈F

∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝜙∗( 𝑓 (𝑧)) dP̂(𝑧), (3.2)

where F denotes the family of all bounded Borel functions 𝑓 : Z → dom(𝜙∗).
In fact, F can be restricted to the space F 𝑐 of all continuous bounded functions
without reducing the supremum in (3.2). This is a direct consequence of Lusin’s
theorem, which ensures that for any 𝛿 > 0 and 𝑓 ∈ F there exists a compact set
A ⊆ Z with P̂(𝑍 ∉ A) ≤ 𝛿 and a bounded continuous function 𝑓𝛿 ∈ F 𝑐 that
coincides with 𝑓 on A and satisfies sup𝑧∈Z | 𝑓𝛿(𝑧)| ≤ sup𝑧∈Z | 𝑓 (𝑧)| = ∥ 𝑓 ∥∞. As
the convex lower semicontinuous function 𝜙∗ is continuous on its domain, both

𝜙∗𝑙 = inf
𝑠∈dom(𝜙∗)

{𝜙∗(𝑠) : |𝑠 | ≤ ∥ 𝑓 ∥∞} and 𝜙∗𝑢 = sup
𝑠∈dom(𝜙∗)

{𝜙∗(𝑠) : |𝑠 | ≤ ∥ 𝑓 ∥∞}

are finite. Therefore we have∫
Z
𝑓𝛿(𝑧) dP(𝑧) −

∫
Z
𝜙∗( 𝑓𝛿(𝑧)) dP̂(𝑧)

≥
∫
Z
𝑓 (𝑧) dP(𝑧) −

∫
Z
𝜙∗( 𝑓 (𝑧)) dP̂(𝑧) − 2∥ 𝑓 ∥∞ P(𝑍 ∉ A) − (𝜙∗𝑢 − 𝜙∗𝑙 ) P̂(𝑍 ∉ A).

As 𝜙∞(1) = ∞ implies P ≪ P̂ and as P̂(𝑍 ∉ Z) ≤ 𝛿, both P(𝑍 ∉ A) and P̂(𝑍 ∉ A)
decay to 0 as 𝛿 is reduced. Thus the objective function value of 𝑓𝛿 in problem (3.2)
is asymptotically non-inferior to that of 𝑓 . This confirms that restricting F to F 𝑐

has no impact on the supremum in (3.2). Recall now from Proposition 3.3 that,
for any bounded continuous function 𝑓 ∈ F 𝑐, the first integral in (3.2) is weakly
continuous in P. Thus D𝜙(P, P̂) is weakly lower semicontinuous in P as a pointwise
supremum of weakly continuous functions. This implies that any sublevel set of the
function 𝑓 (P) = D𝜙(P, P̂) is weakly closed. We thus conclude that the divergence
ambiguity set is weakly closed. The claim then follows from Theorem 3.5.

The proof of Proposition 3.12 critically relies on the assumption that 𝜙∞(1) = ∞,
which ensures that the divergence ambiguity set contains only distributions that
are absolutely continuous with respect to P̂. Below we show that if the entropy
function 𝜙 grows at most linearly (i.e. if 𝜙∞(1) < ∞) and Z is unbounded, then
the corresponding divergence ambiguity set fails to be weakly compact. As a
preparation, we first establish an upper bound on any 𝜙-divergence onP(Z)×P(Z).

Lemma 3.13 (Upper bounds on 𝜙-divergences). If 𝜙 is an entropy function and
Z ⊆ R𝑑 a closed set, then we have D𝜙(P, P̂) ≤ 𝜙(0) + 𝜙∞(1) for all P, P̂ ∈ P(Z).
This upper bound is attained if P and P̂ are mutually singular, that is, if P ⊥ P̂.
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Proof. In the first part of the proof we derive the desired upper bound. To this
end, assume that 𝜙(0) < ∞ and 𝜙∞(1) < ∞, for otherwise the upper bound is
trivially satisfied. As the entropy function is convex, we then have

𝜙(𝑠) ≤ Δ

𝑠 + Δ𝜙(0) + 𝑠

𝑠 + Δ𝜙(𝑠 + Δ) ⇐⇒ 𝜙(𝑠) ≤ 𝜙(0) + 𝑠 𝜙(𝑠 + Δ) − 𝜙(0)
𝑠 + Δ

for every 𝑠,Δ ≥ 0. Letting Δ tend to infinity, this implies that 𝜙(𝑠) ≤ 𝜙(0)+ 𝑠 𝜙∞(1)
for all 𝑠 ≥ 0. The 𝜙-divergence between any P, P̂ ∈ P(Z) thus satisfies

D𝜙(P, P̂) =
∫
Z

dP̂
d𝜌

(𝑧) 𝜙

( dP
d𝜌 (𝑧)
dP̂
d𝜌 (𝑧)

)
d𝜌(𝑧)

≤
∫
Z

dP̂
d𝜌

(𝑧) 𝜙(0) d𝜌(𝑧) +
∫
Z

dP
d𝜌

(𝑧) 𝜙∞(1) d𝜌(𝑧)

= 𝜙(0) + 𝜙∞(1),

where we may assume without loss of generality that the dominating measure
𝜌 ∈ M+(Z) is given by 𝜌 = P + P̂. This establishes the desired upper bound. It
remains to be shown that this bound is attained even if 𝜙(0) or 𝜙∞(1) evaluate to
infinity. To this end, suppose that P and P̂ are mutually singular. This means that
there exist disjoint Borel sets B, B̂ ⊆ Z with P(𝑍 ∈ B) = 1 and P̂(𝑍 ∈ B̂) = 1. We
thus have

D𝜙(P, P̂) =
∫
B̂

dP̂
d𝜌

(𝑧) 𝜙(0) d𝜌(𝑧) +
∫
B

0 𝜙
( dP

d𝜌 (𝑧)
0

)
d𝜌(𝑧)

= 𝜙(0) +
∫
B
𝜙∞
(

dP
d𝜌

(𝑧)
)

d𝜌(𝑧)

= 𝜙(0) + 𝜙∞(1).

The first equality holds because dP/d𝜌(𝑧) = 0 for 𝜌-almost all 𝑧 ∈ B̂ and dP̂/d𝜌(𝑧) =
0 for 𝜌-almost all 𝑧 ∈ B. The second equality follows from the definition of the
perspective function and exploits that the restriction of 𝜌 to B̂ coincides with P̂.
The third equality, finally, holds because the restriction of 𝜌 to B coincides with P.
Note that the upper bound is attained even if 𝜙(0) = ∞ or 𝜙∞(1) = ∞.

The following example reveals that 𝜙-divergence ambiguity sets fail to be weakly
compact if 𝜙∞(1) < ∞ and if the set Z without the atoms of P̂ is unbounded.

Example 3.14 (𝜙-divergence ambiguity sets). Consider an entropy function 𝜙
with 𝜙∞(1) < ∞. By Lemma 3.13, D𝜙(P, P̂) is bounded above by 𝑟 = 𝜙(0)+ 𝜙∞(1)
for all P, P̂ ∈ P . In addition, let P be the 𝜙-divergence ambiguity set with centre
P̂ ∈ P(Z) and radius 𝑟 ∈ (0, 𝑟) defined in (2.10). Assume that for every 𝑅 > 0
there exists 𝑧0 ∈ Z with ∥𝑧0∥2 ≥ 𝑅 and P̂(𝑍 = 𝑧0) = 0. This assumption holds,
for example, whenever Z is unbounded and convex, and it implies that P fails to
be tight. To see this, fix an arbitrary compact set C ⊆ Z , and select any point
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𝑧0 ∈ Z\C with P̂(𝑍 = 𝑧0) = 0. Such a point exists by assumption. Next, consider
the distributions P𝜃 = (1 − 𝜃) P̂ + 𝜃 𝛿𝑧0 parametrized by 𝜃 ∈ [0, 1]. Note that P̂
and 𝛿𝑧0 are mutually singular and that 𝑓 (𝜃) = D𝜙(P𝜃 , P̂) is a convex continuous
bĳective function from [0, 1] to [0, 𝑟]. Set now 𝜀 = 1

2 𝑓
−1(𝑟). For 𝜃 = 𝑓 −1(𝑟),

the distribution P𝜃 satisfies D𝜙(P𝜃 , P̂) = 𝑓 ( 𝑓 −1(𝑟)) = 𝑟 and thus belongs to P . In
addition, P𝜃 (𝑍 ∉ C) ≥ 𝑓 −1(𝑟) > 𝜀 because 𝑧0 ∉ C. Note that 𝜀 is independent of C
and 𝑧0 as long as P̂(𝑍 = 𝑧0) = 0. As the compact set C was chosen arbitrarily, this
implies that P fails to be tight and weakly compact.

3.3. Marginal ambiguity sets

As a preparation towards exploring the topological properties of optimal transport
ambiguity sets, we first study marginal ambiguity sets. The following proposition
shows that Fréchet ambiguity sets, which prescribe the marginal distributions of
all 𝑑 individual components of 𝑍 , are always weakly compact.

Proposition 3.15 (Fréchet ambiguity sets). The Fréchet ambiguity setP defined
in (2.35) is weakly compact for any cumulative distribution functions 𝐹𝑖 , 𝑖 ∈ [𝑑].

Proof. We first show that the Fréchet ambiguity set is tight. For any 𝜀 > 0 and
𝑖 ∈ [𝑑], we can set 𝑧

𝑖
and 𝑧𝑖 to the 𝜀/(2𝑑)-quantile and the (1 − 𝜀/(2𝑑))-quantile

of the distribution function 𝐹𝑖 , respectively. Setting C = ×𝑖∈[𝑑 ] [𝑧𝑖 , 𝑧𝑖] yields

P(𝑍 ∉ C) ≤
∑︁
𝑖∈[𝑑 ]

P
(
𝑍𝑖 ∉

[
𝑧
𝑖
, 𝑧𝑖

])
=

∑︁
𝑖∈[𝑑 ]

𝜀/𝑑 = 𝜀,

where the inequality follows from the union bound. Thus P is tight. It remains to
be shown that P is weakly closed. Note that the distribution function of 𝑍𝑖 under
P matches 𝐹𝑖 if and only if, for every bounded continuous function 𝑓 , we have

EP [ 𝑓 (𝑍𝑖)] =
∫ +∞

−∞
𝑓 (𝑧𝑖) d𝐹𝑖(𝑧𝑖).

This is true because every Borel distribution on R constitutes a Radon measure.
The set of all P ∈ P(R𝑑) satisfying the above equality for any fixed bounded and
continuous function 𝑓 and any fixed index 𝑖 ∈ [𝑑] is weakly closed by Proposi-
tion 3.3. HenceP is weakly closed because closedness is preserved by intersection.

It is straightforward to generalize Proposition 3.15 from Fréchet ambiguity sets
to generic marginal ambiguity sets as discussed in Section 2.4.1, which prescribe
multivariate marginal distributions. Details are omitted for brevity.

3.4. Optimal transport ambiguity sets

Recall that Γ(P, P̂) denotes the family of all transportation plans linking the prob-
ability distributions P, P̂ ∈ P(Z). Thus Γ(P, P̂) contains all joint distributions
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𝛾 of 𝑍 and �̂� with marginals P and P̂, respectively. The set Γ(P, P̂) appears in
the definition of the optimal transport discrepancy OT𝑐(P, P̂); see Definition 2.15.
The reasoning in Section 3.3 immediately implies that Γ(P, P̂) is weakly compact
because it constitutes a marginal ambiguity set. This insight is formalized in the
following simple corollary of Proposition 3.15. Its proof is omitted for brevity.

Corollary 3.16 (Transportation plans). The set of all transportation plansΓ(P, P̂)
with marginal distributions P, P̂ ∈ P(Z) is weakly compact.

Corollary 3.16 enables us to show that the optimal transport problem in (2.18) is
solvable as the transportation cost function is assumed to be lower semicontinuous.

Lemma 3.17 (Solvability of optimal transport problems). The infimum in (2.18)
is attained.

Proof. By Corollary 3.16, the set Γ(P, P̂) is weakly compact. In addition, the
transportation cost function 𝑐(𝑧, 𝑧) is lower semicontinuous and bounded below.
By Proposition 3.3, the expected value E𝛾 [𝑐(𝑍, �̂�)] is therefore weakly lower
semicontinuous in 𝛾. Thus the optimal transport problem in (2.18) is solvable
thanks to Weierstrass’s theorem, and its infimum is attained.

Lemma 3.17 allows us to prove that the optimal transport discrepancy OT𝑐(P, P̂)
constitutes a weakly lower semicontinuous function of its inputs P and P̂.

Lemma 3.18 (Weak lower semicontinuity of optimal transport discrepancies).
The optimal transport discrepancy OT𝑐(P, P̂) is weakly lower semicontinuous
jointly in P and P̂.

Proof. Assume that P 𝑗 and P̂ 𝑗 , 𝑗 ∈ N, converge weakly to P and P̂, respectively,
and define the countable ambiguity sets P = {P 𝑗} 𝑗∈N and P̂ = {P̂ 𝑗} 𝑗∈N. By the
definition of sequential compactness, the weak closures of P and P̂ are weakly
compact. Prokhorov’s theorem (see Theorem 3.5) thus implies that both P and P̂
are tight. Hence, for any 𝜀 > 0 there exist two compact sets C, Ĉ ⊆ R𝑑 with

P 𝑗(𝑍 ∉ C) ≤ 𝜀/2 and P̂ 𝑗(�̂� ∉ Ĉ) ≤ 𝜀/2 for all 𝑗 ∈ N.

Whenever 𝛾 ∈ Γ(P 𝑗 , P̂ 𝑗) for some 𝑗 ∈ N, we thus have

𝛾((𝑍, �̂�) ∉ C × Ĉ) ≤ P 𝑗(𝑍 ∉ C) + P̂ 𝑗(𝑍 ∉ Ĉ) ≤ 𝜀.

As C × Ĉ is compact and as 𝜀 was chosen arbitrarily, this reveals that the union⋃
𝑗∈N

Γ(P 𝑗 , P̂ 𝑗) (3.3)

is tight, which in turn implies via Prokhorov’s theorem that its closure is weakly
compact. Now let 𝛾★

𝑗
be an optimal coupling of P 𝑗 and P̂ 𝑗 , which solves problem

(2.18), and which exists thanks to Lemma 3.17. As all these optimal couplings
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belong to some weakly compact set (i.e. the weak closure of (3.3)), we may assume
without loss of generality that 𝛾★

𝑗
, 𝑗 ∈ N, converges weakly to some distribution 𝛾.

Otherwise, we can pass to a subsequence. Clearly we have 𝛾 ∈ Γ(P, P̂). For 𝛾★ an
optimal coupling of P and P̂, we then find

lim inf
𝑗→∞

OT𝑐(P 𝑗 , P̂ 𝑗) = lim inf
𝑗→∞

E𝛾★
𝑗
[𝑐(𝑍, �̂�)]

≥ E𝛾 [𝑐(𝑍, �̂�)]
≥ E𝛾★ [𝑐(𝑍, �̂�)]
= OT𝑐(P, P̂),

where the two equalities follow from the definitions of 𝛾★
𝑗

and 𝛾★, respectively.
The first inequality holds because E𝛾 [𝑐(𝑍, �̂�)] is weakly lower semicontinuous in 𝛾
thanks to Proposition 3.3, and the second inequality follows from the suboptimality
of 𝛾 in (2.18). Thus OT𝑐(P, P̂) is weakly lower semicontinuous in P and P̂.

Lemma 3.18 is inspired by Clément and Desch (2008, Lemma 5.2) and Yue, Kuhn
and Wiesemann (2022, Theorem 1). Next, we prove that Wasserstein ambiguity
sets are weakly compact. Throughout this discussion we assume that the metric
underlying the transportation cost function is induced by a norm ∥ · ∥ on R𝑑 . This
assumption simplifies our derivations but could be relaxed. Recall that the 𝑝-
Wasserstein distance W𝑝(P, P̂) for 𝑝 ≥ 1 is the 𝑝th root of OT𝑐(P, P̂), where the
transportation cost function is set to 𝑐(𝑧, 𝑧) = ∥𝑧 − 𝑧∥ 𝑝; see Definition 2.18.

Theorem 3.19 (𝑝-Wasserstein ambiguity sets). Assume that the metric 𝑑(·, ·)
on Z is induced by some norm ∥ · ∥ on the ambient space R𝑑 . If P̂ ∈ P(Z)
has finite 𝑝th moments (i.e. EP̂ [∥𝑍 ∥ 𝑝] < ∞) for some exponent 𝑝 ≥ 1, then the
𝑝-Wasserstein ambiguity set P defined in (2.28) is weakly compact.

Proof. We first show that all distributions P ∈ P have uniformly bounded 𝑝th
moments. To this end, set 𝑟 = EP̂ [∥𝑍 ∥ 𝑝] < ∞, and note that any P ∈ P satisfies

(EP [∥𝑍 ∥ 𝑝])1/𝑝 = W𝑝(P, 𝛿0)
≤ W𝑝(P, P̂) +W𝑝(P̂, 𝛿0)
= W𝑝(P, P̂) + (EP̂ [∥𝑍 ∥ 𝑝])1/𝑝

≤ 𝑟 + 𝑟.

Here the first inequality holds because the 𝑝-Wasserstein distance is a metric
and thus satisfies the triangle inequality, and the second inequality holds because
P ∈ P . We therefore have EP [∥𝑍 ∥ 𝑝] ≤ (𝑟 + 𝑟)𝑝 for every P ∈ P . In other
words, the Wasserstein ball P is a subset of the 𝑝th-order moment ambiguity set
discussed in Example 3.10. This implies that P is tight. Note further that P is
defined as a sublevel set of the function 𝑓 (P) = W𝑝(P, P̂), which is weakly lower
semicontinuous thanks to Lemma 3.18. Hence P is weakly closed.
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Finally, we prove that the∞-Wasserstein ambiguity set is always weakly compact.

Corollary 3.20 (∞-Wasserstein ambiguity sets). Assume that the metric 𝑑(·, ·)
on Z is induced by some norm ∥ · ∥ on the ambient space R𝑑 . Then the ∞-
Wasserstein ambiguity set defined in (2.34) is weakly compact for every P̂ ∈ P(Z).

Proof. We first show thatP is tight. To this end, select any 𝜀 > 0 and any compact
set Ĉ ⊆ Z with P̂(𝑍 ∉ Ĉ) ≤ 𝜀. Note that Ĉ is guaranteed to exist because P̂ is a
probability distribution. Next, define C as the 𝑟-neighbourhood Ĉ𝑟 of Ĉ, that is, set

C = {𝑧 ∈ Z : ∃𝑧 ∈ Ĉ with ∥𝑧 − 𝑧∥ ≤ 𝑟}.

See also (2.29). One readily verifies that C inherits compactness from Ĉ. Any
distribution P ∈ P satisfies W∞(P, P̂) ≤ 𝑟 . Consequently, we find

P(𝑍 ∉ C) = P(𝑍 ∈ Z\C) ≤ P̂(𝑍 ∈ Z\Ĉ) = P̂(𝑍 ∉ Ĉ) ≤ 𝜀,

where the first inequality follows from Corollary 2.28 and the observation that the
𝑟-neighbourhood of Z\C coincides with Z\Ĉ. The second inequality follows from
the definition of Ĉ. As 𝜀 was chosen arbitrarily, P is tight. It remains to be shown
that P is weakly closed. Proposition 2.26 readily implies that W∞(P, P̂) ≤ 𝑟 if and
only if W𝑝(P, P̂) ≤ 𝑟 for all 𝑝 ≥ 1. Thus we may conclude that

P =
⋂
𝑝≥1
{P ∈ P(R𝑑) : W𝑝(P, P̂) ≤ 𝑟}.

That is, the ∞-Wasserstein ambiguity set can be expressed as the intersection of
all 𝑝-Wasserstein ambiguity sets for 𝑝 ≥ 1, all of which are weakly closed by
Theorem 3.19. Hence P is indeed weakly closed, and the claim follows.

4. Duality theory for worst-case expectation problems
The DRO problem (1.2) is often interpreted as a zero-sum game between the
decision-maker and a fictitious adversary. The decision-maker moves first and
thus selects 𝑥 before seeing P. Therefore 𝑥 is optimized against all distributions
P ∈ P . In contrast, the adversary moves second and thus selects P after seeing
𝑥. Therefore P is only optimized against one particular decision 𝑥 ∈ X . Put
differently, the adversary’s choice may adapt to the decision-maker’s choice but not
vice versa.

In this section we develop a duality theory for the adversary’s subproblem, which
aims to maximize the expected loss of a fixed decision 𝑥 across all distributions in
a convex ambiguity set P . To avoid clutter, we suppress the dependence of the loss
function ℓ on the fixed decision 𝑥 throughout this discussion, that is, we write ℓ(𝑧)
instead of ℓ(𝑥, 𝑧). We thus address worst-case expectation problems of the form

sup
P∈P
EP [ℓ(𝑍)] . (4.1)
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Note that P represents a convex subset of the linear space of all finite signed Borel
measures on Z . Unless Z is finite, (4.1) thus constitutes an infinite-dimensional
convex program with a linear objective function. For this problem to be well-
defined, we assume that ℓ : Z → R is a Borel function. In line with Rockafellar
and Wets (2009, Section 14.E), we defineEP [ℓ(𝑍)] = −∞ ifEP [max{ℓ(𝑍), 0}] = ∞
and EP [min{ℓ(𝑍), 0}] = −∞. This means that infeasibility trumps unboundedness.
More generally, throughout the rest of the paper, we assume that if the objective
function of a minimization (maximization) problem can be expressed as the dif-
ference of two terms, both of which evaluate to ∞, then the objective function
value should be interpreted as∞ (−∞). This convention is in line with the rules of
extended arithmetic used by Rockafellar and Wets (2009).

In the remainder we will show that (4.1) can be dualized by using elementary tools
from finite-dimensional convex analysis (Fenchel 1953, Rockafellar 1970) for a
broad class of finitely-parametrized ambiguity sets including all moment ambiguity
sets (Section 4.2), 𝜙-divergence ambiguity sets (Section 4.3) and optimal transport
ambiguity sets (Section 4.4). We broadly adopt the proof strategies developed
by Shapiro (2001) and Zhang et al. (2024b) for moment and optimal transport
ambiguity sets, respectively, and we extend them to 𝜙-divergence ambiguity sets.

4.1. General proof strategy

In order to outline the high-level ideas for dualizing (4.1), we recall a basic result
on the convexity of parametric infima; see e.g. Rockafellar (1974, Theorem 1).

Lemma 4.1 (Convexity of optimal value functions). If U and V are arbitrary
real vector spaces and 𝐻 : U × V → R is a convex function, then the optimal value
function ℎ : U → R defined by ℎ(𝑢) = inf𝑣∈V 𝐻(𝑢, 𝑣) is convex.

Proof. Note that ℎ is a convex function if and only if its epigraph epi(ℎ) is a
convex set. By the definitions of the epigraph and the infimum operator, we find

epi(ℎ) = {(𝑢, 𝑡) ∈ U × R : ℎ(𝑢) ≤ 𝑡}
= {(𝑢, 𝑡) ∈ U × R : ∃𝑣 ∈ V with 𝐻(𝑢, 𝑣) ≤ 𝑡 + 𝜀 ∀𝜀 > 0}
=
⋂
𝜀>0
{(𝑢, 𝑡) ∈ U × R : ∃𝑣 ∈ V with 𝐻(𝑢, 𝑣) − 𝜀 ≤ 𝑡}.

Thus epi(ℎ) can be obtained by projecting∩𝜀>0 epi(𝐻−𝜀) to U ×R. The claim then
follows because epi(𝐻 − 𝜀) is convex for every 𝜀 > 0 thanks to the convexity of 𝐻
and because convexity is preserved under intersections and linear transformations;
see e.g. Rockafellar (1970, Theorems 2.1, 5.7).

The following result marks a cornerstone of convex analysis. It states that the
biconjugate ℎ∗∗ (i.e. the conjugate of ℎ∗) of a closed convex function ℎ coincides
with ℎ. Here we adopt the standard convention that ℎ is closed if it is lower semi-
continuous and either ℎ(𝑢) > −∞ for all 𝑢 ∈ U or ℎ(𝑢) = −∞ for all 𝑢 ∈ U . We
use cl(ℎ) to denote the closure of ℎ, that is, the largest closed function below ℎ.
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Lemma 4.2 (Fenchel–Moreau Theorem). For any convex function ℎ : R𝑑 → R,
we have ℎ ≥ ℎ∗∗. The inequality becomes an equality on rint(dom(ℎ)).

Proof. By Rockafellar (1970, Theorem 12.2), we have ℎ∗∗ = cl(ℎ) ≤ ℎ. In
addition, Rockafellar (1970, Theorem 10.1) ensures that the convex function ℎ is
continuous on rint(dom(ℎ)) and thus coincides with cl(ℎ) there. Hence the claim
follows.

The main idea for dualizing the worst-case expectation problem (4.1) is to
represent its optimal value as −ℎ(𝑢), where ℎ(𝑢) = inf𝑣∈V 𝐻(𝑢, 𝑣), U is a finite-
dimensional space of parameters 𝑢 that encode the ambiguity set P (such as a set of
prescribed moments or a size parameter), and V is an infinite-dimensional space of
finite signed measures on Z . In addition, 𝐻(𝑢, 𝑣) represents the negative expected
loss if the signed measure 𝑣 happens to be a probability measure in P ⊆ V and
evaluates to ∞ otherwise. If 𝐻(𝑢, 𝑣) is jointly convex on 𝑢 and 𝑣, then ℎ(𝑢) is
convex by virtue of Lemma 4.1. A problem dual to (4.1) can then be constructed
from the bi-conjugate ℎ∗∗(𝑢). Lemma 4.2 provides conditions for strong duality.

4.2. Moment ambiguity sets

Recall from Section 2.1 that the generic moment ambiguity set (2.1) is defined as

P = {P ∈ P 𝑓 (Z) : EP [ 𝑓 (𝑍)] ∈ F },

where Z ⊆ R𝑑 is a closed support set, 𝑓 : Z → R𝑚 is a Borel-measurable moment
function, F ⊆ R𝑚 is a closed moment uncertainty set, and P 𝑓 (Z) denotes the
family of all distributions P ∈ P(Z) for which EP [ 𝑓 (𝑍)] is finite.1 We may assume
without loss of generality that F is covered by the convex set

C = {EP [ 𝑓 (𝑍)] : P ∈ P 𝑓 (Z)}

of all possible moments of any distribution on Z . To rule out trivial special cases,
we make the blanket assumption that Z and F are non-empty.

Clearly, problem (4.1) over the moment ambiguity set (2.1) can be recast as

sup
P∈P
EP [ℓ(𝑍)] = sup

𝑢∈F
sup

P∈P 𝑓 (Z)
{EP [ℓ(𝑍)] : EP [ 𝑓 (𝑍)] = 𝑢} = sup

𝑢∈F
−ℎ(1, 𝑢), (4.2)

where the auxiliary function ℎ : R × R𝑚 → R is defined by

ℎ(𝑢0, 𝑢) = inf
𝑣∈M 𝑓 ,+(Z)

{
−
∫
Z
ℓ(𝑧) d𝑣(𝑧) :

∫
Z

d𝑣(𝑧) = 𝑢0,

∫
Z
𝑓 (𝑧) d𝑣(𝑧) = 𝑢

}
. (4.3)

Here the set M 𝑓 ,+(Z) stands for the family of all Borel measures 𝑣 ∈M+(Z) for
which the integral

∫
Z 𝑓 (𝑧) d𝑣(𝑧) is finite. Put differently, M 𝑓 ,+(Z) represents the

1 Clearly, EP [ 𝑓 (𝑍)] must be finite to belong to the closed set F . Therefore we may replace P(Z)
with P 𝑓 (Z) in the definition of P without loss of generality. However, working with P 𝑓 (Z) is
more convenient when we dualize the worst-case expectation problem (4.1) over P .
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convex cone generated by P 𝑓 (Z). As the objective and constraint functions of the
minimization problem in (4.3) are all jointly convex and jointly linear in 𝑣, 𝑢0 and
𝑢, respectively, the equivalent reformulation that incorporates the constraints into
the objective via indicator functions remains convex. This implies via Lemma 4.1
that ℎ is convex. Under a reasonable regularity condition, one can further show
that the domain of ℎ coincides with the cone generated by {1} × C.

Lemma 4.3 (Domain of ℎ). If EP [ℓ(𝑍)] > −∞ for every P ∈ P 𝑓 (Z), then we
have

dom(ℎ) = cone({1} × C).

Proof. It is clear that (𝑢0, 𝑢) ∈ dom(ℎ) if and only if ℎ(𝑢0, 𝑢) < ∞, which is the
case if and only if the minimization problem in (4.3) is feasible. Thus it remains to
be shown that the problem in (4.3) is feasible if and only if (𝑢0, 𝑢) ∈ cone({1} ×C).
To this end, assume first that the problem in (4.3) is feasible at (𝑢0, 𝑢). This implies
that there is 𝑣 ∈M 𝑓 ,+(Z) with

∫
Z d𝑣(𝑧) = 𝑢0 and

∫
Z 𝑓 (𝑧) d𝑣(𝑧) = 𝑢. Hence 𝑢0 ≥ 0.

If 𝑢0 = 0, then we must have 𝑢 = 0. If 𝑢0 > 0, on the other hand, then 𝑣/𝑢0 must be
a probability measure inP 𝑓 (Z), which implies that 𝑢/𝑢0 ∈ C. In either case, (𝑢0, 𝑢)
is a non-negative multiple of a point in {1} × C and thus belongs to cone({1} × C).
Next, assume that (𝑢0, 𝑢) ∈ cone({1} × C). If 𝑢0 = 0, then 𝑢 = 0, and indeed,
the zero measure in M 𝑓 ,+(Z) is feasible in (4.3). If 𝑢0 > 0, on the other hand,
then 𝑢/𝑢0 ∈ C. By the definition of C, there exists a distribution P ∈ P 𝑓 (Z) with
EP [ 𝑓 (𝑍)] = 𝑢/𝑢0. AsEP [ℓ(𝑍)] > −∞, this implies that 𝑣 = 𝑢0P is feasible in (4.3).
We have thus shown that (4.3) is feasible if and only if (𝑢0, 𝑢) ∈ cone({1} × C).
This observation completes the proof.

The following proposition characterizes the bi-conjugate of ℎ.

Proposition 4.4 (Bi-conjugate of ℎ). The bi-conjugate of ℎ defined in (4.3) sat-
isfies

ℎ∗∗(𝑢0, 𝑢) = sup
𝜆0∈R, 𝜆∈R𝑚

{−𝑢0𝜆0 − 𝑢⊤𝜆 : 𝜆0 + 𝑓 (𝑧)⊤𝜆 ≥ ℓ(𝑧) ∀𝑧 ∈ Z}.

If additionally EP [ℓ(𝑍)] > −∞ for every P ∈ P 𝑓 (Z), then ℎ∗∗ and ℎ match on the
cone generated by {1} × rint(C) except at the origin.

Proof. For any fixed (𝜆0, 𝜆) ∈ R × R𝑚, the convex conjugate of ℎ satisfies

ℎ∗(−𝜆0,−𝜆) = sup
𝑢0∈R, 𝑢∈R𝑚

−𝑢0𝜆0 − 𝑢⊤𝜆 − ℎ(𝑢0, 𝑢)

=


sup −𝑢0𝜆0 − 𝑢⊤𝜆 +

∫
Z
ℓ(𝑧) d𝑣(𝑧)

s.t. 𝑢0 ∈ R, 𝑢 ∈ R𝑚, 𝑣 ∈M 𝑓 ,+(Z)∫
Z

d𝑣(𝑧) = 𝑢0,

∫
Z
𝑓 (𝑧) d𝑣(𝑧) = 𝑢
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= sup
𝑣∈M 𝑓 ,+(Z)

∫
Z

(ℓ(𝑧) − 𝜆0 − 𝑓 (𝑧)⊤𝜆) d𝑣(𝑧)

=

{
0 if ℓ(𝑧) − 𝜆0 − 𝑓 (𝑧)⊤𝜆 ≤ 0 ∀𝑧 ∈ Z ,
∞ otherwise,

where the last equality holds because M 𝑓 ,+(Z) contains all weighted Dirac meas-
ures on Z . Thus, for any fixed (𝑢0, 𝑢) ∈ R × R𝑚, the conjugate of ℎ∗ satisfies

ℎ∗∗(𝑢0, 𝑢) = sup
𝜆0∈R, 𝜆∈R𝑚

−𝑢0𝜆0 − 𝑢⊤𝜆 − ℎ∗(−𝜆0,−𝜆)

= sup
𝜆0∈R, 𝜆∈R𝑚

{−𝑢0𝜆0 − 𝑢⊤𝜆 : 𝜆0 + 𝑓 (𝑧)⊤𝜆 ≥ ℓ(𝑧) ∀𝑧 ∈ Z}.

This establishes the desired formula for the bi-conjugate of ℎ. Assume now that
EP [ℓ(𝑍)] > −∞ for every P ∈ P 𝑓 (Z). It remains to be shown that ℎ(𝑢0, 𝑢) =

ℎ∗∗(𝑢0, 𝑢) for all (𝑢0, 𝑢) ≠ (0, 0) in the cone generated by {1} × rint(C). However,
this follows immediately from Lemma 4.2 and the observation that

rint(dom(ℎ)) = rint(cone({1} × C)) = cone({1} × rint(C))\{(0, 0)},

where the two equalities hold because of Lemma 4.3 and Rockafellar (1970, Co-
rollary 6.8.1), respectively. Therefore the claim follows.

Proposition 4.4 implies that ℎ(1, 𝑢) = ℎ∗∗(1, 𝑢) for all 𝑢 ∈ rint(C). The following
main theorem exploits this relation to convert the maximization problem on the
right-hand side of (4.2) to an equivalent dual minimization problem.

Theorem 4.5 (Duality theory for moment ambiguity sets). IfP is the moment
ambiguity set (2.1), then the following weak duality relation holds:

sup
P∈P
EP [ℓ(𝑍)] ≤


inf 𝜆0 + 𝛿∗F (𝜆)
s.t. 𝜆0 ∈ R, 𝜆 ∈ R𝑚

𝜆0 + 𝑓 (𝑧)⊤𝜆 ≥ ℓ(𝑧) ∀𝑧 ∈ Z .
(4.4)

If EP [ℓ(𝑍)] > −∞ for all P ∈ P 𝑓 (Z) and F ⊆ C is a convex and compact set with
rint(F) ⊆ rint(C), then strong duality holds, that is, (4.4) becomes an equality.

Proof. For ease of exposition, we introduce

L = {(𝜆0, 𝜆) ∈ R × R𝑚 : 𝜆0 + 𝑓 (𝑧)⊤𝜆 ≥ ℓ(𝑧) ∀𝑧 ∈ Z}

as shorthand for the dual feasible set. Using the decomposition (4.2), we find

sup
P∈P
EP [ℓ(𝑍)] = sup

𝑢∈F
−ℎ(1, 𝑢)

≤ sup
𝑢∈F

inf
(𝜆0,𝜆)∈L

𝜆0 + 𝑢⊤𝜆
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≤ inf
(𝜆0,𝜆)∈L

sup
𝑢∈F

𝜆0 + 𝑢⊤𝜆

= inf
(𝜆0,𝜆)∈L

𝜆0 + 𝛿∗F (𝜆).

Here the first inequality exploits Proposition 4.4 and Lemma 4.2, which ensures that
ℎ ≥ ℎ∗∗, and the second inequality holds thanks to the max-min inequality. The last
equality follows from the definition of the support function 𝛿∗F . This establishes
the weak duality relation (4.4). Next, suppose that F is a convex compact set with
rint(F) ⊆ rint(C). Under this additional assumption, we have

sup
P∈P
EP [ℓ(𝑍)] = sup

𝑢∈F
−ℎ(1, 𝑢)

= sup
𝑢∈rint(F )

−ℎ(1, 𝑢)

= sup
𝑢∈rint(F )

inf
(𝜆0,𝜆)∈L

𝜆0 + 𝑢⊤𝜆

= sup
𝑢∈F

inf
(𝜆0,𝜆)∈L

𝜆0 + 𝑢⊤𝜆

= inf
(𝜆0,𝜆)∈L

𝜆0 + 𝛿∗F (𝜆),

where the first equality exploits (4.2). The second equality follows from two obser-
vations. First, rint(F) is non-empty and convex (Rockafellar 1970, Theorem 6.2).
Second, −ℎ(1, 𝑢) is concave in 𝑢, which ensures that −ℎ(1, 𝑢) cannot jump up on
the boundary of its domain C and – in particular – on the boundary of F ⊆ C.
Taken together, these observations imply that we can restrict F to rint(F) without
reducing the supremum. The third equality follows from Proposition 4.4, which
allows us to replace ℎ with ℎ∗∗ on rint(F) ⊆ rint(C). The fourth equality holds
because −ℎ∗∗(1, 𝑢) is concave in 𝑢, which allows us to change rint(F) back to
F . Finally, the fifth equality follows from Sion’s minimax theorem (Sion 1958,
Theorem 4.2), which applies because F is convex and compact, L is convex and
𝜆0 + 𝑢⊤𝜆 is biaffine in 𝑢 and (𝜆0, 𝜆). Therefore strong duality holds.

Theorem 4.5 shows that the worst-case expectation problem (4.1) over the mo-
ment ambiguity set (2.1) admits a semi-infinite dual. Indeed, the dual problem
on the right-hand side of (4.4) accommodates finitely many decision variables but
infinitely many constraints parametrized by the uncertainty realizations 𝑧 ∈ Z .
The dual problem can also be interpreted as a robust optimization problem with
uncertainty set Z . Note that we did not assume Z to be convex. In addition, we
emphasize that compactness of F is not a necessary condition for strong duality.
Indeed, strong duality can also be established under Slater-type conditions (Zhen,
Kuhn and Wiesemann 2023). Finally, the condition rint(F) ⊆ rint(C) is equival-
ent to the – seemingly weaker – requirement that F intersects rint(C). Indeed, if
F ∩ rint(C) ≠ ∅, then F is not entirely contained in the relative boundary of C,
which implies via Rockafellar (1970, Corollary 6.5.2) that rint(F) ⊆ rint(C).
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In the remainder of this section we use Theorem 4.5 to dualize worst-case
expectations problems corresponding to popular classes of moment ambiguity
sets. Recall from Section 2.1.4 that the Chebyshev ambiguity set (2.4) is defined as

P = {P ∈ P2(Z) : EP [𝑍] = 𝜇, EP [𝑍𝑍⊤] = 𝑀 ∀(𝜇, 𝑀) ∈ F },

where F ⊆ R𝑑 × S𝑑+ is a closed moment uncertainty set, and P2(Z) denotes the set
of all distributions in P(Z) with finite second moments. Note that P is an instance
of the generic moment ambiguity set (2.1) with moment function 𝑓 (𝑧) = (𝑧, 𝑧𝑧⊤).

Theorem 4.6 (Duality theory for Chebyshev ambiguity sets). IfP is the Cheby-
shev ambiguity set (2.4), then the following weak duality relation holds:

sup
P∈P
EP [ℓ(𝑍)] ≤


inf 𝜆0 + 𝛿∗F (𝜆,Λ)
s.t. 𝜆0 ∈ R, 𝜆 ∈ R𝑑 , Λ ∈ S𝑑

𝜆0 + 𝜆⊤𝑧 + 𝑧⊤Λ𝑧 ≥ ℓ(𝑧) ∀𝑧 ∈ Z .
(4.5)

If EP [ℓ(𝑍)] > −∞ for all P ∈ P2(Z) and F is a convex compact set with 𝑀 ≻ 𝜇𝜇⊤
for all (𝜇, 𝑀) ∈ rint(F), then strong duality holds, that is, (4.5) becomes an equality.

Theorem 4.6 is a direct corollary of Theorem 4.5. Thus we omit its proof. Recall
that the Chebyshev ambiguity (2.4) set with uncertain moments encapsulates the
support-only ambiguity set P(Z), the Markov ambiguity set (2.2) and the Cheby-
shev ambiguity set (2.3) with fixed moments as special cases. They are recovered
by setting F = R𝑑 × S𝑑 , F = {𝜇} × S𝑑 and F = {𝜇} × {𝑀}, respectively. The
following lemma characterizes the support functions of these moment uncertainty
sets in closed form. The proof is elementary and is thus omitted.

Lemma 4.7 (Support functions of elementary sets). The following hold.

(i) If F = R𝑑 × S𝑑 , then 𝛿∗F (𝜆,Λ) = 𝛿{(0,0)}(𝜆,Λ).

(ii) If F = {𝜇} × S𝑑 , then 𝛿∗F (𝜆,Λ) = 𝜆⊤𝜇 + 𝛿{0}(Λ).

(iii) If F = {𝜇} × {𝑀}, then 𝛿∗F (𝜆,Λ) = 𝜆⊤𝜇 + Tr(Λ𝑀).

When combined with Theorem 4.5, Lemma 4.7 immediately leads to duality
theorems for support-only, Markov and Chebyshev ambiguity sets. For brevity, we
omit the details. In Section 2.1.4, we have also defined the Gelbrich ambiguity set
as a Chebyshev ambiguity set with uncertain moments of the form (2.4) with F
representing the Gelbrich uncertainty set (2.8) defined as

F =

{
(𝜇, 𝑀) ∈ R𝑑 × S𝑑+ : ∃Σ ∈ S

𝑑
+ with 𝑀 = Σ + 𝜇𝜇⊤,

G((𝜇, Σ), (�̂�, Σ̂)) ≤ 𝑟

}
,

where G is the Gelbrich distance of Definition 2.1. In the following we derive the
support function 𝛿∗F of the Gelbrich uncertainty set F .

https://doi.org/10.1017/S0962492924000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000084


Distributionally robust optimization 643

Lemma 4.8 (Support function of Gelbrich uncertainty sets). Let F be the
Gelbrich uncertainty set (2.8) of radius 𝑟 ≥ 0 around (�̂�, Σ̂) ∈ R𝑑 × S𝑑+ , where G is
the Gelbrich distance of Definition 2.1. For any (𝜆,Λ) ∈ R𝑑 × S𝑑 , we then have

𝛿∗F (𝜆,Λ) =


inf 𝛾(𝑟2 − ∥ �̂�∥2 − Tr(Σ̂)) + Tr(𝐴) + 𝛼
s.t. 𝛼, 𝛾 ∈ R+, 𝐴 ∈ S𝑑+[

𝛾𝐼𝑑 − Λ 𝛾Σ̂1/2

𝛾Σ̂1/2 𝐴

]
⪰ 0,

[
𝛾𝐼𝑑 − Λ 𝛾�̂� + 𝜆/2

(𝛾�̂� + 𝜆/2)⊤ 𝛼

]
⪰ 0.

Proof. By Proposition 2.3, which provides a semidefinite representation of the
Gelbrich uncertainty set F , the support function of F satisfies

𝛿∗F (𝜆,Λ) =



sup 𝜇⊤𝜆 + Tr(𝑀Λ)
s.t. 𝜇 ∈ R𝑑 , 𝑀,𝑈 ∈ S𝑑+ , 𝐶 ∈ R𝑑×𝑑

Tr(𝑀 − 2𝜇�̂�⊤ − 2𝐶) ≤ 𝑟2 − ∥ �̂�∥2 − Tr(Σ̂)[
𝑀 −𝑈 𝐶

𝐶⊤ Σ̂

]
⪰ 0,

[
𝑈 𝜇

𝜇⊤ 1

]
⪰ 0.

By conic duality (Ben-Tal and Nemirovski 2001, Theorem 1.4.2), the maximization
problem in the above expression admits the dual minimization problem

inf 𝛾(𝑟2 − ∥ �̂�∥2 − Tr(Σ̂)) + Tr(Σ̂𝐴22) + 𝛼
s.t. 𝛼, 𝛾 ∈ R+, 𝐴11, 𝐴22, 𝐵 ∈ S𝑑+[

𝐴11 𝛾𝐼𝑑
𝛾𝐼𝑑 𝐴22

]
⪰ 0,

[
𝐵 𝛾�̂� + 𝜆/2

(𝛾�̂� + 𝜆/2)⊤ 𝛼

]
⪰ 0, 𝛾𝐼𝑑 − Λ ⪰ 𝐴11 ⪰ 𝐵.

Strong duality holds because 𝛼 = ∥2𝛾�̂� + 𝜆∥2, 𝛾 = max{𝜆max(Λ), 0} + 4, 𝐴11 = 2𝐼,
𝐴22 = 𝛾2𝐼 and 𝐵 = 𝐼 represents a Slater point for the dual problem. At optimality,
we have 𝛾𝐼𝑑 − Λ = 𝐴11 = 𝐵. Hence the dual problem can be further simplified to

inf 𝛾(𝑟2 − ∥ �̂�∥2 − Tr(Σ̂)) + Tr(Σ̂𝐴22) + 𝛼
s.t. 𝛼, 𝛾 ∈ R+, 𝐴22 ∈ S𝑑+[

𝛾𝐼𝑑 − Λ 𝛾𝐼𝑑
𝛾𝐼𝑑 𝐴22

]
⪰ 0,

[
𝛾𝐼𝑑 − Λ 𝛾�̂� + 𝜆/2

(𝛾�̂� + 𝜆/2)⊤ 𝛼

]
⪰ 0.

The substitution 𝐴← Σ̂1/2𝐴22Σ̂
1/2 and the equivalence[

𝛾𝐼𝑑 − Λ 𝛾𝐼𝑑
𝛾𝐼𝑑 𝐴22

]
⪰ 0 ⇐⇒

[
𝐼𝑑 0
0 Σ̂1/2

] [
𝛾𝐼𝑑 − Λ 𝛾𝐼𝑑
𝛾𝐼𝑑 𝐴22

] [
𝐼𝑑 0
0 Σ̂1/2

]
⪰ 0

then yield the desired semidefinite program. Thus the optimal value of this semi-
definite program indeed equals 𝛿∗F (𝜆,Λ).

Armed with Theorem 4.6 and Lemma 4.8, we are now prepared to dualize the
worst-case expectation problem over a Gelbrich ambiguity set.
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Theorem 4.9 (Duality theory for Gelbrich ambiguity sets). If P is the Cheby-
shev ambiguity set (2.4) with F representing the Gelbrich uncertainty (2.8), then
the following weak duality relation holds:

sup
P∈P
EP [ℓ(𝑍)] ≤


inf 𝜆0 + 𝛾(𝑟2 − ∥ �̂�∥2 − Tr(Σ̂)) + Tr(𝐴) + 𝛼
s.t. 𝜆0 ∈ R, 𝛼, 𝛾 ∈ R+, 𝜆 ∈ R𝑑 , Λ ∈ S𝑑 , 𝐴 ∈ S𝑑+

𝜆0 + 𝜆⊤𝑧 + 𝑧⊤Λ𝑧 ≥ ℓ(𝑧) ∀𝑧 ∈ Z[
𝛾𝐼𝑑 − Λ 𝛾Σ̂1/2

𝛾Σ̂1/2 𝐴

]
⪰ 0,

[
𝛾𝐼𝑑 − Λ 𝛾�̂� + 𝜆/2

(𝛾�̂� + 𝜆/2)⊤ 𝛼

]
⪰ 0.

(4.6)

If EP [ℓ(𝑍)] > −∞ for all P ∈ P2(Z) and 𝑟 > 0, then strong duality holds, that is,
the inequality (4.6) becomes an equality.

Proof. Weak duality follows immediately from the first claim of Theorem 4.6 and
Lemma 4.8. To prove strong duality, recall from Proposition 2.3 that the Gelbrich
uncertainty set F is convex and compact. In addition, recall from the proof of
Proposition 2.2 that the Gelbrich distance is continuous. As 𝑟 > 0, this implies that

rint(F) =
{
(𝜇, 𝑀) ∈ R𝑑 × S𝑑+ : 𝑀 ≻ 𝜇𝜇⊤, G((𝜇, 𝑀 − 𝜇𝜇⊤), (�̂�, Σ̂)) < 𝑟

}
,

which in turn ensures that 𝑀 ≻ 𝜇𝜇⊤ for all (𝜇, 𝑀) ∈ rint(F). Therefore, strong
duality follows from the second claim of Theorem 4.6.

We close this section with some historical remarks. The classical problem of
moments asks whether there exists a distribution on Z with a given sequence of
moments. In the language of this survey, the problem of moments thus seeks
to determine whether a given moment ambiguity set of the form (2.1) is non-
empty, where 𝑓 is a polynomial and F is a singleton. The analysis of moment
problems has a long and distinguished history in mathematics dating back to
the nineteenth century. Notable contributions were made by Chebyshev (1874),
Markov (1884), Stieltjes (1894), Hamburger (1920) and Hausdorff (1923); see
Shohat and Tamarkin (1950) for an early survey. The study of moment problems
with tools from mathematical optimization – in particular semi-infinite duality
theory – was pioneered by Isii (1960, 1962). Shapiro (2001) formulates the worst-
case expectation problem over a family of distributions with prescribed moments as
an infinite-dimensional conic linear program and establishes conditions for strong
duality.

4.3. 𝜙-divergence ambiguity sets

Recall from Section 2.2 that the 𝜙-divergence ambiguity set (2.10) is defined as

P = {P ∈ P(Z) : D𝜙(P, P̂) ≤ 𝑟}.

Here Z is a closed support set, 𝑟 ≥ 0 is a size parameter, 𝜙 is an entropy function
in the sense of Definition 2.4, D𝜙 is the corresponding 𝜙-divergence in the sense
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of Definition 2.5, and P̂ ∈ P(Z) is a reference distribution. It is expedient to
extend D𝜙 to arbitrary measures. By slight abuse of notation, we thus define the
𝜙-divergence of 𝑣 ∈M+(Z) with respect to �̂� ∈M+(Z) as

D𝜙(𝑣, �̂�) =
∫
Z
𝜙𝜋
(

d𝑣
d𝜌

(𝑧),
d�̂�
d𝜌

(𝑧)
)

d𝜌(𝑧),

where 𝜌 ∈M+(Z) is a dominating measure with 𝑣, �̂� ≪ 𝜌. An obvious generaliz-
ation of Proposition 2.6 implies that D𝜙(𝑣, �̂�) is convex in (𝑣, �̂�) and independent of
the choice of 𝜌. By using the extension of D𝜙 to general measures, the worst-case
expectation problem (4.1) over the ambiguity set (2.10) can now be recast as

sup
P∈P
EP [ℓ(𝑍)] = −ℎ(1, 𝑟),

where the auxiliary function ℎ : R2 → R is defined by

ℎ(𝑢0, 𝑢) = inf
𝑣∈M+(Z)

{
−
∫
Z
ℓ(𝑧) d𝑣(𝑧) :

∫
Z

d𝑣(𝑧) = 𝑢0, D𝜙(𝑣, P̂) ≤ 𝑢
}
. (4.7)

As the objective and constraint functions of the minimization problem in (4.7) are
jointly convex in 𝑣, 𝑢0 and 𝑢, Lemma 4.1 implies that ℎ is convex. Clearly we have
dom(ℎ) ⊆ R2

+. Under mild regularity conditions, one can additionally show that
{1} × R++ ⊆ rint(dom(ℎ)).

Lemma 4.10 (Domain of ℎ). If EP̂ [ℓ(𝑍)] > −∞ and 𝜙 is continuous at 1, then

{1} × R++ ⊆ rint(dom(ℎ)).

Proof. If 𝑢0 = 1 and 𝑢 > 0, then 𝑣 = P̂ is feasible in (4.7). Indeed, P̂ obeys
both constraints, and its objective function value satisfies EP̂ [ℓ(𝑍)] > −∞. If we
perturb 𝑢0 and 𝑢 locally, then 𝑢0P̂ satisfies the equality constraint, and the objective
function does not evaluate to −∞ for all 𝑢0 ≥ 0. The inequality constraint, on the
other hand, is satisfied for all 𝑢 > 0 and all 𝑢0 that are sufficiently close to 1 because

D𝜙(𝑢0P̂, P̂) = 𝜙𝜋(𝑢0, 1) = 𝜙(𝑢0) < 𝑢.

Here the first equality follows from the definition of D𝜙 with 𝜌 = P̂, the second
equality follows from the definition of the perspective function 𝜙𝜋 , and the inequal-
ity holds because 𝜙(1) = 0, 𝑢 > 0 and 𝜙(𝑢0) is continuous at 𝑢0 = 1. This confirms
that (1, 𝑢) ∈ rint(dom(ℎ)) for every 𝑢 > 0, and thus the claim follows.

The following two lemmas are instrumental to deriving the bi-conjugate of ℎ.

Lemma 4.11 (Conjugates of scaled perspective functions). If 𝜙 is an entropy
function in the sense of Definition 2.4, 𝑡 ∈ R, 𝛽 ∈ R+ and 𝜆 ∈ R++, then we have

sup
𝛼∈R

𝑡𝛼 − 𝜆𝜙𝜋(𝛼, 𝛽) =

{
𝛽𝜆𝜙∗(𝑡/𝜆) if 𝛽 > 0,
𝜆𝛿cl(dom(𝜙∗))(𝑡/𝜆) if 𝛽 = 0.
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Proof. If 𝛽 > 0, then we have

sup
𝛼∈R

𝑡𝛼 − 𝜆𝜙𝜋(𝛼, 𝛽) = sup
𝛼∈R

𝑡𝛼 − 𝜆𝛽𝜙(𝛼/𝛽) = 𝛽 sup
𝛼∈R

𝑡𝛼 − 𝜆𝜙(𝛼) = 𝛽𝜆𝜙∗(𝑡/𝜆),

where the three equalities follow from the definition of the perspective function
𝜙𝜋 , the substitution 𝛼← 𝛼/𝛽 and the replacement of 𝑡 by 𝜆𝑡/𝜆, respectively. Note
that these manipulations are admissible because 𝛽, 𝜆 > 0. If 𝛽 = 0, then we have

sup
𝛼∈R

𝑡𝛼 − 𝜆𝜙𝜋(𝛼, 𝛽) = sup
𝛼∈R

𝑡𝛼 − 𝜆𝜙∞(𝛼)

= sup
𝛼∈R

𝑡𝛼 − 𝜆𝛿∗dom(𝜙∗)(𝛼)

= 𝜆𝛿cl(dom(𝜙∗))(𝑡/𝜆),

where the first equality again holds because of the definition of 𝜙𝜋 , and the second
equality exploits Rockafellar (1970, Theorem 13.3). The third equality replaces 𝑡
with 𝜆𝑡/𝜆 and exploits the elementary observation that the conjugate of the support
function of a convex set coincides with the indicator function of the closure of this
set (Rockafellar 1970, Theorem 13.2). Thus the claim follows.

Lemma 4.12 (Domain of conjugate entropy functions). If 𝜙 is an entropy func-
tion in the sense of Definition 2.4, then we have

cl(dom(𝜙∗)) =

{
(−∞, 𝜙∞(1)] if 𝜙∞(1) < ∞,
R if 𝜙∞(1) = ∞.

Proof. As 𝜙 is proper, convex and closed, Rockafellar (1970, Theorem 8.5) implies
that its recession function 𝜙∞ is positive homogeneous. Recall that 𝜙(𝑠) = ∞ for
every 𝑠 < 0. We may thus conclude that 𝜙∞(𝑡) = 𝑡 𝜙∞(1) for 𝑡 > 0, 𝜙∞(𝑡) = 0 for
𝑡 = 0 and 𝜙∞(𝑡) = ∞ for 𝑡 < 0. In addition, Rockafellar (1970, Theorem 13.3)
implies that the support function of dom(𝜙∗) coincides with the recession function
𝜙∞. The indicator function of cl(dom(𝜙∗)) is known to coincide with the conjugate
of the support function of dom(𝜙∗), and therefore it satisfies

𝛿cl(dom(𝜙∗))(𝑠) = sup
𝑡∈R+

(𝑠 − 𝜙∞(1))𝑡 =

{
0 if 𝑠 ≤ 𝜙∞(1),
∞ otherwise.

This shows that cl(dom(𝜙∗)) = (−∞, 𝜙∞(1)] if 𝜙∞(1) < ∞ and that cl(dom(𝜙∗)) = R
otherwise. Hence the claim follows.

Proposition 4.13 (Bi-conjugate of ℎ). Assume that EP̂ [ℓ(𝑍)] > −∞. Then the
bi-conjugate of ℎ defined in (4.7) satisfies

ℎ∗∗(𝑢0, 𝑢) =


sup
𝜆0∈R,𝜆∈R+

−𝜆0𝑢0 − 𝜆𝑢 − EP̂ [(𝜙∗)𝜋(ℓ(𝑍) − 𝜆0, 𝜆)]

s.t. 𝜆0 + 𝜆 𝜙∞(1) ≥ sup
𝑧∈Z

ℓ(𝑧),
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Table 4.1. Examples of entropy functions, their asymptotic slopes and their con-
jugates. Here, for any 𝑐 ∈ R, we use the [𝑐]+ as shorthand for max{𝑐, 0}.

Divergence 𝜙(𝑠) (𝑠 ≥ 0) 𝜙∞(1) 𝜙∗(𝑡)

Kullback–Leibler 𝑠 log(𝑠) − 𝑠 + 1 ∞ e𝑡 − 1
Likelihood − log(𝑠) + 𝑠 − 1 1 − log(1 − 𝑡)
Total variation 1

2 |𝑠 − 1| 1
2 max{𝑡,−1/2} + 𝛿(−∞,1/2](𝑡)

Pearson 𝜒2 (𝑠 − 1)2 ∞ (𝑡/2 + 1)2
+ − 1

Neyman 𝜒2 1
𝑠
(𝑠 − 1)2 1 2 − 2

√
1 − 𝑡

Cressie–Read for 𝛽 ∈ (0, 1)
𝑠𝛽 − 𝛽𝑠 + 𝛽 − 1

𝛽(𝛽 − 1)
1

[(𝛽 − 1)𝑡 + 1]𝛽/(𝛽−1)
+

𝛽

Cressie–Read for 𝛽 > 1
𝑠𝛽 − 𝛽𝑠 + 𝛽 − 1

𝛽(𝛽 − 1)
∞ [(𝛽 − 1)𝑡 + 1]𝛽/(𝛽−1)

+
𝛽

where the product 𝜆 𝜙∞(1) is assumed to evaluate to∞ if 𝜆 = 0 and 𝜙∞(1) = ∞. If
𝜙 is continuous at 1, then ℎ∗∗ coincides with ℎ on {1} × R++.

As 𝜙(1) = 0, we have 𝜙∗(𝜏) = sup𝛼∈R 𝜏𝛼 − 𝜙(𝛼) ≥ 𝜏 for all 𝜏 ∈ R. This readily
implies that (𝜙∗)𝜋(𝜏, 𝜆) ≥ 𝜏 for all 𝜏, 𝜆 ∈ R. Hence EP̂ [(𝜙∗)𝜋(ℓ(𝑍) − 𝜆0, 𝜆)] ≥
EP̂ [ℓ(𝑍)−𝜆0]. In addition, 𝜙∗ is non-decreasing because dom(𝜙) ⊆ R+. Examples
of common entropy functions and their conjugates are listed in Table 4.1.

Proof of Proposition 4.13. For any fixed (𝜆0, 𝜆) ∈ R2, the conjugate of ℎ satisfies

ℎ∗(−𝜆0,−𝜆) = sup
(𝑢0,𝑢)∈R2

−𝜆0𝑢0 − 𝜆𝑢 − ℎ(𝑢0, 𝑢)

= sup
𝑢∈R+,𝑣∈M+(Z)

{
−𝜆𝑢 +

∫
Z

(ℓ(𝑧) − 𝜆0) d𝑣(𝑧) : D𝜙(𝑣, P̂) ≤ 𝑢
}
,

where the second equality holds because
∫
Z d𝑣(𝑧) = 𝑢0 and D𝜙(𝑣, P̂) ≥ 0.

As EP̂ [ℓ(𝑍)] > −∞, the resulting maximization problem over 𝑢 is unbounded
whenever 𝜆 < 0. If 𝜆 > 0, on the other hand, then we find

ℎ∗(−𝜆0,−𝜆) = sup
𝑣∈M+(Z)

∫
Z

(ℓ(𝑧) − 𝜆0) d𝑣(𝑧) − 𝜆D𝜙(𝑣, P̂)

=


sup

∫
Z

(ℓ(𝑧) − 𝜆0)
d𝑣
d𝜌

(𝑧) − 𝜆𝜙𝜋
(

d𝑣
d𝜌

(𝑧),
dP̂
d𝜌

(𝑧)
)

d𝜌(𝑧)

s.t. 𝑣, 𝜌 ∈M+(Z), 𝑣 ≪ 𝜌, P̂ ≪ 𝜌,

where the second equality exploits the definition of D𝜙. Note that d𝑣/d𝜌(𝑧) and
dP̂/d𝜌(𝑧) belong to the space L1(𝜌) of all 𝜌-integrable Borel functions that can
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be represented as the Radon–Nikodym derivative of some measure in M+(Z)
with respect to 𝜌. Introducing auxiliary decision variables 𝛼, 𝛽 ∈ L1(𝜌) for the
Radon–Nikodym derivatives of 𝑣 and P̂, respectively, and eliminating the measure
𝑣 yields

ℎ∗(−𝜆0,−𝜆) =


sup

∫
Z

(ℓ(𝑧) − 𝜆0)𝛼(𝑧) − 𝜆𝜙𝜋(𝛼(𝑧), 𝛽(𝑧)) d𝜌(𝑧)

s.t. 𝜌 ∈M+(Z), 𝛼, 𝛽 ∈ L1(𝜌)
dP̂
d𝜌

= 𝛽 𝜌-a.s.

(4.8)

For any 𝜌 ∈M+(Z) and 𝛽 ∈ L1(𝜌) with 𝛽 = dP̂/d𝜌 𝜌-almost surely, we then find

sup
𝛼∈L1(𝜌)

∫
Z

(ℓ(𝑧) − 𝜆0)𝛼(𝑧) − 𝜆𝜙𝜋(𝛼(𝑧), 𝛽(𝑧)) d𝜌(𝑧)

=

∫
Z

sup
𝛼∈R
{(ℓ(𝑧) − 𝜆0)𝛼 − 𝜆𝜙𝜋(𝛼, 𝛽(𝑧))} d𝜌(𝑧), (4.9)

where the equality follows from Rockafellar and Wets (2009, Theorem 14.60),
which applies because the negation of the function in curly brackets in (4.9) con-
stitutes a normal integrand in the sense of Rockafellar and Wets (2009, Defini-
tion 14.27). This can be verified by recalling that sums and perspectives of normal
integrands are normal integrands (Rockafellar and Wets 2009, Proposition 14.45
and Example 14.48). Next, we partition Z into Z+(𝛽) = {𝑧 ∈ Z : 𝛽(𝑧) > 0} and
Z0(𝛽) = {𝑧 ∈ Z : 𝛽(𝑧) = 0}. By Lemma 4.11, the integral (4.9) equals∫

Z+(𝛽)
𝜆𝜙∗
(
ℓ(𝑧) − 𝜆0

𝜆

)
𝛽(𝑧) d𝜌(𝑧) +

∫
Z0(𝛽)

𝜆𝛿cl(dom(𝜙∗))

(
ℓ(𝑧) − 𝜆0

𝜆

)
d𝜌(𝑧).

As 𝛽 = dP̂/d𝜌 𝜌-almost surely, and as P̂(𝑍 ∈ Z+(𝛽)) = 1, the first of these integrals
simply reduces to an expectation with respect to the reference distribution and
is thus independent of 𝛽. The second integral still depends on 𝛽 through the
integration domain Z0(𝛽). Thus, partially maximizing over 𝛼 allows us to recast
(4.8) as

ℎ∗(−𝜆0,−𝜆) = EP̂

[
𝜆𝜙∗
(
ℓ(𝑍) − 𝜆0

𝜆

)]
+ sup
𝜌∈M+(Z),
𝛽∈L1(𝜌)

{∫
Z0(𝛽)

𝜆𝛿cl(dom(𝜙∗))

(
ℓ(𝑧) − 𝜆0

𝜆

)
d𝜌(𝑧) :

dP̂
d𝜌

= 𝛽 𝜌-a.s.
}
.

If there exists 𝑧0 ∈ Z with (ℓ(𝑧0) − 𝜆0)/𝜆 ∉ cl(dom(𝜙∗)), then ℎ∗(−𝜆0,−𝜆) = ∞.
To see this, assume first that 𝑧0 is an atom of P̂. In this case, the expectation in the
first line evaluates to∞. If 𝑧0 is not an atom of P̂, then the supremum in the second
line evaluates to ∞ because we may set 𝜌 = P̂ + 𝛿𝑧0 and define 𝛽 ∈ L1(𝜌) through
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𝛽(𝑧) = 1 if 𝑧 ≠ 𝑧0 and 𝛽(𝑧0) = 0. Hence we may conclude that

ℎ∗(−𝜆0,−𝜆)

=


EP̂

[
𝜆𝜙∗
(
ℓ(𝑍) − 𝜆0

𝜆

)]
if
ℓ(𝑧) − 𝜆0

𝜆
∈ cl(dom(𝜙∗)) ∀𝑧 ∈ Z ,

∞ otherwise.

Note that this formula was derived under the assumption that 𝜆 > 0. Note also
that, by Lemma 4.12, the condition (ℓ(𝑧)−𝜆0)/𝜆 ∈ cl(dom(𝜙∗)) is equivalent to the
requirement that 𝜆0 + 𝜆 𝜙∞(1) is larger than or equal to sup𝑧∈Z ℓ(𝑧). We claim that

ℎ∗(−𝜆0,−𝜆)

=


EP̂ [(𝜙∗)𝜋(ℓ(𝑍) − 𝜆0, 𝜆)] if 𝜆 ≥ 0 and 𝜆0 + 𝜆 𝜙∞(1) ≥ sup

𝑧∈Z
ℓ(𝑧),

∞ otherwise,
(4.10)

for all 𝜆0, 𝜆 ∈ R. Indeed, the above reasoning and the definition of the perspective
function (𝜙∗)𝜋 ensure that (4.10) holds whenever 𝜆 ≠ 0. Note that ℎ∗ is convex
and closed thanks to Rockafellar (1970, Theorem 12.2). The expression on the
right-hand side of (4.10) is also convex and closed in (𝜆0, 𝜆). In particular, it is
lower semicontinuous thanks to Fatou’s lemma, which applies because 𝜙(1) = 0
such that (𝜙∗)𝜋(𝑡, 𝜆) ≥ 𝑡 for all 𝑡 ∈ R and 𝜆 ∈ R+ and because EP̂ [ℓ(𝑍)] > −∞.
Observe also that (𝜙∗)𝜋 is proper, closed and convex thanks to Rockafellar (1970,
pp. 35, 67, Theorem 13.3). Hence (4.10) must indeed hold for all 𝜆0, 𝜆 ∈ R.

Given (4.10), we finally obtain

ℎ∗∗(𝑢0, 𝑢) = sup
𝜆0,𝜆∈R

−𝜆0𝑢0 − 𝜆𝑢 − ℎ∗(−𝜆0,−𝜆)

=


sup

𝜆0∈R,𝜆∈R+
−𝜆0𝑢0 − 𝜆𝑢 − EP̂ [(𝜙∗)𝜋(ℓ(𝑍) − 𝜆0, 𝜆)]

s.t. 𝜆0 + 𝜆 𝜙∞(1) ≥ sup
𝑧∈Z

ℓ(𝑧),

which establishes the desired formula for the bi-conjugate of ℎ. It remains to be
shown that if 𝜙 is continuous at 1, then ℎ(1, 𝑢) = ℎ∗∗(1, 𝑢) for all 𝑢 ∈ R++. However,
this follows immediately from Lemmas 4.2 and 4.10.

The following main theorem uses Proposition 4.13 to dualize the worst-case
expectation problem (4.1) with a 𝜙-divergence ambiguity set.

Theorem 4.14 (Duality theory for 𝜙-divergence ambiguity sets). Assume that
EP̂ [ℓ(𝑍)] > −∞. If P is the 𝜙-divergence ambiguity set (2.10), then the following
weak duality relation holds:

sup
P∈P
EP [ℓ(𝑍)] ≤


inf

𝜆0∈R,𝜆∈R+
𝜆0 + 𝜆𝑟 + EP̂ [(𝜙∗)𝜋(ℓ(𝑍) − 𝜆0, 𝜆)]

s.t. 𝜆0 + 𝜆 𝜙∞(1) ≥ sup
𝑧∈Z

ℓ(𝑧). (4.11)
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Here the product 𝜆 𝜙∞(1) is assumed to evaluate to ∞ if 𝜆 = 0 and 𝜙∞(1) = ∞. If
additionally 𝑟 > 0 and 𝜙 is continuous at 1, then strong duality holds, that is, the
inequality (4.11) collapses to an equality.

Proof. Recall first that

sup
P∈P
EP [ℓ(𝑍)] = −ℎ(1, 𝑟) ≤ −ℎ∗∗(1, 𝑟),

where the inequality holds because of Lemma 4.2. Weak duality thus follows from
the first claim in Proposition 4.13. If 𝜙 is additionally continuous at 1, and if 𝑟 > 0,
then strong duality follows from the second claim in Proposition 4.13.

Recall now that the restricted 𝜙-divergence ambiguity set (2.11) is defined as

P = {P ∈ P(Z) : P ≪ P̂, D𝜙(P, P̂) ≤ 𝑟}.

That is, P contains all distributions from within the (unrestricted) 𝜙-divergence
ambiguity set (2.10) that are absolutely continuous with respect to P̂. The worst-
case expected loss over P can again be expressed as −ℎ(1, 𝑟), where ℎ(𝑢0, 𝑢) is
now defined as the infimum of the optimization problem (4.7) with the additional
constraint 𝑣 ≪ P̂. One readily verifies that ℎ remains convex and that {1} × R++
is still contained in rint(dom(ℎ)) despite this restriction. Indeed, the proof of
Lemma 4.10 remains valid almost verbatim.

Theorem 4.15 (Duality theory for restricted 𝜙-divergence ambiguity sets).
Assume that EP̂ [ℓ(𝑍)] > −∞. If P is the restricted 𝜙-divergence ambiguity set
(2.11), then the following weak duality relation holds:

sup
P∈P
EP [ℓ(𝑍)] ≤ inf

𝜆0∈R,𝜆∈R+
𝜆0 + 𝜆𝑟 + EP̂ [(𝜙∗)𝜋(ℓ(𝑍) − 𝜆0, 𝜆)] . (4.12)

If additionally 𝑟 > 0 and 𝜙 is continuous at 1, then strong duality holds, that is, the
inequality (4.12) collapses to an equality.

Note that if (𝜆0, 𝜆) is feasible in (4.12), then (ℓ(𝑍) − 𝜆0, 𝜆) belongs P̂-almost
surely to dom((𝜙∗)𝜋). Otherwise, its objective function value equals∞. In view of
Lemma 4.12, this implies that 𝜆0 +𝜆 𝜙∞(1) ≥ ess supP̂ [ℓ(𝑍)]. In contrast, if (𝜆0, 𝜆)
is feasible in (4.11), then it satisfies the constraint 𝜆0 + 𝜆 𝜙∞(1) ≥ sup𝑧∈Z ℓ(𝑧),
which is more restrictive unless 𝜙∞(1) = ∞. Hence the dual problem in (4.12) has
a (weakly) larger feasible set and a (weakly) smaller infimum than the dual problem
in (4.11). This is perhaps unsurprising because (4.12) corresponds to the worst-
case expectation problem over the restricted 𝜙-divergence ambiguity set, which is
(weakly) smaller than the corresponding unrestricted 𝜙-divergence ambiguity set.
Note also that the solution of a worst-case expectation problem over an unrestricted
𝜙-divergence ambiguity set depends on Z and not just on the support of P̂.
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Proof of Theorem 4.15. If ℎ(𝑢0, 𝑢) is defined as the infimum of the optimization
problem (4.7) with the additional constraint 𝑣 ≪ P̂, then one can show that

ℎ∗∗(𝑢0, 𝑢) = sup
𝜆0,𝜆∈R

−𝜆0𝑢0 − 𝜆𝑢 − EP̂ [(𝜙∗)𝜋(ℓ(𝑍) − 𝜆0, 𝜆)] .

Indeed, one can proceed as in the proof of Proposition 4.13. However, the reasoning
simplifies significantly because the additional constraint 𝑣 ≪ P̂ allows us to set
the dominating measure 𝜌 in the definition of D𝜙 to P̂. Thus the Radon–Nikodym
derivative 𝛽 = dP̂/d𝜌 is P̂-almost surely equal to 1. This in turn implies that the
calculation of ℎ∗ requires no case distinction, that is, the set Z0(𝛽) is empty.

Given the bi-conjugate of ℎ, both weak and strong duality can then be established
exactly as in the proof of Theorem 4.14. Details are omitted for brevity.

Van Parys et al. (2021, Proposition 5) establish a strong duality result for worst-
case expectations over likelihood ambiguity sets as introduced in Section 2.2.2.
Theorem 4.14 extends this result to general 𝜙-divergence ambiguity sets with a
significantly shorter proof that only uses tools from convex analysis. Ben-Tal
et al. (2013) establish a strong duality result akin to Theorem 4.15 for restricted
𝜙-divergence ambiguity sets under the assumption that the reference distribution
P̂ is discrete. Shapiro (2017) extends this result to general reference distribu-
tions by using tools from infinite-dimensional analysis. In contrast, our proof of
Theorem 4.15 establishes the same duality result using finite-dimensional convex
analysis.

4.4. Optimal transport ambiguity sets

Recall from Section 2.3 that the optimal transport ambiguity set (2.27) is defined as

P = {P ∈ P(Z) : OT𝑐(P, P̂) ≤ 𝑟}.

Here Z is a closed support set, 𝑟 ≥ 0 is a size parameter, 𝑐 is a transportation
cost function in the sense of Definition 2.14, OT𝑐 is the corresponding optimal
transport discrepancy in the sense of Definition 2.15, and P̂ ∈ P(Z) is a reference
distribution. In analogy to Section 4.3, the worst-case expectation problem (4.1)
over the ambiguity set (2.27) can now be reformulated as

sup
P∈P
EP [ℓ(𝑍)] = −ℎ(𝑟),

where the auxiliary function ℎ : R→ R is defined by

ℎ(𝑢) = inf
P∈P(Z)

{−EP [ℓ(𝑍)] : OT𝑐(P, P̂) ≤ 𝑢}. (4.13)

As the objective and constraint functions of the minimization problem in (4.13) are
jointly convex in P and 𝑢, Lemma 4.1 implies that ℎ is convex. Recall also that
𝑐 is non-negative and satisfies 𝑐(𝑧, 𝑧) = 0 for all 𝑧 ∈ Z . If EP̂ [ℓ(�̂�)] > −∞, it is
therefore easy to show that dom(ℎ) = R+.
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The following lemma will be instrumental for deriving the bi-conjugate of ℎ.
Recall that Γ(P, P̂) denotes the set of all couplings of P and P̂; see Definition 2.15.

Lemma 4.16 (Interchangeability principle). If 𝑐 is a transportation cost func-
tion, ℓ is upper semicontinuous and 𝜆 ≥ 0, then we have

sup
P∈P(Z)

sup
𝛾∈Γ(P,P̂)

E𝛾 [ℓ(𝑍) − 𝜆𝑐(𝑍, �̂�)] = EP̂
[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆𝑐(𝑧, �̂�)
]
.

One can show that Lemma 4.16 remains valid, for example, if Z is a Polish
(separable metric) space equipped with its Borel 𝜎-algebra and even if 𝑐 and
ℓ fail to be lower and upper semicontinuous, respectively (Zhang et al. 2024b,
Proposition 1).

Proof of Lemma 4.16. Define 𝐿 : Z → R through 𝐿(𝑧) = sup𝑧∈Z ℓ(𝑧) − 𝜆𝑐(𝑧, 𝑧).
If 𝜆 = 1, then 𝐿 reduces to the 𝑐-transform of ℓ defined in (2.25). Note first
that 𝜆𝑐(𝑧, 𝑧) − ℓ(𝑧) is lower semicontinuous in (𝑧, 𝑧) and thus constitutes a normal
integrand thanks to Rockafellar and Wets (2009, Example 14.31). This implies via
Rockafellar and Wets (2009, Theorem 14.37) that 𝐿(𝑧) is Borel-measurable.

Observe next that, by the definition of 𝐿, we have ℓ(𝑧) − 𝜆𝑐(𝑧, 𝑧) ≤ 𝐿(𝑧) for all
𝑧, 𝑧 ∈ Z . This inequality persists if we integrate both sides with respect to any
coupling 𝛾 ∈ Γ(P, P̂) for any distribution P ∈ P(Z), and therefore we obtain

sup
P∈P(Z)

sup
𝛾∈Γ(P,P̂)

E𝛾 [ℓ(𝑍) − 𝜆𝑐(𝑍, �̂�)] ≤ EP̂ [𝐿(�̂�)] .

It remains to prove the reverse inequality. To this end, observe that

EP̂ [𝐿(�̂�)] = EP̂
[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆𝑐(𝑧, �̂�)
]

= sup
𝑓 ∈F
EP̂ [ℓ( 𝑓 (�̂�)) − 𝜆𝑐( 𝑓 (�̂�), �̂�)]

≤ sup
P∈P(Z)

sup
𝛾∈Γ(P,P̂)

E𝛾 [ℓ(𝑍) − 𝜆𝑐(𝑍, �̂�)],

where F denotes the family of all Borel functions 𝑓 : Z → Z . The second
equality follows from Rockafellar and Wets (2009, Theorem 14.60), which applies
because 𝜆𝑐(𝑧, 𝑧) − ℓ(𝑧) is a normal integrand. Note that the joint distribution
of 𝑓 (�̂�) and �̂� under P̂ coincides with the pushforward distribution 𝛾 = P̂ ◦ 𝑔−1,
where 𝑔 : Z → Z × Z is defined through 𝑔(𝑧) = ( 𝑓 (𝑧), 𝑧). By construction, we
have 𝛾 ∈ Γ(P̂ ◦ 𝑓 −1, P̂). The inequality in the above expression therefore holds
because P̂ ◦ 𝑓 −1 ∈ P(Z). This observation completes the proof.

Proposition 4.17 (Bi-conjugate of ℎ). Assume that EP̂ [ℓ(�̂�)] > −∞ and that ℓ
is upper semicontinuous. Then the bi-conjugate of ℎ defined in (4.13) satisfies

ℎ∗∗(𝑢) = sup
𝜆≥0
−𝜆𝑟 − EP̂

[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆𝑐(𝑧, �̂�)
]
.
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In addition, ℎ∗∗ coincides with ℎ on R++.

Proof. For any fixed 𝜆 ∈ R, the conjugate of ℎ satisfies

ℎ∗(−𝜆) = sup
𝑢∈R
−𝜆𝑢 − ℎ(𝑢)

= sup
𝑢∈R+,P∈P(Z)

{−𝜆𝑢 + EP [ℓ(𝑍)] : OT𝑐(P, P̂) ≤ 𝑢},

where the second equality holds because OT𝑐(P, P̂) ≥ 0. As EP̂ [ℓ(�̂�)] > −∞, the
resulting maximization problem is unbounded if 𝜆 < 0. If 𝜆 > 0, then we find

ℎ∗(−𝜆) = sup
P∈P(Z)

EP [ℓ(𝑍)] − 𝜆OT𝑐(P, P̂)

= sup
P∈P(Z)

sup
𝛾∈Γ(P,P̂)

EP [ℓ(𝑍)] − 𝜆E𝛾 [𝑐(𝑍, �̂�)]

= sup
P∈P(Z)

sup
𝛾∈Γ(P,P̂)

E𝛾 [ℓ(𝑍) − 𝜆𝑐(𝑍, �̂�)]

= EP̂

[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆𝑐(𝑧, �̂�)
]
, (4.14)

where the second equality follows from Definition 2.15, the third equality holds
because the marginal distribution of 𝑍 under 𝛾 is given by P, and the fourth
equality exploits Lemma 4.16. The above reasoning implies that ℎ∗(−𝜆) coincides
with (4.14) for all 𝜆 > 0. However, this formula remains valid at 𝜆 = 0. To see this,
note that ℎ∗ is convex and closed thanks to Rockafellar (1970, Theorem 12.2). The
last expectation in (4.14) is also convex and closed in 𝜆 thanks to Fatou’s lemma,
which applies because sup𝑧∈Z ℓ(𝑧) − 𝜆𝑐(𝑧, 𝑧) is larger than or equal to ℓ(𝑧) and
lower semicontinuous in 𝜆 for every 𝑧 ∈ Z and because EP̂ [ℓ(�̂�)] > −∞. Hence
the last expectation in (4.14) is indeed convex and lower-semicontinuous in 𝜆, and
thus it indeed coincides with ℎ∗(−𝜆) for all 𝜆 ∈ R+.

Given (4.14), we finally obtain the following formula for the bi-conjugate of ℎ:

ℎ∗∗(𝑢) = sup
𝜆≥0
−𝜆𝑢 − ℎ∗(−𝜆) = sup

𝜆≥0
−𝜆𝑢 − EP̂

[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆𝑐(𝑧, �̂�)
]
.

Here the first equality holds because ℎ∗(−𝜆) = ∞ whenever 𝜆 < 0. The second
equality follows from (4.14), which holds for any 𝜆 ≥ 0. This establishes the
desired formula for ℎ∗∗. Lemma 4.2 and our earlier observation that dom(ℎ) = R+
finally imply that ℎ(𝑢) = ℎ∗∗(𝑢) for all 𝑢 ∈ R++.

The following main theorem uses Proposition 4.17 to dualize the worst-case
expectation problem (4.1) with an optimal transport ambiguity set.

Theorem 4.18 (Duality theory for optimal transport ambiguity sets). Assume
that EP̂ [ℓ(�̂�)] > −∞ and ℓ is upper semicontinuous. If P is the optimal transport
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ambiguity set defined in (2.27), then the following weak duality relation holds:

sup
P∈P
EP [ℓ(𝑍)] ≤ inf

𝜆∈R+
𝜆𝑟 + EP̂

[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆𝑐(𝑧, �̂�)
]
. (4.15)

If 𝑟 > 0, then strong duality holds, that is, (4.15) collapses to an equality.

Proof. Recall first that

sup
P∈P
EP [ℓ(𝑍)] = −ℎ(𝑟) ≤ −ℎ∗∗(𝑟),

where the inequality holds because of Lemma 4.2. Weak duality thus follows from
the first claim in Proposition 4.17. If 𝑟 > 0, then strong duality follows from the
second claim in Proposition 4.17. This concludes the proof.

Mohajerin Esfahani and Kuhn (2018) and Zhao and Guan (2018) use semi-
infinite duality theory to prove Theorem 4.18 in the special case when OT𝑐 is the
1-Wasserstein distance and when the reference distribution P̂ is discrete. Blanchet
and Murthy (2019) and Gao and Kleywegt (2023) prove a generalization of The-
orem 4.18 by leveraging a Fenchel duality theorem in Banach spaces and by devising
a constructive argument, respectively. They both allow for arbitrary optimal trans-
port discrepancies as well as arbitrary reference distributions on Polish spaces. The
proof shown here, which exploits the interchangeability principle of Lemma 4.16
and elementary tools from convex analysis, is due to Zhang et al. (2024b).

5. Duality theory for worst-case risk problems
The standard DRO problem (1.2) assumes that the decision-maker is risk-neutral
and ambiguity-averse. Risk-neutrality means that if the distribution of 𝑍 is known,
then decisions are ranked by their expected loss. Ambiguity aversion means that
if the distribution of 𝑍 is ambiguous, then expectations are evaluated under a
distribution in the ambiguity set P that is most detrimental to the decision-maker.

If low-probability events have a disproportionate negative impact on the decision-
maker, then it is inappropriate to use the expected loss as a decision criterion even
if the distribution of 𝑍 is known. Instead, it is expedient to rank decisions by the
risk of their loss with respect to a law-invariant risk measure. A law-invariant risk
measure 𝜚 assigns each (univariate) loss distribution in P(R) a riskiness index. If
the loss is representable as ℓ(𝑍), where ℓ : R𝑑 → R is a Borel function and 𝑍 is a
𝑑-dimensional random vector with probability distribution P, then the distribution
of the loss ℓ(𝑍) is given by the pushforward distribution P ◦ ℓ−1. Throughout this
paper, we use 𝜚P [ℓ(𝑍)] to denote the risk 𝜚(P ◦ ℓ−1) of such a loss distribution.
These conventions are formalized in the following definition. Here and in the
remainder we use L(R𝑑) to denote the family of all Borel functions ℓ : R𝑑 → R.

Definition 5.1 (Law-invariant risk measure). A law-invariant risk measure is a
function 𝜚 : P(R) → R. We use 𝜚P [ℓ(𝑍)] to denote 𝜚(P ◦ ℓ−1) for any Borel
function ℓ ∈ L(R𝑑), Borel distribution P ∈ P(R𝑑) and dimension 𝑑 ∈ N.
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A law-invariant risk measure 𝜚 has the property that if P1 ◦ ℓ−1
1 = P2 ◦ ℓ−1

2 for
two different Borel functions ℓ1 and ℓ2 and two different distributions P1 and P2 on
R𝑑1 and R𝑑2 , respectively, then 𝜚P1 [ℓ1(𝑍1)] = 𝜚P2 [ℓ2(𝑍2)]. In fact, this property is
the very reason why 𝜚 is called ‘law-invariant’.

The notation 𝜚P [ℓ(𝑍)] is consistent with our usual conventions for the expected
value EP [ℓ(𝑍)], which is a special instance of a law-invariant risk measure. Also,
it makes the dependence of the risk on P explicit, which is necessary when P is
ambiguous. We stress that, in contrast to most of the literature on risk measures,
our definition of a law-invariant risk measure 𝜚 is not tied to a particular probability
space. A prime example of a law-invariant risk measure is the value-at-risk.

Definition 5.2 (Value-at-risk). The value-at-risk (VaR) at level 𝛽 ∈ (0, 1) of an
uncertain loss ℓ(𝑍) with ℓ ∈ L(R𝑑) and 𝑍 ∼ P ∈ P(R𝑑) is given by

𝛽-VaRP [ℓ(𝑍)] = inf{𝜏 ∈ R : P(ℓ(𝑍) ≤ 𝜏) ≥ 1 − 𝛽}. (5.1)

The VaR is indeed law-invariant because P(ℓ(𝑍) ≤ 𝜏) = 𝐹(𝜏) depends on ℓ and P
only indirectly through the cumulative distribution function 𝐹 associated with the
pushfoward distribution P ◦ ℓ−1. Note that the infimum in (5.1) is attained because
𝐹 is non-decreasing and right-continuous. By construction, the VaR at level 𝛽
represents the smallest number 𝜏★ that weakly exceeds the loss with probability
1− 𝛽. Thus it coincides with the leftmost (1− 𝛽)-quantile of the loss distribution 𝐹.
For later reference we remark that the 𝛽-VaR can be reformulated as

𝛽-VaRP [ℓ(𝑍)] = inf{𝜏 ∈ R : P(ℓ(𝑍) ≥ 𝜏) ≤ 𝛽}. (5.2)

However, the infimum in (5.2) may not be attained. Note that the VaR is well-defined
and finite for any loss function ℓ ∈ L(R𝑑) and for any distribution P ∈ P(R𝑑).
Nonetheless, other law-invariant risk measures are finite only for certain sub-classes
of loss functions and distributions. In the remainder of this paper we will often
study risk measures that display some or all of the following structural properties.

Definition 5.3 (Properties of risk measures). A law-invariant risk measure 𝜚 is

(i) translation-invariant if

𝜚P [ℓ(𝑍) + 𝑐] = 𝜚P [ℓ(𝑍)] + 𝑐 ∀ℓ ∈ L(R𝑑), ∀𝑐 ∈ R, ∀P ∈ P(R𝑑);

(ii) scale-invariant if

𝜚P [𝑐ℓ(𝑍)] = 𝑐𝜚P [ℓ(𝑍)] ∀ℓ ∈ L(R𝑑), ∀𝑐 ∈ R+, ∀P ∈ P(R𝑑);

(iii) monotone if

𝜚P [ℓ1(𝑍)] ≤ 𝜚P [ℓ2(𝑍)]
∀ℓ1, ℓ2 ∈ L(R𝑑) with ℓ1(𝑍) ≤ ℓ2(𝑍) P-a.s., ∀P ∈ P(R𝑑);
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(iv) convex if

𝜚P [𝜃ℓ1(𝑍) + (1 − 𝜃)ℓ2(𝑍)] ≤ 𝜃𝜚P [ℓ1(𝑍)] + (1 − 𝜃)𝜚P [ℓ2(𝑍)]
∀ℓ1, ℓ2 ∈ L(R𝑑), ∀𝜃 ∈ [0, 1], ∀P ∈ P(R𝑑).

A coherent risk measure is translation-invariant, scale-invariant, monotone as
well as convex (Artzner et al. 1999). In addition, a convex risk measure is
translation-invariant, monotone and convex (but not necessarily scale-invariant).

Any law-invariant risk measure 𝜚 gives rise to a risk-averse DRO problem

inf
𝑥∈X

sup
P∈P

𝜚P [ℓ(𝑥, 𝑍)] . (5.3)

This problem seeks a decision 𝑥 that minimizes the worst-case risk of the random
loss ℓ(𝑥, 𝑍) with respect to all distributions of 𝑍 in the ambiguity set P . Below we
will show that the duality theory for worst-case expectation problems developed in
Section 4 has ramifications for a broad class of worst-case risk problems of the form

sup
P∈P

𝜚P [ℓ(𝑍)] . (5.4)

Here we suppress as usual the dependence of the loss function on 𝑥 to avoid clutter.

5.1. Optimized certainty equivalents

We now describe a class of law-invariant risk measures for which the risk-averse
DRO problem (5.3) can be converted to an equivalent risk-neutral DRO problem of
the form (1.2). This will show that many risk-averse DRO problems are susceptible
to methods developed for risk-neutral problems. The risk measures studied in this
section are induced by disutility functions in the sense of the following definition.

Definition 5.4 (Disutility function). A disutility function 𝑔 : R→ R is a convex
(and therefore continuous) function with 𝑔(0) = 0 and 𝑔(𝜏) > 𝜏 for all 𝜏 ≠ 0.

Ben-Tal and Teboulle (1986) use disutility functions to construct a class of law-
invariant risk measures, which they term optimized certainty equivalents. Recall
that if the objective function of a minimization (maximization) problem can be
expressed as the difference of two terms, both of which evaluate to ∞ (e.g. the
positive and negative parts of an integral), then it should be interpreted as∞ (−∞).

Definition 5.5 (Optimized certainty equivalent). The optimized certainty equi-
valent induced by the disutility function 𝑔 is the law-invariant risk measure 𝜚 with

𝜚P [ℓ(𝑍)] = inf
𝜏∈R

𝜏 + EP [𝑔(ℓ(𝑍) − 𝜏)] . (5.5)

The expected disutility EP [𝑔(ℓ(𝑍))] represents a deterministic present loss that
the decision-maker considers to be equally (un)desirable as the random future loss
ℓ(𝑍). If it is possible to shift a deterministic portion 𝜏 of the loss ℓ(𝑍) to the present,
then the decision-maker will solve the minimization problem in (5.5) in order to
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strike an optimal trade-off between present and future losses. Hence it is natural to
interpret 𝜚P [ℓ(𝑍)] as an ‘optimized certainty equivalent’.

There is also an intimate relation between optimized certainty equivalents and
a class of 𝜙-divergences. To see this, let 𝜙 be an entropy function in the sense
of Definition 2.4 with 𝜙∞(1) = ∞. Assume also that 𝜙 is twice continuously
differentiable on a neighbourhood of 1 with 𝜙′(1) = 0 and 𝜙′′(1) > 0. Under
these conditions, 𝜙∗ constitutes a disutility function in the sense of Definition 5.4.
Indeed, 𝜙∗ is real-valued because 𝜙∞(1) = ∞ and satisfies 𝜙∗(𝑡) ≥ 𝑡 for all 𝑡 ∈ R
because 𝜙(1) = 0. Finally, we have 𝜙∗(0) = 0 because 𝜙′(1) = 0 and 𝜙∗(𝑡) > 𝑡

for all 𝑡 ≠ 0 because 𝜙′′(𝑡) > 0. If EP̂ [ℓ(𝑍)] > −∞, then the optimized certainty
equivalent induced by the disutility function 𝑔 = 𝜙∗ satisfies

inf
𝜆0∈R

𝜆0 + EP̂ [𝜙∗(ℓ(𝑍) − 𝜆0)] = sup
P∈P(Z)

EP [ℓ(𝑍)] − D𝜙(P, P̂) (5.6)

and thus coincides with the optimal value of a penalty-based distributionally robust
optimization model with a 𝜙-divergence penalty. The equality in the above expres-
sion follows from Ben-Tal and Teboulle (2007, Theorem 4.2), which is reminiscent
of the strong duality theorem for worst-case expectation problems over restricted
𝜙-divergence ambiguity sets (see Theorem 4.15). The assumption that 𝜙∞(1) = ∞
indeed ensures that D𝜙(P, P̂) is finite only if P ≪ P̂. We also remark that if 𝑔 is a
disutility function in the sense of Definition 5.4 and if 𝑔 is non-decreasing, then 𝑔∗
constitutes an entropy function in the sense of Definition 2.4.

We will see below that the optimized certainty equivalents encapsulate several
widely used risk measures as special cases. Notable examples include the mean–
variance risk measure, the mean–median risk measure, the conditional value-at-risk
or the entropic risk measure. More generally, Rockafellar, Uryasev and Zabarankin
(2006, 2008) show that virtually any regular risk measure admits a representation of
the form (5.5) provided that the expected disutility is replaced with a more general
measure of regret; see also Rockafellar and Royset (2014, 2015) and the survey
papers by Rockafellar and Royset (2013) and Royset (2022).

Definition 5.6 (Mean–variance risk measure). The mean–variance risk meas-
ure with risk-aversion coefficient 𝛽 ∈ (0,∞) is the law-invariant risk measure 𝜚
with

𝜚P [ℓ(𝑍)] = EP [ℓ(𝑍)] + 𝛽 · VP [ℓ(𝑍)],

where VP [ℓ(𝑍)] denotes the variance of ℓ(𝑍) under P.

We call a function 𝑓 : R→ R coercive if lim𝑖→∞ 𝑓 (𝜏𝑖) = ∞ for every sequence
{𝜏𝑖}𝑖∈N with lim𝑖→∞ |𝜏𝑖 | = ∞. Coercivity will play a key role in re-expressing
worst-case optimized certainty equivalents in terms of worst-case expectations.

Proposition 5.7 (Mean–variance risk measure). The mean–variance risk meas-
ure 𝜚 with risk-aversion coefficient 𝛽 ∈ (0,∞) is the optimized certainty equivalent
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induced by the disutility function 𝑔(𝜏) = 𝜏+𝛽𝜏2. The objective function of problem
(5.5) is coercive in 𝜏 and is uniquely minimized by 𝜏★ = EP [ℓ(𝑍)].

Proof. The objective function of problem (5.5) corresponding to the disutility
function 𝑔 is given by EP [ℓ(𝑍)+ 𝛽(ℓ(𝑍)− 𝜏)2]. This function is ostensibly coercive
in 𝜏 and is minimized by 𝜏★ = EP [ℓ(𝑍)]. Substituting 𝜏★ back into the object-
ive function shows that the optimized certainty equivalent induced by 𝑔 indeed
coincides with the mean–variance risk measure with risk-aversion coefficient 𝛽.

Definition 5.8 (Mean–MAD risk measure). The mean–median absolute devi-
ation (MAD) risk measure with risk-aversion coefficient 𝛽 ∈ (0,∞) is the law-
invariant risk measure 𝜚 with

𝜚P [ℓ(𝑍)] = EP [ℓ(𝑍)] + 𝛽 · EP [|ℓ(𝑍) −MP [ℓ(𝑍)] |],

whereMP [ℓ(𝑍)] denotes the median of ℓ(𝑍) under P.

Proposition 5.9 (Mean–MAD risk measure). The mean–MAD risk measure 𝜚
with risk-aversion coefficient 𝛽 ∈ (0,∞) is the optimized certainty equivalent
induced by the disutility function 𝑔(𝜏) = 𝜏 + 𝛽 |𝜏 |. The objective function of
problem (5.5) is coercive in 𝜏 and is minimized by 𝜏★ = MP [ℓ(𝑍)].

Proof. The objective function of problem (5.5) corresponding to the disutility
function 𝑔 is given by EP [ℓ(𝑍) + 𝛽 |ℓ(𝑍) − 𝜏 |]. This function is ostensibly coercive
in 𝜏 and is minimized by 𝜏★ = MP [ℓ(𝑍)]. Substituting 𝜏★ back into the objective
function yields the mean–MAD risk measure with risk-aversion coefficient 𝛽.

Definition 5.10 (Conditional value-at-risk). The conditional VaR (CVaR) at level
𝛽 ∈ (0, 1) is the law-invariant risk measure denoted as 𝛽-CVaR with

𝛽-CVaRP [ℓ(𝑍)] = inf
𝜏∈R

𝜏 + 1
𝛽
EP [max{ℓ(𝑍) − 𝜏, 0}] . (5.7)

Note that 𝛽-CVaRP [ℓ(𝑍)] converges to EP [ℓ(𝑍)] as 𝛽 tends to 1. One can further
show that it converges to the essential supremum ess supP [ℓ(𝑍)] as 𝛽 tends to 0.

Proposition 5.11 (CVaR). The CVaR at level 𝛽 ∈ (0, 1) is the optimized certainty
equivalent induced by the disutility function 𝑔(𝜏) = 𝛽−1 max{𝜏, 0}. The objective
function of problem (5.5) is coercive in 𝜏 and is minimized by 𝜏★ = 𝛽-VaRP [ℓ(𝑍)].

Proof. It is evident that problem (5.7) is an instance of problem (5.5) corres-
ponding to the given disutility function 𝑔. In addition, as 𝛽 ∈ (0, 1), it is evident
that the objective function of problem (5.7) is coercive in 𝜏. Finally, one readily
verifies that 𝜏★ = 𝛽-VaRP [ℓ(𝑍)] solves the first-order optimality condition of the
unconstrained convex program (5.7) and thus constitutes a minimizer.

By substituting 𝜏★ = 𝛽-VaRP [ℓ(𝑍)] into the objective function of problem (5.7),
it becomes now clear that 𝛽-CVaRP [ℓ(𝑍)] ≥ 𝛽-VaRP [ℓ(𝑍)]. If the loss ℓ(𝑍) has a
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continuous distribution under P, then one can further use (5.7) to show that

𝛽-CVaRP [ℓ(𝑍)] = EP [ℓ(𝑍) | ℓ(𝑍) ≥ 𝛽-VaRP [ℓ(𝑍)]] .
Hence the CVaR at level 𝛽 coincides with the expectation of the upper 𝛽-tail of the
loss distribution, which implies that 𝛽-CVaRP [ℓ(𝑍)] is generically strictly larger
than 𝛽-VaRP [ℓ(𝑍)]. For details we refer to Rockafellar and Uryasev (2000, 2002).

Definition 5.12 (Entropic risk measure). The entropic risk measure with risk-
aversion parameter 𝛽 ∈ (0,∞) is the law-invariant risk measure denoted as 𝛽-ERM
with

𝛽-ERMP [ℓ(𝑍)] = 1
𝛽

logEP [exp(𝛽ℓ(𝑍))] . (5.8)

Using a Taylor expansion, one can show that 𝛽-ERMP [ℓ(𝑍)] converges to the ex-
pected value EP [ℓ(𝑍)] as 𝛽 tends to 0. Similarly, one can show that 𝛽-ERMP [ℓ(𝑍)]
converges to the essential supremum ess supP [ℓ(𝑍)] as 𝛽 tends to∞.

Proposition 5.13 (Entropic risk measure). The entropic risk measure with risk-
aversion parameter 𝛽 ∈ (0, 1) is the optimized certainty equivalent induced by the
disutility function 𝑔(𝜏) = 𝛽−1(exp(𝛽𝜏) − 1). The objective function of problem
(5.5) is coercive in 𝜏 and is minimized by 𝜏★ = 𝛽−1 log(EP [exp(𝛽ℓ(𝑍))]).
Proof. By the definition of 𝑔, we have

inf
𝜏∈R

𝜏 + EP [𝑔(ℓ(𝑍) − 𝜏)] = inf
𝜏∈R

𝜏 + 1
𝛽
EP [exp(𝛽(ℓ(𝑍) − 𝜏)) − 1]

=
1
𝛽

logEP [exp(𝛽ℓ(𝑍))]

= 𝛽-ERMP [ℓ(𝑍)] .
The second equality holds because the unconstrained convex minimization problem
over 𝜏 is uniquely solved by 𝜏★ = 𝛽−1 log(EP [exp(𝛽ℓ(𝑍))]), which can be verified
by inspecting the problem’s first-order optimality condition. In addition, as 𝛽 ∈
(0, 1), it is clear that the problem’s objective function is coercive in 𝜏.

Kupper and Schachermayer (2009) show that, with the exception of the expected
value, the entropic risk measure is the only relevant law-invariant risk measure that
obeys the tower property. That is, for any random vectors 𝑍1 and 𝑍2 it satisfies

𝛽-ERMP [ℓ(𝑍2)] = 𝛽-ERMP [𝛽-ERMP [ℓ(𝑍2) | 𝑍1]],
where the conditional entropic risk measure 𝛽-ERMP [𝑍1 | 𝑍2] is defined in the
obvious way by replacing the unconditional expectation in (5.8) with a conditional
expectation. The entropic risk measure is often used for modelling risk-aversion in
dynamic optimization problems, where the dynamic consistency of the decisions
taken at different points in time is a concern. For example, it occupies centre stage
in finance (Föllmer and Schied 2008), risk-sensitive control (Whittle 1990, Başar
and Bernhard 1995) and economics (Hansen and Sargent 2008).
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Proposition 5.14 (Dual representation of the entropic risk measure). Assume
that EP̂ [ℓ(𝑍)] > −∞. Then the entropic risk measure admits the dual repres-
entation

𝛽-ERMP̂ [ℓ(𝑍)] = sup
P∈P(Z)

EP [ℓ(𝑍)] − 1
𝛽
· KL(P, P̂).

Proof. Let 𝜙 be the entropy function of the Kullback–Leibler divergence. Thus
we have 𝜙∗(𝑡) = e𝑡 −1 for all 𝑡 ∈ R; see Table 4.1. By Proposition 5.13, the entropic
value-at-risk is the optimized certainty equivalent induced by the disutility function

𝑔(𝑡) = 𝛽−1(exp(𝛽𝑡) − 1) = 𝛽−1𝜙∗(𝛽𝑡) = (𝛽−1𝜙)∗(𝑡),

where the last equality uses Theorem 16.1 of Rockafellar (1970). This implies that

𝛽-ERMP̂ [ℓ(𝑍)] = inf
𝜏∈R

𝜏 + EP [(𝛽−1𝜙)∗(ℓ(𝑍) − 𝜏)]

= sup
P∈P(Z)

EP [ℓ(𝑍)] − D𝛽−1𝜙(P, P̂)

= sup
P∈P(Z)

EP [ℓ(𝑍)] − 𝛽−1KL(P, P̂).

Here the second equality follows from the strong duality relation (5.6), which
applies because EP̂ [ℓ(𝑍)] > −∞, and the third equality holds because the entropy
function 𝜙 was assumed to induce the Kullback–Leibler divergence.

We remark that Proposition 5.14 can also be proved by leveraging the Donsker–
Varadhan formula from Proposition 2.9 in lieu of the duality relation (5.6).

One can show that every optimized certainty equivalent 𝜚 is translation-invariant
and convex. If the underlying disutility function 𝑔 is non-decreasing, then 𝜚 is also
monotone, and if 𝑔 is positive homogeneous, then 𝜚 is also scale-invariant.

In the remainder we will show that if 𝜚 is any optimized certainty equivalent,
then the worst-case risk problem (5.4) can be reduced to a worst-case expectation
problem of the form (4.1). This reduction is predicated on a lopsided minimax
theorem to be derived below, and it allows us to extend the duality theory for
worst-case expectation problems of Section 4 to a rich class of worst-case risk
problems.

5.2. Lopsided minimax theorems

A generic minimax problem can be represented as

inf
𝑢∈U

sup
𝑣∈V

𝐻(𝑢, 𝑣),

where U and V are arbitrary spaces, and 𝐻 : U × V → R is an arbitrary function.
A minimax theorem provides conditions under which the infimum and supremum
operators can be interchanged without changing the problem’s optimal value. The
following minimax theorem inspired by Rockafellar (1974, Example 13) will be
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essential for solving worst-case risk problems with optimized certainty equivalents.
Recall from Section 4.1 that a convex function is closed if it is either proper and
lower semicontinuous or identically equal to +∞ or to −∞.

Theorem 5.15 (Lopsided minimax theorem). Suppose that U is an arbitrary
vector space and V is a locally convex topological vector space. Assume also that
the function 𝐻 : U × V → R is such that 𝐻(𝑢, 𝑣) is convex in 𝑢 and such that
−𝐻(𝑢, 𝑣) is convex and closed in 𝑣. If sup𝑣∈V inf𝑢∈U 𝐻(𝑢, 𝑣) > −∞ and for every
𝛼 ∈ R there exists 𝑢 ∈ U such that {𝑣 ∈ V : 𝐻(𝑢, 𝑣) ≥ 𝛼} is compact, then we have

inf
𝑢∈U

sup
𝑣∈V

𝐻(𝑢, 𝑣) = sup
𝑣∈V

inf
𝑢∈U

𝐻(𝑢, 𝑣).

Proof. LetV∗ be the topological dual ofV , and define the bilinear form ⟨·, ·⟩ : V∗×
V → R through ⟨𝑣∗, 𝑣⟩ = 𝑣∗(𝑣). If we equip V∗ with the weak topology induced
by V , then ⟨·, 𝑣⟩ is a continuous linear functional on V∗ for every 𝑣 ∈ V , and every
continuous linear functional on V∗ can be represented in this way.

Define 𝐹 : U × V∗ → R through 𝐹(𝑢, 𝑣∗) = sup𝑣∈V 𝐻(𝑢, 𝑣) − ⟨𝑣∗, 𝑣⟩, which is
jointly convex in 𝑢 and 𝑣∗ thanks to Lemma 4.1. Thus 𝐹(𝑢, 𝑣∗) = (−𝐻)∗(𝑢,−𝑣∗),
where the conjugate of −𝐻(𝑢, 𝑣) is evaluated with respect to its second argument
𝑣 only. As −𝐻(𝑢, 𝑣) is convex and closed in 𝑣, this implies via Lemma 4.2 that
𝐹∗(𝑢, 𝑣) = −𝐻(𝑢,−𝑣). Here, again, the conjugate of 𝐹(𝑢, 𝑣∗) is evaluated with
respect to its second argument 𝑣∗ only. In addition, define ℎ : V∗ → R through
ℎ(𝑣∗) = inf𝑢∈U 𝐹(𝑢, 𝑣∗), which is convex in 𝑣∗. Thus we find

ℎ(0) = inf
𝑢∈U

𝐹(𝑢, 0) = inf
𝑢∈U

sup
𝑣∈V

𝐻(𝑢, 𝑣),

where the two equalities follow from the definitions of ℎ and 𝐹, respectively. In
addition, we also have

ℎ∗∗(0) = sup
𝑣∈V
−ℎ∗(−𝑣)

= sup
𝑣∈V

inf
𝑣∗∈V∗

⟨𝑣∗, 𝑣⟩ + ℎ(𝑣∗)

= sup
𝑣∈V

inf
𝑢∈U

inf
𝑣∗∈V∗

⟨𝑣∗, 𝑣⟩ + 𝐹(𝑢, 𝑣∗)

= sup
𝑣∈V

inf
𝑢∈U
−𝐹∗(𝑢,−𝑣)

= sup
𝑣∈V

inf
𝑢∈U

𝐻(𝑢, 𝑣),

where the first two equalities follow from the definitions of the bi-conjugate ℎ∗∗
and the conjugate ℎ∗, respectively, and the third equality exploits the definition of
ℎ. The fourth equality follows from the definition of the conjugate 𝐹∗, and the
last equality holds because 𝐹∗(𝑢, 𝑣) = −𝐻(𝑢,−𝑣). Thus the desired minimax result
holds if we manage to prove that ℎ(0) = ℎ∗∗(0).
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By the definitions of ℎ∗ and ℎ and by the relation 𝐹∗(𝑢, 𝑣) = −𝐻(𝑢,−𝑣), we have

{𝑣 ∈ V : ℎ∗(𝑣) ≤ 𝛼} =
{
𝑣 ∈ V : sup

𝑣∗∈V∗
⟨𝑣∗, 𝑣⟩ − ℎ(𝑣∗) ≤ 𝛼

}
=

{
𝑣 ∈ V : sup

𝑢∈U
sup
𝑣∗∈V∗

⟨𝑣∗, 𝑣⟩ − 𝐹(𝑢, 𝑣∗) ≤ 𝛼
}

=

{
𝑣 ∈ V : sup

𝑢∈U
−𝐻(𝑢,−𝑣) ≤ 𝛼

}
= −

⋂
𝑢∈U
{𝑣 ∈ V : 𝐻(𝑢, 𝑣) ≥ −𝛼}

for any 𝛼 ∈ R. Hence {𝑣 ∈ V : ℎ∗(𝑣) ≤ 𝛼} is representable as an intersec-
tion of closed sets, at least one of which is compact. Therefore the intersec-
tion is also compact. Selecting 𝛼 > inf𝑣∈V ℎ∗(𝑣), which is possible because
sup𝑣∈V inf𝑢∈U 𝐻(𝑢, 𝑣) > −∞ implies that inf𝑣∈V ℎ∗(𝑣) < ∞, we further ensure that
the compact set {𝑣 ∈ V : ℎ∗(𝑣) ≤ 𝛼} is non-empty. This implies via Rockafellar
(1974, Theorem 10 (b)) that ℎ∗∗(𝑣∗) and ℎ(𝑣∗) are both bounded above on a neigh-
bourhood of 0. By Rockafellar (1974, Theorem 17 (a)), this in turn implies that
ℎ(0) = ℎ∗∗(0), which establishes the desired minimax equality.

Swapping the roles of 𝑢 and 𝑣 leads to the following immediate corollary.

Corollary 5.16 (Reverse lopsided minimax theorem). Suppose that U is a loc-
ally convex topological vector space and V is an arbitrary vector space. Assume
also that the function 𝐻 : U ×V → R is such that 𝐻(𝑢, 𝑣) is convex and closed in 𝑢
and such that −𝐻(𝑢, 𝑣) is convex in 𝑣. If inf𝑢∈U sup𝑣∈V 𝐻(𝑢, 𝑣) < ∞ and for every
𝛼 ∈ R there exists 𝑣 ∈ V such that {𝑢 ∈ U : 𝐻(𝑢, 𝑣) ≤ 𝛼} is compact, then we have

inf
𝑢∈U

sup
𝑣∈V

𝐻(𝑢, 𝑣) = sup
𝑣∈V

inf
𝑢∈U

𝐻(𝑢, 𝑣).

A function ℎ𝑣(𝑢) = 𝐻(𝑢, 𝑣) whose sublevel sets {𝑢 ∈ U : ℎ𝑣(𝑢) ≤ 𝛼} are all
compact is commonly referred to as inf-compact (Hartung 1982). The following
lemma provides an easily checkable sufficient condition for the inf-compactness of
ℎ𝑣(𝑢) when U is a Euclidean space. To this end, recall that a function ℎ𝑣 is coercive
if, for every sequence {𝑢𝑖}𝑖∈Nwith lim𝑖→∞ ∥𝑢𝑖 ∥2 = ∞, we have lim𝑖→∞ ℎ𝑣(𝑢𝑖) = ∞.

Lemma 5.17 (Inf-compactness). Suppose thatU is a Euclidean space and𝐻 : U×
V → R is lower semicontinuous and coercive in its first argument. Then the sublevel
sets {𝑢 ∈ U : 𝐻(𝑢, 𝑣) ≤ 𝛼} are compact for all 𝑣 ∈ V and 𝛼 ∈ R.

Proof. To show that the sublevel set U𝛼(𝑣) = {𝑢 ∈ U : 𝐻(𝑢, 𝑣) ≤ 𝛼} is compact,
note first thatU𝛼(𝑣) is closed because𝐻(𝑢, 𝑣) is lower semicontinuous in 𝑢. In order
to prove that U𝛼(𝑣) is also bounded, assume for the sake of contradiction that there
exists a sequence {𝑢𝑖}𝑖∈N ∈ U𝛼(𝑣) with lim𝑖→∞ ∥𝑢𝑖 ∥ = ∞. As 𝐻(𝑢, 𝑣) is coercive
in 𝑢, we have lim𝑖→∞ 𝐻(𝑢𝑖 , 𝑣) = ∞. However, this contradicts the assumption that
𝐻(𝑢𝑖 , 𝑣) ≤ 𝛼 for all 𝑖 ∈ N. Thus U𝛼(𝑣) must be bounded and compact.
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Note that if 𝐻0 : U0×V0 → R is defined on convex sets U0 ⊆ U and V0 ⊆ V , then
it can be extended to a function 𝐻 : U × V → R on the underlying vector spaces U
and V by setting

𝐻(𝑢, 𝑣) =


𝐻0(𝑢, 𝑣) if 𝑢 ∈ U0 and 𝑣 ∈ V0,
+∞ if 𝑢 ∉ U0 and 𝑣 ∈ V0,
−∞ if 𝑣 ∉ V0.

This construction guarantees that

inf
𝑢∈U

sup
𝑣∈V

𝐻(𝑢, 𝑣) = inf
𝑢∈U0

sup
𝑣∈V0

𝐻0(𝑢, 𝑣) and sup
𝑣∈V

inf
𝑢∈U

𝐻(𝑢, 𝑣) = sup
𝑣∈V0

inf
𝑢∈U0

𝐻0(𝑢, 𝑣).

It also guarantees that if 𝐻0(𝑢, 𝑣) is convex and closed in 𝑢 and concave in 𝑣, then
so is 𝐻(𝑢, 𝑣). Thus the feasible sets in any convex–concave minimax problem can
always be extended to the underlying vector spaces without changing the problem.

We now leverage Corollary 5.16 to derive a minimax theorem for optimized
certainty equivalents. This result exploits the inf-compactness of the objective
function of problem (5.5) in 𝜏. Shafiee and Kuhn (2024) establish similar minimax
theorems for a more general class of regular risk and deviation measures introduced
by Rockafellar and Uryasev (2013).

Theorem 5.18 (Minimax theorem for optimized certainty equivalents). Sup-
pose that P ⊆ P(Z) is non-empty and convex, 𝜚 is any optimized certainty
equivalent induced by a disutility function 𝑔, supP∈P EP [𝑔(ℓ(𝑍))] < ∞, and
EP [ℓ(𝑍)] > −∞ for all P ∈ P . Then 𝐺(𝜏, P) = 𝜏 + EP [𝑔(ℓ(𝑍) − 𝜏)] for 𝜏 ∈ R and
P ∈ P satisfies

sup
P∈P

𝜚P [ℓ(𝑍)] = sup
P∈P

inf
𝜏∈R

𝐺(𝜏, P) = inf
𝜏∈R

sup
P∈P

𝐺(𝜏, P).

Proof. Note first that 𝐺(𝜏, P) is convex in 𝜏 and concave (in fact, linear) in P. In
addition, 𝐺(𝜏, P) is closed in 𝜏. To see this, observe that

lim inf
𝜏′→𝜏

𝐺(𝜏′, P) = lim inf
𝜏′→𝜏

EP [𝜏′ + 𝑔(ℓ(𝑍) − 𝜏′)]

≥ EP
[
lim inf
𝜏′→𝜏

𝜏′ + 𝑔(ℓ(𝑍) − 𝜏′)
]

≥ EP [𝜏 + 𝑔(ℓ(𝑍) − 𝜏)]
= 𝐺(𝜏, P),

where the two inequalities follow from Fatou’s lemma and the continuity of 𝑔,
respectively. Fatou’s lemma applies because any disutility function satisfies 𝑔(𝜏) ≥
𝜏 for all 𝜏 ∈ R, which implies that 𝜏 + 𝑔(ℓ(𝑧) − 𝜏) ≥ ℓ(𝑧) for all 𝑧 ∈ Z and 𝜏 ∈ R.
Note also that EP [ℓ(𝑍)] is finite by assumption. Next, we show that 𝐺(𝜏, P) is
inf-compact in 𝜏. To this end, recall that 𝑔(0) = 0 and 𝑔(𝜏) > 𝜏 for all 𝜏 ≠ 0. As
𝑔 is also convex, this implies that 𝑔(𝜏) must grow faster than 𝜏 as 𝜏 tends to +∞
and that 𝑔(𝜏) must decay more slowly than 𝜏 as 𝜏 tends to −∞. Hence there exists
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𝜀 > 0 with 𝑔(𝜏) ≥ (1 + 𝜀)𝜏 − 1 and 𝑔(𝜏) ≥ (1 − 𝜀)𝜏 − 1 for all 𝜏 ∈ R. For a formal
proof of this assertion we refer to Zhen et al. (2023, Lemma C.10). This implies
that

𝐺(𝜏, P) ≥ 𝜏 + (1 + 𝜀)(EP [ℓ(𝑍)] − 𝜏) − 1 = −𝜀𝜏 + (1 + 𝜀)EP [ℓ(𝑍)] − 1

and

𝐺(𝜏, P) ≥ 𝜏 + (1 − 𝜀)(EP [ℓ(𝑍)] − 𝜏) − 1 = 𝜀𝜏 + (1 + 𝜀)EP [ℓ(𝑍)] − 1

for all 𝜏 ∈ R, and thus {𝜏 ∈ R : 𝐺(𝜏, P) ≤ 𝛼} is compact for every 𝛼 ∈ R.
Next, set U = R, and define V = M(R𝑑) as the space of all finite signed Borel

measures on R𝑑 . In addition, define the function 𝐻 : U × V → R through

𝐻(𝑢, 𝑣) =

{
𝐺(𝑢, 𝑣) if 𝑣 ∈ P ,
−∞ if 𝑣 ∉ P .

By construction, 𝐻(𝑢, 𝑣) is convex and closed in 𝑢 and concave in 𝑣. Recall
from Section 4.1 that a convex function is closed if it is either proper and lower
semicontinuous or identically equal to +∞ or to −∞. In addition, we have

sup
𝑣∈V

𝐻(0, 𝑣) = sup
P∈P

𝐺(0, P) = sup
P∈P
EP [𝑔(ℓ(𝑍))] < ∞,

and the sublevel sets {𝑢 ∈ U : 𝐻(𝑢, 𝑣) ≤ 𝛼} are compact for every 𝛼 ∈ R provided
that 𝑣 ∈ P . The claim thus follows from Corollary 5.16.

Theorem 5.18 implies that if 𝛽 ∈ (0, 1), then the worst-case 𝛽-CVaR satisfies

sup
P∈P

𝛽-CVaRP [ℓ(𝑍)] = inf
𝜏∈R

𝜏 + 1
𝛽

sup
P∈P
EP [max{ℓ(𝑍) − 𝜏, 0}] (5.9)

for any non-empty convex ambiguity set P ⊆ P(Z) provided that EP [|ℓ(𝑍)|] < ∞
for all P ∈ P . In the extant literature, the interchange of the supremum over P and
the infimum over 𝜏 is often justified with Sion’s minimax theorem (Sion 1958).
However, many studies overlook that Sion’s minimax theorem only applies if P
is weakly compact and EP [max{ℓ(𝑍) − 𝜏, 0}] is weakly upper semicontinuous in
P. As shown in Section 3, unfortunately, many popular ambiguity sets fail to
be weakly compact. In addition, EP [max{ℓ(𝑍) − 𝜏, 0}] fails to be weakly upper
semicontinuous unless the loss function ℓ is upper semicontinuous and bounded
on Z; see Proposition 3.3. All non-trivial convex loss functions on R𝑑 violate this
condition. In contrast, Theorem 5.18 offers a more general result that exploits the
inf-compactness in 𝜏 but obviates any restrictive topological conditions on P or ℓ.

5.3. Moment ambiguity sets

Recall that the generic moment ambiguity set (2.1) is defined as

P = {P ∈ P 𝑓 (Z) : EP [ 𝑓 (𝑍)] ∈ F },
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where Z ⊆ R𝑑 is a non-empty closed support set, 𝑓 : Z → R𝑚 is a Borel-
measurable moment function, F ⊆ R𝑚 is a non-empty closed moment uncertainty
set, andP 𝑓 (Z) denotes the family of all distributions P ∈ P(Z) for whichEP [ 𝑓 (𝑍)]
is finite. Recall also that C = {EP [ 𝑓 (𝑍)] : P ∈ P 𝑓 (Z)} represents the family of all
possible moments of any distribution on Z . The next theorem establishes a duality
result for the worst-case risk problem (5.4) with a moment ambiguity set.

Theorem 5.19 (Duality theory for moment ambiguity sets II). If P is the mo-
ment ambiguity set (2.1) and 𝜚 is an optimized certainty equivalent induced by a
disutility function 𝑔, then the following weak duality relation holds:

sup
P∈P

𝜚P [ℓ(𝑍)] ≤


inf 𝜏 + 𝜆0 + 𝛿∗F (𝜆)
s.t. 𝜏, 𝜆0 ∈ R, 𝜆 ∈ R𝑚

𝜆0 + 𝑓 (𝑧)⊤𝜆 ≥ 𝑔(ℓ(𝑧) − 𝜏) ∀𝑧 ∈ Z
(5.10)

If supP∈P EP [𝑔(ℓ(𝑍))] < ∞, EP [ℓ(𝑍)] > −∞ for all P ∈ P 𝑓 (Z), and F ⊆ C is a
convex and compact set with rint(F) ⊆ rint(C), then strong duality holds, that is,
the inequality (5.10) becomes an equality.

Proof. The max-min inequality implies that

sup
P∈P

𝜚P [ℓ(𝑍)] = sup
P∈P

inf
𝜏∈R

𝜏 + EP [𝑔(ℓ(𝑍) − 𝜏)]

≤ inf
𝜏∈R

sup
P∈P

𝜏 + EP [𝑔(ℓ(𝑍) − 𝜏)] .

The inner maximization problem in the resulting upper bound constitutes a worst-
case expectation problem. Hence it is bounded above by the dual problem derived
in Theorem 4.5. Substituting this dual problem into the above expression yields
(5.10). Strong duality follows from the minimax theorem for optimized certainty
equivalents (Theorem 5.18) and the strong duality result for worst-case expectation
problems (Theorem 4.5), which apply under the given assumptions.

The semi-infinite constraint in (5.10) involves the composite function 𝑔(ℓ(𝑧)−𝜏),
which fails to be concave in 𝑧 even if 𝑔 is non-decreasing and ℓ is concave. Thus,
checking whether a given (𝜏, 𝜆0, 𝜆) satisfies the semi-infinite constraint in (5.10) is
generically hard. In fact Chen and Sim (2024, Theorem 1) prove that evaluating the
worst-case entropic risk is NP-hard even if ℓ is linear and P is a Markov ambiguity
set. Hence, while providing theoretical insights, Theorem 5.18 does not necessarily
pave the way towards an efficient method for solving worst-case risk problems of
the form (5.4). Nevertheless, Theorem 5.18 provides a concise reformulation for
(5.4) that is susceptible to approximate iterative solution procedures.

5.4. 𝜙-divergence ambiguity sets

Recall that the 𝜙-divergence ambiguity set (2.10) is defined as

P = {P ∈ P(Z) : D𝜙(P, P̂) ≤ 𝑟},
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where Z is a closed support set, 𝑟 ≥ 0 is a size parameter, 𝜙 is an entropy
function in the sense of Definition 2.4, D𝜙 is the corresponding 𝜙-divergence in
the sense of Definition 2.5, and P̂ ∈ P(Z) is a reference distribution. The next
theorem establishes a duality result for worst-case risk problems over 𝜙-divergence
ambiguity sets. The proof follows from Theorems 4.14 and 5.18 and is thus omitted.

Theorem 5.20 (Duality theory for 𝜙-divergence ambiguity sets II). Assume
that EP̂ [ℓ(𝑍)] > −∞. If P is the 𝜙-divergence ambiguity set (2.10), and 𝜚 is an
optimized certainty equivalent induced by a disutility function 𝑔, then the following
weak duality relation holds:

sup
P∈P

𝜚P [ℓ(𝑍)] ≤


inf
𝜏,𝜆0∈R,𝜆∈R+

𝜏 + 𝜆0 + 𝜆𝑟 + EP̂ [(𝜙∗)𝜋(𝑔(ℓ(𝑍) − 𝜏) − 𝜆0, 𝜆)]
s.t. 𝜆0 + 𝜆 𝜙∞(1) ≥ sup

𝑧∈Z
𝑔(ℓ(𝑧) − 𝜏).

If supP∈P EP [𝑔(ℓ(𝑍))] < ∞, EP [ℓ(𝑍)] > −∞ for all P ∈ P , 𝑟 > 0 and 𝜙 is con-
tinuous at 1, then strong duality holds, that is, the inequality becomes an equality.

A duality result akin to Theorem 5.20 also holds for worst-case risk problems
over restricted 𝜙-divergence ambiguity sets of the form

P = {P ∈ P(Z) : P ≪ P̂, D𝜙(P, P̂) ≤ 𝑟}.

The proof of the next theorem follows immediately from Theorems 4.15 and 5.18.

Theorem 5.21 (Duality theory for restricted 𝜙-divergence ambiguity sets II).
Assume that EP̂ [ℓ(𝑍)] > −∞. If P is the restricted 𝜙-divergence ambiguity set
(2.11), and 𝜚 is an optimized certainty equivalent induced by a disutility function
𝑔, then the following weak duality relation holds:

sup
P∈P

𝜚P [ℓ(𝑍)] ≤ inf
𝜏,𝜆0∈R, 𝜆∈R+

𝜏 + 𝜆0 + 𝜆𝑟 + EP̂ [(𝜙∗)𝜋(𝑔(ℓ(𝑍) − 𝜏) − 𝜆0, 𝜆)] .

If supP∈P EP [𝑔(ℓ(𝑍))] < ∞, EP [ℓ(𝑍)] > −∞ for all P ∈ P , 𝑟 > 0 and 𝜙 is con-
tinuous at 1, then strong duality holds, that is, the inequality becomes an equality.

5.5. Optimal transport ambiguity sets

Recall that the optimal transport ambiguity set (2.27) is defined as

P = {P ∈ P(Z) : OT𝑐(P, P̂) ≤ 𝑟},

where Z is a closed support set, 𝑟 ≥ 0 is a size parameter, 𝑐 is a transportation
cost function in the sense of Definition 2.14, OT𝑐 is the corresponding optimal
transport discrepancy in the sense of Definition 2.15, and P̂ ∈ P(Z) is a reference
distribution. The next theorem establishes a duality result for worst-case risk
problems over optimal transport ambiguity sets. Its proof follows immediately
from Theorems 4.18 and 5.18 and is thus omitted.
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Theorem 5.22 (Duality theory for optimal transport ambiguity sets II). Assume
that EP̂ [ℓ(�̂�)] > −∞ and ℓ is upper semicontinuous. If P is the optimal transport
ambiguity set defined in (2.27) and 𝜚 is an optimized certainty equivalent induced
by a disutility function 𝑔, then the following weak duality relation holds:

sup
P∈P

𝜚P [ℓ(𝑍)] ≤ inf
𝜏∈R, 𝜆∈R+

𝜏 + 𝜆𝑟 + EP̂
[
sup
𝑧∈Z

𝑔(ℓ(𝑧) − 𝜏) − 𝜆𝑐(𝑧, �̂�)
]
.

If supP∈P EP [𝑔(ℓ(𝑍))] < ∞, EP [ℓ(𝑍)] > −∞ for all P ∈ P and 𝑟 > 0, then strong
duality holds, that is, the inequality becomes an equality.

Worst-case risk problems with optimal transport ambiguity sets are studied by
Pflug and Wozabal (2007), Pichler (2013) and Wozabal (2014) in the context of
portfolio selection with linear loss functions and by Mohajerin Esfahani et al.
(2018) in the context of inverse optimization using the CVaR. Sadana, Delage and
Georghiou (2024) investigate worst-case entropic risk measures over∞-Wasserstein
balls and establish tractable reformulations under standard convexity assumptions.
Kent, Li, Blanchet and Glynn (2021) and Sheriff and Mohajerin Esfahani (2024)
develop customized Frank–Wolfe algorithms in the space of probability distribu-
tion to address worst-case risk problems involving generic loss functions and risk
measures. Specifically, Kent et al. (2021) work with Wasserstein gradient flows and
use the corresponding notions of smoothness to establish the convergence of their
Frank–Wolfe algorithm. In contrast, Sheriff and Mohajerin Esfahani (2024) work
with Gâteaux derivatives, which leads to a different notion of smoothness and thus
to a different convergence analysis. Both algorithms display sublinear convergence
rates. When the reference distribution P̂ is discrete or when only samples from
P̂ are used, the algorithms’ iterates represent discrete distributions with progress-
ively increasing bit sizes. Theorem 5.22 provides a compact, albeit potentially
non-convex, reformulation of the worst-case risk problem. This reformulation is
amenable to primal–dual gradient methods in the finite-dimensional space of the
dual variables, which are guaranteed to converge to a stationary point.

Worst-case risk problems represent special instances of optimization problems
over spaces of probability distributions. The mainstream methods to address such
problems leverage the machinery of Wasserstein gradient flows (Ambrosio, Gigli
and Savaré 2008). Wasserstein gradient flows have recently been used in the context
of distributionally robust optimization problems (Lanzetti, Bolognani and Dörfler
2022, Lanzetti, Terpin and Dörfler 2024, Xu, Lee, Cheng and Xie 2024), non-
convex optimization (Chizat and Bach 2018, Chizat 2022) and variational inference
(Jiang, Chewi and Pooladian 2024, Lambert et al. 2022, Diao, Balasubramanian,
Chewi and Salim 2023, Zhang and Zhou 2020). The results of this section are new
and complementary to these existing works.
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6. Analytical solutions of nature’s subproblem
A key challenge in DRO is to handle the worst-case expectation problem embedded
in (1.2). This problem is solved by the fictitious adversary – commonly thought of
as nature – once the decision-maker has committed to an 𝑥 ∈ X . It maximizes a
linear function over a convex subset of an infinite-dimensional space of measures
and thus appears to be intractable. Therefore considerable research effort has been
devoted to identifying conditions under which this problem is efficiently solvable.
We now show that it can actually be solved analytically in interesting situations.

The duality theory derived in Section 4 motivates the following simple strategy
for finding analytical solutions of nature’s subproblem. Construct feasible solutions
for the primal worst-case expectation problem and its dual, and show that their
objective function values match. If such matching solutions can be found, then
both of them must be optimal in their respective optimization problems thanks to
weak duality. As we will see below, this simple strategy succeeds surprisingly
often. In addition, we will see that analytical solutions for worst-case expectation
problems can sometimes be generalized to analytical solutions for worst-case risk
problems of the form (5.4). The material reviewed in this section covers several
decades of research in DRO from the 1950s until the present day.

6.1. Jensen bound

Consider the worst-case expectation problem

sup
P∈P(Z)

{EP [ℓ(𝑍)] : EP [𝑍] = 𝜇}, (6.1a)

which maximizes the expected value of ℓ(𝑍) over the Markov ambiguity set of all
distributions supported on Z with mean 𝜇. The Markov ambiguity set is a moment
ambiguity set of the form (2.1) with 𝑓 (𝑧) = 𝑧 and F = {𝜇}. By Theorem 4.5 and
as the support function of F is linear, the problem dual to (6.1a) is given by

inf
𝜆0∈R, 𝜆∈R𝑑

{𝜆0 + 𝜆⊤𝜇 : 𝜆0 + 𝜆⊤𝑧 ≥ ℓ(𝑧) ∀𝑧 ∈ Z}. (6.1b)

Intuitively, this dual problem aims to find an affine function 𝑎(𝑧) = 𝜆0 + 𝜆⊤𝑧 that
majorizes the loss function ℓ(𝑧) on Z and has minimal expected value EP [𝑎(𝑍)]
under any distribution P feasible in the primal problem (6.1a).

Proposition 6.1 (Jensen bound). Suppose thatZ is convex, 𝜇 ∈ Z , ℓ is concave,
and 𝜆★ is any supergradient of ℓ at 𝜇. Then the primal problem (6.1a) is solved by
P★ = 𝛿𝜇, and the dual problem (6.1b) is solved by (𝜆★0 , 𝜆

★), where𝜆★0 = ℓ(𝜇)−𝜇⊤𝜆★.
In addition, the optimal values of (6.1a) and (6.1b) both equal ℓ(𝜇).

Proof. By construction, P★ is feasible in the primal worst-case expectation prob-
lem, and its objective function value amounts to ℓ(𝜇). In addition, (𝜆★0 , 𝜆

★) is
feasible in the dual robust optimization problem because 𝜆★ is a supergradient of ℓ
at 𝜇, and its objective function value amounts to ℓ(𝜇), too. Hence, by weak duality

https://doi.org/10.1017/S0962492924000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000084


Distributionally robust optimization 669

as established in Theorem 4.5, P★ is primal optimal, and (𝜆★0 , 𝜆
★) is dual optimal.

Proposition 6.1 implies Jensen’s inequality EP [ℓ(𝑍)] ≤ EP★ [ℓ(𝑍)] = ℓ(EP [𝑍]),
which holds for all distributions P feasible in (6.1a) (Jensen 1906). Proposition 6.1
further shows that (6.1b) is solved by any affine function tangent to ℓ at 𝜇.

If the loss function ℓ(𝑥, 𝑧) in the DRO problem (1.2) is concave in 𝑧 for any fixed
𝑥 ∈ X , then Proposition 6.1 implies that the same distribution P★ solves the inner
maximization problem in (1.2) for every 𝑥 ∈ X . Hence the DRO problem (1.2)
reduces to the (non-robust) stochastic program inf𝑥∈X EP★ [ℓ(𝑥, 𝑍)].

Jensen’s inequality is traditionally used to approximate hard stochastic optim-
ization problems of the form inf𝑥∈X EP [ℓ(𝑥, 𝑍)], where P is a known continuous
distribution of 𝑍 . Proposition 6.1 implies that if ℓ(𝑥, 𝑧) is concave in 𝑧 for any
𝑥 ∈ X , then replacing P with P★ = 𝛿EP [𝑍 ] leads to a conservative approximation
of this stochastic program. As P★ is discrete (in fact, a Dirac distribution), the
resulting approximate problem is much easier to solve. Its approximation quality
can be improved by partitioning Z into finitely many convex cells and constructing
separate Jensen bounds for all cells (Birge and Louveaux 2011, Section 10.1).

6.2. Edmundson–Madansky bound

The worst-case expectation problem (6.1a) over a Markov ambiguity set and its
dual (6.1b) can also be solved in closed form if ℓ is convex and Z is a simplex.

Proposition 6.2 (Edmundson–Madansky bound). Suppose that Z is the prob-
ability simplex in R𝑑 with vertices 𝑒𝑖 , 𝑖 ∈ [𝑑], 𝜇 ∈ rint(Z), and ℓ is convex
and real-valued. Then the primal problem (6.1a) is solved by P★ =

∑𝑑
𝑖=1 𝜇𝑖𝛿𝑒𝑖 ,

and the dual problem (6.1b) is solved by (𝜆★0 , 𝜆
★), where 𝜆★0 = 0 and 𝜆★

𝑖
= ℓ(𝑒𝑖)

for all 𝑖 ∈ [𝑑]. In addition, the optimal values of (6.1a) and (6.1b) both equal∑𝑑
𝑖=1 EP [𝑍𝑖]ℓ(𝑒𝑖).

Proof. As 𝜇 belongs to the probability simplex, P★ is feasible in the primal worst-
case expectation problem with objective function value

∑𝑑
𝑖=1 𝜇𝑖ℓ(𝑒𝑖). Also, as ℓ is

convex, Jensen’s inequality implies that

𝜆★0 + 𝑧
⊤𝜆★ =

𝑑∑︁
𝑖=1

𝑧𝑖ℓ(𝑒𝑖) ≥ ℓ
(

𝑑∑︁
𝑖=1

𝑧𝑖𝑒𝑖

)
= ℓ(𝑧) for all 𝑧 ∈ Z .

We conclude that (𝜆★0 , 𝜆
★) is feasible in the dual robust optimization problem, and

its objective function value amounts to
∑𝑑
𝑖=1 𝜇𝑖ℓ(𝑒𝑖), too. Hence, by weak duality

as established in Theorem 4.5, P★ is primal optimal, and (𝜆★0 , 𝜆
★) is dual optimal.

Proposition 6.2 implies the Edmundson–Madansky inequality, which states that
EP [ℓ(𝑍)] ≤ EP★ [ℓ(𝑍)] = ∑𝑑

𝑖=1 EP [𝑍𝑖]ℓ(𝑒𝑖) for all distributions P feasible in (6.1a)
(Edmundson 1956, Madansky 1959), and it shows that (6.1b) is solved by an affine
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function that touches ℓ at the vertices 𝑒𝑖 , 𝑖 ∈ [𝑑], of Z . We emphasize, however,
that Proposition 6.2 remains valid with minor modifications if Z is an arbitrary
regular simplex in R𝑑 , that is, the convex hull of 𝑑 + 1 affinely independent vectors
𝑣𝑖 ∈ R𝑑 , 𝑖 ∈ [𝑑 +1]; see Birge and Wets (1986) and Gassmann and Ziemba (1986).

If the loss function ℓ(𝑥, 𝑧) in (1.2) is convex in 𝑧 for any fixed 𝑥 ∈ X , then
Proposition 6.2 implies that the DRO problem (1.2) is equivalent to the stochastic
program inf𝑥∈X EP★ [ℓ(𝑥, 𝑍)], where P★ is independent of 𝑥. As P★ is a discrete
distribution with 𝑑 atoms, this stochastic program is usually easy to solve.

6.3. Barycentric approximation

Consider the worst-case expectation problem

sup
P∈P(V×W)

{
EP [ℓ(𝑉,𝑊)] : EP [𝑉] = �̄�, EP [𝑊] = �̄�, EP [𝑉𝑊⊤] = 𝐶}, (6.2a)

which maximizes the expected value of ℓ(𝑉,𝑊) across all distributions of 𝑍 =

(𝑉,𝑊) on V ×W under which 𝑉 and 𝑊 have mean vectors �̄� and �̄�, respectively,
and cross-moment matrix𝐶. Note that if𝑉 and𝑊 are uncorrelated, then𝐶 = �̄��̄�⊤.
Problem (6.2a) optimizes over a moment ambiguity set of the form (2.1) with
𝑓 (𝑣, 𝑤) = (𝑣, 𝑤, 𝑣𝑤⊤) and F = {�̄�} × {�̄�} × {𝐶}. By Theorem 4.5 and as the
support function of F is linear, the problem dual to (6.2a) is given by

inf 𝜆0 + 𝜆⊤𝑣 �̄� + 𝜆⊤𝑤�̄� + ⟨Λ, 𝐶⟩
s.t. 𝜆0 ∈ R, 𝜆𝑣 ∈ R𝑑𝑣 , 𝜆𝑤 ∈ R𝑑𝑤 , Λ ∈ R𝑑𝑣×𝑑𝑤

𝜆0 + 𝜆⊤𝑣 𝑣 + 𝜆⊤𝑤𝑤 + 𝑣⊤Λ𝑤 ≥ ℓ(𝑣, 𝑤) ∀𝑣 ∈ V , ∀𝑤 ∈ W .

(6.2b)

This dual problem seeks a bi-affine function 𝑏(𝑣, 𝑤) = 𝜆0 + 𝜆⊤𝑣 𝑣 + 𝜆⊤𝑤𝑤 + 𝑣⊤Λ𝑤
that majorizes the loss function ℓ(𝑣, 𝑤) on V ×W and minimizes EP [𝑏(𝑉,𝑊)]
under any distribution P feasible in (6.2a). The following proposition shows that
problems (6.2a) and (6.2b) can be solved in closed form if ℓ is a concave–convex
saddle function and W is a simplex. Below, we use 𝑒𝑖 to denote the 𝑖th standard
basis vector in R𝑑𝑤 , 𝑖 ∈ [𝑑𝑤], and 𝑒 to denote the vector of ones in R𝑑𝑤 .

Proposition 6.3 (Barycentric approximation). Suppose that V ⊆ R𝑑𝑣 is convex
and W ⊆ R𝑑𝑤 is the probability simplex with vertices 𝑒𝑖 , 𝑖 ∈ [𝑑𝑤]. Suppose also
that the loss function ℓ(𝑣, 𝑤) is concave and superdifferentiable in 𝑣 for any fixed
𝑤 and convex in 𝑤 for any fixed 𝑣. In addition, suppose that �̄� ∈ V , �̄� ∈ rint(W)
and 𝐶𝑒 = �̄� and that problem (6.2a) is feasible. Then (6.2a) is solved by

P★ =

𝑑𝑤∑︁
𝑖=1

�̄�𝑖 𝛿(𝐶𝑒𝑖/�̄�𝑖 ,𝑒𝑖).

If Λ★
𝑖

is any supergradient in 𝜕𝑣ℓ(𝐶𝑒𝑖/�̄�𝑖 , 𝑒𝑖) for all 𝑖 ∈ [𝑑𝑤] and

𝜆★𝑤,𝑖 = ℓ(𝐶𝑒𝑖/�̄�𝑖 , 𝑒𝑖) − (Λ★𝑖 )⊤𝐶𝑒𝑖/�̄�𝑖 for all 𝑖 ∈ [𝑑𝑤],

then the dual problem (6.2b) is solved by (𝜆★0 , 𝜆
★
𝑣 , 𝜆

★
𝑤 ,Λ

★), where 𝜆★0 = 0 and
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𝜆★𝑣 = 0, while 𝜆★𝑤 has elements 𝜆★
𝑤,𝑖

and Λ★ has columns Λ★
𝑖
, 𝑖 ∈ [𝑑𝑤]. The

optimal values of (6.2a) and (6.2b) coincide and are both equal to
𝑑𝑤∑︁
𝑖=1

𝜇𝑤,𝑖 ℓ(𝐶𝑒𝑖/�̄�𝑖 , 𝑒𝑖).

The condition 𝐶𝑒 = �̄� is necessary for (6.2a) to be feasible. Indeed, if P is
feasible in (6.2a), then we have 𝐶𝑒 = EP [𝑉𝑊⊤𝑒] = EP [𝑉] = �̄�. Here the second
equality holds because P(𝑊 ∈ W) = 1 and W is the probability simplex in R𝑑𝑤 .
However, the condition 𝐶𝑒 = �̄� is not sufficient for (6.2a) to be feasible. Indeed,
if the support set V = {�̄�} is a singleton, then 𝐶 = EP [𝑉𝑊⊤] = �̄��̄�⊤. That is, 𝑉
and𝑊 must be uncorrelated. Hence V and 𝐶 cannot be selected independently. To
circumvent this problem, Proposition 6.3 requires (6.2a) to be feasible.

Proof of Proposition 6.3. Note that �̄� > 0 and e⊤�̄� = 1 because �̄� belongs to the
relative interior of the probability simplex W . Thus P★ is indeed a well-defined
probability distribution, that is, the atoms of P★ have positive probabilities that sum
to 1. In addition, P★ is supported on V ×W because

𝐶𝑒𝑖/�̄�𝑖 = EP
[
𝑉𝑊𝑖

EP [𝑊𝑖]

]
= EP

[
𝑉
EP [𝑊𝑖 |𝑉]
EP [𝑊𝑖]

]
∈ V and 𝑒𝑖 ∈ W

for all 𝑖 ∈ [𝑑𝑤], where P is any distribution feasible in (6.2a). Note also that if 𝑉
and𝑊 are uncorrelated, in which case𝐶 = �̄��̄�⊤, then the 𝑖th generalized barycentre
𝐶𝑒𝑖/�̄�𝑖 of V simplifies to �̄� for every 𝑖 ∈ [𝑑𝑤]. Recalling that 𝐶𝑒 = �̄�, we further
have

EP★ [𝑉] =
𝑑𝑤∑︁
𝑖=1

�̄�𝑖 𝐶𝑒𝑖/�̄�𝑖 = �̄�, EP★ [𝑊] =
𝑑𝑤∑︁
𝑖=1

�̄�𝑖 𝑒𝑖 = �̄�

and

EP★ [𝑉𝑊⊤] =
𝑑𝑤∑︁
𝑖=1

�̄�𝑖 𝐶𝑒𝑖𝑒
⊤
𝑖 /�̄�𝑖 = 𝐶.

In summary, we have shown that P★ is feasible in (6.2a). A similar calculation
reveals that the objective function value of P★ in (6.2a) is given by the formula in
the proposition statement. Details are omitted for brevity.

To show that (𝜆★0 , 𝜆
★
𝑣 , 𝜆

★
𝑤 ,Λ

★) is feasible in (6.2b), note first that

𝜆★0 + (𝜆★𝑣 )⊤𝑣 + (𝜆★𝑤)⊤𝑤 + 𝑣⊤Λ★𝑤 =

𝑑𝑤∑︁
𝑖=1

𝑤𝑖 [ℓ(𝐶𝑒𝑖/�̄�𝑖 , 𝑒𝑖) + (Λ★𝑖 )⊤(𝑣 − 𝐶𝑒𝑖/�̄�𝑖)]

≥
𝑑𝑤∑︁
𝑖=1

𝑤𝑖 ℓ(𝑣, 𝑒𝑖)

≥ ℓ(𝑣, 𝑤)
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for all 𝑣 ∈ V and 𝑤 ∈ W . The first inequality follows from the concavity of ℓ(𝑣, 𝑤)
in 𝑣 and the definition of Λ★

𝑖
as a supergradient, while the second inequality follows

from the convexity of ℓ(𝑣, 𝑤) in𝑤 and Jensen’s inequality. Hence (𝜆★0 , 𝜆
★
𝑣 , 𝜆

★
𝑤 ,Λ

★) is
indeed feasible in (6.2b). A similar calculation reveals that the objective function
value of (𝜆★0 , 𝜆

★
𝑣 , 𝜆

★
𝑤 ,Λ

★) in (6.2b) is given by the formula in the proposition
statement. Consequently, by weak duality as established in Theorem 4.5, we have
shown that P★ is primal optimal and (𝜆★0 , 𝜆

★
𝑣 , 𝜆

★
𝑤 ,Λ

★) is dual optimal.
Proposition 6.3 remains valid with obvious minor modifications if W is defined

as an arbitrary regular simplex in R𝑑𝑤 (Frauendorfer 1992). If 𝑧 = (𝑣, 𝑤) and the
loss function ℓ(𝑥, 𝑧) = ℓ(𝑥, 𝑣, 𝑤) in (1.2) is concave in 𝑣 and convex in 𝑤 for any
fixed 𝑥 ∈ X , then Proposition 6.3 implies that the DRO problem (1.2) is equi-
valent to the stochastic program inf𝑥∈X EP★ [ℓ(𝑥,𝑈,𝑉)], where P★ is independent
of 𝑥. As P★ is a discrete distribution with 𝑑𝑤 atoms, this stochastic program is
usually easy to solve. Traditionally, the distribution P★ is used to approximate hard
stochastic optimization problems of the form inf𝑥∈X EP [ℓ(𝑥,𝑉,𝑊)], where P is a
known continuous distribution of (𝑉,𝑊). Proposition 6.3 implies that if ℓ(𝑥, 𝑣, 𝑤)
is concave in 𝑣 and convex in 𝑤 for any 𝑥 ∈ X , then replacing P with P★ leads to a
conservative approximation, which is termed the upper barycentric approximation
of the original stochastic program (Frauendorfer 1992). Barycentric approxima-
tions for more general stochastic programs involving loss functions that may fail to
be convex and/or concave are derived by Kuhn (2005).

6.4. Ben-Tal and Hochman bound

Consider the worst-case expectation problem

sup
P∈P(Z)

{EP [ℓ(𝑍)] : EP [𝑍] = 𝜇, EP [|𝑍 − 𝜇 |] = 𝜎}, (6.3a)

which maximizes the expected value of ℓ(𝑍) over the family of all univariate
distributions supported on Z with mean 𝜇 and mean absolute deviation 𝜎. Note
that problem (6.3a) optimizes over a moment ambiguity set of the form (2.1) with
𝑓 (𝑧) = (𝑧, |𝑧− 𝜇 |) and F = {𝜇}× {𝜎}. By Theorem 4.5 and as the support function
of F is linear, the problem dual to (6.3a) is given by

inf
𝜆0,𝜆1,𝜆2∈R

{𝜆0 + 𝜆1𝜇 + 𝜆2𝜎 : 𝜆0 + 𝜆1𝑧 + 𝜆2 |𝑧 − 𝜇 | ≥ ℓ(𝑧) ∀𝑧 ∈ Z}. (6.3b)

Intuitively, this dual problem aims to approximate the loss function from above
with a piecewise linear continuous function that has a kink at 𝜇. The problems
(6.3a) and (6.3b) can be solved in closed form if ℓ is convex.

Proposition 6.4 (Ben-Tal and Hochman bound). Assume that Z = [0, 1], 𝜇 ∈
(0, 1) and 𝜎 ∈ [0, 2𝜇(1− 𝜇)]. Suppose also that ℓ is a real-valued convex function.
Then the primal problem (6.3a) is solved by

P★ =
𝜎

2𝜇
𝛿0 +

(
1 − 𝜎

2𝜇
− 𝜎

2(1 − 𝜇)

)
𝛿𝜇 +

𝜎

2(1 − 𝜇)
𝛿1,
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and the dual problem (6.3b) is solved by

𝜆★0 =
(1 − 𝜇)ℓ(0) + ℓ(𝜇) − 𝜇ℓ(1)

2(1 − 𝜇)
,

𝜆★1 =
(𝜇 − 1)ℓ(0) + (1 − 2𝜇)ℓ(𝜇) + 𝜇ℓ(1)

2𝜇(1 − 𝜇)
,

𝜆★2 =
(1 − 𝜇)ℓ(0) − ℓ(𝜇) + 𝜇ℓ(1)

2𝜇(1 − 𝜇)
.

In addition, the optimal values of (6.3a) and (6.3b) coincide and are both equal to

𝜎

2𝜇
ℓ(0) +

(
1 − 𝜎

2𝜇
− 𝜎

2(1 − 𝜇)

)
ℓ(𝜇) + 𝜎

2(1 − 𝜇)
ℓ(1).

Proof. The assumptions about 𝜇 and 𝜎 imply that P★ is supported on Z and that
the probabilities of the three atoms are non-negative and sum to 1. Also, we have

EP★ [𝑍] =
(
𝜇 − 𝜎

2
− 𝜎𝜇

2(1 − 𝜇)

)
+ 𝜎

2(1 − 𝜇)
= 𝜇 and EP★ [|𝑍 − 𝜇 |] = 𝜎.

Thus P★ is feasible in (6.3a). In addition, one readily verifies that the objective
function value of P★ in (6.3a) is given by the formula in the proposition statement.

Next, note that the piecewise linear function 𝜆★0 + 𝜆
★
1 𝑧 + 𝜆

★
2 |𝑧 − 𝜇 | coincides with

the loss function ℓ(𝑧) for every 𝑧 ∈ {0, 𝜇, 1}. As the loss function is convex, we
may thus conclude that 𝜆★0 +𝜆

★
1 𝑧+𝜆

★
2 |𝑧− 𝜇 | majorizes ℓ(𝑧) for every 𝑧 ∈ [0, 1] = Z .

This shows that (𝜆★0 , 𝜆
★
1 , 𝜆

★
2 ) is feasible in (6.3b). An elementary calculation further

reveals that the objective function value of (𝜆★0 , 𝜆
★
1 , 𝜆

★
2 ) in (6.3b) is given by the

formula in the proposition statement. Weak duality as established in Theorem 4.5
thus implies that P★ is primal optimal and that (𝜆★0 , 𝜆

★
1 , 𝜆

★
2 ) is dual optimal.

Proposition 6.4 readily extends to support sets of the form Z = [𝑎, 𝑏] for any
𝑎, 𝑏 ∈ R with 𝑎 < 𝜇 < 𝑏 by applying a linear coordinate transformation. If ℓ(𝑥, 𝑧)
in (1.2) is convex in 𝑧 for any fixed 𝑥 ∈ X , then Proposition 6.4 implies that the DRO
problem (1.2) is equivalent to the stochastic program inf𝑥∈X EP★ [ℓ(𝑥, 𝑍)], where
the three-point distribution P★ is independent of 𝑥. Traditionally, this stochastic
program is used as a conservative approximation for a stochastic program of the
form inf𝑥∈X EP [ℓ(𝑥, 𝑍)], where P is a known continuous distribution (Ben-Tal and
Hochman 1972). Unlike the Jensen and Edmundson–Madansky bounds, which
only use information about the location of P, and unlike the barycentric approxim-
ation, which only uses information about the location and certain cross-moments
of P, the Ben-Tal and Hochman bound uses information about the location as well
as the dispersion of P. Thus it provides a tighter approximation.

If 𝑍 is a 𝑑-dimensional random vector with independent components 𝑍𝑖 , 𝑖 ∈ [𝑑],
each of which has a known mean and mean absolute deviation, then one can show
that the worst-case expected value of a convex loss function is attained by P★ =

⊗𝑑
𝑖=1P

★
𝑖
, where each P★

𝑖
is a three-point distribution constructed as in Proposition 6.4
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(Ben-Tal and Hochman 1972). In this case, P★ is a discrete distribution with 3𝑑
atoms. Hence, evaluating expected values with respect to P★ is generically hard
but becomes tractable for a class of exponential loss functions that offer safe
approximations for chance constraints (Postek et al. 2018).

6.5. Scarf’s bound

Consider the worst-case expectation problem

sup
P∈P(Z)

{EP [ℓ(𝑍)] : EP [𝑍] = 0, EP [𝑍2] = 𝜎2}, (6.4a)

which maximizes the expected value of ℓ(𝑍) over the Chebyshev ambiguity set of
all univariate distributions supported on Z with mean 0 and variance 𝜎2. This
Chebyshev ambiguity set is a moment ambiguity set of the form (2.1) with 𝑓 (𝑧) =
(𝑧, 𝑧2) and F = {0} × {𝜎2}. By Theorem 4.5 and as the support function of F is
linear, the problem dual to (6.4a) is given by

inf
𝜆0,𝜆1,𝜆2∈R

{𝜆0 + 𝜆2𝜎
2 : 𝜆0 + 𝜆1𝑧 + 𝜆2(𝑧 − 𝜇)2 ≥ ℓ(𝑧) ∀𝑧 ∈ Z}. (6.4b)

This dual problem seeks a quadratic function 𝑞(𝑧) = 𝜆0 + 𝜆1𝑧 + 𝜆2𝑧
2 that majorizes

the loss function ℓ(𝑧) throughout Z and has minimal expectation EP [𝑞(𝑍)] under
any distribution P with mean 0 and variance 𝜎2. The problems (6.4a) and (6.4b)
can be solved in closed form if ℓ is a ramp function.

Proposition 6.5 (Scarf’s bound). If Z = R, 𝜎2 ∈ R+ and ℓ(𝑧) = max{𝑧 − 𝑎, 0}
is a ramp function with a kink at 𝑎 ∈ R, then the primal problem (6.4a) is solved by

P★ =
1
2

(
1 + 𝑎
√
𝑎2 + 𝜎2

)
𝛿
𝑎−
√
𝑎2+𝜎2 +

1
2

(
1 − 𝑎
√
𝑎2 + 𝜎2

)
𝛿
𝑎+
√
𝑎2+𝜎2 ,

and the dual problem (6.4b) is solved by

𝜆★0 =

(
𝑎 −
√
𝑎2 + 𝜎2

)2

4
√
𝑎2 + 𝜎2

, 𝜆★1 = −𝑎 −
√
𝑎2 + 𝜎2

2
√
𝑎2 + 𝜎2

and 𝜆★2 =
1

4
√
𝑎2 + 𝜎2

.

The optimal values of (6.4a) and (6.4b) are both equal to 1
2 (
√
𝑎2 + 𝜎2 − 𝑎).

Proof. Note that the two-point distribution P★ is well-defined, that is, its atoms
have non-negative probabilities that sum to 1. By the definition of P★, we also have

EP★ [𝑍] =
1
2

(
1 + 𝑎
√
𝑎2 + 𝜎2

)(
𝑎 −

√︁
𝑎2 + 𝜎2

)
+ 1

2

(
1 − 𝑎
√
𝑎2 + 𝜎2

)(
𝑎 +

√︁
𝑎2 + 𝜎2

)
= 0.

Similarly, it is easy to verify that EP★ [𝑍2] = 𝜎2. This shows that P★ is feasible in
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(6.4a). The objective function value of P★ is

EP★ [ℓ(𝑍)] = EP★ [max{𝑍 − 𝑎, 0}] = 1
2
(√︁
𝑎2 + 𝜎2 − 𝑎

)
.

Next, observe that the dual variables (𝜆★0 , 𝜆
★
1 , 𝜆

★
2 ) defined in the proposition state-

ment give rise to the quadratic function

𝑞★(𝑧) = 𝜆★0 + 𝜆
★
1 𝑧 + 𝜆

★
2 𝑧

2 =
1

4
√
𝑎2 + 𝜎2

(
𝑧 − 𝑎 +

√︁
𝑎2 + 𝜎2

)2
.

We will now show that 𝑞★(𝑧) ≥ max{𝑧 − 𝑎, 0} = ℓ(𝑧) for all 𝑧 ∈ Z . Clearly, 𝑞★ is
non-negative and evaluates to 0 at 𝑎 −

√
𝑎2 + 𝜎2. In addition, 𝑞★ touches the affine

function 𝑧 − 𝑎 at 𝑎 +
√
𝑎2 + 𝜎2. To see this, note that

𝑞★
(
𝑎 +

√︁
𝑎2 + 𝜎2

)
=
√︁
𝑎2 + 𝜎2 and

d
d𝑧
𝑞★
(
𝑎 +

√︁
𝑎2 + 𝜎2

)
= 1.

Hence 𝑞★ majorizes the ramp function ℓ(𝑧), implying that (𝜆★0 , 𝜆
★
1 , 𝜆

★
2 ) is dual

feasible. Also, the objective function value of (𝜆★0 , 𝜆
★
1 , 𝜆

★
2 ) is given by

𝜆★0 + 𝜆
★
2𝜎

2 =
1

4
√
𝑎2 + 𝜎2

(
𝜎2 +

(
𝑎 −

√︁
𝑎2 + 𝜎2

)2)
=

1
2
(√︁
𝑎2 + 𝜎2 − 𝑎

)
.

As the objective function values of P★ and (𝜆★0 , 𝜆
★
1 , 𝜆

★
2 ) match, weak duality as es-

tablished in Theorem 4.5 thus implies that P★ is primal optimal and that (𝜆★0 , 𝜆
★
1 , 𝜆

★
2 )

is dual optimal. This observation completes the proof.

Proposition 6.5 was first derived by Scarf (1958) in his pioneering treatise
on the distributionally robust newsvendor problem; see also Jagannathan (1977,
Theorem 1). Note that if the mean of 𝑍 is known to equal 𝜇 ≠ 0 instead of 0, then
Scarf’s bound remains valid if we replace 𝑎 with 𝑎 − 𝜇. Gallego and Moon (1993)
extend Scarf’s bound to more general loss functions such as wedge functions or
ramp functions with a discontinuity, whereas Natarajan et al. (2018) extend Scarf’s
bound to more general ambiguity sets that contain information not only about the
mean and variance of 𝑍 but also about its semivariance. In addition, Das, Dhara
and Natarajan (2021) discuss variants of Scarf’s bound that rely on information
about the mean and the 𝛼th moment of 𝑍 for any 𝛼 > 1.

Proposition 6.5 is often used to reformulate DRO problems of the form (1.2)
whose objective function is given by the expected value of a ramp function.
Examples include distributionally robust newsvendor, support vector machine or
mean–CVaR portfolio selection problems. In most of these applications, the loc-
ation 𝑎 of the kind of the ramp function is a decision variable or a function of
the decision variables. Thus the worst-case distribution P★ is decision-dependent,
which means that Proposition 6.5 does not enable us to reduce the DRO problem
(1.2) to a stochastic program with a single fixed worst-case distribution.
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6.6. Marshall and Olkin bound

Consider the worst-case probability problem

sup
P∈P(Z)

{P(𝑍 ∈ C) : EP [𝑍] = 0, EP [𝑍𝑍⊤] = 𝐼𝑑}, (6.5a)

which maximizes the probability of the event 𝑍 ∈ C over the Chebyshev ambiguity
set of all distributions on Z = R𝑑 with mean 0 and covariance matrix 𝐼𝑑 . This
Chebyshev ambiguity set is a moment ambiguity set of the form (2.1) with 𝑓 (𝑧) =
(𝑧, 𝑧𝑧⊤) and F = {0} × {𝐼𝑑}. If we set ℓ to the characteristic function of C defined
by ℓ(𝑧) = 1𝑧∈C for all 𝑧 ∈ Z , then the worst-case probability problem (6.5a) can
be recast as a worst-case expectation problem. By Theorem 4.5 and as the support
function of F is linear, the corresponding dual problem is thus given by

inf
𝜆0∈R,𝜆∈R𝑑 ,Λ∈S𝑑

{𝜆0 + ⟨Λ, 𝐼𝑑⟩ : 𝜆0 + 𝜆⊤𝑧 + 𝑧⊤Λ𝑧 ≥ ℓ(𝑧) ∀𝑧 ∈ Z}. (6.5b)

The problems (6.5a) and (6.5b) can be solved analytically if C is convex and closed.

Proposition 6.6 (Marshall and Olkin bound). Suppose that Z = R𝑑 , C ⊆ R𝑑
is convex and closed, and ℓ is the characteristic function of C. Set Δ = min𝑧∈C ∥𝑧∥2,
and let 𝑧0 ∈ R𝑑 be the unique minimizer of this problem. Then the optimal values
of (6.5a) and (6.5b) are both equal to (1 + Δ2)−1. If Δ = 0, then the supremum of
(6.5a) may not be attained. However, if Δ > 0, then (6.5a) is solved by

P★ =
1

1 + Δ2 𝛿𝑧0 +
Δ2

1 + Δ2Q,

where Q ∈ P(Z) is an arbitrary distribution with mean −𝑧0/Δ2 and covariance
matrix

1 + Δ2

Δ2 (𝐼𝑑 − 𝑧0𝑧
⊤
0 /Δ

2).

For any Δ ≥ 0, problem (6.4b) is solved by

𝜆★0 =
1

(1 + Δ2)2 , 𝜆★ =
2𝑧0

(1 + Δ2)2 and Λ★ =
𝑧0𝑧
⊤
0

(1 + Δ2)2 .

Proof. Assume first that Δ = 0, that is, 0 ∈ C. For every 𝑗 ∈ N, let Q 𝑗 ∈ P(Z) be
any distribution with mean 0 and covariance matrix 𝑗 𝐼𝑑 , and set

P 𝑗 = (1 − 1/ 𝑗) 𝛿0 + (1/ 𝑗)Q 𝑗 .

We thus have EP 𝑗 [𝑍] = 0 and EP 𝑗 [𝑍𝑍⊤] = 𝐼𝑑 , which implies that P 𝑗 is feasible in
(6.5a). In addition, the objective function value of P 𝑗 in (6.5a) satisfies

P 𝑗(𝑍 ∈ C) = 1 − 1/ 𝑗 + Q 𝑗(𝑍 ∈ Z)/ 𝑗 ≥ 1 − 𝑗−1.

Driving 𝑗 to infinity reveals that problem (6.5a) is trivial for Δ = 0 and that its
supremum equals 1. Assume now that Δ > 0, and let Q ∈ P(Z) be an arbitrary
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distribution with mean −𝑧0/Δ2 and covariance matrix

1 + Δ2

Δ2 (𝐼𝑑 − 𝑧0𝑧
⊤
0 /Δ

2).

Such a distribution is guaranteed to exist because 𝐼𝑑 ⪰ 𝑧0𝑧
⊤
0 /Δ

2. In addition, define
P★ as in the proposition statement. By construction, we have EP★ [𝑍] = 0 and

EP★ [𝑍𝑍⊤] =
𝑧0𝑧
⊤
0

1 + Δ2 +
Δ2

1 + Δ2 EQ [𝑍𝑍
⊤]

=
𝑧0𝑧
⊤
0

1 + Δ2 + 𝐼𝑑 −
𝑧0𝑧
⊤
0

Δ2 +
Δ2

1 + Δ2

𝑧0𝑧
⊤
0

Δ4

= 𝐼𝑑 .

Also, the objective function value of P★ in (6.5a) is given by P★(𝑍 ∈ C) = (1+Δ2)−1.
Next, use (𝜆★0 , 𝜆

★,Λ★) defined in the proposition to construct the quadratic function

𝑞★(𝑧) = 𝜆★0 + (𝜆★)⊤𝑧 + 𝑧⊤Λ★𝑧 =
(𝑧⊤0 𝑧 + 1)2

(1 + Δ2)2 .

Note that 𝑞★ is non-negative and constant on any hyperplane perpendicular to 𝑧0.
If Δ > 0, we have 𝑞★(𝑧0) = 1 as well as 𝑞★(−𝑧0/Δ2) = 0. Thus, at every 𝑧 ∈ Z with
𝑧⊤0 𝑧 ≥ −1, the quadratic function 𝑞★(𝑧) is non-decreasing in the direction of 𝑧0. As
𝑧0 minimizes the differentiable convex function ∥𝑧∥22 over the convex closed set C,
we have 𝑧⊤0 (𝑧 − 𝑧0) ≥ 0 for all 𝑧 ∈ C. By the monotonicity properties of 𝑞★, this
implies that 𝑞★(𝑧) ≥ 1 for every 𝑧 ∈ C. Hence the quadratic function 𝑞★ majorizes
the indicator function ℓ on Z , which implies that (𝜆★0 , 𝜆

★,Λ★) is dual feasible. If
Δ = 0, then 𝑞★(𝑧) = 1 for all 𝑧 ∈ Z , and (𝜆★0 , 𝜆

★,Λ★) is also dual feasible. In any
case, one readily verifies that its objective function value is given by

𝜆★0 + ⟨Λ
★, 𝐼𝑑⟩ = (1 + Δ2)−1.

As the objective function values of P★ and (𝜆★0 , 𝜆
★,Λ★) for Δ > 0 match, weak

duality as established in Theorem 4.5 implies that P★ is primal optimal and that
(𝜆★0 , 𝜆

★,Λ★) is dual optimal. If Δ = 0, then the optimal value 1 of the primal
problem also matches the objective function value of (𝜆★0 , 𝜆

★,Λ★) in (6.5b). Hence
(𝜆★0 , 𝜆

★,Λ★) remains dual optimal even though the supremum of the primal problem
may not be attained. This observation completes the proof.

6.7. Chebyshev risk

Analytical solutions of worst-case expectation problems sometimes enable us to
evaluate the worst-case risk of a random variable if the underlying risk measure
is law-invariant, translation-invariant as well as scale-invariant; see Definition 5.3.
For example, it is elementary to verify that the 𝛽-VaR and 𝛽-CVaR constitute law-
invariant, translation-invariant as well as scale-invariant risk measures for every
fixed 𝛽 ∈ (0, 1). If the distribution of 𝑍 is unknown except for its mean 𝜇 ∈ R𝑑 and
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covariance matrix Σ ∈ S𝑑+ , then it is natural to quantify the riskiness of an uncertain
loss ℓ(𝑍) under a law-invariant risk measure 𝜚 by the corresponding Chebyshev
risk. Specifically, the Chebyshev risk of ℓ(𝑍) is defined as the worst-case risk

sup
P∈P(𝜇,Σ)

𝜚P [ℓ(𝑍)],

where P(𝜇, Σ) denotes the Chebyshev ambiguity set that contains all probability
distributions on R𝑑 with mean 𝜇 ∈ R𝑑 and covariance matrix Σ ∈ S𝑑+ .

We now describe a powerful tool for analysing the Chebyshev risk with respect
to any law-, translation- and scale-invariant risk measure. To this end, recall that
if 𝑍 follows some distribution P on R𝑑 , then 𝐿 = ℓ(𝑍) follows the pushforward
distribution P ◦ ℓ−1 on R. If P is uncertain and only known to belong to some
ambiguity set P , then the distribution of 𝐿 = ℓ(𝑍) is also uncertain and only known
to belong to the pushforward ambiguity set P ◦ ℓ−1 = {P ◦ ℓ−1 : P ∈ P}. The
following proposition due to Popescu (2007) shows that linear pushforwards of
Chebyshev ambiguity sets are again Chebyshev ambiguity sets.

Proposition 6.7 (Pushforwards of Chebyshev ambiguity sets). If 𝜇 ∈ R𝑑 , Σ ∈
S𝑑+ , 𝜃 ∈ R𝑑 , and ℓ : R𝑑 → R is the linear transformation defined by ℓ(𝑧) = 𝜃⊤𝑧,
then the pushforward of the Chebyshev ambiguity set P(𝜇, Σ) is the Chebyshev
ambiguity set of all distributions on R with mean 𝜃⊤𝜇 and variance 𝜃⊤Σ𝜃, that is,

P(𝜇, Σ) ◦ ℓ−1 = P(𝜃⊤𝜇, 𝜃⊤Σ𝜃).

Proof. First select any distribution P ∈ P(𝜇, Σ). If the random vector 𝑍 follows
P, then the random variable 𝐿 = ℓ(𝑍) follows P ◦ ℓ−1. Thus we have

EP◦ℓ−1 [𝐿] = EP [ℓ(𝑍)] = EP [𝜃⊤𝑍] = 𝜃⊤𝜇,
where the first equality follows from the measure-theoretic change of variables
formula. Similarly, one can show that EP◦ℓ−1 [(𝐿 − 𝜃⊤𝜇)2] = 𝜃⊤Σ𝜃. Thus we find

P(𝜇, Σ) ◦ ℓ−1 ⊆ P(𝜃⊤𝜇, 𝜃⊤Σ𝜃).

Next, select any Q𝐿 ∈ P(𝜃⊤𝜇, 𝜃⊤Σ𝜃). If 𝜃⊤Σ𝜃 = 0, then Q𝐿 = 𝛿𝜃⊤𝜇, which
coincides with the pushforward distribution P ◦ ℓ−1 for any P ∈ P(𝜇, Σ). In the
remainder of the proof we may thus assume that 𝜃⊤Σ𝜃 ≠ 0. Let now 𝐿 be a random
variable governed by Q𝐿 , and let 𝑀 be a 𝑑-dimensional random vector governed
by an arbitrary distribution Q𝑀 ∈ P(R𝑑) with mean 𝜇 and covariance matrix Σ.
For example, we can set Q𝑀 to the normal distribution N (𝜇, Σ). Assume 𝐿 and 𝑀
are independent. Then the distribution P of the 𝑑-dimensional random vector

𝑍 =
1

𝜃⊤Σ𝜃
Σ𝜃 𝐿 +

(
𝐼𝑑 −

1
𝜃⊤Σ𝜃

Σ𝜃𝜃⊤
)
𝑀

belongs to P(𝜇, Σ). By the construction of 𝐿 and 𝑀 , we indeed have

EP [𝑍] =
1

𝜃⊤Σ𝜃
Σ𝜃 EQ𝐿 [𝐿] +

(
𝐼𝑑 −

1
𝜃⊤Σ𝜃

Σ𝜃𝜃⊤
)
EQ𝑀 [𝑀] = 𝜇
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and

EP [(𝑍 − 𝜇)(𝑍 − 𝜇)⊤]

=
1

𝜃⊤Σ𝜃
Σ𝜃𝜃⊤Σ +

(
𝐼𝑑 −

1
𝜃⊤Σ𝜃

Σ𝜃𝜃⊤
)
Σ

(
𝐼𝑑 −

1
𝜃⊤Σ𝜃

𝜃𝜃⊤Σ

)
= Σ.

The first equality in the above expression holds because 𝐿 and 𝑀 are independent,
𝐿 has variance 𝜃⊤Σ𝜃 and 𝑀 has covariance matrix Σ. By construction, we further
have ℓ(𝑍) = 𝜃⊤𝑍 = 𝐿, which implies that P ◦ ℓ−1 = Q𝐿 . We have thus shown that
for every Q𝐿 ∈ P(𝜃⊤𝜇, 𝜃⊤Σ𝜃) there exists P ∈ P(𝜇, Σ) with P ◦ ℓ−1 = Q𝐿 , that is,

P(𝜇, Σ) ◦ ℓ−1 ⊇ P(𝜃⊤𝜇, 𝜃⊤Σ𝜃).

This observation completes the proof.

Generalizations of Proposition 6.7 to multi-dimensional affine transformations
and to subfamilies of the Chebyshev ambiguity set that contain only distributions
with certain structural properties (such as symmetry, linear unimodality or log-
concavity) are presented by Yu, Li, Schuurmans and Szepesvári (2009); see also
Chen et al. (2011).

We now show that if the risk measure 𝜚 is law-, translation- and scale-invariant
and the loss function ℓ is linear, then the Chebyshev risk reduces to a mean–standard
deviation risk measure, which involves the standard risk coefficient of 𝜚.

Definition 6.8 (Standard risk coefficient). The standard risk coefficient of a law-
invariant risk measure 𝜚 is given by 𝛼 = supQ∈P(0,1) 𝜚Q [𝐿].

Thus the standard risk coefficient of 𝜚 is defined as the worst-case risk of an
uncertain loss 𝐿 whose distributionQ is only known to have mean 0 and variance 1.

Proposition 6.9 (Chebyshev risk). If 𝜚 is a law-, translation- and scale-invariant
risk measure with standard risk coefficient 𝛼, there is 𝜃 ∈ R𝑑 with ℓ(𝑧) = 𝜃⊤𝑧 for
all 𝑧 ∈ R𝑑 , and P(𝜇, Σ) is the Chebyshev ambiguity set of all distributions on R𝑑
with mean 𝜇 ∈ R𝑑 and covariance matrix Σ ∈ S𝑑+ , then the Chebyshev risk satisfies

sup
P∈P(𝜇,Σ)

𝜚P [ℓ(𝑍)] = 𝜃⊤𝜇 + 𝛼
√
𝜃⊤Σ𝜃.

Proof. If 𝜃⊤Σ𝜃 = 0, then

sup
P∈P(𝜇,Σ)

𝜚P [𝜃⊤𝑍] = 𝜃⊤𝜇 + sup
P∈P(𝜇,Σ)

𝜚P [𝜃⊤(𝑍 − 𝜇)]

= 𝜃⊤𝜇 + sup
P∈P(𝜇,Σ)

𝜚P [0]

= 𝜃⊤𝜇,

where the first equality holds because 𝜚 is translation-invariant, whereas the second
equality holds because 𝜃⊤(𝑍−𝜇) equals 0 in law under any P ∈ P(𝜇, Σ) and because
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𝜚 is law-invariant. Finally, the third equality follows from the scale-invariance of
𝜚. If 𝜃⊤Σ𝜃 > 0, on the other hand, then we have

sup
P∈P(𝜇,Σ)

𝜚P [𝜃⊤𝑍] = 𝜃⊤𝜇 + sup
P∈P(𝜇,Σ)

𝜚P [𝜃⊤(𝑍 − 𝜇)]

= 𝜃⊤𝜇 + sup
P∈P(𝜇,Σ)

𝜚P

[
𝜃⊤(𝑍 − 𝜇)
√
𝜃⊤Σ𝜃

]√
𝜃⊤Σ𝜃

= 𝜃⊤𝜇 + 𝛼
√
𝜃⊤Σ𝜃,

where the first two equalities follow from the translation- and scale-invariance of 𝜚,
respectively. The third equality follows from Proposition 6.7, the law-invariance of
𝜚 and the definition of 𝛼. Indeed, the pushforward of the multivariate Chebyshev
ambiguity set P(𝜇, Σ) under the transformation ℓ(𝑧) = 𝜃⊤(𝑧− 𝜇)/

√
𝜃⊤Σ𝜃 coincides

with the univariate standard Chebyshev ambiguity set P(0, 1).

The standard risk coefficient of a generic law-invariant risk measure may be
difficult to compute. We now show, however, that the standard risk coefficients of
the VaR and the CVaR match and are available in closed form.

Proposition 6.10 (Standard risk coefficients of VaR and CVaR). For any 𝛽 ∈
(0, 1), the standard risk coefficients of the 𝛽-VaR and the 𝛽-CVaR coincide, that is,

sup
Q∈P(0,1)

𝛽-CVaRQ [𝐿] = sup
Q∈P(0,1)

𝛽-VaRQ [𝐿] =

√︄
1 − 𝛽
𝛽

.

Proof. As 𝛽-CVaRQ [𝐿] upper bounds 𝛽-VaRQ [𝐿] for everyQ ∈ P(0, 1), we have

sup
Q∈P(0,1)

𝛽-CVaRQ [𝐿] ≥ sup
Q∈P(0,1)

𝛽-VaRQ [𝐿] . (6.6)

The rest of the proof proceeds as follows. We first derive an analytical formula
for the worst-case 𝛽-VaR on the right-hand side (Step 1). Next, we prove that the
same analytical formula provides an upper bound on the worst-case 𝛽-CVaR on the
left-hand side (Step 2). The claim then follows from the above inequality.

Step 1. We first express the worst-case 𝛽-VaR as its smallest upper bound to find

sup
Q∈P(0,1)

𝛽-VaRQ [𝐿] = inf
𝜏∈R
{𝜏 : 𝛽-VaRQ(𝐿) ≤ 𝜏 ∀Q ∈ P(0, 1)}

= inf
𝜏∈R
{𝜏 : Q(𝐿 ≥ 𝜏) ≤ 𝛽 ∀Q ∈ P(0, 1)}

= inf
𝜏∈R

{
𝜏 :

1
1 + 𝜏2 ≤ 𝛽

}
=

√︄
1 − 𝛽
𝛽

.
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The second equality in the above derivation follows from (5.2), and the third
equality follows from the Marshall and Olkin bound of Proposition 6.6. The final
formula is obtained by analytically solving the minimization problem over 𝜏.

Step 2. The max-min inequality2 and the definition of the 𝛽-CVaR imply that

sup
Q∈P(0,1)

𝛽-CVaRQ [𝐿] ≤ inf
𝜏∈R

sup
Q∈P(0,1)

𝜏 + 1
𝛽
EQ [max{𝐿 − 𝜏, 0}]

= inf
𝜏∈R

𝜏 + 1
2𝛽
(√︁

1 + 𝜏2 − 𝜏
)

=

√︄
1 − 𝛽
𝛽

,

where the first equality follows from Scarf’s bound derived in Proposition 6.5,
and the last equality is obtained by analytically solving the convex minimization
problem over 𝜏. The unique minimizer is given by

𝜏★ =
1 − 2𝛽

2
√︁
𝛽(1 − 𝛽)

.

This completes Step 2. The claim then follows by combining the analytical formula
for the worst-case 𝛽-VaR found in Step 1 and the analytical upper bound on the
worst-case 𝛽-CVaR found in Step 2 with the elementary inequality (6.6).

Propositions 6.9 and 6.10 provide an analytical formula for the Chebyshev risk
of a linear loss function provided that the underlying risk measure is the VaR or
the CVaR. The formula for the worst-case VaR was first derived by Lanckriet et al.
(2001, 2002) and El Ghaoui et al. (2003); see also Calafiore and El Ghaoui (2006).
The equality of the worst-case VaR and the worst-case CVaR was discovered by
Zymler et al. (2013a). It holds not only for linear but also for arbitrary concave and
arbitrary quadratic (not necessarily concave) loss functions. Proposition 6.9 follows
from Nguyen et al. (2021). The standard risk coefficient can be characterized in
closed form for a wealth of law-, translation- and scale-invariant risk measures
other than the VaR and the CVaR. It is available, for instance, for all spectral risk
measures and all risk measures that admit a Kusuoka representation (Li 2018) as
well as all distortion risk measures (Cai et al. 2023); see also Nguyen et al. (2021).

6.8. Gelbrich risk

Let G𝑟 (�̂�, Σ̂) denote the Gelbrich ambiguity set of all distributions P ∈ P(R𝑑)
whose mean–covariance pairs (𝜇, Σ) ∈ R𝑑 × S𝑑+ reside in a ball of radius 𝑟 ≥ 0
around (�̂�, Σ̂) ∈ R𝑑 × S𝑑+ with respect to the Gelbrich distance; see Definition 2.1.

2 The Chebyshev ambiguity set P(0, 1) is not weakly compact (see Example 3.9). Therefore Sion’s
minimax theorem does not allow us to interchange the infimum over 𝜏 and the supremum over Q.
While we could instead invoke Theorem 5.18, this is actually not needed to prove Proposition 6.10.
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Recall from Section 2.1.4 that the Gelbrich ambiguity set accounts for moment
ambiguity and thus often provides a more realistic account of uncertainty than a
naïve Chebyshev ambiguity set. If the distribution of 𝑍 is only known to have a
mean–covariance pair close to (�̂�, Σ̂), then it is natural to quantify the riskiness of
an uncertain loss ℓ(𝑍) under a law-invariant risk measure 𝜚 by the Gelbrich risk

sup
P∈G𝑟 (�̂�,Σ̂)

𝜚P [ℓ(𝑍)] .

By construction, G𝑟 (�̂�, Σ̂) is the union of all Chebyshev ambiguity sets P(𝜇, Σ)
corresponding to a mean–covariance pair (𝜇, Σ) with G((𝜇, Σ), (�̂�, Σ̂)) ≤ 𝑟 . This
decomposition of the Gelbrich ambiguity set into Chebyshev ambiguity sets allows
us via Proposition 6.9 to derive an analytical formula for the Gelbrich risk.

Proposition 6.11 (Gelbrich risk). Assume that 𝜚 is a law-, translation- and
scale-invariant risk measure with standard risk coefficient 𝛼 ∈ R+, there is 𝜃 ∈ R𝑑
with ℓ(𝑧) = 𝜃⊤𝑧 for all 𝑧 ∈ R𝑑 , and G𝑟 (�̂�, Σ̂) is the Gelbrich ambiguity set of all
distributions on R𝑑 whose mean–covariance pairs have a Gelbrich distance of at
most 𝑟 ≥ 0 from (�̂�, Σ̂) ∈ R𝑑 × S𝑑+ . Then the Gelbrich risk satisfies

sup
P∈G𝑟 (�̂�,Σ̂)

𝜚P [𝜃⊤𝑍] = �̂�⊤𝜃 + 𝛼
√︁
𝜃⊤Σ̂𝜃 + 𝑟

√︁
1 + 𝛼2 ∥𝜃∥2. (6.7)

Proof. Assume first that Σ̂ ≻ 0. If 𝜃 = 0, then the claim holds trivially because
𝜚 is law- and scale-invariant. If 𝑟 = 0, then the claim follows immediately from
Proposition 6.9. We may thus assume that 𝜃 ≠ 0 and 𝑟 > 0. In this case we have

sup
P∈G𝑟 (�̂�,Σ̂)

𝜚P [𝜃⊤𝑍] =
{

sup sup
P∈P(𝜇,Σ)

𝜚P [𝜃⊤𝑍]

s.t. 𝜇 ∈ R𝑑 , Σ ∈ S𝑑+ , G((𝜇, Σ), (�̂�, Σ̂)) ≤ 𝑟

=


sup 𝜇⊤𝜃 + 𝛼

√
𝜃⊤Σ𝜃

s.t. 𝜇 ∈ R𝑑 , Σ ∈ S𝑑+
∥𝜇 − �̂�∥2 + Tr

(
Σ + Σ̂ − 2(Σ̂1/2ΣΣ̂1/2)1/2) ≤ 𝑟2,

where the first equality exploits the decomposition of the Gelbrich ambiguity set
into Chebyshev ambiguity sets. The second equality follows from Proposition 6.9
and Definition 2.1. By dualizing the resulting convex optimization problem, we find

sup
P∈G𝑟 (�̂�,Σ̂)

𝜚P [𝜃⊤𝑍] = inf
𝛾∈R+

{
𝛾(𝑟2 − Tr(Σ̂)) + sup

𝜇∈R𝑑

{
𝜇⊤𝜃 − 𝛾∥𝜇 − �̂�∥2

}
(6.8)

+ sup
Σ∈S𝑑+

{
𝛼
√
𝜃⊤Σ𝜃 − 𝛾 Tr

(
Σ − 2(Σ̂1/2ΣΣ̂1/2)1/2)}}.

Strong duality holds because 𝑟 > 0, which implies that (�̂�, Σ̂) constitutes a Slater
point for the primal maximization problem. If 𝛾 = 0, then the maximization
problems over 𝜇 and Σ in (6.8) are unbounded. We may thus restrict 𝛾 to be strictly
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positive. For any fixed 𝛾 > 0, the maximization problem over 𝜇 can be solved in
closed form. Its optimal value is given by �̂�⊤𝜃 + ∥𝜃∥2/(4𝛾). By introducing an
auxiliary variable 𝑡, the maximization problem over Σ can be reformulated as

sup 𝛼𝑡 − 𝛾 Tr
(
Σ − 2(Σ̂1/2ΣΣ̂1/2)1/2)

s.t. 𝑡 ∈ R+, Σ ∈ S𝑑+ , 𝑡2 − 𝜃⊤Σ𝜃 ≤ 0. (6.9)

Note that 𝑡 = 0 and Σ = 𝜃𝜃⊤ form a Slater point for (6.9) because 𝜃 ≠ 0. Thus
problem (6.9) admits a strong dual. The variable substitution 𝐵← (Σ̂1/2ΣΣ̂1/2)1/2

allows us to reformulate this dual problem more concisely as

inf
𝜆∈R+

sup
𝑡∈R+

𝛼𝑡 − 𝜆𝑡2 + sup
𝐵∈S𝑑+

Tr(𝐵2Δ𝜆) + 2𝛾 Tr(𝐵), (6.10)

where
Δ𝜆 = Σ̂−1/2(𝜆𝜃𝜃⊤ − 𝛾𝐼𝑑)Σ̂−1/2 for any 𝜆 ≥ 0.

Note that Δ𝜆 is well-defined because Σ̂ ≻ 0. Recall now that the standard risk
coefficient 𝛼 was assumed to be non-negative. If 𝜆 > 0, then the supremum
over 𝑡 in (6.10) evaluates to 𝛼2/(4𝜆). Otherwise, if 𝜆 = 0, then this supremum
evaluates to +∞. Therefore we may restrict the outer minimization problem in
(6.10) to strictly positive 𝜆. Similarly, if Δ𝜆 ⊀ 0, then the supremum over 𝐵 in
(6.10) evaluates to +∞. From now on, we may thus restrict the outer minimization
problem in (6.10) to 𝜆 that satisfy 𝛾𝐼𝑑 − 𝜆𝜃𝜃⊤ ≻ 0. This constraint is equivalent
to 𝜆 < 𝛾∥𝜃∥−2 and guarantees that Δ𝜆 ≺ 0. As 𝜆 > 0, this in turn implies that
𝐵★ = −𝛾Δ−1

𝜆
is positive definite and satisfies the first-order optimality condition

𝐵Δ𝜆 + Δ𝜆𝐵 + 2𝛾𝐼𝑑 = 0. Note that this optimality condition can be interpreted as
a continuous Lyapunov equation, and therefore its solution 𝐵★ is in fact unique;
see e.g. Hespanha (2019, Theorem 12.5). By making the implicit constraints on
𝜆 explicit and by evaluating the two suprema over 𝑡 and 𝐵 analytically, problem
(6.10) can finally be reformulated as

inf
0<𝜆<𝛾 ∥ 𝜃 ∥−2

𝛼2

4𝜆
+ 𝛾2 Tr

(
Σ̂1/2(𝛾𝐼𝑑 − 𝜆𝜃𝜃⊤)−1Σ̂1/2)

= inf
0<𝜆<𝛾 ∥ 𝜃 ∥−2

𝛼2

4𝜆
+ 𝛾 Tr(Σ̂) + 𝜃⊤Σ̂𝜃

𝜆−1 − ∥𝜃∥2/𝛾

= 𝛾 Tr(Σ̂) + 𝛼
2

4
∥𝜃∥2
𝛾
+ 𝛼

√︁
𝜃⊤Σ̂𝜃.

Here the first equality exploits the Sherman–Morrison formula (Bernstein 2009,
Corollary 2.8.8) to rewrite the inverse matrix, and the second equality is obtained
by solving the minimization problem over 𝜆 analytically. Indeed, the infimum is
attained at the unique solution 𝜆★ of the first-order condition

1
𝜆
=
∥𝜃∥2
𝛾
+ 2
𝛼

√︁
𝜃⊤Σ̂𝜃
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in the interior of the feasible set. In summary, we have solved both embedded
subproblems in (6.8) analytically. Substituting their optimal values into (6.8) yields

sup
P∈G𝑟 (�̂�,Σ̂)

𝜚P [𝜃⊤𝑍] = inf
𝛾≥0

�̂�⊤𝜃 + 𝛼
√︁
𝜃⊤Σ̂𝜃 + 𝛾𝑟2 + 1 + 𝛼2

4
∥𝜃∥2
𝛾

= �̂�⊤𝜃 + 𝛼
√︁
𝜃⊤Σ̂𝜃 + 𝑟

√︁
1 + 𝛼2 ∥𝜃∥.

Here the second equality is obtained by solving the minimization problem over 𝛾
in closed form. We have thus established the desired formula (6.7) for Σ̂ ≻ 0.

It remains to be shown that (6.7) remains valid even if Σ̂ is singular. To this
end, use 𝐽(Σ̂) as shorthand for the Gelbrich risk as a function of Σ̂. By leveraging
Berge’s maximum theorem (Berge 1963, pp. 115–116) and the continuity of the
Gelbrich distance (see the discussion after Proposition 2.2), it is easy to show that
𝐽(Σ̂) is continuous on S𝑑+ . The claim thus follows by noting that (6.7) holds for all
Σ̂ ≻ 0, that both sides of (6.7) are continuous in Σ̂ and that every Σ̂ ∈ S𝑑+ can be
expressed as a limit of positive definite matrices.

Proposition 6.11 is due to Nguyen et al. (2021). It shows that, for a broad class
of risk measures, the worst-case risk over a Gelbrich ambiguity set reduces to a
Markowitz-type mean–variance risk functional with a 2-norm regularization term.
We emphasize that the risk measure 𝜌 enters the resulting optimization model only
indirectly through the standard risk coefficient 𝛼.

6.9. Worst-case expectations over Kullback–Leibler ambiguity sets

Consider the worst-case expectation problem

sup
P∈P(Z)

{EP [ℓ(𝑍)] : KL(P, P̂) ≤ 𝑟}, (6.11a)

which maximizes the expected value of ℓ(𝑍) over the Kullback–Leibler ambiguity
set of all distributions supported on Z whose Kullback–Leibler divergence with
respect to P̂ ∈ P(Z) is at most 𝑟 ≥ 0. The Kullback–Leibler ambiguity set is a 𝜙-
divergence ambiguity set of the form (2.10), where 𝜙 satisfies 𝜙(𝑠) = 𝑠 log(𝑠)− 𝑠+1
for all 𝑠 ≥ 0. As 𝜙∞(1) = +∞, we have KL(P, P̂) = ∞ unlessP ≪ P̂. Hence problem
(6.11a) maximizes only over distributions P that are absolutely continuous with
respect to P̂. Note that 𝜙∗(𝑡) = e𝑡 − 1 for all 𝑡 ∈ R. By Theorem 4.14 and the
definition of the perspective function, the problem dual to (6.11a) is thus given by

inf
𝜆0∈R, 𝜆∈R+

𝜆0 + 𝜆(𝑟 − 1) + EP̂
[
𝜆 exp

(
ℓ(𝑍) − 𝜆0

𝜆

)]
. (6.11b)

The problems (6.11a) and (6.11b) can be solved in closed form if the loss function
ℓ is linear and the nominal distribution P̂ is Gaussian.

Proposition 6.12 (Worst-case expectations over KL ambiguity sets). Suppose
that Z = R𝑑 , P̂ ∈ P(Z) is a normal distribution with mean �̂� ∈ R𝑑 and covariance
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matrix Σ̂ ∈ S𝑑++, and 𝑟 > 0. Suppose also that ℓ is linear, that is, there exists 𝜃 ∈ R𝑑
with ℓ(𝑧) = 𝜃⊤𝑧 for all 𝑧 ∈ Z . Then the primal problem (6.11a) is solved by the
normal distribution P★ with mean �̂� + (2𝑟)1/2Σ̂𝜃/(𝜃⊤Σ̂𝜃)1/2 and covariance matrix
Σ̂. The dual problem (6.11b) is solved by (𝜆★0 , 𝜆

★), where 𝜆★ = (𝜃⊤Σ̂𝜃)1/2/(2𝑟)1/2

and
𝜆★0 = 𝜆★ logEP̂ [exp(ℓ(𝑍)/𝜆★)] .

The optimal values of (6.11a) and (6.11b) are both equal to �̂�⊤𝜃+(2𝑟)1/2(𝜃⊤Σ̂𝜃)1/2.

Proof. Focus first on the dual problem (6.11b), and fix any 𝜆 ≥ 0. Then the
partial minimization problem over 𝜆0 is solved by

𝜆★0 (𝜆) = 𝜆 logEP̂ [exp(ℓ(𝑍)/𝜆)] .

Substituting this parametric minimizer back into (6.11b) shows that the optimal
value of the dual problem (6.11b) is given by

inf
𝜆∈R+

𝜆𝑟 + 𝜆 logEP̂

[
exp
(
ℓ(𝑍)
𝜆

)]
= inf
𝜆∈R+

𝜆𝑟 + �̂�⊤𝜃 + 1
2𝜆
𝜃⊤Σ̂𝜃

= �̂�⊤𝜃 + (2𝑟)1/2(𝜃⊤Σ̂𝜃)1/2,

where the first equality exploits the linearity of ℓ, the normality of P̂ and the formula
for the expected value of a log-normal distribution. The second equality holds
because the minimization problem over 𝜆 ≥ 0 is solved by 𝜆★ = (𝜃⊤Σ̂𝜃)1/2/(2𝑟)1/2.
Next, define P★ ∈ P(Z) as the normal distribution with mean 𝜇★ = �̂� + Σ̂𝜃/𝜆★ and
covariance matrix Σ★ = Σ̂. Comparing the density functions of P̂ and P★ shows that

dP★

dP̂
(𝑧) = exp

(
𝜃⊤(𝑧 − �̂�)

𝜆★
− 𝜃⊤Σ̂𝜃

2(𝜆★)2

)
for all 𝑧 ∈ Z .

By Definition 2.8, we thus obtain

KL(P★, P̂) =
∫
Z

log
(

dP★

dP̂
(𝑧)
)

dP★(𝑧) =
𝜃⊤Σ̂𝜃

2(𝜆★)2 = 𝑟,

where the second and third equalities follow readily from our formula for the
Radon–Nikodym derivative dP★/dP̂ and from basic algebra, respectively. Hence
P★ is feasible in (6.11b). In addition, its objective function value is given by

EP★ [ℓ(𝑍)] = 𝜃⊤𝜇★ = �̂�⊤𝜃 + (2𝑟)1/2(𝜃⊤Σ̂𝜃)1/2.

As the objective function values of P★ and (𝜆★0 , 𝜆
★) with 𝜆★0 = 𝜆★0 (𝜆★) match, weak

duality as established in Theorem 4.14 implies that P★ is primal optimal and that
(𝜆★0 , 𝜆

★) is dual optimal. This observation completes the proof.

Proposition 6.12 is due to Hu and Hong (2013). It is also reminiscent of risk-
sensitive control theory (Hansen and Sargent 2008). In this stream of literature, a
fictitious adversary may perturb the distribution of the exogenous noise terms of
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an optimal control problem arbitrarily but incurs a penalty equal to the Kullback–
Leibler divergence with respect to a Gaussian baseline model.

6.10. Worst-case expectations over total variation balls

Consider the worst-case expectation problem

sup
P∈P(Z)

{EP [ℓ(𝑍)] : TV(P, P̂) ≤ 𝑟}, (6.12a)

which maximizes the expected value of ℓ(𝑍) over a total variation ball of radius 𝑟 ∈
[0, 1] around P̂ ∈ P(Z). Recall from Section 2.2.3 that the total variation distance
is a 𝜙-divergence and that the underlying entropy function satisfies 𝜙(𝑠) = 1

2 |𝑠 − 1|
for all 𝑠 ≥ 0 and 𝜙(𝑠) = ∞ for all 𝑠 < 0. Recall also that the total variation distance
between two distributions is bounded above by 1 and that this bound is attained
if the two distributions are mutually singular. An elementary calculation reveals
that the conjugate entropy function satisfies 𝜙∗(𝑡) = max{𝑡 + 1

2 , 0} −
1
2 if 𝑡 ≤ 1

2 and
𝜙∗(𝑡) = +∞ if 𝑡 > 1

2 . By Theorem 4.14, the problem dual to (6.12a) is thus given by

inf
𝜆0∈R, 𝜆∈R+

𝜆0 + 𝜆
(
𝑟 − 1

2

)
+ EP̂

[
max

{
ℓ(𝑍) − 𝜆0 +

𝜆

2
, 0
}]

s.t. 𝜆0 + 𝜆/2 ≥ sup
𝑧∈Z

ℓ(𝑧).
(6.12b)

The problems (6.12a) and (6.12b) can be solved in closed form if Z is compact.

Proposition 6.13 (Worst-case expectations over total variation balls). Suppose
that Z ⊆ R𝑑 is compact, P̂ ∈ P(Z) and 𝑟 ∈ (0, 1), and define 𝛽𝑟 = 1 − 𝑟 . In
addition, assume that EP̂ [ℓ(𝑍)] > −∞ and ℓ is upper semicontinuous. Then the
optimal values of (6.12a) and (6.12b) are both equal to

(1 − 𝛽𝑟 ) · sup
𝑧∈Z

ℓ(𝑧) + 𝛽𝑟 · 𝛽𝑟 -CVaRP̂ [ℓ(𝑍)] . (6.13)

The proof of Proposition 6.13 will reveal that (6.12a) and (6.12b) are both solv-
able. Indeed, we will construct optimal solutions P★ and (𝜆★0 , 𝜆

★) for (6.12a) and
(6.12b), respectively. A precise description of these optimizers is cumbersome
and thus omitted from the proposition statement. If the loss ℓ(𝑍) has a continuous
distribution under P̂, however, then P★ admits a simpler and more intuitive descrip-
tion. Indeed, in this case, P★ is obtained from P̂ by shifting the probability mass
of all outcomes 𝑧 ∈ Z associated with a high loss ℓ(𝑧) ≥ 𝛽𝑟 -VaRP̂ [ℓ(𝑍)] to some
outcome 𝑧 ∈ Z associated with the highest possible loss ℓ(𝑧) = max𝑧′∈Z ℓ(𝑧′).

Proof of Proposition 6.13. For ease of notation, set ℓ = sup𝑧∈Z ℓ(𝑧). Focus first on
the dual problem (6.12b), and fix any 𝜆 ≥ 0. Note that the dual objective function is
non-decreasing in 𝜆0. The partial minimization problem over 𝜆0 is therefore solved
by 𝜆★0 (𝜆) = ℓ−𝜆/2. Substituting this parametric minimizer back into (6.12b) shows
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that the optimal value of the dual problem is given by

ℓ + inf
𝜆∈R+

𝜆(𝑟 − 1) + EP̂ [max{ℓ(𝑍) − ℓ + 𝜆, 0}]

= 𝑟 ℓ + (1 − 𝑟) inf
𝜏≤ℓ

𝜏 + (1 − 𝑟)−1EP̂ [max{ℓ(𝑍) − 𝜏, 0}],

where the equality follows from the substitution 𝜏 ← ℓ − 𝜆. By Definition 5.10,
the infimum over 𝜏 evaluates to 𝛽𝑟 -CVaRP̂ [ℓ(𝑍)] with 𝛽𝑟 = 1 − 𝑟 . Recall that
this infimum is attained by 𝜏★ = 𝛽𝑟 -VaRP̂ [ℓ(𝑍)], which is bounded above by ℓ. In
summary, we have thus shown that the optimal value of problem (6.12b) equals

(1 − 𝛽𝑟 ) · ℓ + 𝛽𝑟 · 𝛽𝑟 -CVaRP̂ [ℓ(𝑍)] .

To construct a primal maximizer, assume first that P̂(ℓ(𝑍) < ℓ) ≤ 𝑟 , which implies
that 𝛽𝑟 -CVaRP̂ [ℓ(𝑍)] = ℓ. Thus the optimal value of the dual problem (6.12b)
simplifies to ℓ, which is attained by any distribution P★ that is obtained from P̂ by
moving all probability mass from {𝑧 ∈ Z : ℓ(𝑧) < ℓ} to {𝑧 ∈ Z : ℓ(𝑧) = ℓ}.

Next, assume that P̂(ℓ(𝑍) < ℓ) > 𝑟, which implies that 𝛽𝑟 -VaRP̂ [ℓ(𝑍)] < ℓ. In
this case, we partition Z into the following four subsets:

Z1 = {𝑧 ∈ Z : 𝛽𝑟 -VaRP̂ [ℓ(𝑍)] > ℓ(𝑧)},
Z2 = {𝑧 ∈ Z : ℓ > ℓ(𝑧) = 𝛽𝑟 -VaRP̂ [ℓ(𝑍)]},
Z3 = {𝑧 ∈ Z : ℓ > ℓ(𝑧) > 𝛽𝑟 -VaRP̂ [ℓ(𝑍)]},
Z4 = {𝑧 ∈ Z : ℓ = ℓ(𝑧)}.

Note that Z1 and Z3 can be empty, whereas Z2 and Z4 must be non-empty. We
also define P̂𝑖 as the nominal distribution P̂ conditioned on the event 𝑍 ∈ Z𝑖 for all
𝑖 ∈ [4], and we define UZ4 as the uniform distribution on Z4. Next, we set

P★ = (𝛽𝑟 − P̂(𝑍 ∈ Z3) − P̂(𝑍 ∈ Z4)) · P̂2

+ P̂(𝑍 ∈ Z3) · P̂3 + P̂(𝑍 ∈ Z4) · P̂4 + (1 − 𝛽𝑟 ) · UZ4 .

Thus P★ is a mixture of four probability distributions. As the non-negative mixture
probabilities sum to 1, P★ is a probability distribution. Using 𝜌 = P̂ + UZ4 as a
dominating measure for P̂ and P★ and recalling that 𝜙(𝑠) = 1

2 |𝑠−1| if 𝑠 ≥ 0, we find

TV(P★, P̂)
= D𝜙(P★, P̂)

=
1
2

4∑︁
𝑖=1

∫
Z𝑖

����dP★d𝜌
(𝑧) − dP̂

d𝜌
(𝑧)

����d𝜌(𝑧)

= P̂(𝑍 ∈ Z1) + (P̂(𝑍 ∈ Z2) + P̂(𝑍 ∈ Z3) + P̂(𝑍 ∈ Z4) − 𝛽𝑟 ) + 0 + (1 − 𝛽𝑟 )
= 𝑟,
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where the third equality follows from the definition of P★ and the relation

P̂(𝑍 ∈ Z2) + P̂(𝑍 ∈ Z3) + P̂(𝑍 ∈ Z4) = P̂(ℓ(𝑍) ≥ 𝛽𝑟 -VaRP̂ [ℓ(𝑍)]) ≥ 𝛽𝑟 ,

and the last equality follows from the definition of 𝛽𝑟 . Thus P★ is feasible in
(6.12a). In addition, the objective function value of P★ in (6.12a) amounts to

EP★ [ℓ(𝑍)]
= (1 − 𝛽𝑟 ) · ℓ
+ EP̂ [ℓ(𝑍) | ℓ(𝑍) > 𝛽𝑟 -VaRP̂ [ℓ(𝑍)]] · P̂(ℓ(𝑍) > 𝛽𝑟 -VaRP̂ [ℓ(𝑍)])
+ EP̂ [ℓ(𝑍) | ℓ(𝑍) = 𝛽𝑟 -VaRP̂ [ℓ(𝑍)]] · (𝛽𝑟 − P̂(ℓ(𝑍) > 𝛽𝑟 -VaRP̂ [ℓ(𝑍)]))

= (1 − 𝛽𝑟 ) · ℓ + 𝛽𝑟 · 𝛽𝑟 -CVaRP̂ [ℓ(𝑍)] .

Here the second equality follows from Föllmer and Schied (2008, Theorem 4.47,
Remark 4.48). Note that if the marginal distribution of ℓ(𝑍) is continuous under P̂,
then the above derivation simplifies. Indeed, in this case we have

P̂(ℓ(𝑍) > 𝛽𝑟 -VaRP̂ [ℓ(𝑍)]) = 𝛽𝑟
and

EP̂ [ℓ(𝑍) | ℓ(𝑍) > 𝛽𝑟 -VaRP̂ [ℓ(𝑍)]] = 𝛽𝑟 -CVaRP̂ [ℓ(𝑍)] .

Irrespective of P̂, the objective function value of P★ in (6.12a) matches the optimal
value of (6.12b). Weak duality as established in Theorem 4.14 thus implies that
P★ solves the primal problem (6.12a). This observation completes the proof.

Jiang and Guan (2018) and Shapiro (2017) study a variant of problem (6.12a)
that maximizes over a restricted total variation ball. Thus they additionally impose
P ≪ P̂ in (6.12a). The supremum of the resulting restricted problem amounts to

(1 − 𝛽𝑟 ) · ess supP̂ [ℓ(𝑍)] + 𝛽𝑟 · 𝛽𝑟 -CVaRP̂ [ℓ(𝑍)],

which may be strictly smaller than (6.13). If additionally ℓ(𝑍) has a continuous
marginal distribution under P̂, then the supremum is no longer attained.

6.11. Worst-case expectations over Lévy–Prokhorov balls

Consider the worst-case expectation problem

sup
P∈P(Z)

{EP [ℓ(𝑍)] : LP(P, P̂) ≤ 𝑟}, (6.14a)

which maximizes the expected value of ℓ(𝑍) over a Lévy–Prokhorov ball of radius
𝑟 ∈ [0, 1] around P̂ ∈ P(Z). We assume here that the Lévy–Prokhorov distance is
induced by a norm ∥ · ∥ on R𝑑 . By Proposition 2.22, the Lévy–Prokhorov ball of
radius 𝑟 ∈ (0, 1) coincides with the optimal transport ambiguity set

P = {P ∈ P(Z) : OT𝑐𝑟 (P, P̂) ≤ 𝑟},
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where the transportation cost function 𝑐𝑟 is defined by 𝑐𝑟 (𝑧, 𝑧) = 1∥𝑧− �̂� ∥>𝑟 . The-
orem 4.18 thus implies that the problem dual to (6.14a) is given by

inf
𝜆∈R+

{
𝜆𝑟 + EP̂

[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆𝑐𝑟 (𝑧, �̂�)
]}

(6.14b)

whenever ℓ is upper semicontinuous. If Z is compact, then we can leverage
Proposition 6.13 to solve the problems (6.14a) and (6.14b) in closed form.

Proposition 6.14 (Worst-case expectations over Lévy–Prokhorov balls). Sup-
pose that Z ⊆ R𝑑 is compact, P̂ ∈ P(Z) and 𝑟 ∈ (0, 1), and define 𝛽𝑟 = 1 − 𝑟 . In
addition, assume that EP̂ [ℓ(𝑍)] > −∞ and ℓ is upper semicontinuous. Then the
optimal values of (6.14a) and (6.14b) are both equal to

(1 − 𝛽𝑟 ) · sup
𝑧∈Z

ℓ(𝑧) + 𝛽𝑟 · 𝛽𝑟 -CVaRP̂ [ℓ𝑟 (�̂�)], (6.15)

where ℓ𝑟 (𝑧) = sup𝑧∈Z {ℓ(𝑧) : ∥𝑧−𝑧∥ ≤ 𝑟} is an adversarial loss function that assigns
each 𝑧 ∈ Z the worst-case loss in the 𝑟-neighbourhood of 𝑧.

The proof of Proposition 6.14 will reveal that (6.14a) and (6.14b) are both solv-
able. However, a precise description of the respective optimizers is cumbersome
and thus omitted from the proposition statement. Note that the adversarial loss func-
tion ℓ𝑟 inherits upper semicontinuity from ℓ thanks to Berge (1963, Theorem 2,
p. 116). The following lemma is needed in the proof of Proposition 6.14.

Lemma 6.15. Assume thatZ ⊆ R𝑑 is compact, ℓ is upper semicontinuous, 𝑧 ∈ Z
and 𝑟, 𝜆 ≥ 0. Then the following identity holds:

sup
𝑧∈Z
{ℓ(𝑧) − 𝜆 · 1∥𝑧− �̂� ∥>𝑟 } = sup

𝑧∈Z
{ℓ𝑟 (𝑧) − 𝜆 · 1𝑧≠�̂�}.

Proof. For ease of notation we introduce two auxiliary functions 𝑓 and 𝑔 from Z
to R, which are defined by 𝑓 (𝑧) = ℓ(𝑧) − 𝜆 · 1∥𝑧− �̂� ∥>𝑟 and 𝑔(𝑧) = ℓ𝑟 (𝑧) − 𝜆 · 1𝑧≠�̂�
for all 𝑧 ∈ Z . Note that both 𝑓 and 𝑔 are upper semicontinuous.

First, select 𝑧★ ∈ arg max𝑧∈Z 𝑓 (𝑧), which exists because Z is compact and 𝑓 is
upper semicontinuous. If ∥𝑧★ − 𝑧∥ > 𝑟, then the definition of ℓ𝑟 implies that

sup
𝑧∈Z

𝑓 (𝑧) = 𝑓 (𝑧★) = ℓ(𝑧★) − 𝜆 ≤ ℓ𝑟 (𝑧★) − 𝜆 = 𝑔(𝑧★) ≤ sup
𝑧∈Z

𝑔(𝑧).

On the other hand, if ∥𝑧 − 𝑧∥ ≤ 𝑟 , then

sup
𝑧∈Z

𝑓 (𝑧) = 𝑓 (𝑧★) = ℓ(𝑧★) ≤ ℓ𝑟 (𝑧) = 𝑔(𝑧) ≤ sup
𝑧∈Z

𝑔(𝑧).

Next, select 𝑧 ∈ arg max𝑧∈Z 𝑔(𝑧). If 𝑧 ≠ 𝑧, then with 𝑧★ ∈ arg max𝑧∈Z ℓ(𝑧) we have

sup
𝑧∈Z

𝑔(𝑧) = 𝑔(𝑧) = ℓ𝑟 (𝑧) − 𝜆 ≤ ℓ(𝑧★) − 𝜆 ≤ 𝑓 (𝑧★) = sup
𝑧∈Z

𝑓 (𝑧),

where the inequalities follow from the definition of 𝑧★ and the non-negativity of 𝜆.
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Conversely, if 𝑧 = 𝑧, then with 𝑧★𝑟 ∈ arg max𝑧′∈Z {ℓ(𝑧′) : ∥𝑧′ − 𝑧∥ ≤ 𝑟} we have

sup
𝑧∈Z

𝑔(𝑧) = 𝑔(𝑧) = ℓ𝑟 (𝑧) = ℓ(𝑧★𝑟 ) = 𝑓 (𝑧★𝑟 ) = sup
𝑧∈Z

𝑓 (𝑧).

Thus the claim follows.

Proof of Proposition 6.14. Lemma 6.15 allows us to reformulate the dual problem
(6.14b) in terms of the adversarial loss function ℓ𝑟 as

inf
𝜆∈R+

{
𝜆𝑟 + EP̂

[
sup
𝑧∈Z

ℓ𝑟 (𝑧) − 𝜆 · 1𝑧≠�̂�
]}
. (6.16)

As 𝑟 > 0, Z is compact and ℓ𝑟 is upper semicontinuous, Theorem 4.18 implies
that (6.16) is the strong dual of a problem that maximizes the expected value of the
adversarial loss function ℓ𝑟 over an optimal transport ambiguity set corresponding
to the transportation cost function 𝑐0(𝑧, 𝑧) = 1𝑧≠�̂� . Its optimal value thus matches

sup
P∈P(Z)

{EP [ℓ𝑟 (𝑍)] : OT𝑐0(P, P̂) ≤ 𝑟} = sup
P∈P(Z)

{EP [ℓ𝑟 (𝑍)] : TV(P, P̂) ≤ 𝑟},

where the equality holds because TV = OT𝑐0 as shown in Proposition 2.24. Since
sup𝑧∈Z ℓ𝑟 (𝑧) = sup𝑧∈Z ℓ(𝑧) = ℓ, Proposition 6.13 readily implies that the supremum
of the resulting maximization problem over a total variation ball is given by

(1 − 𝛽𝑟 ) · ℓ + 𝛽𝑟 · 𝛽𝑟 -CVaRP̂ [ℓ𝑟 (�̂�)],

Assume now that 𝜓 : Z → Z is a Borel-measurable function satisfying

𝜓(𝑧) ∈ arg max
𝑧∈Z
{ℓ(𝑧) : ∥𝑧 − 𝑧∥ ≤ 𝑟} for all 𝑧 ∈ Z ,

which exists thanks to Rockafellar and Wets (2009, Corollary 14.6, Theorem 14.37),
and define P̂𝜓 = P̂ ◦ 𝜓−1 as the pushforward distribution of P̂ under 𝜓. Next, we
construct a primal maximizer under the assumption that P̂𝜓(ℓ(𝑍) < ℓ) > 𝑟. To this
end, we partition Z into the following four subsets:

Z1 = {𝑧 ∈ Z : 𝛽𝑟 -VaRP̂𝜓 [ℓ(�̂�)] > ℓ(𝑧)},

Z2 = {𝑧 ∈ Z : ℓ > ℓ(𝑧) = 𝛽𝑟 -VaRP̂𝜓 [ℓ(�̂�)]},

Z3 = {𝑧 ∈ Z : ℓ > ℓ(𝑧) > 𝛽𝑟 -VaRP̂𝜓 [ℓ(�̂�)]},

Z4 = {𝑧 ∈ Z : ℓ = ℓ(𝑧)}.

We also define P̂𝑖 as the distribution P̂𝜓 conditioned on the event �̂� ∈ Z𝑖 for all
𝑖 ∈ [4], and we define UZ4 as the uniform distribution on Z4. Next, we set

P★ = (𝛽𝑟 − P̂𝜓(�̂� ∈ Z3) − P̂𝜓(�̂� ∈ Z4)) · P̂2

+ P̂𝜓(�̂� ∈ Z3) · P̂3 + P̂𝜓(�̂� ∈ Z4) · P̂4 + (1 − 𝛽𝑟 ) · UZ4 .
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Note that P★ is constructed as in the proof of Proposition 6.13, the only difference
being that P̂ is now replaced with its pushforward distribution P̂𝜓. We then find

LP(P★, P̂) ≤ max{OT𝑐𝑟 (P
★, P̂), 𝑟}

≤ max{OT𝑐𝑟 (P
★, P̂𝜓) + OT𝑐𝑟 (P̂𝜓, P̂), 𝑟}

≤ max{TV(P★, P̂𝜓), 𝑟}
= 𝑟,

where the first inequality follows from Proposition 2.22, and the second inequality
holds because 𝑐𝑟 is a pseudo-metric on Z , which implies that OT𝑐𝑟 is a pseudo-
metric on P(Z) and thus satisfies the triangle inequality. The third inequality holds
because OT𝑐𝑟 (P̂𝜓, P̂) = 0 and because 𝑐0(𝑧, 𝑧) ≥ 𝑐𝑟 (𝑧, 𝑧) for all 𝑧, 𝑧 ∈ Z , which
implies that OT𝑐𝑟 (P★, P̂𝜓) ≤ TV(P★, P̂𝜓). Finally, the equality follows from the
proof of Proposition 6.13, which ensures that TV(P★, P̂𝜓) = 𝑟 . We also have

EP★ [ℓ(𝑍)] = (1 − 𝛽𝑟 ) · ℓ + 𝛽𝑟 · 𝛽𝑟 -CVaRP̂𝜓 [ℓ(�̂�)]

= (1 − 𝛽𝑟 ) · ℓ + 𝛽𝑟 · 𝛽𝑟 -CVaRP̂ [ℓ(𝜓(�̂�))] .

where the two equalities again follow from the proof of Proposition 6.13 and from
the measure-theoretic change of variables formula, respectively. As ℓ(𝜓(𝑧)) = ℓ𝑟 (𝑧)
for every 𝑧 ∈ Z , the objective function value of P★ in (6.14a) matches the optimal
value of the dual problem (6.14b). Weak duality as established in Theorem 4.18
thus implies that P★ solves the primal problem (6.14a). If P̂𝜓(ℓ(𝑍) < ℓ) ≤ 𝑟 , the
construction of a primal maximizer is simpler, and is thus omitted for brevity.

The results of this section were first obtained by Bennouna and Van Parys (2023)
under the assumption that the nominal distribution P̂ is discrete.

6.12. Worst-case expectations over∞-Wasserstein balls

Consider the worst-case expectation problem

sup
P∈P(Z)

{EP [ℓ(𝑍)] : W∞(P, P̂) ≤ 𝑟}, (6.17a)

which maximizes the expected value of ℓ(𝑍) over an ∞-Wasserstein ball of radius
𝑟 ∈ R+ around P̂ ∈ P(Z). We assume here that the ∞-Wasserstein distance is
induced by a given norm ∥ · ∥ on R𝑑 . Recall from Proposition 2.27 that the
∞-Wasserstein ambiguity set coincides with the optimal transport ambiguity set

P = {P ∈ P(Z) : OT𝑐𝑟 (P, P̂) ≤ 0},

where the transportation cost function 𝑐𝑟 is defined by 𝑐𝑟 (𝑧, 𝑧) = 1∥𝑧− �̂� ∥>𝑟 . We em-
phasize that, while the radius of the∞-Wasserstein ball under consideration is 𝑟 , the
radius of the corresponding optimal transport ambiguity set P is 0. Theorem 4.18
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thus implies that the problem dual to (6.17a) is given by

inf
𝜆∈R+

EP̂

[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆𝑐𝑟 (𝑧, �̂�)
]

(6.17b)

whenever ℓ is upper semicontinuous. If Z is compact, then the problems (6.17a)
and (6.17b) can be solved in closed form.

Proposition 6.16 (Worst-case expectations over∞-Wasserstein balls). Suppose
that Z ⊆ R𝑑 is compact, P̂ ∈ P(Z), 𝑟 ∈ R+, EP̂ [ℓ(�̂�)] > −∞ and ℓ is upper
semicontinuous. Define the adversarial loss function

ℓ𝑟 (𝑧) = sup
𝑧∈Z
{ℓ(𝑧) : ∥𝑧 − 𝑧∥ ≤ 𝑟}

as in Proposition 6.14, and let 𝜓 : Z → Z be a Borel function that satisfies

𝜓(𝑧) ∈ arg max
𝑧∈Z
{ℓ(𝑧) : ∥𝑧 − 𝑧∥ ≤ 𝑟} for all 𝑧 ∈ Z .

Then the primal problem (6.17a) is solved by P★ = P̂◦𝜓−1. In addition, the optimal
values of (6.17a) and (6.17b) are both equal to EP̂ [ℓ𝑟 (�̂�)].
Proof. Note that the Borel function𝜓 exists thanks to Rockafellar and Wets (2009,
Corollary 14.6, Theorem 14.37). This ensures that the pushforward distribution
P★ = P̂ ◦ 𝜓−1 is well-defined. Note also that P★ is feasible in (6.17a) because

W∞(P★, P̂) = inf{𝑟 ′ ≥ 0: OT𝑐𝑟′ (P
★, P̂) ≤ 0} ≤ 𝑟,

where the equality follows from Proposition 2.27 with 𝑑(𝑧, 𝑧) = ∥𝑧 − 𝑧∥, and the
inequality holds because OT𝑐𝑟 (P★, P̂) = 0. We also have

EP★ [ℓ(𝑍)] = EP̂ [ℓ(𝜓(𝑍))] = EP̂ [ℓ𝑟 (𝑍)] .
Next, note that sup𝑧∈Z ℓ(𝑧) − 𝜆𝑐𝑟 (𝑧, 𝑧) is non-increasing in 𝜆 for any fixed 𝑧 ∈ Z .
Also, it is uniformly bounded above by sup𝑧∈Z ℓ(𝑧), which is a finite constant thanks
to the compactness of Z and the upper semicontinuity of ℓ. By the monotone
convergence theorem, the optimal value of the dual problem (6.17b) thus satisfies

inf
𝜆∈R+

EP̂

[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆𝑐𝑟 (𝑧, �̂�)
]
= EP̂

[
inf
𝜆∈R+

sup
𝑧∈Z

ℓ(𝑧) − 𝜆𝑐𝑟 (𝑧, �̂�)
]
= EP̂ [ℓ𝑟 (�̂�)],

where the second equality holds becauseZ is compact. Weak duality as established
in Theorem 4.18 thus implies that P★ solves the primal problem (6.17a).

Proposition 6.16 shows that the worst-case expectation of the original loss ℓ(𝑍)
with respect to an ∞-Wasserstein ball coincides with the crisp expectation of the
adversarial loss ℓ𝑟 (�̂�) with respect to the nominal distribution P̂. This result was
first discovered by Gao et al. (2017) for discrete nominal distributions and later
extended by Gao et al. (2024b) to general nominal distributions. The loss function ℓ𝑟
is routinely used in machine learning for the adversarial training of neural networks
(Szegedy et al. 2014, Goodfellow et al. 2015). Proposition 6.16 thus reveals
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an intimate connection between adversarial training and distributionally robust
optimization with respect to an∞-Wasserstein ambiguity set. This connection has
been further explored in the context of adversarial classification by García Trillos
and García Trillos (2022), García Trillos and Murray (2022), García Trillos and
Jacobs (2023), Bungert et al. (2023, 2024), Pydi and Jog (2024) and Frank and
Niles-Weed (2024a,b).

6.13. Worst-case expectations over 1-Wasserstein balls

Consider the worst-case expectation problem

sup
P∈P(Z)

{EP [ℓ(𝑍)] : W1(P, P̂) ≤ 𝑟}, (6.18a)

which maximizes the expected value of ℓ(𝑍) over a 1-Wasserstein ball of radius 𝑟 ∈
R+ around P̂ ∈ P(Z). We assume here that the 1-Wasserstein distance is induced by
a given norm ∥ · ∥ on R𝑑 . Thus the 1-Wasserstein ambiguity set coincides with the
optimal transport ambiguity set P = {P ∈ P(Z) : OT𝑐(P, P̂) ≤ 𝑟} corresponding
to the transportation cost function 𝑐 is defined by 𝑐(𝑧, 𝑧) = ∥𝑧 − 𝑧∥. Theorem 4.18
thus implies that the problem dual to (6.18a) is given by

inf
𝜆≥0

𝜆𝑟 + EP̂
[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆∥𝑧 − �̂� ∥
]

(6.18b)

whenever ℓ is upper semicontinuous. If Z = R𝑑 and ℓ is convex and Lipschitz-
continuous, then the problems (6.18a) and (6.18b) can be solved in closed form.

Proposition 6.17 (Worst-case expectations over 1-Wasserstein balls). Suppose
that Z = R𝑑 , P̂ ∈ P(Z) and 𝑟 ∈ R+. If EP̂ [ℓ(�̂�)] > −∞ and ℓ is convex and
Lipschitz-continuous, then the optimal values of (6.18a) and (6.18b) are equal to

EP̂ [ℓ(�̂�)] + 𝑟 lip(ℓ).

Under the conditions of Proposition 6.17, the supremum of the primal problem
(6.18a) is usually not attained. The proof constructs a sequence of distributions
that attain the supremum asymptotically. These distributions move an increasingly
small portion of P̂ increasingly far along the direction of steepest increase of ℓ.
Intuitively, the amount of probability mass transported over a distanceΔmust decay
as 𝑂(𝑟/Δ) as Δ grows. The dual problem (6.18b) is solved by 𝜆★ = lip(ℓ).

Proof of Proposition 6.17. As the convex function ℓ is Lipschitz-continuous, it is
in particular proper and closed. By the Fenchel–Moreau theorem (Lemma 4.2), ℓ
thus admits the dual representation

ℓ(𝑧) = sup
𝑦∈dom(ℓ∗)

𝑧⊤𝑦 − ℓ∗(𝑦),

where ℓ∗ denotes the convex conjugate of ℓ. Put differently, ℓ coincides with the
pointwise supremum of the affine functions 𝑓𝑦(𝑧) = 𝑦⊤𝑧 − ℓ∗(𝑦) parametrized by
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𝑦 ∈ dom(ℓ∗). Hölder’s inequality then implies that

| 𝑓𝑦(𝑧) − 𝑓𝑦(𝑧)| = |𝑦⊤(𝑧 − 𝑧)| ≤ ∥𝑦∥∗∥𝑧 − 𝑧∥,

where ∥ · ∥∗ denotes the norm dual to ∥ · ∥. As Hölder’s inequality is tight, 𝑓𝑦 is
Lipschitz-continuous with Lipschitz modulus lip( 𝑓𝑦) = ∥𝑦∥∗. In addition, as the
Lipschitz modulus of a supremum of affine functions coincides with the supremum
of the corresponding Lipschitz moduli, the Lipschitz modulus of ℓ is given by

lip(ℓ) = sup
𝑦∈dom(ℓ∗)

∥𝑦∥∗ = max
𝑦∈cl(dom(ℓ∗))

∥𝑦∥∗.

The maximum in the last expression is attained by some 𝑦★ ∈ R𝑑 because lip(ℓ) < ∞
by assumption. Next, define 𝑧★ as any optimal solution of max∥𝑧 ∥≤1(𝑦★)⊤𝑧. By
construction, we thus have (𝑦★)⊤𝑧★ = ∥𝑦★∥∗. We also introduce a sequence {𝑦𝑖}𝑖∈N
in dom(ℓ∗) that converges to 𝑦★, and we set 𝑞𝑖 = 𝑖−1(1+ |ℓ∗(𝑦𝑖)|)−1 for every 𝑖 ∈ N.
In addition, we define 𝑓𝑖 : R𝑑 → R𝑑 through 𝑓𝑖(𝑧) = 𝑧+ 𝑟𝑧★/𝑞𝑖 for any 𝑖 ∈ N. Thus
𝑓𝑖 represents the translation that shifts each point in R𝑑 along the direction 𝑧★ by a
distance equal to 𝑟/𝑞𝑖 . We further define

P𝑖 = (1 − 𝑞𝑖) P̂ + 𝑞𝑖 P̂ ◦ 𝑓 −1
𝑖 ,

where P̂ ◦ 𝑓 −1
𝑖

stands for the pushforward distribution of P̂ under 𝑓𝑖 . Intuitively, P𝑖
is obtained by decomposing P̂ into two parts (1− 𝑞𝑖)P̂ and 𝑞𝑖P̂ and then translating
the second part by 𝑟𝑧★/𝑞𝑖 . By construction, we thus have OT𝑐(P𝑖 , P̂) ≤ 𝑟 and

EP𝑖 [ℓ(𝑍)] = (1 − 𝑞𝑖)EP̂ [ℓ(𝑍)] + 𝑞𝑖 EP̂ [ℓ(𝑍 + 𝑟𝑧★/𝑞𝑖)]
≥ (1 − 𝑞𝑖)EP̂ [ℓ(𝑍)] + 𝑞𝑖 EP̂ [(𝑦𝑖)⊤(𝑍 + 𝑟𝑧★/𝑞𝑖) − ℓ∗(𝑦𝑖)] .

Here the inequality follows from the representation of ℓ in terms of its conjugate ℓ∗.
As 𝑖 tends to infinity, 𝑞𝑖 as well as 𝑞𝑖ℓ∗(𝑦𝑖) converge to 0, and 𝑦𝑖 converges to 𝑦★.
Recall also that (𝑦★)⊤𝑧★ = ∥𝑦★∥∗ = lip(ℓ). This shows that the supremum of the
worst-case expectation problem (6.18a) is bounded below by EP̂ [ℓ(𝑍)] + 𝑟 lip(ℓ).

Next, define 𝜆★ = lip(ℓ), and note that

ℓ(𝑧) ≤ sup
𝑧∈Z

ℓ(𝑧) − 𝜆★∥𝑧 − 𝑧∥ ≤ sup
𝑧∈Z

ℓ(𝑧) + lip(ℓ)∥𝑧 − 𝑧∥ − 𝜆★∥𝑧 − 𝑧∥ = ℓ(𝑧)

for all 𝑧 ∈ Z , where the second inequality follows from the Lipschitz continuity of
ℓ, and the equality holds thanks to the definition of 𝜆★. Thus the objective function
value of 𝜆★ in the dual problem (6.18b) is given by

𝜆★𝑟 + EP̂
[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆∥𝑧 − �̂� ∥
]
= EP̂ [ℓ(�̂�)] + 𝑟 lip(ℓ).

In summary, we have shown that – asymptotically for large 𝑖 – the objective function
value of P𝑖 in (6.18a) matches that of 𝜆★ in (6.18b). By weak duality as established
in Theorem 4.18, the supremum of the primal problem (6.18a) thus coincides with
the Lipschitz-regularized nominal loss EP̂ [ℓ(𝑍)] + 𝑟 lip(ℓ) and is asymptotically
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attained by the distribution P𝑖 , which moves a fraction 𝑞𝑖 of the total probability
mass by a distance 𝑟/𝑞𝑖 along the direction 𝑧★.

The connection between robustification and Lipschitz regularization was dis-
covered by Mohajerin Esfahani and Kuhn (2018). It offers a probabilistic interpret-
ation for regularization techniques commonly used in statistics and machine learn-
ing (Shafieezadeh-Abadeh et al. 2015, 2019). Further extensions to non-convex
loss functions have been established by Blanchet et al. (2019a), Ho-Nguyen and
Wright (2023), Shafiee, Aolaritei, Dörfler and Kuhn (2023), Gao et al. (2024b) and
Zhang et al. (2024a).

6.14. 1-Wasserstein risk

Consider a law-invariant risk measure 𝜚 that can be expressed as a superposition
of CVaRs with different risk levels 𝛽 ∈ [0, 1]. Specifically, assume that

𝜚P [ℓ(𝑍)] =
∫ 1

0
𝛽-CVaRP [ℓ(𝑍)] d𝜎(𝛽) (6.19)

for allP ∈ P(Z), where𝜎 is a probability distribution on [0, 1]with
∫ 1

0 𝛽−1d𝜎(𝛽) <
∞. Any 𝜚 with these properties is called a spectral risk measure (Acerbi 2002),
and (6.19) is termed a Kusuoka representation of 𝜚 (Kusuoka 2001, Shapiro 2013).

If the distribution of 𝑍 is only known to be close to P̂ ∈ P(Z), then it is natural
to quantify the riskiness of an uncertain loss ℓ(𝑍) under a spectral risk measure 𝜚
by the 1-Wasserstein risk, that is, the supremum of 𝜚P [ℓ(𝑍)] over all distributions
P in a 1-Wasserstein ball around P̂. The 1-Wasserstein risk is available in closed
form whenever Z = R𝑑 and ℓ is convex and Lipschitz-continuous.

Proposition 6.18 (1-Wasserstein risk). Let 𝜚 be a spectral risk measure satisfy-
ing (6.19) with

∫ 1
0 𝛽−1d𝜎(𝛽) < ∞. Assume that P̂ ∈ P(R𝑑) with EP̂ [∥𝑍 ∥] < ∞ for

some norm ∥ · ∥ on R𝑑 . Define P = {P ∈ P(R𝑑) : W1(P, P̂) ≤ 𝑟}, where 𝑟 ≥ 0 and
W1 is the 1-Wasserstein distance with transportation cost function 𝑐(𝑧, 𝑧) = ∥𝑧− 𝑧∥.
If ℓ is convex and Lipschitz-continuous with lip(ℓ) < ∞, then we have

sup
P∈P

𝜚P [ℓ(𝑍)] = 𝜚P̂ [ℓ(𝑍)] + 𝑟 lip(ℓ)
∫ 1

0
𝛽−1d𝜎(𝛽).

Proof. The assumption
∫ 1

0 𝛽−1d𝜎(𝛽) < ∞ ensures that 𝜎({0}) = 0, and the
assumption EP̂ [∥𝑍 ∥] < ∞ ensures via the Lipschitz continuity of ℓ that EP̂ [ℓ(𝑍)]
is finite. We first bound the worst-case risk from above. To this end, note that

sup
P∈P

𝜚P [ℓ(𝑍)] ≤
∫ 1

0
sup
P∈P

𝛽-CVaRP [ℓ(𝑍)] d𝜎(𝛽)

≤
∫ 1

0
inf
𝜏∈R

𝜏 + 1
𝛽

sup
P∈P
EP [max{ℓ(𝑍) − 𝜏, 0}] d𝜎(𝛽)
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=

∫ 1

0
inf
𝜏∈R

𝜏 + 1
𝛽

(EP̂ [max{ℓ(𝑍) − 𝜏, 0}] + 𝑟 lip(ℓ)) d𝜎(𝛽)

= 𝜚P̂ [ℓ(𝑍)] + 𝑟 lip(ℓ)
∫ 1

0
𝛽−1d𝜎(𝛽)

< +∞,
where the first inequality holds because P may adapt to 𝛽 when the supremum is
evaluated inside the integral, and the second inequality follows from the standard
max-min inequality. The first equality follows from the results on worst-case
expectations over 1-Wasserstein balls in Section 6.13.

To derive the converse inequality, we assume first that 𝜎({1}) = 0. The general
case will be addressed later. Note that 𝜇 = infP∈P EP [ℓ(𝑍)] is finite because ℓ is
Lipschitz-continuous and because EP̂ [∥𝑍 ∥] < ∞, which implies via the proof of
Theorem 3.19 that all distributions in P have uniformly bounded first moment. We
may assume without loss of generality that 𝜇 ≥ 0. Otherwise, we may replace
ℓ(𝑧) with ℓ(𝑧) − 𝜇, which simply increases the worst-case risk by −𝜇 because any
spectral risk measure is translation-invariant. The assumption that 𝜇 ≥ 0 then
implies that

𝛽-CVaRP [ℓ(𝑍)] ≥ EP [ℓ(𝑍)] ≥ 0 for all 𝛽 ∈ [0, 1], P ∈ P .
Thus we have

sup
P∈P

𝜚P [ℓ(𝑍)] = sup
P∈P

sup
𝛿>0

∫ 1−𝛿

𝛿

𝛽-CVaRP [ℓ(𝑍)] d𝜎(𝛽)

= sup
𝛿>0

sup
P∈P

∫ 1−𝛿

𝛿

𝛽-CVaRP [ℓ(𝑍)] d𝜎(𝛽),

where the first equality follows from the monotone convergence theorem and the
assumption that 𝜎({0}) = 𝜎({1}) = 0. Hence, for any 𝜀 > 0 there is 𝛿 > 0 with����sup

P∈P
𝜚P [ℓ(𝑍)] − sup

P∈P

∫ 1−𝛿

𝛿

𝛽-CVaRP [ℓ(𝑍)] d𝜎(𝛽)
���� ≤ 𝜀 (6.20a)

and ����∫ 1

0
𝛽−1d𝜎(𝛽) −

∫ 1−𝛿

𝛿

𝛽−1d𝜎(𝛽)
���� ≤ 𝜀. (6.20b)

Recall now from Theorem 3.19 that P is weakly compact and thus tight. Hence
there exists a compact set C ⊆ R𝑑 with P(𝑍 ∉ C) ≤ 𝛿/2 for every P ∈ P . As C
is compact, 𝜏 = min𝑧∈C ℓ(𝑧) and 𝜏 = max𝑧∈C ℓ(𝑧) are both finite. Using the trivial
bounds P(ℓ(𝑍) ≥ 𝜏) ≥ P(𝑍 ∈ C) and P(ℓ(𝑍) ≤ 𝜏) ≥ P(𝑍 ∈ C) and noting that
P(𝑍 ∈ C) ≥ 1 − 𝛿/2 for every P ∈ P , one can then readily show that

𝜏 ≤ (1 − 𝛿)-VaRP [ℓ(𝑍)] ≤ 𝛽-VaRP [ℓ(𝑍)] ≤ 𝛿-VaRP [ℓ(𝑍)] ≤ 𝜏
for all 𝛽 ∈ [𝛿, 1 − 𝛿] and for all P ∈ P . Next, define 𝑦𝑖 ∈ dom(ℓ∗), 𝑞𝑖 ∈ [0, 1], the
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function 𝑓𝑖 : R𝑑 → R𝑑 and the distribution P𝑖 = (1− 𝑞𝑖) P̂ + 𝑞𝑖 P̂ ◦ 𝑓 −1
𝑖

for 𝑖 ∈ N as
in Section 6.13. We then obtain

sup
P∈P

𝜚P [ℓ(𝑍)] ≥
∫ 1−𝛿

𝛿

inf
𝜏∈R

𝜏 + 1
𝛽
EP𝑖 [max{ℓ(𝑍) − 𝜏, 0}] d𝜎(𝛽)

=

∫ 1−𝛿

𝛿

inf
𝜏∈[𝜏,𝜏 ]

𝜏 + 1 − 𝑞𝑖
𝛽
EP̂ [max{ℓ(𝑍) − 𝜏, 0}]

+ 𝑞𝑖
𝛽
EP̂ [max{ℓ(𝑍 + 𝑟𝑧★/𝑞𝑖) − 𝜏, 0}] d𝜎(𝛽). (6.21)

The inequality in (6.21) holds because 𝛽-CVaRP [ℓ(𝑍)] ≥ 0 for all 𝛽 ∈ [0, 1] by
assumption and becauseP𝑖 ∈ P as shown in Section 6.13. The equality follows from
the definition of P𝑖 and from Rockafellar and Uryasev (2002, Theorem 10), which
ensures that the minimization problem over 𝜏 is solved by 𝛽-VaRP [ℓ(𝑍)] ∈ [𝜏, 𝜏].
As ℓ is proper, convex and lower semicontinuous, and as 𝑦𝑖 belongs to the domain
of ℓ∗, the Fenchel–Moreau theorem further implies that

ℓ(𝑧 + 𝑟𝑧★/𝑞𝑖) = sup
𝑦∈dom(ℓ∗)

(𝑧 + 𝑟𝑧★/𝑞𝑖)⊤𝑦 − ℓ∗(𝑦) ≥ (𝑧 + 𝑟𝑧★/𝑞𝑖)⊤𝑦𝑖 − ℓ∗(𝑦𝑖).

The last expectation in (6.21) thus admits the lower bound

EP̂ [max{ℓ(𝑍 + 𝑟𝑧★/𝑞𝑖) − 𝜏, 0}] ≥ EP̂ [ℓ(𝑍 + 𝑟𝑧★/𝑞𝑖) − 𝜏]
≥ EP̂ [𝑦⊤𝑖 𝑍] + 𝑟𝑦⊤𝑖 𝑧★/𝑞𝑖 − ℓ∗(𝑦𝑖) − 𝜏.

Substituting this estimate into (6.21) and letting 𝑖 tend to infinity yields

sup
P∈P

𝜚P [ℓ(𝑍)] ≥ lim
𝑖→∞

∫ 1−𝛿

𝛿

inf
𝜏∈[𝜏,𝜏 ]

𝜏 + 1 − 𝑞𝑖
𝛽
EP̂ [max{ℓ(𝑍) − 𝜏, 0}] d𝜎(𝛽)

+ 𝑟 lip(ℓ)
∫ 1−𝛿

𝛿

𝛽−1 d𝜎(𝛽)

=

∫ 1−𝛿

𝛿

𝛽-CVaRP [ℓ(𝑍)] d𝜎(𝛽) + 𝑟 lip(ℓ)
∫ 1−𝛿

𝛿

𝛽−1 d𝜎(𝛽),

where we have used that 𝑞𝑖 as well as 𝑞𝑖ℓ∗(𝑦𝑖) converge to 0 and that 𝑦⊤
𝑖
𝑧★ converges

to (𝑦★)⊤𝑧★ = lip(ℓ) as 𝑖 tends to infinity; see also Section 6.13. The equality
follows from the monotone convergence theorem, which applies because 𝑞𝑖 is
monotonically decreasing with 𝑖. Letting 𝜀 tend to 0 thus implies via (6.20) that

sup
P∈P

𝜚P [ℓ(𝑍)] ≥
∫ 1

0
𝛽-CVaRP [ℓ(𝑍)] d𝜎(𝛽) + 𝑟 lip(ℓ)

∫ 1

0
𝛽−1 d𝜎(𝛽).

This lower bound matches the upper bound derived in the first part of the proof,
and thus the claim follows, provided that 𝜎({1}) = 0. If the probability distribution
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𝜎 has an atom at 1, then it can be decomposed as 𝜎 = �̂� + 𝜎({1}) · 𝛿1, where �̂� is
a non-negative measure on (0, 1). We can thus decompose the risk under P as

𝜚P [ℓ(𝑍)] =
∫ 1

0
𝛽-CVaRP [ℓ(𝑍)] d�̂�(𝛽) + 𝜎({1}) · EP [ℓ(𝑍)] .

The first term in this decomposition can then be handled as above, and the second
term can be handled as in Section 6.13. Details are omitted for brevity.

Proposition 6.18 shows that the 1-Wasserstein risk of a Lipschitz-continuous
convex loss function coincides with the sum of the nominal risk and a Lipschitz
regularization term. It is asymptotically attained by the distribution P𝑖 , which
moves a fraction 𝑞𝑖 of the total probability mass by a distance 𝑟/𝑞𝑖 along the
direction 𝑧★. Proposition 6.17 emerges as a special case of Proposition 6.18 when
𝜎 = 𝛿1. The worst-case risk over 𝑝-Wasserstein balls for 𝑝 ≥ 1 was first studied
by Pflug et al. (2012), and a result akin to Proposition 6.18 was obtained for linear
loss functions. Extensions to more general risk measures were studied by Pichler
(2013) and Wozabal (2014). The extension to convex loss functions is new.

6.15. 𝑝-Wasserstein risk

We now show that if the loss function ℓ(𝑧) is linear, then the worst-case risk over a
𝑝-Wasserstein ball may be available in closed form even if 𝑝 ∈ (1,∞). The results
of this section depend on the following lemma, which characterizes the conjugates
of powers of norms; see also Zhen et al. (2023, Lemma C.9).

Lemma 6.19 (Conjugates of powers of norms). Assume that ∥ · ∥ and ∥ · ∥∗ are
mutually dual norms on R𝑑 and that 𝑝, 𝑞 ∈ (1,∞) are conjugate exponents with
1
𝑝
+ 1
𝑞
= 1. Define 𝜑(𝑞) = (𝑞 − 1)(𝑞−1)/𝑞𝑞. Then the following statements hold.

(i) If 𝑓 (𝑧) = 1
𝑝
∥𝑧∥ 𝑝, then 𝑓 ∗(𝑦) = 1

𝑞
∥𝑦∥𝑞∗ .

(ii) If 𝑔(𝑧) = ∥𝑧 − 𝑧∥ 𝑝, then 𝑔∗(𝑦) = 𝑦⊤𝑧 + 𝜑(𝑞)∥𝑦∥𝑞∗ .

Proof. As for assertion (i), fix any 𝑧, 𝑦 ∈ R𝑑 . We then have

𝑧⊤𝑦 − 1
𝑝
∥𝑧∥ 𝑝 ≤ ∥𝑧∥∥𝑦∥∗ −

1
𝑝
∥𝑧∥ 𝑝 ≤ max

𝑡≥0
𝑡∥𝑦∥∗ −

1
𝑝
𝑡 𝑝 =

1
𝑞
∥𝑦∥𝑞∗ ,

where the first inequality follows from the construction of the dual norm, and the
second inequality is obtained by maximizing over 𝑡 = ∥𝑧∥. The equality holds
because the maximization problem is solved by 𝜏 = ∥𝑦∥1/(𝑝−1)

∗ . Both inequalities
collapse to equalities if 𝑧 ∈ arg max∥𝑧 ∥=𝜏 𝑧⊤𝑦. This allows us to conclude that

𝑓 ∗(𝑦) = sup
𝑧∈R𝑑

𝑧⊤𝑦 − 1
𝑝
∥𝑧∥ 𝑝 =

1
𝑞
∥𝑦∥𝑞∗ .
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As for assertion (ii), note that

𝑔∗(𝑦) = sup
𝑧∈R𝑑

𝑦⊤𝑧 − ∥𝑧 − 𝑧∥ 𝑝

= 𝑦⊤𝑧 + 𝑝 · sup
𝑧∈R𝑑

(𝑦/𝑝)⊤𝑧 − 1
𝑝
∥𝑧∥ 𝑝

= 𝑦⊤𝑧 + 𝑝
𝑞
∥𝑦/𝑝∥𝑞∗

= 𝑦⊤𝑧 + 𝜑(𝑞)∥𝑦∥𝑞∗ ,

where the last two equalities exploit assertion (i) and the definition of 𝜑(𝑞).

We now show that the worst-case CVaR of a linear loss function ℓ(𝑧) = 𝜃⊤𝑧 over
a 𝑝-Wasserstein ball of radius 𝑟 around P̂ equals the sum of the nominal CVaR
under P̂ and a regularization term that scales with the norm of 𝜃 and with 𝑟 .

Proposition 6.20 (𝑝-Wasserstein risk). Assume that P̂ ∈ P(R𝑑) withEP̂ [∥𝑍 ∥ 𝑝] <
∞ for some 𝑝 ∈ (1,∞) and for some norm ∥ · ∥ on R𝑑 . Define P = {P ∈
P(R𝑑) : W𝑝(P, P̂) ≤ 𝑟}, where 𝑟 ≥ 0 and W𝑝 is the 𝑝-Wasserstein distance with
transportation cost function 𝑐(𝑧, 𝑧) = ∥𝑧 − 𝑧∥ 𝑝. If 𝜃 ∈ R𝑑 and 𝛽 ∈ (0, 1), then

sup
P∈P

𝛽-CVaRP [𝜃⊤𝑍] = 𝛽-CVaRP̂ [𝜃⊤𝑍] + 𝑟𝛽−1/𝑝 ∥𝜃∥∗.

Proof. By the definition of the CVaR by Rockafellar and Uryasev (2000), we have

sup
P∈P

𝛽-CVaRP [𝜃⊤𝑍] ≤ inf
𝜏∈R

𝜏 + 1
𝛽

sup
P∈P
EP [max{𝜃⊤𝑍 − 𝜏, 0}], (6.22)

where the inequality is obtained by interchanging the supremum over P and the
infimum over 𝜏. The underlying worst-case expectation problem satisfies

sup
P∈P
EP [max{𝜃⊤𝑍 − 𝜏, 0}]

≤ inf
𝜆≥0

𝜆𝑟 𝑝 + EP̂
[

sup
𝑧∈R𝑑

max{𝜃⊤𝑧 − 𝜏, 0} − 𝜆∥𝑧 − �̂� ∥ 𝑝
]

= inf
𝜆≥0

𝜆𝑟 𝑝 + EP̂
[
max

{
sup
𝑧∈R𝑑

𝜃⊤𝑧 − 𝜏 − 𝜆∥𝑧 − �̂� ∥ 𝑝, sup
𝑧∈R𝑑
−𝜆∥𝑧 − �̂� ∥ 𝑝

}]
= inf
𝜆≥0

𝜆𝑟 𝑝 + EP̂ [max{𝜃⊤ �̂� − 𝜏 + 𝜑(𝑞)𝜆∥𝜃/𝜆∥𝑞∗ , 0}],

where the inequality exploits weak duality, and the first equality is obtained by
interchanging the order of the two maximization operations. The second equality
follows from Lemma 6.19(ii). Substituting the resulting formula into (6.22) and
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interchanging the infimum over 𝜏 with the infimum over 𝜆 then yields

sup
P∈P

𝛽-CVaRP [𝜃⊤𝑍]

≤ inf
𝜆≥0

𝜆𝑟 𝑝

𝛽
+ inf
𝜏∈R

𝜏 + 1
𝛽
EP̂ [max{𝜃⊤ �̂� − 𝜏 + 𝜑(𝑞)𝜆∥𝜃/𝜆∥𝑞∗ , 0}]

= inf
𝜆≥0

𝜆𝑟 𝑝

𝛽
+ 𝛽-CVaRP̂ [𝜃⊤ �̂� + 𝜑(𝑞)𝜆∥𝜃/𝜆∥𝑞∗ ]

= 𝛽-CVaRP̂ [𝜃⊤ �̂�] + inf
𝜆≥0

𝜆𝑟 𝑝

𝛽
+ 𝜑(𝑞)𝜆∥𝜃/𝜆∥𝑞∗ ,

where the equalities follow from the definition and the translation-invariance of the
CVaR, respectively. Solving the minimization problem over 𝜆 analytically yields

sup
P∈P

𝛽-CVaRP [𝜃⊤𝑍] ≤ 𝛽-CVaRP̂ [𝜃⊤ �̂�] + 𝑟𝛽−1/𝑝 ∥𝜃∥∗.

To derive the converse inequality, we use 𝜏𝛽 as shorthand for 𝛽-VaRP̂ [𝜃⊤ �̂�],
which is finite because 𝛽 ∈ (0, 1), and we select any 𝑧★ ∈ arg max∥𝑧 ∥=1 𝜃

⊤𝑧. In
addition, we decompose the nominal distribution as P̂ = 𝛽 P̂+ + (1 − 𝛽) P̂−, where
P̂+ and P̂− are probability distributions supported on Z+ = {𝑧 ∈ R𝑑 : 𝜃⊤𝑧 ≥ 𝜏𝛽}
and Z− = {𝑧 ∈ R𝑑 : 𝜃⊤𝑧 ≤ 𝜏𝛽}, respectively. Such a decomposition always exists
thanks to the definition of 𝜏𝛽 . For example, if P̂(𝜃⊤𝑍 = 𝜏𝛽) = 0, as would be
the case if P̂ were absolutely continuous with respect to Lebesgue measure, then
P̂− and P̂+ can simply be obtained by conditioning P̂ on Z− and Z+, respectively.
We also define 𝑓 : R𝑑 → R𝑑 through 𝑓 (𝑧) = 𝑧 + 𝑟𝑧★/𝛽1/𝑝. Thus 𝑓 shifts all
points in R𝑑 along the direction 𝑧★ by a distance equal to 𝑟/𝛽1/𝑝. Finally, we set
P★ = 𝛽 P̂+ ◦ 𝑓 −1 + (1 − 𝛽) P̂−. Hence P★ is obtained by decomposing P̂ into two
parts 𝛽 P̂+ and (1 − 𝛽) P̂− and then translating the first part by 𝑟𝑧★/𝛽1/𝑝. We thus
have W𝑝(P★, P̂) ≤ 𝑟 , and 𝛽-VaRP [𝜃⊤𝑍] = 𝜏𝛽 . This in turn implies that

sup
P∈P

𝛽-CVaRP [𝜃⊤𝑍]

≥ 𝛽-CVaRP★ [𝜃⊤𝑍]

= 𝜏𝛽 +
1
𝛽
EP★ [max{𝜃⊤𝑍 − 𝜏𝛽 , 0}]

= 𝜏𝛽 + EP̂+ [max{𝜃⊤ 𝑓 (𝑍) − 𝜏𝛽 , 0}] +
1 − 𝛽
𝛽
EP̂− [max{𝜃⊤𝑍 − 𝜏𝛽 , 0}]

= EP̂+ [𝜃
⊤𝑍] + 𝑟𝛽−1/𝑝 ∥𝜃∥∗

= 𝛽-CVaRP̂ [𝜃⊤ �̂�] + 𝑟𝛽−1/𝑝 ∥𝜃∥∗.

Here the first equality follows from the definition of the CVaR and from Rockafellar
and Uryasev (2002, Theorem 10), which ensures 𝜏 matches 𝛽-VaRP★ [ℓ(𝑍)] = 𝜏𝛽 at
optimality. The second equality exploits the definition of P★, and the third equality
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holds because 𝜃⊤𝑧★ = ∥𝜃∥∗ and because 𝜃⊤𝑧 ≥ 𝜏𝛽 for all 𝑧 ∈ Z+ and 𝜃⊤𝑧 ≤ 𝜏𝛽
for all 𝑧 ∈ Z−. Finally, the fourth equality follows from the construction of P̂+ and
from Rockafellar and Uryasev (2002, Proposition 5). This completes the proof.

7. Finite convex reformulations of nature’s subproblem
Although nature’s subproblem admits analytical solutions in important special cases
(see Section 6), it can usually only be solved numerically. Sometimes, nature’s
subproblem can be reformulated as an equivalent convex optimization problem. In
these cases, it can be addressed with off-the-shelf solvers. In other cases, however,
it may be necessary or preferable to develop customized solution algorithms.

This section focuses on finite convex reductions. That is, we will describe con-
ditions under which the dual worst-case expectation problems derived in Section 4
can be reformulated as finite convex minimization problems. These finite reformu-
lations are significant because they can be combined with the outer minimization
problem over 𝑥 ∈ X to construct a reformulation of the overall DRO problem (1.2)
as a classical minimization problem amenable to standard optimization software.
We subsequently dualize the finite convex reformulations of nature’s subproblem
to obtain equivalent finite convex maximization problems. These finite bi-dual
maximization problems are significant because their optimal solutions allow us
to construct worst-case distributions that (asymptotically) attain the supremum of
nature’s subproblem (4.1). Even though we only address worst-case expectations,
all results of this section readily extend to worst-case optimized certainty equival-
ents thanks to Theorem 5.18. For the sake of brevity, however, we will not elaborate
on these extensions. To simplify notation, we will always suppress the dependence
of the loss function ℓ on the decision variables 𝑥.

The remainder of this section develops as follows. In Section 7.1, we first outline
a general strategy for deriving finite convex dual and bi-dual reformulations of
nature’s subproblem (4.1). We subsequently exemplify this strategy for worst-case
expectation problems over Chebyshev ambiguity sets (Section 7.2), 𝜙-divergence
ambiguity sets (Section 7.3) and optimal transport ambiguity sets (Section 7.4).

7.1. General proof strategy

The worst-case expectation problem (4.1) constitutes a semi-infinite program that
involves infinitely many decision variables (because it optimizes over a subset of
an infinite-dimensional measure space) but only finitely many constraints (e.g.
moment conditions and/or bounds on the divergence or discrepancy to a ref-
erence distribution). The duality results of Section 4 enable us to recast this
semi-infinite maximization problem as a semi-infinite minimization problem with
finitely many variables and infinitely many constraints. We then leverage reformu-
lation techniques from robust optimization to recast the dual semi-infinite program
as a finite-dimensional convex minimization problem. These techniques exploit
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standard results from convex analysis as well as the S-Lemma, which we review
next. Throughout this discussion we adopt the convention that 0 · ∞ = ∞.

We first show that scaling and perspectivication constitute dual operations.

Lemma 7.1 (Duality of scaling and perspectivication). If 𝑓 : R𝑑 → R is a proper,
closed and convex function and 𝛼 ∈ R+ a fixed constant, then the following hold.

(i) If 𝑔(𝑧) = 𝛼 𝑓 (𝑧), then 𝑔∗(𝑦) = ( 𝑓 ∗)𝜋(𝑦, 𝛼) for all 𝑦 ∈ R𝑑 .
(ii) If 𝑔(𝑧) = 𝑓 𝜋(𝑧, 𝛼), then 𝑔∗(𝑦) = cl(𝛼 𝑓 ∗)(𝑦) for all 𝑦 ∈ R𝑑 .

Proof. We prove assertion (i) by case distinction. First, if 𝛼 > 0, then we have

𝑔∗(𝑦) = sup
𝑧∈R𝑑

𝑦⊤𝑧 − 𝛼 𝑓 (𝑧)

= 𝛼 sup
𝑧∈R𝑑

(𝑦/𝛼)⊤𝑧 − 𝑓 (𝑧)

= 𝛼 𝑓 ∗(𝑦/𝛼)
= ( 𝑓 ∗)𝜋(𝑦, 𝛼).

If 𝛼 = 0, on the other hand, then similar reasoning shows that

𝑔∗(𝑦) = sup
𝑧∈R𝑑

𝑦⊤𝑧 − 𝛿dom( 𝑓 )(𝑧)

= 𝛿∗dom( 𝑓 )(𝑦)

= 𝛿∗dom( 𝑓 ∗∗)(𝑦)

= ( 𝑓 ∗)∞(𝑦)
= ( 𝑓 ∗)𝜋(𝑦, 𝛼),

where the first equality follows from our convention that 0 · ∞ = ∞, which implies
that 0 𝑓 (𝑧) = 𝛿dom( 𝑓 )(𝑧). The second equality follows from the definition of the
support function, and the third equality holds because 𝑓 is convex and closed,
which implies via Lemma 4.2 that 𝑓 = 𝑓 ∗∗. Finally, the fourth equality follows
from Rockafellar (1970, Theorem 13.3), and the last equality exploits the definition
of the perspective function for 𝛼 = 0. This completes the proof of assertion (i).

As for assertion (ii), assume first that 𝛼 > 0, and note that

𝑔∗(𝑦) = sup
𝑧∈R𝑑

𝑦⊤𝑧 − 𝑓 𝜋(𝑧, 𝛼) = 𝛼 sup
𝑧∈R𝑑

𝑦⊤(𝑧/𝛼) − 𝑓 (𝑧/𝛼) = 𝛼 𝑓 ∗(𝑦) = cl(𝛼 𝑓 ∗)(𝑦),

where the last equality holds because 𝑓 ∗ is closed. If 𝛼 = 0, then we have

𝑔∗(𝑦) = sup
𝑧∈R𝑑

𝑦⊤𝑧 − 𝑓∞(𝑧) = sup
𝑧∈R𝑑

𝑦⊤(𝑧) − 𝛿∗dom( 𝑓 ∗) = 𝛿cl(dom( 𝑓 ∗))(𝑦) = cl(𝛼 𝑓 ∗)(𝑦).

Here the first equality exploits the definition of the perspective. The second and third
equalities follow from Rockafellar (1970, Theorem 13.3) and Rockafellar (1970,
Theorem 13.2), respectively. The last equality, finally, holds because 0 𝑓 ∗ = 𝛿dom( 𝑓 ∗)
by our conventions of extended arithmetic. This proves assertion (ii).
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The following lemma derives a formula for the conjugate of a sum of functions.

Lemma 7.2 (Conjugates of sums). If 𝑓𝑘 : R𝑑 → R, 𝑘 ∈ [𝐾], are proper, convex
and closed functions, then the conjugate of 𝑓 =

∑
𝑘∈[𝐾 ] 𝑓𝑘 satisfies

𝑓 ∗(𝑦) ≤ inf
𝑦1,...,𝑦𝐾 ∈R𝑑

{ ∑︁
𝑘∈[𝐾 ]

𝑓 ∗𝑘 (𝑦𝑘) :
∑︁
𝑘∈[𝐾 ]

𝑦𝑘 = 𝑦

}
for all 𝑦 ∈ R𝑑 . (7.1)

If there exists 𝑧 ∈ ∩𝑘∈[𝐾 ] rint(dom( 𝑓𝑘)), then the inequality in the above expression
reduces to an equality, and the minimum is attained for every 𝑦 ∈ R𝑑 .

The infimum on the right-hand side of (7.1) defines a function of 𝑦. This function
is called the infimal convolution of the functions 𝑓 ∗

𝑘
, 𝑘 ∈ [𝐾]. Thus Lemma 7.2

asserts that, under a mild Slater-type condition, the conjugate of a sum of functions
coincides with the infimal convolution of the conjugates of these functions.

Proof of Lemma 7.2. By using a standard variable splitting trick and the max-min
inequality, one can show that the conjugate of 𝑓 admits the following upper bound:

𝑓 ∗(𝑦) = sup
𝑧,𝑧1,...,𝑧𝐾 ∈R𝑑

{
𝑦⊤𝑧 −

∑︁
𝑘∈[𝐾 ]

𝑓 (𝑧𝑘) : 𝑧𝑘 = 𝑧 ∀𝑘 ∈ [𝐾]
}

= sup
𝑧,𝑧1,...,𝑧𝐾 ∈R𝑑

inf
𝑦1,...,𝑦𝐾 ∈R𝑑

𝑦⊤𝑧 −
∑︁
𝑘∈[𝐾 ]

𝑓 (𝑧𝑘) − 𝑦⊤𝑘 (𝑧 − 𝑧𝑘)

≤ inf
𝑦1,...,𝑦𝐾 ∈R𝑑

sup
𝑧,𝑧1,...,𝑧𝐾 ∈R𝑑

𝑦⊤𝑧 −
∑︁
𝑘∈[𝐾 ]

𝑓 (𝑧𝑘) − 𝑦⊤𝑘 (𝑧 − 𝑧𝑘)

= inf
𝑦1,...,𝑦𝐾 ∈R𝑑

sup
𝑧∈R𝑑

{
𝑦⊤𝑧 −

∑︁
𝑘∈[𝐾 ]

𝑦⊤𝑘 𝑧

}
+

∑︁
𝑘∈[𝐾 ]

sup
𝑧𝑘∈R𝑑

{
𝑦⊤𝑘 𝑧𝑘 − 𝑓 (𝑧𝑘)

}
.

The supremum over 𝑧 in the resulting expression evaluates to 0 if
∑
𝑘∈[𝐾 ] 𝑦𝑘 = 𝑦

and to ∞ otherwise. In addition, the supremum over 𝑧𝑘 evaluates to 𝑓 ∗
𝑘

(𝑦𝑘) for
every 𝑘 ∈ [𝐾]. Substituting these analytical formulas into the last expression yields

𝑓 ∗(𝑦) ≤ inf
𝑦1,...,𝑦𝐾 ∈R𝑑

{ ∑︁
𝑘∈[𝐾 ]

𝑓 ∗(𝑦𝑘) :
∑︁
𝑘∈[𝐾 ]

𝑦𝑘 = 𝑦

}
.

If ∩𝑘∈[𝐾 ] rint(dom( 𝑓𝑘)) is non-empty, then the above inequality becomes an equal-
ity, and the infimum is attained thanks to Rockafellar (1970, Theorem 16.4).

Now consider a classical optimization problem

inf
𝑧∈R𝑑
{ 𝑓 (𝑧) : 𝑔𝑘(𝑧) ≤ 0 ∀𝑘 ∈ [𝐾]} (P)
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with objective function 𝑓 : R𝑑 → R and constraint functions 𝑔𝑘 : R𝑑 → R, 𝑘 ∈
[𝐾]. Below we will show that the problem dual to (P) is given by

sup
𝛼1,...,𝛼𝐾 ∈R+
𝛽0,...,𝛽𝐾 ∈R𝑑

{
− 𝑓 ∗(𝛽0) −

𝐾∑︁
𝑘=1

(𝑔∗𝑘)
𝜋(𝛽𝑘 , 𝛼𝑘) :

𝐾∑︁
𝑘=0

𝛽𝑘 = 0

}
. (D)

To this end, we adopt the following definition of a Slater point.

Definition 7.3 (Slater point). A Slater point of the set

Z = {𝑧 ∈ R𝑑 : 𝑔𝑘(𝑧) ≤ 0 ∀𝑘 ∈ [𝐾]}

is any vector 𝑧 ∈ Z with 𝑧 ∈ rint(dom(𝑔𝑘)) for all 𝑘 ∈ [𝐾] and 𝑔𝑘(𝑧) < 0 for all
𝑘 ∈ [𝐾] such that 𝑔𝑘 is nonlinear. A Slater point 𝑧 of the set Z is a Slater point of
the minimization problem inf{ 𝑓 (𝑧) : 𝑧 ∈ Z} if 𝑧 ∈ rint(dom( 𝑓 )).

Slater points of maximization problems are defined in the obvious way. We
simply replace the requirement 𝑧 ∈ rint(dom( 𝑓 )) with 𝑧 ∈ rint(dom(− 𝑓 )). Using
Lemmas 7.1 and 7.2, we can now prove that (P) and (D) are indeed duals.

Theorem 7.4 (Convex duality). Assume that the functions 𝑓 and 𝑔𝑘 , 𝑘 ∈ [𝐾],
are proper, closed and convex. Then the infimum of (P) is larger than or equal to
the supremum of (D). In addition, the following strong duality relations hold.

(i) If (P) or (D) admits a Slater point, then the infimum of (P) matches the
supremum of (D), and (D) or (P) is solvable, respectively.

(ii) If the feasible set of (P) or (D) is non-empty and bounded, then the infimum
of (P) matches the supremum of (D), and (P) or (D) is solvable, respectively.

Proof. The max-min inequality readily implies that the infimum of (P) is bounded
below by the optimal value of its Lagrangian dual, that is, we have

inf (P) = inf
𝑧∈R𝑑

sup
𝛼∈R𝐾+

𝑓 (𝑧) +
∑︁
𝑘∈[𝐾 ]

𝛼𝑘𝑔𝑘(𝑧)

≥ sup
𝛼∈R𝐾+

inf
𝑧∈R𝑑

𝑓 (𝑧) +
∑︁
𝑘∈[𝐾 ]

𝛼𝑘𝑔𝑘(𝑧)

= sup
𝛼∈R𝐾+

− sup
𝑧∈R𝑑

0⊤𝑧 − 𝑓 (𝑧) −
∑︁
𝑘∈[𝐾 ]

𝛼𝑘𝑔𝑘(𝑧)

= sup
𝛼∈R𝐾+

−
(
𝑓 +

∑︁
𝑘∈[𝐾 ]

𝛼𝑘𝑔𝑘

)∗
(0).

The resulting lower bound involves the conjugate of a sum of several functions. By
Lemma 7.2, the conjugate of this sum is bounded below by the infimal convolution

https://doi.org/10.1017/S0962492924000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000084


Distributionally robust optimization 705

of the conjugates of all functions in the sum. Consequently, we obtain

inf (P) ≥ sup
𝛼1,...,𝛼𝐾 ∈R+
𝛽0,...,𝛽𝐾 ∈R𝑑

{
− 𝑓 ∗(𝛽0) −

𝐾∑︁
𝑘=1

(𝛼𝑘𝑔𝑘)∗(𝛽𝑘) :
𝐾∑︁
𝑘=0

𝛽𝑘 = 0

}
. (7.2)

By Lemma 7.1 (i), we further have (𝛼𝑘𝑔𝑘)∗(𝛽𝑘) = (𝑔∗
𝑘
)𝜋(𝛽𝑘 , 𝛼𝑘) for all 𝛽𝑘 ∈ R𝑑 and

𝛼𝑘 ∈ R+. Thus the lower bound in (7.2) matches the supremum of (D). This proves
weak duality. For a proof of strong duality and solvability under the conditions (i)
and (ii), we refer to Zhen et al. (2023, Theorem 2).

Armed with Theorem 7.4, we can now show that the semi-infinite constraints
appearing in the dual worst-case expectation problems derived in Section 4 can be
systematically reformulated in terms of finitely many convex constraints.

Proposition 7.5 (Semi-infinite constraints I). Assume that the functions 𝑓 : R𝑑 →
R and 𝑔𝑘 : R𝑑 → R, 𝑘 ∈ [𝐾], are proper, closed and convex, and that there is 𝑧 ∈ R𝑑
with 𝑧 ∈ rint(dom(𝑔𝑘)), 𝑘 ∈ [𝐾], 𝑧 ∈ rint(dom( 𝑓 )) and 𝑔𝑘(𝑧) < 0 for all 𝑘 ∈ [𝐾]
such that 𝑔𝑘 is nonlinear. Then the semi-infinite constraint

𝑓 (𝑧) ≥ 0 ∀𝑧 ∈ R𝑑 : 𝑔𝑘(𝑧) ≤ 0 ∀𝑘 ∈ [𝐾]

holds if and only if there exist 𝛼1, . . . , 𝛼𝐾 ∈ R+ and 𝛽0, . . . , 𝛽𝐾 ∈ R𝑑 with

𝑓 ∗(𝛽0) +
𝐾∑︁
𝑘=1

(𝑔∗𝑘)
𝜋(𝛽𝑘 , 𝛼𝑘) ≤ 0 and

𝐾∑︁
𝑘=0

𝛽𝑘 = 0.

Proof. The semi-infinite constraint in the statement of the proposition is satisfied
if and only if the infimum of (P) is non-negative. Under the stated assumptions,
Theorem 7.4 implies that this is the case precisely when the supremum of (D) is
non-negative. Since (P) admits a Slater point, the supremum of (D) is attained.
Thus the supremum of (D) is non-negative if and only if there are 𝛼1, . . . , 𝛼𝐾 ∈ R+
and 𝛽0, . . . , 𝛽𝐾 ∈ R𝑑 satisfying the constraints in the statement of the proposition.

Proposition 7.5 enables us to derive finite convex reformulations of the semi-
infinite constraints that appear in the dual of the worst-case expectation problem
(4.1) whenever the relevant objective and constraint functions are convex in 𝑧.

Another similar reformulation technique relies on the S-lemma (see e.g. Pólik
and Terlaky 2007), which we present without a proof.

Lemma 7.6 (S-lemma (Yakubovich 1971)). Assume that 𝑓 : R𝑑 → R and
𝑔 : R𝑑 → R are quadratic functions. If there exists a Slater point 𝑧 ∈ R𝑑 such
that 𝑔(𝑧) < 0, then the following two statements are equivalent.

(i) There is no 𝑧 ∈ R𝑑 such that 𝑓 (𝑧) < 0 and 𝑔(𝑧) ≤ 0.
(ii) There exists 𝛼 ∈ R+ such that 𝑓 (𝑧) + 𝛼𝑔(𝑧) ≥ 0 for all 𝑧 ∈ R𝑑 .
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The S-lemma allows us to derive a finite convex reformulations of semi-infinite
constraints that require a (possibly indefinite) quadratic function to be non-negative
over the feasible set of a single quadratic constraint. Note in particular that the
involved functions 𝑓 and 𝑔 are not required to be convex in 𝑧.

Proposition 7.7 (Semi-infinite constraints II). Assume that𝑄0, 𝑄1 ∈ S𝑑 , 𝑞0, 𝑞1 ∈
R𝑑 , and 𝑟0, 𝑟1 ∈ R. In addition, assume that there exists a Slater point 𝑧 ∈ R𝑑 such
that 𝑧⊤𝑄0𝑧 + 2𝑞⊤0 𝑧 + 𝑟0 < 0. Then the semi-infinite constraint

𝑧⊤𝑄1𝑧 + 2𝑞⊤1 𝑧 + 𝑟1 ≥ 0 ∀𝑧 ∈ R𝑑 : 𝑧⊤𝑄0𝑧 + 2𝑞⊤0 𝑧 + 𝑟0 ≤ 0

holds if and only if there exists 𝛼 ∈ R+ with[
𝑄1 + 𝛼𝑄0 𝑞1 + 𝛼𝑞0
𝑞⊤1 + 𝛼𝑞

⊤
0 𝑟1 + 𝛼𝑟0

]
⪰ 0.

Proof. We observe that

𝑧⊤𝑄1𝑧 + 2𝑞⊤1 𝑧 + 𝑟1 ≥ 0 ∀𝑧 ∈ R𝑑 : 𝑧⊤𝑄0𝑧 + 2𝑞⊤0 𝑧 + 𝑟0 ≤ 0
⇐⇒ ∃𝛼 ∈ R+ with 𝑧⊤(𝑄1 + 𝛼𝑄0) 𝑧 + 2(𝑞1 + 𝛼𝑞0)⊤𝑧 + 𝑟1 + 𝛼𝑟0 ≥ 0 ∀𝑧 ∈ R𝑑

⇐⇒ ∃𝛼 ∈ R+ with
[
𝑧

1

]⊤ [
𝑄1 + 𝛼𝑄0 𝑞1 + 𝛼𝑞0
𝑞⊤1 + 𝛼𝑞

⊤
0 𝑟1 + 𝛼𝑟0

] [
𝑧

1

]
≥ 0 ∀𝑧 ∈ R𝑑 ,

where the first equivalence applies Lemma 7.6 to 𝑓 (𝑧) = 𝑧⊤𝑄1𝑧 + 2𝑞⊤1 𝑧 + 𝑟1 and
𝑔(𝑧) = 𝑧⊤𝑄0𝑧 + 2𝑞⊤0 𝑧 + 𝑟0. As quadratic forms are homogeneous of degree 2 as
well as continuous, the last statement is equivalent to the desired positive semi-
definiteness condition. This observation concludes the proof.

Proposition 7.7 is particularly useful for deriving finite convex reformulations of
the dual worst-case expectation problems over Chebyshev or Gelbrich ambiguity
sets; see (4.5) and (4.6). As we will see, the corresponding semi-infinite constraints
fail to be convex in 𝑧, which implies that Proposition 7.5 is not applicable.

Finite convex reformulations of the dual worst-case expectation problem (4.1)
are key to solving the DRO problem (1.2). They allow us to combine the outer
minimization over 𝑥 ∈ X with the inner minimization over the auxiliary decision
variables of the dual worst-case expectation problem to obtain a finite convex refor-
mulation of (1.2). However, the finite dual reformulations of (4.1) do not allow us to
readily identify worst-case distributions that (asymptotically) attain the supremum
of (4.1). Such worst-case distributions enable decision-makers to evaluate how a
given candidate decision performs under the most challenging conditions, which
is the essence of stress testing and contamination experiments; see e.g. Dupačová
(2006). They also play a pivotal role in optimal uncertainty quantification, where
they are used to determine the sharpest possible probabilistic bounds on quantities
of interest, given limited information about the underlying probability distributions.
We direct the readers to Owhadi et al. (2013) and Ghanem, Higdon and Owhadi
(2017) for more details.
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To identify a worst-case distribution that attains the supremum of (4.1), or to
identify a sequence of distributions that attain this supremum asymptotically, we
consider the bi-dual reformulation of the worst-case expectation problem (4.1) that
results from dualizing the finite convex dual of (4.1). The bi-dual can often be
interpreted as a restriction of the worst-case expectation problem (4.1) to a subset
of distributions P ∈ P that are parametrized by finitely many decision variables.
Strong duality between problem (4.1), its dual and its bi-dual then allows us to
conclude that any optimal solution to this bi-dual problem represents a (sequence
of) distribution(s) that attains the supremum of (4.1) (asymptotically).

The idea of extracting worst-case distributions from the finite bi-dual of problem
(4.1) was formalized by Delage and Ye (2010, § 4.2) for Chebyshev ambiguity sets
and later extended to optimal transport ambiguity sets by Mohajerin Esfahani and
Kuhn (2018). In Section 7.2 we will see that, for the Chebyshev ambiguity set
(2.4) with uncertain moments, the worst-case distributions constitute mixtures of
distributions with first and second moments that are determined by the optimal
solution of the finite bi-dual problem. For 𝜙-divergence ambiguity sets centred at
a discrete distribution P̂, Section 7.3 will show that the worst-case distributions are
supported on the atoms of P̂ and (if 𝜙 grows at most linearly) on arg max𝑧∈Z ℓ(𝑧)
with probability weights determined by the optimal solution to the finite bi-dual
problem. Similarly, for the optimal transport ambiguity set (2.27) centred at a
discrete distribution P̂, Section 7.4 will show that the worst-case distributions
constitute mixtures of discrete distributions, with the locations and probability
weights of their atoms determined by the optimal solution to the finite bi-dual
problem.

7.2. Chebyshev ambiguity sets with uncertain moments

Recall that the Chebyshev ambiguity set (2.4) with uncertain moments is defined as

P = {P ∈ P2(Z) : EP [𝑍] = 𝜇, EP [𝑍𝑍⊤] = 𝑀 ∀(𝜇, 𝑀) ∈ F },
where F ⊆ R𝑑 × S𝑑+ represents a closed moment uncertainty set and P2(Z) stands
for the family of all probability distributions on Z with finite second moments.
This section combines the duality result for Chebyshev ambiguity sets (see The-
orem 4.6) with the finite dual reformulation of the ensuing semi-infinite program
(see Proposition 7.7) to derive an equivalent reformulation of nature’s subproblem
(4.1) as a finite-dimensional minimization problem. We also show how the corres-
ponding bi-dual allows us to extract worst-case distributions P★ ∈ P that attain the
optimal value of (4.1). Since the support-only ambiguity sets (see Section 2.1.1),
the Markov ambiguity sets (see Section 2.1.2), the Chebyshev ambiguity sets with
known moments (see Section 2.1.3) and the mean-dispersion ambiguity sets (see
Section 2.1.5) can all be viewed as special instances of the Chebyshev ambiguity set
with uncertain moments, our results immediately extend to those ambiguity sets as
well, and we do not re-derive the corresponding statements for the sake of brevity.
Due to its recent applications in statistics (Nguyen, Kuhn and Mohajerin Esfahani
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2022), signal processing (Nguyen et al. 2023b) and control (Taşkesen et al. 2024),
however, we report the finite dual and bi-dual reformulations of the Gelbrich am-
biguity set with moment uncertainty set (2.8). All reformulations derived in this
section leverage Lemma 7.6. Thus they require quadratic representations of the
loss function ℓ and the support set Z , as detailed in the following assumption.

Assumption 7.8 (Regularity conditions for Chebyshev ambiguity sets).

(i) The loss function ℓ is a pointwise maximum of quadratic functions,

ℓ(𝑧) = max
𝑗∈[𝐽 ]

ℓ 𝑗(𝑧) with ℓ 𝑗(𝑧) = 𝑧⊤𝑄 𝑗 𝑧 + 2𝑞⊤𝑗 𝑧 + 𝑞0
𝑗 , (7.3)

where 𝐽 ∈ N, 𝑄 𝑗 ∈ S𝑑 , 𝑞 𝑗 ∈ R𝑑 , and 𝑞0
𝑗
∈ R for all 𝑗 ∈ [𝐽].

(ii) The support set Z is an ellipsoid of the form

Z = {𝑧 ∈ R𝑑 : (𝑧 − 𝑧0)⊤𝑄0(𝑧 − 𝑧0) ≤ 1}, (7.4)

where 𝑄0 ∈ S𝑑+ and 𝑧0 ∈ R𝑑 .

Note that Assumption 7.8 does not impose any convexity conditions on the
quadratic component functions 𝑧⊤𝑄 𝑗 𝑧+2𝑞⊤

𝑗
𝑧+𝑞0

𝑗
that make up the loss function ℓ.

Theorem 7.9 (Finite dual reformulation for Chebyshev ambiguity sets). If P
is the Chebyshev ambiguity set (2.4) with any F ⊆ R𝑑 × S𝑑+ and Assumption 7.8
holds, then the worst-case expectation problem (4.1) satisfies the weak duality
relation

sup
P∈P
EP [ℓ(𝑍)] ≤


inf 𝜆0 + 𝛿∗F (𝜆,Λ)
s.t. 𝜆0 ∈ R, 𝜆 ∈ R𝑑 , Λ ∈ S𝑑 , 𝛼 ∈ R𝐽+[

Λ −𝑄 𝑗 + 𝛼 𝑗𝑄0
1
2𝜆 − 𝑞 𝑗 − 𝛼 𝑗𝑄0𝑧0( 1

2𝜆 − 𝑞 𝑗 − 𝛼 𝑗𝑄0𝑧0
)⊤

𝜆0 − 𝑞0
𝑗
+ 𝛼 𝑗(𝑧⊤0𝑄0𝑧0 − 1)

]
⪰ 0

for all 𝑗 ∈ [𝐽]. If F is a convex and compact set with 𝑀 ≻ 𝜇𝜇⊤ for all (𝜇, 𝑀) ∈
rint(F), then strong duality holds, that is, the above inequality becomes an equality.

Proof. Weak duality follows from Theorem 4.6 and from the following equivalent
reformulation of the semi-infinite constraint in the dual problem (4.5):

𝜆0 + 𝜆⊤𝑧 + 𝑧⊤Λ𝑧 ≥ ℓ(𝑧) ∀𝑧 ∈ Z
⇐⇒ 𝜆0 + 𝜆⊤𝑧 + 𝑧⊤Λ𝑧 ≥ 𝑧⊤𝑄 𝑗 𝑧 + 2𝑞⊤𝑗 𝑧 + 𝑞0

𝑗 ∀𝑧 ∈ Z ,∀ 𝑗 ∈ [𝐽]
⇐⇒ ∃𝛼 ∈ R𝐽+ with[

Λ −𝑄 𝑗 + 𝛼 𝑗𝑄0
1
2𝜆 − 𝑞 𝑗 − 𝛼 𝑗𝑄0𝑧0( 1

2𝜆 − 𝑞 𝑗 − 𝛼 𝑗𝑄0𝑧0
)⊤

𝜆0 − 𝑞0
𝑗
+ 𝛼 𝑗(𝑧⊤0𝑄0𝑧0 − 1)

]
⪰ 0 ∀ 𝑗 ∈ [𝐽]

Here the first equivalence holds thanks to Assumption 7.8 (i), and the second
equivalence follows from Proposition 7.7, which applies because 𝑧0 ∈ rint(Z)
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constitutes a Slater point thanks to Assumption 7.8 (ii). In addition, as the loss
function is quadratic, strong duality follows readily from Theorem 4.6.

Recall next that the Gelbrich ambiguity set (2.8) is defined in as an instance of
the Chebyshev ambiguity set (2.4) with moment uncertainty set

F =

{
(𝜇, 𝑀) ∈ R𝑑 × S𝑑+ : ∃Σ ∈ S

𝑑
+ with 𝑀 = Σ + 𝜇𝜇⊤,

G((𝜇, Σ), (�̂�, Σ̂)) ≤ 𝑟

}
.

Here (�̂�, Σ̂) is a nominal mean–covariance pair, and 𝑟 ≥ 0 is a size parameter. The
next result follows directly from Theorems 4.9 and 7.9. We thus omit its proof.

Theorem 7.10 (Finite dual reformulation for Gelbrich ambiguity sets). IfP is
the Chebyshev ambiguity set (2.4) withF given by (2.8) and Assumption 7.8 holds,
then the worst-case expectation problem (4.1) satisfies the weak duality relation

sup
P∈P
EP [ℓ(𝑍)]

≤



inf 𝜆0 + 𝛾(𝑟2 − ∥ �̂�∥2 − Tr(Σ̂)) + Tr(𝐴0) + 𝛼0
s.t. 𝜆0 ∈ R, 𝛼0, 𝛾 ∈ R+, 𝛼 ∈ R𝐽+ , 𝜆 ∈ R𝑑 , Λ ∈ S𝑑 , 𝐴0 ∈ S𝑑+[

Λ −𝑄 𝑗 + 𝛼 𝑗𝑄0
1
2𝜆 − 𝑞 𝑗 − 𝛼 𝑗𝑄0𝑧0( 1

2𝜆 − 𝑞 𝑗 − 𝛼 𝑗𝑄0𝑧0
)⊤

𝜆0 − 𝑞0
𝑗
+ 𝛼 𝑗(𝑧⊤0𝑄0𝑧0 − 1)

]
⪰ 0 ∀ 𝑗 ∈ [𝐽][

𝛾𝐼𝑑 − Λ 𝛾Σ̂1/2

𝛾Σ̂1/2 𝐴0

]
⪰ 0,

[
𝛾𝐼𝑑 − Λ 𝛾�̂� + 𝜆/2

(𝛾�̂� + 𝜆/2)⊤ 𝛼0

]
⪰ 0.

If 𝑟 > 0, then strong duality holds, that is, the above inequality becomes an equality.

In order to characterize the extremal distributions that attain the supremum in
the worst-case expectation problem (4.1) over Chebyshev and Gelbrich ambiguity
sets, we first derive the corresponding bi-duals of (4.1).

Theorem 7.11 (Finite bi-dual reformulation for Chebyshev ambiguity sets). If
P is the Chebyshev ambiguity set (2.4) with F ⊆ R𝑑 × S𝑑+ and Assumption 7.8
holds, then the worst-case expectation problem (4.1) satisfies the weak duality
relation

sup
P∈P

EP [ℓ(𝑍)]

≤



sup
∑︁
𝑗∈[𝐽 ]

Tr(𝑄 𝑗Θ 𝑗) + 2𝑞⊤𝑗 𝜃 𝑗 + 𝑞0
𝑗 𝑝 𝑗

s.t. 𝜇 ∈ R𝑑 , 𝑀 ∈ S𝑑+ , 𝑝 𝑗 ∈ R+, 𝜃 𝑗 ∈ R𝑑 , Θ 𝑗 ∈ S𝑑+ ∀ 𝑗 ∈ [𝐽][
Θ 𝑗 𝜃 𝑗
𝜃⊤
𝑗

𝑝 𝑗

]
⪰ 0, Tr(𝑄0Θ 𝑗) − 2𝑧⊤0𝑄0𝜃 𝑗 + 𝑧⊤0𝑄0𝑧0𝑝 𝑗 ≤ 𝑝 𝑗 ∀ 𝑗 ∈ [𝐽]∑︁

𝑗∈[𝐽 ]
𝑝 𝑗 = 1, 𝜇 =

∑︁
𝑗∈[𝐽 ]

𝜃 𝑗 , 𝑀 =
∑︁
𝑗∈[𝐽 ]

Θ 𝑗 , (𝜇, 𝑀) ∈ F .

(7.5)
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If F is a convex and compact set with 𝑀 ≻ 𝜇𝜇⊤ for all (𝜇, 𝑀) ∈ rint(F), then
strong duality holds, that is, the inequality (7.5) becomes an equality.

Proof. By decomposing the Gelbrich ambiguity set into Chebyshev ambiguity
sets of the form P(𝜇, 𝑀) = {P ∈ P(Z) : EP [𝑍] = 𝜇,EP [𝑍𝑍⊤] = 𝑀}, we obtain

sup
P∈P
EP [ℓ(𝑍)] = sup

(𝜇,𝑀)∈F
sup

P∈P(𝜇,𝑀)
EP [ℓ(𝑍)] . (7.6)

The inner maximization problem on the right-hand side of (7.6) represents a worst-
case expectation problem over an instance of the ambiguity set (2.4) with the
moment uncertainty set being the singleton {(𝜇, 𝑀)}. The support function of this
singleton is given by 𝛿∗{(𝜇,𝑀)}(𝜆,Λ) = 𝜆⊤𝜇 + Tr(Λ𝑀). Thus Theorem 7.9 implies
that the inner supremum on the right-hand side of (7.6) is bounded above by

inf 𝜆0 + 𝜆⊤𝜇 + Tr(Λ𝑀)
s.t. 𝜆0 ∈ R, 𝜆 ∈ R𝑑 , Λ ∈ S𝑑 , 𝛼 ∈ R𝐽+[

Λ −𝑄 𝑗 + 𝛼 𝑗𝑄0
1
2𝜆 − 𝑞 𝑗 − 𝛼 𝑗𝑄0𝑧0( 1

2𝜆 − 𝑞 𝑗 − 𝛼 𝑗𝑄0𝑧0
)⊤

𝜆0 − 𝑞0
𝑗
+ 𝛼 𝑗(𝑧⊤0𝑄0𝑧0 − 1)

]
⪰ 0 ∀ 𝑗 ∈ [𝐽] .

The dual of this semidefinite program can be represented as

sup
∑︁
𝑗∈[𝐽 ]

Tr(𝑄 𝑗Θ 𝑗) + 2𝑞⊤𝑗 𝜃 𝑗 + 𝑞0
𝑗 𝑝 𝑗

s.t. 𝑝 𝑗 ∈ R+, 𝜃 𝑗 ∈ R𝑑 , Θ 𝑗 ∈ S𝑑+ ∀ 𝑗 ∈ [𝐽][
Θ 𝑗 𝜃 𝑗
𝜃⊤
𝑗

𝑝 𝑗

]
⪰ 0, Tr(𝑄0Θ 𝑗) − 2𝑧⊤0𝑄0𝜃 𝑗 + 𝑧⊤0𝑄0𝑧0𝑝 𝑗 ≤ 𝑝 𝑗 ∀ 𝑗 ∈ [𝐽]∑︁

𝑗∈[𝐽 ]
𝑝 𝑗 = 1,

∑︁
𝑗∈[𝐽 ]

𝜃 𝑗 = 𝜇,
∑︁
𝑗∈[𝐽 ]

Θ 𝑗 = 𝑀.

Strong duality holds because the primal minimization problem admits a Slater
point. Indeed, by defining Λ = 𝜆0𝐼𝑑 and setting 𝜆0 to a large value, one can ensure
that the linear matrix inequality in the primal problem holds strictly. Replacing the
inner supremum on the right-hand side of (7.6) with the above dual semidefinite
program yields the upper bound in (7.5). IfF is convex and compact with𝑀 ≻ 𝜇𝜇⊤
for all (𝜇, 𝑀) ∈ rint(F), then (7.5) becomes an equality thanks to Theorem 7.9.

Note that the bi-dual reformulation in (7.5) is solvable whenever F is compact.
Indeed, its objective function is ostensibly continuous. In addition, it is easy to
verify that its feasible region is compact provided that F is compact.

Theorem 7.12 (Finite bi-dual reformulation for Gelbrich ambiguity sets). If
P is the Chebyshev ambiguity set (2.4) with F given by (2.8) and Assumption 7.8
holds, then the worst-case expectation problem (4.1) satisfies the weak duality

https://doi.org/10.1017/S0962492924000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000084


Distributionally robust optimization 711

relation

sup
P∈P
EP [ℓ(𝑍)]

≤



max
∑︁
𝑗∈[𝐽 ]

Tr(𝑄 𝑗Θ 𝑗) + 2𝑞⊤𝑗 𝜃 𝑗 + 𝑞0
𝑗 𝑝 𝑗

s.t. 𝜇 ∈ R𝑑 , 𝑀,𝑈 ∈ S𝑑+ , 𝐶 ∈ R𝑑×𝑑
𝑝 𝑗 ∈ R+, 𝜃 𝑗 ∈ R𝑑 , Θ 𝑗 ∈ S𝑑+ ∀ 𝑗 ∈ [𝐽][
𝑀 −𝑈 𝐶

𝐶⊤ Σ̂

]
⪰ 0,

[
𝑈 𝜇

𝜇⊤ 1

]
⪰ 0,

[
Θ 𝑗 𝜃 𝑗
𝜃⊤
𝑗

𝑝 𝑗

]
⪰ 0 ∀ 𝑗 ∈ [𝐽]

Tr(𝑄0Θ 𝑗) − 2𝑧⊤0𝑄0𝜃 𝑗 + 𝑧⊤0𝑄0𝑧0𝑝 𝑗 ≤ 𝑝 𝑗 ∀ 𝑗 ∈ [𝐽]∑︁
𝑗∈[𝐽 ]

𝑝 𝑗 = 1, 𝜇 =
∑︁
𝑗∈[𝐽 ]

𝜃 𝑗 , 𝑀 =
∑︁
𝑗∈[𝐽 ]

Θ 𝑗

∥ �̂�∥22 − 2𝜇⊤ �̂� + Tr(𝑀 + Σ̂ − 2𝐶) ≤ 𝑟2.

(7.7)

If 𝑟 > 0, then strong duality holds, that is, the above inequality becomes an
equality.

The proof of Theorem 7.12 follows from Proposition 2.3 and Theorem 7.11 and is
thus omitted. We are now ready to construct extremal distributions P★ ∈ P(Z) that
attain the supremum of the worst-case expectation problem (4.1) over the Chebyshev
ambiguity set (2.4). To this end, fix any maximizer (𝜇★, 𝑀★, 𝑝★, 𝜃★,Θ★) of the
bi-dual problem (7.5), which exists if F is compact. Next, define the index sets

J∞ = { 𝑗 ∈ [𝐽] : 𝑝★𝑗 = 0, Θ★𝑗 ≠ 0} and J + = { 𝑗 ∈ [𝐽] : 𝑝★𝑗 > 0},

and define J = J + ∪ J∞. The extremal distributions P★ will be constructed
as mixtures of constituent distributions P 𝑗 , 𝑗 ∈ J , corresponding to different
pieces of the loss function ℓ. In the following, we use P ∼ (𝜇, 𝑀) to indicate that
the distribution P has mean 𝜇 and second-order moment matrix 𝑀 . Note that if
Z = {𝑧 ∈ R𝑑 : (𝑧 − 𝑧0)⊤𝑄0(𝑧 − 𝑧0) ≤ 1} is the ellipsoid from Assumption 7.8 (ii)
and P ∈ P(Z) is a distribution supported on Z with P ∼ (𝜇, 𝑀), then we have

1 ≥ EP [(𝑍 − 𝑧0)⊤𝑄0(𝑍 − 𝑧0)] = Tr(𝑄0𝑀) + 2𝑧⊤0 𝜇 + 𝑧
⊤
0𝑄0𝑧0.

The inequality in the above expression holds because P ∈ P(Z), and the equality
holds because P ∼ (𝜇, 𝑀). The following lemma by Hanasusanto et al. (2015a,
Proposition 6.1) shows the reverse implication. That is, if 𝜇 and 𝑀 satisfy the
above inequality, then there is a (discrete) distribution P ∼ (𝜇, 𝑀) supported on Z .

Lemma 7.13 (Distributions on ellipsoids with given moments). If Z is the el-
lipsoid from Assumption 7.8 (ii), and if Tr(𝑄0𝑀) + 2𝑧⊤0 𝜇 + 𝑧

⊤
0𝑄0𝑧0 ≤ 1 for some

𝑀 ∈ S𝑑+ and 𝜇 ∈ R𝑑 with 𝑀 ⪰ 𝜇𝜇⊤, then there exists a discrete distribution
P ∈ P(Z) with at most 2𝑑 atoms that satisfies P ∼ (𝜇, 𝑀).

The proof of Lemma 7.13 is simple but tedious and is thus omitted.

https://doi.org/10.1017/S0962492924000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000084


712 D. Kuhn, S. Shafiee and W. Wiesemann

Theorem 7.14 (Extremal distributions of Chebyshev ambiguity sets). If all
conditions of Theorem 7.11 for weak as well as strong duality are satisfied and
(𝜇★, 𝑀★, 𝑝★, 𝜃★,Θ★) solves (7.5), then the following hold.

(i) If J∞ = ∅, then there exist discrete distributions P★
𝑗
∼ (𝜃★

𝑗
/𝑝★

𝑗
,Θ★

𝑗
/𝑝★

𝑗
)

supported on Z for all 𝑗 ∈ J +, and (4.1) is solved by P★ =
∑
𝑗∈J + 𝑝

★
𝑗
P★
𝑗
. In

addition, we have P★ ∼ (𝜇★, 𝑀★), and P★ is supported on Z .
(ii) If J∞ ≠ ∅, then there exist discrete distributions P𝑚

𝑗
∼ (𝜃★

𝑗
/𝑝𝑚

𝑗
,Θ★

𝑗
/𝑝𝑚

𝑗
)

supported on Z for all 𝑗 ∈ J , where 𝑝𝑚
𝑗
= (1 − |J∞ |/𝑚)𝑝★

𝑗
for 𝑗 ∈ J +

and 𝑝𝑚
𝑗
= 1/𝑚 for 𝑗 ∈ J∞, and where 𝑚 is any integer with 𝑚 ≥ |J∞ |. In

addition, (4.1) is asymptotically solved by P𝑚 =
∑
𝑗∈J 𝑝𝑚

𝑗
P𝑚
𝑗

as 𝑚 grows.

Proof. As for assertion (i), the constraints of problem (7.7) imply that

Tr(𝑄0Θ
★
𝑗 /𝑝★𝑗 ) − 2𝑧⊤0𝑄0𝜃

★
𝑗 /𝑝★𝑗 + 𝑧⊤0𝑄0𝑧0 ≤ 1

and [
Θ★
𝑗

𝜃★
𝑗

(𝜃★
𝑗
)⊤ 𝑝★

𝑗

]
⪰ 0 ⇐⇒ Θ★𝑗 /𝑝★𝑗 ⪰ (𝜃★𝑗 /𝑝★𝑗 )(𝜃★𝑗 /𝑝★𝑗 )⊤

for all 𝑗 ∈ J +. Lemma 7.13 thus guarantees that there exist discrete distributions
P★
𝑗
∼ (𝜃★

𝑗
/𝑝★

𝑗
,Θ★

𝑗
/𝑝★

𝑗
), 𝑗 ∈ J +, all of which are supported on Z . Consequently,

P★ =
∑
𝑗∈J + 𝑝

★
𝑗
P★
𝑗

is also supported on Z . In addition, we have

EP★ [𝑍] =
∑︁
𝑗∈J +

𝑝★𝑗 · EP★𝑗 [𝑍] =
∑︁
𝑗∈J +

𝑝★𝑗 · 𝜃★𝑗 /𝑝★𝑗 =
∑︁
𝑗∈J +

𝜃★𝑗 = 𝜇
★

and

EP★ [𝑍𝑍⊤] =
∑︁
𝑗∈J +

𝑝★𝑗 · EP★𝑗 [𝑍𝑍
⊤] =

∑︁
𝑗∈J +

𝑝★𝑗 · Θ★𝑗 /𝑝★𝑗 =
∑︁
𝑗∈J +

Θ★𝑗 = 𝑀
★,

that is, P★ ∼ (𝜇★, 𝑀★). As (𝜇★, 𝑀★) ∈ F , it is now clear that P★ ∈ P and that

EP★ [ℓ(𝑍)] ≤ sup
P∈P
EP [ℓ(𝑍)] =

∑︁
𝑗∈[𝐽 ]

Tr(𝑄 𝑗Θ
★
𝑗 ) + 2𝑞⊤𝑗 𝜃

★
𝑗 + 𝑞0

𝑗 𝑝
★
𝑗 ,

where the equality follows from strong duality as established in Theorem 7.11. At
the same time, the definition of P★ as a mixture distribution and the definition of ℓ
in (7.3) as a pointwise maximum of quadratic component functions implies that

EP★ [ℓ(𝑍)] ≥
∑︁
𝑗∈J +

𝑝★𝑗 · EP★𝑗 [ℓ 𝑗(𝑍)] =
∑︁
𝑗∈[𝐽 ]

Tr(𝑄 𝑗Θ
★
𝑗 ) + 2𝑞⊤𝑗 𝜃

★
𝑗 + 𝑞0

𝑗 𝑝
★
𝑗 .

Specifically, the inequality holds because ℓ ≥ ℓ 𝑗 for every 𝑗 ∈ [𝐽], and the equality
holds because 𝜃★

𝑗
= 0 and Θ★

𝑗
= 0 whenever 𝑝★

𝑗
= 0. Indeed, if 𝑝★

𝑗
= 0, then Θ★

𝑗
= 0

because the index set J∞ is empty, and the linear matrix inequality in (7.5) implies
that 𝜃★

𝑗
= 0 whenever Θ★

𝑗
= 0. The above inequalities thus ensure that P★ solves the

worst-case expectation problem (4.1). This completes the proof of assertion (i).
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Next, we address assertion (ii). Similar arguments as in the proof of asser-
tion (i) can be used to show that P𝑚 ∈ P for every 𝑚 ≥ |J∞ |. This implies that
EP𝑚 [ℓ(𝑍)] ≤ supP∈P EP [ℓ(𝑍)] whenever 𝑚 ≥ |J∞ |. In addition, we observe that

lim
𝑚→∞

EP𝑚 [ℓ(𝑍)] ≥ lim
𝑚→∞

∑︁
𝑗∈J

𝑝𝑚𝑗 · EP𝑚 [ℓ 𝑗(𝑍)]

=
∑︁
𝑗∈J

lim
𝑚→∞

𝑝𝑚𝑗 · EP𝑚 [ℓ 𝑗(𝑍)]

=
∑︁
𝑗∈[𝐽 ]

Tr(𝑄 𝑗Θ
★
𝑗 ) + 2𝑞⊤𝑗 𝜃

★
𝑗 + 𝑞0

𝑗 𝑝
★
𝑗

= sup
P∈P
EP [ℓ(𝑍)],

where the second equality exploits the definition of P𝑚 and the third equality follows
from strong duality as established in Theorem 7.11. This completes the proof.

Theorem 7.14 also applies to the Gelbrich ambiguity set, which constitutes a
Chebyshev ambiguity set of the form (2.4) with F given by (2.8). The extremal
distribution P★ identified in Theorem 7.14 (i) constitutes a mixture of different dis-
tributions P★

𝑗
, each of which corresponds to a component ℓ 𝑗 of the loss function ℓ;

see Assumption 7.8 (i). The mixture components P★
𝑗

may be set to any distributions
onZ that satisfy the prescribed moment conditions. Note that discrete distributions
consistent with these requirements are guaranteed to exist thanks to Lemma 7.13.
However, if Z = R𝑑 , say, then one could also set P★

𝑗
to the Gaussian distribution

with the given first and second moments. From the proof of Theorem 7.14 it
becomes clear that P★

𝑗
must be supported on {𝑧 ∈ Z : ℓ 𝑗(𝑧) ≥ ℓ 𝑗′(𝑧) ∀ 𝑗 ′ ≠ 𝑗},

which is generically non-convex. Therefore Kuhn et al. (2019, § 2.2) conjectured
that the construction of P★

𝑗
is NP-hard. From the proof of Lemma 7.13 in Hanas-

usanto et al. (2015a, § 6) it becomes clear, however, that P★
𝑗

can be constructed
efficiently. Similar comments are in order for the distributions P𝑚

𝑗
appearing in

Theorem 7.14 (ii).
If J∞ ≠ ∅, then the extremal distributions constructed in Theorem 7.14 contain

diverging mixture components whose covariance matrices explode along certain
recession directions of the support set Z (i.e. along the eigenvectors of Θ★

𝑗
, 𝑗 ∈

J∞, corresponding to non-zero eigenvalues). However, these diverging mixture
components are assigned weights that decay with their variances such that the
covariance matrix of the entire mixture distribution remains bounded.

The following lemma establishes a sufficient condition for J∞ to be empty,
which ensures via Theorem 7.14 (i) that problem (4.1) is solvable.

Lemma 7.15. If all conditions of Theorem 7.14 are satisfied and the support set
Z defined in (7.4) is compact, then J∞ = ∅, and thus problem (4.1) is solvable.
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Proof. If 𝑝★
𝑗
= 0 for some 𝑗 ∈ [𝐽], then the linear matrix inequality in (7.5) implies

that 𝜃★
𝑗
= 0. Consequently, the 𝑗 th trace inequality simplifies to Tr(𝑄0Θ

★
𝑗
) ≤ 0.

As 𝑄0 ≻ 0 because Z is compact, we thus find that Θ★
𝑗
= 0. In summary, we have

shown that 𝑝★
𝑗
= 0 implies Θ★

𝑗
= 0, and therefore J∞ is empty as desired.

We conclude this section with some remarks on worst-case expectation problems
with more generic moment ambiguity sets. Translated into our terminology, Richter
(1957) and Rogosinski (1958) show that if P = {P ∈ P(Z) : EP [ 𝑓 (𝑍)] = 𝜇} for
some 𝑓 : Z → R𝑚 and 𝜇 ∈ R𝑚, and if (4.1) is solvable, then the supremum in
(4.1) is attained by a discrete distribution with at most 𝑚 + 2 atoms. See Shapiro
et al. (2009, Theorem 7.32) for modern proof of this result. Note also that, under
the given assumptions, the worst-case expectation problem (4.1) can be recast as

sup
𝜚∈M+(Z)

{∫
Z
ℓ(𝑧) d𝜌(𝑧) :

∫
Z

d𝜌(𝑧) = 1,
∫
Z
𝑓 (𝑧) d𝜌(𝑧) = 𝜇

}
. (7.8)

Problem (7.8) constitutes an infinite-dimensional linear program over the non-
negative Borel measures on Z with 𝑚 + 1 linear equality constraints. Every
finite-dimensional linear program with non-negative variables and 𝑚 + 1 equality
constraints is known to admit an optimal basic feasible solution with at most 𝑚 + 1
non-zero entries. The infinite-dimensional analogue of a basic feasible solution is
a discrete measure with at most 𝑚 + 1 atoms. Accordingly, one can prove that if
(7.8) is solvable, then its supremum is attained by a measure with at most 𝑚 + 1
atoms (Pinelis 2016, Corollary 5 and Proposition 6(v)). This result strengthens the
Richter–Rogosinski theorem. However, the minimum number of atoms required for
an optimal measure cannot be reduced beyond𝑚+1 without additional assumptions.

The above reasoning implies that the worst-case expectation problem (4.1) and
its reformulation (7.8) as a semi-infinite linear program can be reduced to a finite-
dimensional optimization problem over the locations and probabilities of the 𝑚 + 1
atoms of a discrete measure. Finite reductions of this type are routinely studied in
optimal uncertainty quantification (Owhadi et al. 2013). However, they generically
represent non-convex optimization problems. Indeed, even the integral of a linear
function with respect to a discrete measure involves products of the probabilities
and the coordinates of the measure’s atoms. If (7.8) is solvable and ℓ is repres-
entable as a pointwise maximum of 𝐽 concave functions, then the 𝑚 + 1 atoms of
an extremal measure can be further condensed. That is, using an induction argu-
ment and an iterative application of Jensen’s inequality, one can show that (7.8) is
solved by a discrete measure with at most 𝐽 atoms (Han et al. 2015, Lemma 3.1).
This result is significant even though 𝐽 is not necessarily smaller than 𝑚 + 1. It
implies that (7.8) admits a finite reduction that optimizes over discrete measures
with 𝐽 atoms. And this (non-convex) finite reduction is intimately related to the
dual problem (4.4) derived in Theorem 4.5 through a ‘primal-worst-equals-dual-
best’ duality scheme for robust optimization problems (Beck and Ben-Tal 2009).
Specifically, (4.4) can be viewed as a ‘primal-worst’ robust optimization problem,
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and the finite reduction corresponding to discrete measures with 𝐽 atoms can be
viewed as the corresponding ‘dual-best’ optimization problem (Zhen et al. 2023).
These problems share the same optimal value under mild regularity conditions. In
addition, the (dual best) finite reduction can be convexified by applying a variable
transformation and a perspectification trick (Han et al. 2015, Theorem 1.1). The
same convex reformulation can also be obtained by dualizing the finite dual refor-
mulation of the (primal worst) problem (4.4) as outlined in Section 7.1. For further
details we refer to Zhen et al. (2023).

7.3. 𝜙-divergence ambiguity sets

Recall that the 𝜙-divergence ambiguity set (2.10) is defined as

P = {P ∈ P(Z) : D𝜙(P, P̂) ≤ 𝑟},

where 𝑟 is a size parameter, 𝜙 is an entropy function in the sense of Definition 2.4,
D𝜙 is the corresponding 𝜙-divergence in the sense of Definition 2.5, and P̂ ∈ P(Z)
is a reference distribution. In the following, we first demonstrate that the worst-case
expectation problem (4.1) over a 𝜙-divergence ambiguity sets can be reformulated
as a finite convex program whenever P̂ is discrete and ℓ is real-valued.

Assumption 7.16 (Discrete reference distribution). We have P̂ =
∑
𝑖∈[𝑁 ] 𝑝𝑖𝛿 �̂�𝑖

for some 𝑁 ∈ N, where the probabilities 𝑝𝑖 , 𝑖 ∈ [𝑁], are strictly positive and sum
to 1, and where 𝑧𝑖 ∈ Z for every 𝑖 ∈ [𝑁]. In addition, ℓ(𝑧) ∈ R for all 𝑧 ∈ Z .

The requirement that 𝑝𝑖 be positive for every 𝑖 ∈ [𝑁] is non-restrictive because
atoms with zero probability can simply be eliminated without changing P̂.

Theorem 7.17 (Finite dual reformulation for 𝜙-divergence ambiguity sets). If
P is the 𝜙-divergence ambiguity set (2.10) and Assumption 7.16 holds, then the
worst-case expectation problem (4.1) satisfies the weak duality relation

sup
P∈P
EP [ℓ(𝑍)] ≤


inf

𝜆0∈R,𝜆∈R+
𝜆0 + 𝜆𝑟 +

∑︁
𝑖∈[𝑁 ]

𝑝𝑖 · (𝜙∗)𝜋(ℓ(𝑧𝑖) − 𝜆0, 𝜆)

s.t. 𝜆0 + 𝜆 𝜙∞(1) ≥ sup
𝑧∈Z

ℓ(𝑧),
(7.9)

where the product 𝜆 𝜙∞(1) is assumed to evaluate to ∞ if 𝜆 = 0 and 𝜙∞(1) = ∞.
If 𝑟 > 0 and 𝜙 is continuous at 1, then strong duality holds, that is, the above
inequality becomes an equality.

Theorem 7.17 is an immediate corollary of Theorem 4.11. Indeed, problem (7.9)
is obtained from (4.11) by re-expressing the integral with respect to the discrete
reference distribution P̂ as a weighted sum. Thus no proof is required. Recall
now that the restricted 𝜙-divergence ambiguity set is defined as the set of all
distributions P ∈ P with P ≪ P̂. It is straightforward to verify that if P is discrete,
then the corresponding worst-case expectation problem (4.1) admits a finite convex
reformulation that is given by a relaxation of (7.9) without constraints. Details
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are omitted for brevity. Next, we derive a finite convex program dual to (7.9) that
allows us to construct an extremal distribution.

Theorem 7.18 (Finite bi-dual reformulations for 𝜙-divergence ambiguity sets).
If P is the 𝜙-divergence ambiguity set (2.10), Assumption 7.16 holds, 𝑟 > 0 and 𝜙
is continuous at 1, then problem (4.1) satisfies the strong duality relation

sup
P∈P
EP [ℓ(𝑍)] =



max
𝑝0,..., 𝑝𝑁 ∈R+

𝑝0ℓ +
∑︁
𝑖∈[𝑁 ]

𝑝𝑖ℓ(𝑧𝑖)

s.t. 𝑝0 +
∑︁
𝑖∈[𝑁 ]

𝑝𝑖 = 1

𝑝0𝜙
∞(1) +

∑︁
𝑖∈[𝑁 ]

𝑝𝑖𝜙

(
𝑝𝑖

𝑝𝑖

)
≤ 𝑟,

(7.10)

where ℓ is shorthand for sup𝑧∈Z ℓ(𝑧). The product 𝑝0𝜙
∞(1) is assumed to equal

0 if 𝑝0 = 0 and 𝜙∞(1) = ∞. Similarly, 𝑝0ℓ is assumed to equal 0 if 𝑝0 = 0 and
ℓ = ∞.

The finite bi-dual reformulation (7.10) can readily be derived from the primal
worst-case expectation problem (4.1) or from its finite dual reformulation (7.9).
We find it insightful to derive (7.10) from (7.9). This is also more consistent with
the general proof strategy outlined in Section 7.1. We will briefly touch on the
derivation of (7.10) from the primal problem (4.1) after the proof.

Proof of Theorem 7.18. Assume first that 𝜙∞(1) < ∞. Under the assumptions
stated in the theorem, the worst-case expectation problem (4.1) and its dual (7.9)
share the same optimal value thanks to Theorem 7.17. By dualizing the single
explicit constraint in (4.11) and using Lemma 7.1 (i), we thus find

sup
P∈P
EP [ℓ(𝑍)]

= inf
𝜆0∈R,𝜆∈R+

𝜆0 + 𝜆𝑟 +
∑︁
𝑖∈[𝑁 ]

𝑝𝑖

(
sup
𝑦𝑖∈R+

𝑦𝑖(ℓ(𝑧𝑖) − 𝜆0) − 𝜆𝜙(𝑦𝑖)
)

+ sup
𝑝0∈R+

(ℓ − 𝜆0 − 𝜆𝜙∞(1)) 𝑝0.

Interchanging the infima and suprema and rearranging terms further yields

sup
P∈P
EP [ℓ(𝑍)]

= sup
𝑝0,𝑦1,...,𝑦𝑁 ∈R+

𝑝0ℓ +
∑︁
𝑖∈[𝑁 ]

𝑝𝑖𝑦𝑖ℓ(𝑧𝑖) + inf
𝜆0∈R

(
1 − 𝑝0 −

∑︁
𝑖∈[𝑁 ]

𝑝𝑖𝑦𝑖

)
𝜆0

+ inf
𝜆∈R+

(
𝑟 − 𝑝0𝜙

∞(1) −
∑︁
𝑖∈[𝑁 ]

𝜙(𝑦𝑖)

)
𝜆

https://doi.org/10.1017/S0962492924000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000084


Distributionally robust optimization 717

=


sup

𝑝0,𝑦0...,𝑦𝑁 ∈R+
𝑝0ℓ +

∑︁
𝑖∈[𝑁 ]

𝑝𝑖𝑦𝑖ℓ(𝑧𝑖)

s.t. 𝑝0 +
∑︁
𝑖∈[𝑁 ]

𝑝𝑖𝑦𝑖 = 1, 𝑝0𝜙
∞(1) +

∑︁
𝑖∈[𝑁 ]

𝑝𝑖𝜙(𝑦𝑖) ≤ 𝑟.

The first equality in the above expression follows from strong duality, which holds
because 𝑟 > 0 and 𝜙 is continuous at 1. Indeed, these conditions ensure that the
resulting maximization problem admits a Slater point with 𝑝0 = 0 and 𝑦𝑖 = 1 for
all 𝑖 ∈ [𝑁]. The substitution 𝑝𝑖 ← 𝑝𝑖𝑦𝑖 , 𝑖 ∈ [𝑁], finally shows that the obtained
problem is equivalent to (7.10). This proves the claim for 𝜙∞(1) < ∞.

Suppose next that 𝜙∞(1) = ∞, in which case 0 𝜙∞(1) evaluates to∞. Hence the
constraint in (4.11) is satisfied for any (𝜆0, 𝜆) ∈ R × R+ and is thus redundant. Re-
peating the steps from the first part of the proof, with obvious minor modifications,
shows that (7.10) still holds if we assume that 𝑝0𝜙

∞(1) and 𝑝0ℓ evaluate to 0 when
𝑝0 = 0. Indeed, this means that 𝑝0 = 0 is the only feasible solution in (7.10), and
problem (7.10) can be simplified by eliminating 𝑝0 altogether.

The finite bi-dual reformulation on the right-hand side of (7.10) has a linear
objective function and a compact convex feasible region. Therefore it is solvable
thanks to Weierstrass’s maximum theorem. In particular, note that the feasible
region is a subset of the probability simplex in R𝑁+1. If there exists a worst-case
scenario 𝑧0 ∈ arg max𝑧∈Z ℓ(𝑧) (which must satisfy ℓ(𝑧0) = ℓ), then any maximizer
𝑝★ of the bi-dual can be used to construct an extremal distribution P★ =

∑𝑁
𝑖=0 𝑝

★
𝑖
𝛿 �̂�𝑖

for the worst-case expectation problem (4.1). Indeed, the constraints of problem
(7.10) ensure that 𝑝★0 , . . . , 𝑝

★
𝑁

are non-negative probabilities that sum to 1. Thus
P★ is a valid distribution supported on Z . Setting 𝜌 =

∑𝑁
𝑖=0 𝛿 �̂�𝑖 , we also find

D𝜙(P★, P̂) =
∫
Z
𝜙𝜋
(

dP
d𝜌

(𝑧),
dP̂
d𝜌

(𝑧)
)

d𝜌(𝑧)

= 𝜙𝜋(𝑝★0 , 0) +
∑︁
𝑖∈[𝑁 ]

𝜙𝜋(𝑝★𝑖 , 𝑝𝑖)

≤ 𝑟,

where the first equality exploits the definition of D𝜙, and the second equality
exploits our choice of the reference distribution 𝜌. In addition, the inequality
follows from the constraints of problem (7.10) and the observation that

𝜙𝜋(𝑝★0 , 0) = 𝜙∞(𝑝★0 ) = 𝑝★0 𝜙
∞(1).

This confirms that P★ is feasible in (4.1). Also, its objective function value equals

EP★ [ℓ(𝑍)] =
𝑁∑︁
𝑖=0

𝑝★𝑖 ℓ(𝑧𝑖).

As ℓ(𝑧0) = ℓ, we may conclude that EP★ [ℓ(𝑍)] coincides with the maximum of the
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bi-dual reformulation in (7.10), which in turn matches the supremum of (4.1) by
virtue of Theorem 7.18. Hence P★ is indeed a maximizer of problem (4.1).

Recall that if 𝜙∞(1) = ∞, then D𝜙(P, P̂) = ∞ unless P ≪ P̂. Therefore every
distribution P in a 𝜙-divergence ambiguity set around P̂ must be absolutely con-
tinuous with respect to P̂. If 𝜙∞(1) < ∞, on the other hand, then P can assign a
positive probability to points in Z that have zero probability under P̂. Note that
D𝜙(P, P̂) only depends on how much probability mass P removes from the support
of P̂, but it does not depend on where that probability mass is moved. As nature
aims to maximize the expected loss, it will move all of this probability mass to a
point with maximal loss within Z (i.e. to some point 𝑧0 ∈ arg max𝑧∈Z ℓ(𝑧)).

If P is the restricted 𝜙-divergence ambiguity set (2.11), Assumption 7.16 holds,
𝑟 > 0 and 𝜙 is continuous at 1, then Theorem 7.18 remains valid with a minor
modification. That is, one must append the constraint 𝑝0 = 0 to the finite bi-dual
reformulation on the right-hand side of (7.10). Details are omitted for brevity.

7.4. Optimal transport ambiguity sets

Recall that the optimal transport ambiguity set (2.27) is defined as

P = {P ∈ P(Z) : OT𝑐(P, P̂) ≤ 𝑟},

where 𝑟 ≥ 0 is a size parameter, 𝑐 is a transportation cost function in the sense of
Definition 2.14, OT𝑐 is the corresponding optimal transport discrepancy in the sense
of Definition 2.15, and P̂ ∈ P(Z) is a reference distribution. We will first show that
the worst-case expectation problem (4.1) over an optimal transport ambiguity set
can often be reformulated as a finite convex minimization problem. To this end, we
restrict attention to discrete reference distributions as in Assumption 7.16, and we
impose convexity conditions on the transportation cost function, the loss function
and the support set Z . In addition, we impose a mild technical condition on the
support points of the discrete reference distribution P̂.

Assumption 7.19 (Regularity conditions for optimal transport ambiguity sets).

(i) The loss function ℓ is a pointwise maximum of 𝐽 ∈ N concave functions, that
is, ℓ(𝑧) = max 𝑗∈[𝐽 ] ℓ 𝑗(𝑧), where −ℓ 𝑗 : Z → R is proper, convex and closed.

(ii) The support set is representable as Z = {𝑧 ∈ R𝑑 : 𝑔𝑘(𝑧) ≤ 0 ∀𝑘 ∈ [𝐾]} for
some 𝐾 ∈ N, where 𝑔𝑘 : Z → R is proper, convex and closed.

(iii) The transportation cost function 𝑐(𝑧, 𝑧) is convex in 𝑧 for every fixed 𝑧 ∈ Z .
(iv) The support point 𝑧𝑖 belongs to rint(dom(𝑐(·, 𝑧𝑖))) and constitutes a Slater

point for Z in the sense of Definition 7.3 for every 𝑖 ∈ [𝑁].

Assumption 7.19 (i) is non-restrictive because any continuous function ℓ on a
compact set Z can be uniformly approximated by a pointwise maximum of finitely
many concave functions ℓ 𝑗 , 𝑗 ∈ [𝐽], albeit maybe at the expense of requiring
large numbers 𝐽 of pieces. Assumptions 7.19 (ii) and (iii) are restrictive but
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satisfied by support sets and transportation cost functions commonly encountered
in applications. Finally, Assumption 7.19 (iv) is of a purely technical nature and
can always be enforced by slightly perturbing the problem data.

Theorem 7.20 (Finite dual reformulation for optimal transport ambiguity sets).
If P is the optimal transport ambiguity set (2.27) and Assumptions 7.16 and 7.19
hold, then the worst-case expectation problem (4.1) obeys the weak duality relation

sup
P∈P
EP [ℓ(𝑍)]

≤



inf 𝜆𝑟 +
∑︁
𝑖∈[𝑁 ]

𝑝𝑖𝑠𝑖

s.t. 𝜆 ∈ R+, 𝛼𝑖 𝑗𝑘 ∈ R+, 𝑠𝑖 ∈ R ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽], 𝑘 ∈ [𝐾]
𝜁ℓ
𝑖 𝑗
, 𝜁 𝑐
𝑖 𝑗
, 𝜁
𝑔

𝑖 𝑗𝑘
∈ R𝑑 ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽], 𝑘 ∈ [𝐾]

(−ℓ 𝑗)∗(𝜁ℓ𝑖 𝑗) + (𝑐∗
𝑖
)𝜋(𝜁 𝑐

𝑖 𝑗
, 𝜆)

+
∑︁
𝑘∈[𝐾 ]

(𝑔∗𝑘)
𝜋(𝜁𝑔

𝑖 𝑗𝑘
, 𝛼𝑖 𝑗𝑘) ≤ 𝑠𝑖 ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽]

𝜁ℓ𝑖 𝑗 + 𝜁 𝑐𝑖 𝑗 +
∑︁
𝑘∈[𝐾 ]

𝜁
𝑔

𝑖 𝑗𝑘
= 0 ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽],

(7.11)

where 𝑐𝑖 : Z → R is defined by 𝑐𝑖(𝑧) = 𝑐(𝑧, 𝑧𝑖) for every 𝑖 ∈ [𝑁]. If 𝑟 > 0, then
strong duality holds, that is, the above inequality becomes an equality.

The dual minimization problem of Theorem 7.20 constitutes a finite convex
program because the conjugates (−ℓ 𝑗)∗, 𝑐∗𝑖 and 𝑔∗

𝑘
and their perspectives are convex

functions. It accommodates 𝑂(𝑁𝐽𝐾) decision variables and 𝑂(𝑁𝐽) constraints.

Proof of Theorem 7.20. By Theorem 4.18, we have

sup
P∈P
EP [ℓ(𝑍)] ≤


inf 𝜆𝑟 +

∑︁
𝑖∈[𝑁 ]

𝑝𝑖𝑠𝑖

s.t. 𝜆 ∈ R+, 𝑠𝑖 ∈ R ∀𝑖 ∈ [𝑁]
sup
𝑧∈Z

ℓ(𝑧) − 𝜆𝑐(𝑧, 𝑧𝑖) ≤ 𝑠𝑖 ∀𝑖 ∈ [𝑁],

where 𝑠𝑖 represents an auxiliary epigraphical decision variable for any 𝑖 ∈ [𝑁].
By Assumption 7.19 (i) and the definition of the functions 𝑐𝑖 , 𝑖 ∈ [𝑁], the above
minimization problem is equivalent to the following robust convex program:

inf 𝜆𝑟 +
∑︁
𝑖∈[𝑁 ]

𝑝𝑖𝑠𝑖

s.t. 𝜆 ∈ R+, 𝑠𝑖 ∈ R
sup
𝑧∈Z

ℓ 𝑗(𝑧) − 𝜆𝑐𝑖(𝑧) ≤ 𝑠𝑖 ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽] .
(7.12)

For any fixed 𝑖 ∈ [𝑁] and 𝑗 ∈ [𝐽], Assumptions 7.19 (i) and 7.19 (ii) imply that the
embedded maximization problem over 𝑧 constitutes a convex program. In addition,
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this problem admits a Slater point 𝑧𝑖 thanks to Assumptions 7.19 (i) and 7.19 (iv).
In order to dualize this convex program, we first recall from Lemma 7.2 that the
conjugate of 𝑓 (𝑧) = −ℓ 𝑗(𝑧) + 𝜆𝑐𝑖(𝑧) at 𝜁 ∈ R𝑑 can be represented as

𝑓 ∗(𝜁) = min
𝜁 ℓ
𝑖 𝑗
,𝜁 𝑐
𝑖 𝑗
∈R𝑑

{
(−ℓ 𝑗)∗

(
𝜁ℓ𝑖 𝑗

)
+ (𝑐∗𝑖 )

𝜋
(
𝜁 𝑐𝑖 𝑗 , 𝜆

)
: 𝜁ℓ𝑖 𝑗 + 𝜁 𝑐𝑖 𝑗 = 𝜁

}
.

By Theorem 7.4, we thus obtain

sup
𝑧∈Z

ℓ 𝑗(𝑧) − 𝜆𝑐𝑖(𝑧) =



min (−ℓ 𝑗)∗(𝜁ℓ𝑖 𝑗) + (𝑐∗𝑖 )
𝜋
(
𝜁 𝑐𝑖 𝑗 , 𝜆

)
+

∑︁
𝑘∈[𝐾 ]

(𝑔∗𝑘)
𝜋
(
𝜁
𝑔

𝑖 𝑗𝑘
, 𝛼𝑖 𝑗𝑘

)
s.t. 𝛼𝑖 𝑗𝑘 ∈ R+, 𝜁ℓ𝑖 𝑗 , 𝜁 𝑐𝑖 𝑗 , 𝜁

𝑔

𝑖 𝑗𝑘
∈ R𝑑 ∀𝑘 ∈ [𝐾]

𝜁ℓ𝑖 𝑗 + 𝜁 𝑐𝑖 𝑗 +
∑︁
𝑘∈[𝐾 ]

𝜁
𝑔

𝑖 𝑗𝑘
= 0.

Next, we replace each embedded maximization problem in (7.12) with its equivalent
dual minimization problem, and we eliminate the corresponding minimization
operators, which is allowed because all minima are attained. This yields the
desired finite convex reformulation of the problem dual to (4.1), and it establishes
weak duality. If 𝑟 > 0, then strong duality follows from Theorem 4.18.

The finite convex reformulation of Theorem 7.20 was first derived under the more
restrictive assumption that 𝑐(𝑧, 𝑧) = ∥𝑧−𝑧∥ by Mohajerin Esfahani and Kuhn (2018,
Theorem 4.2) and later generalized to arbitrary convex transportation cost functions
by Zhen et al. (2023, § 6). We next derive a finite convex bi-dual for the worst-case
expectation problem (4.1) over the optimal transport ambiguity set (2.27), which
forms the basis for identifying extremal distributions that (asymptotically) attain
the supremum in (4.1). Our derivation will rely on the following two lemmas.

First, we derive a formula for the conjugate of a scaled perspective function.

Lemma 7.21 (Conjugates of scaled perspectives I). If 𝑓 : R𝑑 → R is proper,
convex and closed, and if 𝛼 ∈ R+, then, for all 𝑦 ∈ R𝑑 and 𝑦0 ∈ R, we have

(𝛼 𝑓 𝜋)∗(𝑦, 𝑦0) =

{
0 if ( 𝑓 ∗)𝜋(𝑦, 𝛼) ≤ −𝑦0,

∞ otherwise.

Proof. Assume first that 𝛼 > 0. If 𝜆 > 0, then we have

𝛼 𝑓 𝜋(𝑧, 𝜆) = 𝛼𝜆 𝑓 (𝑧/𝜆) = (𝛼 𝑓 )𝜋(𝑧, 𝜆) for all 𝑧 ∈ R𝑑 .

Similarly, if 𝜆 = 0, then 𝛼 𝑓 𝜋(𝑧, 𝜆) = 𝛼 𝑓∞(𝑧) = (𝛼 𝑓 )∞(𝑧) = (𝛼 𝑓 )𝜋(𝑧, 𝜆) for all
𝑧 ∈ R𝑑 . We have thus shown that 𝛼 𝑓 𝜋 = (𝛼 𝑓 )𝜋 . Next, define the set

C = {(𝑦, 𝑦0) ∈ R𝑑 × R : (𝛼 𝑓 )∗(𝑦) ≤ −𝑦0}
= {(𝑦, 𝑦0) ∈ R𝑑 × R : ( 𝑓 ∗)𝜋(𝑦, 𝛼) ≤ −𝑦0},

where the second equality follows from the definition of the perspective function.
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By Rockafellar (1970, Corollary 13.5.1), we have (𝛼 𝑓 )𝜋 = 𝛿∗C . As C is closed, this
implies that ( 𝑓 𝜋)∗ = 𝛿∗∗C = 𝛿C , and thus the claim follows for 𝛼 > 0.

Assume next that 𝛼 = 0. In this case we have 𝛼 𝑓 𝜋 = 𝛿dom( 𝑓 𝜋 ) thanks to our rules
of extended arithmetic. This observation implies that

(𝛼 𝑓 𝜋)∗(𝑦, 𝑦0) = 𝛿∗dom( 𝑓 𝜋 )(𝑦, 𝑦0)

= sup
𝜆∈R++

sup
𝑧∈R𝑑
{𝑦⊤𝑧 + 𝑦0𝜆 : (𝑧, 𝜆) ∈ dom( 𝑓 𝜋)}

= sup
𝜆∈R++

𝜆 sup
𝑧∈R𝑑
{𝑦⊤(𝑧/𝜆) : 𝑧/𝜆 ∈ dom( 𝑓 )} + 𝑦0𝜆

= sup
𝜆∈R++

𝜆𝛿∗dom( 𝑓 )(𝑦) + 𝜆𝑦0

=

{
0 if 𝛿∗dom( 𝑓 )(𝑦) + 𝑦0 ≤ 0,
∞ otherwise.

Note that it is sufficient to optimize only over 𝜆 > 0 because dom( 𝑓 𝜋) ⊆ R𝑑 × R+.
As 𝑓 is convex and closed, we have 𝑓 = 𝑓 ∗∗ thanks to Lemma 4.2, and thus we find

𝛿∗dom( 𝑓 )(𝑦) = 𝛿∗dom( 𝑓 ∗∗)(𝑦) = ( 𝑓 ∗)∞(𝑦) = ( 𝑓 ∗)𝜋(𝑦, 0),

where the second and third equalities follow from Rockafellar (1970, Theorem 13.3)
and from the definition of the perspective, respectively. Combining the above
observations proves the claim for 𝛼 = 0.

The next lemma derives a formula for the conjugate of a sum of scaled per-
spectives. It thus generalizes Lemma 7.21, which addresses only one single scaled
perspective, and it is also related to Lemma 7.2, which characterizes the conjugate
of a sum of arbitrary convex functions – not necessarily scaled perspectives.

Lemma 7.22 (Conjugates of perspective functions II). Suppose that 𝑓𝑖 : R𝑑 →
R, 𝑖 ∈ [𝑚], are proper, convex and closed and that there is 𝑧 ∈ ∩𝑖∈[𝑚] rint(dom( 𝑓𝑖)).
Let 𝑓 (𝑧1, . . . , 𝑧𝑚, 𝜆) =

∑
𝑖∈[𝑚] 𝛼𝑖 𝑓

𝜋
𝑖

(𝑧𝑖 , 𝜆) be a weighted sum of the corresponding
perspective functions with weight vector 𝛼 ∈ R𝑚+ . Then the conjugate of 𝑓 satisfies

𝑓 ∗(𝑦1, . . . , 𝑦𝑚, 𝑦0) =


0

{
if ∃𝛽 ∈ R𝑚 with

∑
𝑖∈[𝑚] 𝛽𝑖 = 𝑦0 and

( 𝑓 ∗
𝑖

)𝜋(𝑦𝑖 , 𝛼𝑖) ≤ −𝛽𝑖 ∀𝑖 ∈ [𝑚],
∞ otherwise.

Proof. By using a variable splitting trick as in the proof of Lemma 7.2, we find

𝑓 ∗(𝑦1, . . . , 𝑦𝑚, 𝑦0) = sup
𝑧1,...,𝑧𝑚∈R𝑑

sup
𝜆∈R+

𝑦0𝜆 +
∑︁
𝑖∈[𝑚]

𝑦⊤𝑖 𝑧𝑖 −
∑︁
𝑖∈[𝑚]

𝛼𝑖 𝑓
𝜋
𝑖 (𝑧𝑖 , 𝜆)

=


sup

𝑧1,...,𝑧𝑚∈R𝑑
𝜆∈R, 𝜆1,...,𝜆𝑚∈R+

𝑦0𝜆 +
∑︁
𝑖∈[𝑚]

𝑦⊤𝑖 𝑧𝑖 − 𝛼𝑖 𝑓 𝜋𝑖 (𝑧𝑖 , 𝜆𝑖)

s.t. 𝜆𝑖 = 𝜆 𝑖 ∈ [𝑚] .
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The resulting convex maximization problem admits a Slater point. To see this,
recall that there exists 𝑧 ∈ ∩𝑖∈[𝑚] rint(dom( 𝑓𝑖)). As dom( 𝑓 𝜋) is contained in the
cone generated by dom( 𝑓 ) × {1}, we may thus conclude that the solution with
𝜆 = 1, 𝜆𝑖 = 1 and 𝑧𝑖 = 𝑧 for all 𝑖 ∈ [𝑚] constitutes a Slater point. Therefore the
above maximization problem admits a strong Lagrangian dual, that is, we have

𝑓 ∗(𝑦1, . . . , 𝑦𝑚, 𝑦0)

= min
𝛽1,...,𝛽𝑚∈R

sup
𝑧1,...,𝑧𝑚∈R𝑑

𝜆∈R, 𝜆1,...,𝜆𝑚∈R+

𝑦0𝜆 +
∑︁
𝑖∈[𝑚]

𝑦⊤𝑖 𝑧𝑖 − 𝛼𝑖 𝑓 𝜋𝑖 (𝑧𝑖 , 𝜆𝑖) + 𝛽𝑖(𝜆𝑖 − 𝜆)

= min
𝛽1,...,𝛽𝑚∈R

{ ∑︁
𝑖∈[𝑚]

(𝛼𝑖 𝑓 𝜋𝑖 )∗(𝑦𝑖 , 𝛽𝑖) :
∑︁
𝑖∈[𝑚]

𝛽𝑖 = 𝑦0

}
;

see also Theorem 7.4. By Lemma 7.21, we further have (𝛼𝑖 𝑓 𝜋𝑖 )∗ = 𝛿C𝑖 , where

C𝑖 = {(𝑦, 𝑦0) ∈ R𝑑 × R : ( 𝑓 ∗𝑖 )𝜋(𝑦, 𝛼𝑖) ≤ −𝑦0}

for all 𝑖 ∈ [𝑚]. Substituting this alternative expression for (𝛼𝑖 𝑓 𝜋𝑖 )∗ into the above
dual problem yields the desired formula. Thus the claim follows.

We emphasize that Lemmas 7.21 and 7.22 are complementary to Lemma 4.11.
Indeed, while Lemma 4.11 evaluates the conjugate only with respect to the first
argument of a perspective function, Lemmas 7.21 and 7.22 do so with respect to
both arguments. We are now ready to derive a finite bi-dual reformulation of the
worst-case expectation problem over an optimal transport ambiguity set.

Theorem 7.23 (Finite bi-dual reformulation for optimal transport ambiguity
sets). If P is the optimal transport ambiguity set (2.27) and Assumptions 7.16
and 7.19 hold, then the worst-case expectation problem (4.1) satisfies the weak
duality relation

sup
P∈P
EP [ℓ(𝑍)]

≤



sup
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

−(−ℓ 𝑗)𝜋(𝑝𝑖 𝑗 𝑧𝑖 + 𝑧𝑖 𝑗 , 𝑝𝑖 𝑗)

s.t. 𝑝𝑖 𝑗 ∈ R+, 𝑧𝑖 𝑗 ∈ R𝑑 ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽]
𝑔𝜋𝑘 (𝑝𝑖 𝑗 𝑧𝑖 + 𝑧𝑖 𝑗 , 𝑝𝑖 𝑗) ≤ 0 ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽], 𝑘 ∈ [𝐾]∑︁
𝑗∈[𝐽 ]

𝑝𝑖 𝑗 = 𝑝𝑖 ∀𝑖 ∈ [𝑁]∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

𝑐𝜋𝑖 (𝑝𝑖 𝑗 𝑧𝑖 + 𝑧𝑖 𝑗 , 𝑝𝑖 𝑗) ≤ 𝑟,

(7.13)

where 𝑐𝑖 : Z → R is defined by 𝑐𝑖(𝑧) = 𝑐(𝑧, 𝑧𝑖) for every 𝑖 ∈ [𝑁]. If 𝑟 > 0, then
strong duality holds, that is, the above inequality becomes an equality.
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Proof. We will show that (7.13) is obtained by dualizing the finite dual reformula-
tion (7.11) of problem (4.1). To see this, we assign Lagrange multipliers 𝑝𝑖 𝑗 ∈ R+
and 𝑧𝑖 𝑗 ∈ R𝑑 , 𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽], to the first and second constraint groups in (7.11),
respectively. The Lagrangian dual of (7.11) can then be represented compactly as

sup
𝑝≥0,𝑧

inf
𝜆≥0,𝛼≥0
𝑠,𝜁 ℓ ,𝜁 𝑐 ,𝜁 𝑔

𝐿1(𝑠; 𝑝, 𝑧) + 𝐿2(𝜁ℓ ; 𝑝, 𝑧) + 𝐿3(𝜆, 𝜁 𝑐; 𝑝, 𝑧, 𝜆) + 𝐿4(𝛼, 𝜁𝑔; 𝑝, 𝑧),

where the Lagrangian is additively separable with respect to four disjoint groups
of primal decision variables, namely 𝑠, 𝜁ℓ , (𝜆, 𝜁 𝑐) and (𝛼, 𝜁𝑔). The corresponding
partial Lagrangians are defined as follows:

𝐿1(𝑠; 𝑝, 𝑧) =
∑︁
𝑖∈[𝑁 ]

𝑝𝑖𝑠𝑖 −
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

𝑝𝑖 𝑗 𝑠𝑖 ,

𝐿2(𝜁ℓ ; 𝑝, 𝑧) =
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

𝑝𝑖 𝑗 · (−ℓ 𝑗)∗(𝜁ℓ𝑖 𝑗) − 𝑧⊤𝑖 𝑗𝜁ℓ𝑖 𝑗 ,

𝐿3(𝜆, 𝜁 𝑐; 𝑝, 𝑧) = 𝜆𝑟 +
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

𝑝𝑖 𝑗 · (𝑐∗𝑖 )𝜋(𝜁 𝑐𝑖 𝑗 , 𝜆) − 𝑧⊤𝑖 𝑗𝜁 𝑐𝑖 𝑗 ,

𝐿4(𝛼, 𝜁𝑔; 𝑝, 𝑧) =
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

∑︁
𝑘∈[𝐾 ]

𝑝𝑖 𝑗 · (𝑔∗𝑘)
𝜋(𝜁𝑔

𝑖 𝑗𝑘
, 𝛼𝑖 𝑗𝑘) − 𝑧⊤𝑖 𝑗𝜁

𝑔

𝑖 𝑗𝑘
.

These partial Lagrangians can be minimized separately with respect to the primal
decision variables. For example, an elementary calculation shows that

inf
𝑠
𝐿1(𝑠; 𝑝, 𝑧) =


0 if

∑︁
𝑗∈[𝐽 ]

𝑝𝑖 𝑗 = 𝑝𝑖 ∀𝑖 ∈ [𝑁],

−∞ otherwise.

Recall now that−ℓ 𝑗 is proper, convex and closed, which implies via Lemma 4.2 that
(−ℓ 𝑗)∗∗ = −ℓ 𝑗 . Note also that minimizing 𝐿2(𝜁ℓ ; 𝑝, 𝑧) with respect to 𝜁ℓ amounts to
evaluating the conjugate of a sum of conjugates with mutually different arguments.
By using Lemma 7.1 (i) and applying a few elementary manipulations, we thus find

inf
𝜁 ℓ
𝐿2(𝜁ℓ ; 𝑝, 𝑧) =

∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

−(−ℓ 𝑗)𝜋(𝑧𝑖 𝑗 , 𝑝𝑖 𝑗).

Similarly, recall that 𝑐𝑖 is proper, convex and closed such that 𝑐∗∗
𝑖

= 𝑐𝑖 . Note also
that minimizing 𝐿3(𝜆, 𝜁 𝑐; 𝑝, 𝑧) with respect to 𝜆 and 𝜁 𝑐 amounts to evaluating the
conjugate of a sum of perspective functions with one common argument. By using
Lemma 7.22 and applying a few elementary manipulations, we thus find

inf
𝜆≥0,𝜁 𝑐

𝐿3(𝜆, 𝜁 𝑐; 𝑝, 𝑧) =


0

{
if ∃𝛽𝑖 𝑗 ∈ R𝑚 with

∑
𝑖∈[𝑁 ]

∑
𝑗∈[𝐽 ] 𝛽𝑖 𝑗 = 𝑟 and

𝑐𝜋
𝑖

(𝑧𝑖 𝑗 , 𝑝𝑖 𝑗) ≤ 𝛽𝑖 𝑗 ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽],
−∞ otherwise.
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Finally, recall that 𝑔𝑘 is proper, convex and closed such that 𝑔∗∗
𝑘

= 𝑔𝑘 . Note also
that minimizing 𝐿4(𝛼, 𝜁𝑔; 𝑝, 𝑧) with respect to 𝛼 and 𝜁𝑔 amounts to evaluating the
conjugate of a sum of perspective functions with mutually different arguments. By
using Lemma 7.21 and applying a few elementary manipulations, we thus find

inf
𝛼≥0,𝜁 𝑔

𝐿4(𝛼, 𝜁𝑔; 𝑝, 𝑧) =

{
0 if 𝑔𝜋

𝑘
(𝑧𝑖 𝑗 , 𝑝𝑖 𝑗) ≤ 0 ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽], 𝑘 ∈ [𝐾],

−∞ otherwise.

Substituting the infima of the partial Lagrangians into the dual objective yields the
following equivalent reformulation for the problem dual to (7.11):

sup
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

−(−ℓ 𝑗)𝜋(𝑧𝑖 𝑗 , 𝑝𝑖 𝑗)

s.t. 𝑝𝑖 𝑗 ∈ R+, 𝛽𝑖 𝑗 ∈ R, 𝑧𝑖 𝑗 ∈ R𝑑 ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽]
𝑔𝜋𝑘 (𝑧𝑖 𝑗 , 𝑝𝑖 𝑗) ≤ 0 ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽], 𝑘 ∈ [𝐾]∑︁
𝑗∈[𝐽 ]

𝑝𝑖 𝑗 = 𝑝𝑖 ∀𝑖 ∈ [𝑁]

𝑐𝜋𝑖 (𝑧𝑖 𝑗 , 𝑝𝑖 𝑗) ≤ 𝛽𝑖 𝑗 ∀𝑖 ∈ [𝑁], 𝑗 ∈ [𝐽]∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

𝛽𝑖 𝑗 = 𝑟

(7.14)

Note that if the finite dual reformulation (7.11) of the worst-case expectation
problem is viewed as an instance of the primal convex program (P), then problem
(7.14) represents the corresponding instance of the dual convex program (D). By
Assumptions 7.16 and 7.19, problem (7.14) admits a Slater point with 𝑝𝑖 𝑗 = 𝑝𝑖/𝐽
and 𝑧𝑖 𝑗 = 𝑧𝑖 for all 𝑖 ∈ [𝑁] and 𝑗 ∈ [𝐽]. Thus strong duality holds thanks to
Theorem 7.4 (i). It remains to be shown that (7.14) is equivalent to (7.13). To
this end, note first that the last constraint in (7.14) can be relaxed to a less-than-
or-equal-to inequality without increasing the problem’s supremum such that 𝛽𝑖 𝑗 =
𝑐𝜋
𝑖

(𝑧𝑖 𝑗 , 𝑝𝑖 𝑗) at optimality. This allows us to eliminate the 𝛽𝑖 𝑗 variables from (7.14).
Problem (7.13) is then obtained by applying the substitution 𝑧𝑖 𝑗 ← 𝑧𝑖 𝑗 − 𝑝𝑖 𝑗 𝑧𝑖 .

The finite bi-dual reformulation (7.13) is guaranteed to be solvable provided that
the transportation cost function satisfies the following additional assumption.

Assumption 7.24 (Identity of indiscernibles). The transportation cost function
is real-valued and satisfies 𝑐(𝑧, 𝑧) = 0 if and only if 𝑧 = 𝑧.

Lemma 7.25 (Solvability of the finite bi-dual reformulation). Suppose that As-
sumptions 7.16, 7.19 and 7.24 hold. Then problem (7.13) is solvable.

Proof. Under the stated assumptions, problem (7.13) maximizes an upper semi-
continuous function over a compact feasible region, and thus the claim follows
from Weierstrass’s maximum theorem. To see that the objective function of (7.13)
is upper semicontinuous, note that the functions −ℓ 𝑗 are proper, convex and closed
for all 𝑗 ∈ [𝐽] thanks to Assumption 7.19 (i). By Rockafellar (1970, pp. 35, 67),
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their perspectives are proper, convex and closed too; see also Zhen et al. (2023,
Proposition C.2). Thus the negative perspective functions appearing in the object-
ive function of problem (7.13) are indeed upper semicontinuous. Similarly, one
can show that the feasible region of problem (7.13) is closed. Indeed, 𝑔𝑘 and 𝑐𝑖 are
proper, convex and closed for all 𝑘 ∈ [𝐾] and 𝑖 ∈ [𝑁] thanks to Assumption 7.19
and Definition 2.14. This readily implies that their perspectives are lower semi-
continuous, and thus the feasible region of (7.13) is indeed closed. To see that
the feasible region is also bounded, note first that 𝑝𝑖 𝑗 ∈ [0, 1] for all 𝑖 ∈ [𝑁] and
𝑗 ∈ [𝐽]. Indeed, these variables must be non-negative and compatible with the
probabilities 𝑝𝑖 , 𝑖 ∈ [𝑁], of the discrete reference distribution. Next, we show that
the variables 𝑧𝑖 𝑗 for 𝑖 ∈ [𝑁] and 𝑗 ∈ [𝐽] are restricted to a bounded set as well.
Indeed, by Zhen et al. (2023, Lemma C.10), which applies thanks to Assump-
tion 7.24 and Definition 2.14, there exists 𝛿 > 0 such that 𝑐𝑖(𝑧𝑖 + 𝑧) ≥ 𝛿∥𝑧∥2 − 1 for
all 𝑧 ∈ R𝑑 and 𝑖 ∈ [𝑁]. The last constraint of problem (7.13) therefore implies that∑︁

𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

𝑐𝜋𝑖 (𝑝𝑖 𝑗 𝑧𝑖 + 𝑧𝑖 𝑗 , 𝑝𝑖 𝑗) ≤ 𝑟 =⇒
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

∥𝑧𝑖 𝑗 ∥2 ≤
1 + 𝑟
𝛿
,

where we used the identity ∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

𝑝𝑖 𝑗 =
∑︁
𝑖∈[𝑁 ]

𝑝𝑖 = 1

and the definition of the perspective function. Thus the feasible region of (7.13) is
indeed bounded.

We are now ready to construct extremal distributions P★ ∈ P(Z) that attain the
supremum of the worst-case expectation problem (4.1) over the optimal transport
ambiguity set (2.27). To this end, fix any maximizer (𝑝★, 𝑧★) of the bi-dual problem
(7.13), which exists thanks to Lemma 7.25. Next, define the index sets

J∞𝑖 = { 𝑗 ∈ [𝐽] : 𝑝★𝑖 𝑗 = 0, 𝑧★𝑖 𝑗 ≠ 0} and J +𝑖 = { 𝑗 ∈ [𝐽] : 𝑝★𝑖 𝑗 > 0},
and define J𝑖 = J +

𝑖
∪ J∞

𝑖
for any 𝑖 ∈ [𝑁]. The following theorem uses the

maximizer (𝑝★, 𝑧★) and the corresponding index sets to construct P★.

Theorem 7.26 (Extremal distributions of optimal transport ambiguity sets).
Suppose that all conditions of Theorem 7.23 for weak and strong duality are satis-
fied, Assumption 7.24 holds, and (𝑝★, 𝑧★) solves (7.13). Then the following hold.

(i) If J∞
𝑖

= ∅ for all 𝑖 ∈ [𝑁], then problem (4.1) is solved by

P★ =
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J +

𝑖

𝑝★𝑖 𝑗 𝛿 �̂�𝑖+𝑧★𝑖 𝑗/𝑝
★
𝑖 𝑗
.

(ii) If J∞
𝑖

≠ ∅ for some 𝑖 ∈ [𝑁], then problem (4.1) is asymptotically solved by

P𝑚 =
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J𝑖

𝑝𝑚𝑖 𝑗 𝛿𝑧𝑚𝑖 𝑗
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as 𝑚 ∈ N, 𝑚 ≥ max𝑖∈[𝑁 ] |J∞𝑖 |, grows, where

𝑝𝑚𝑖 𝑗 =


(

1 −
|J∞
𝑖
|

𝑚

)
𝑝★
𝑖 𝑗

if 𝑗 ∈ J +
𝑖
,

𝑝𝑖

𝑚
if 𝑗 ∈ J∞

𝑖
,

and 𝑧𝑚𝑖 𝑗 =


𝑧𝑖 +

𝑧★
𝑖 𝑗

𝑝★
𝑖 𝑗

if 𝑗 ∈ J +
𝑖
,

𝑧𝑖 +
𝑧★
𝑖 𝑗

𝑝𝑚
𝑖 𝑗

if 𝑗 ∈ J∞
𝑖
.

Proof. In view of assertion (i), we first show that P★ defined in the statement of
the theorem is feasible in the worst-case expectation problem (4.1). To this end,
observe first that feasibility of (𝑝★, 𝑧★) in (7.13) implies that 𝑝★

𝑖 𝑗
≥ 0 for all 𝑖 ∈ [𝑁]

and 𝑗 ∈ [𝐽], and that
∑
𝑖∈[𝑁 ]

∑
𝑗∈J +

𝑖
𝑝★
𝑖 𝑗

= 1. Note also that 𝑧𝑖 + 𝑧★𝑖 𝑗/𝑝★𝑖 𝑗 ∈ Z for
all 𝑖 ∈ [𝑁] and 𝑗 ∈ J +

𝑖
due to the second constraint in (7.13). This confirms that

P★ ∈ P(Z). The penultimate constraint group of problem (7.13) also implies that∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J +

𝑖

𝑝★𝑖 𝑗 𝛿(�̂�𝑖+𝑧★𝑖 𝑗/𝑝
★
𝑖 𝑗
, �̂�𝑖) ∈ Γ(P★, P̂)

constitutes a valid transportation plan for morphing P̂ into P★. Thus we find

OT𝑐(P★, P̂) ≤
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J +

𝑖

𝑝★𝑖 𝑗 · 𝑐
(
𝑧𝑖 + 𝑧★𝑖 𝑗/𝑝★𝑖 𝑗 , 𝑧𝑖

)
=

∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

𝑐𝜋𝑖

(
𝑝★𝑖 𝑗 𝑧𝑖 + 𝑧★𝑖 𝑗 , 𝑝★𝑖 𝑗

)
≤ 𝑟.

Here the equality holds because all terms corresponding to 𝑖 ∈ [𝑁] and 𝑗 ∉ J +
𝑖

vanish. Indeed, if 𝑗 ∉ J +
𝑖

, then 𝑝★
𝑖 𝑗

= 0. As J∞
𝑖

= ∅, this implies that 𝑧★
𝑖 𝑗

= 0.
Thus we have 𝑐𝜋

𝑖
(𝑝★
𝑖 𝑗
𝑧𝑖 + 𝑧★𝑖 𝑗 , 𝑝★𝑖 𝑗) = 𝑐𝜋

𝑖
(0, 0) = 𝑐∞

𝑖
(0) = 0 by the definitions of

the perspective and the recession function. The second inequality in the above
expression follows from the last constraint in (7.13). In summary, we have shown
that P★ is feasible in (4.1). As for the objective function value of P★, note that

EP★ [ℓ(𝑍)] ≤ sup
P∈P
EP [ℓ(𝑍)] ≤

∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

−(−ℓ 𝑗)𝜋
(
𝑝★𝑖 𝑗 𝑧𝑖 + 𝑧★𝑖 𝑗 , 𝑝★𝑖 𝑗

)
,

where the second inequality follows from the weak duality relation established in
Theorem 7.23. At the same time, however, the expected loss under P★ satisfies

EP★ [ℓ(𝑍)] =
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J +

max
𝑗′∈[𝐽 ]

𝑝★𝑖 𝑗ℓ 𝑗′

(
𝑧𝑖 +

𝑧★
𝑖 𝑗

𝑝★
𝑖 𝑗

)
≥

∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J +
−(−ℓ 𝑗)𝜋

(
𝑝★𝑖 𝑗 𝑧𝑖 + 𝑧★𝑖 𝑗 , 𝑝★𝑖 𝑗

)
=

∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

−(−ℓ 𝑗)𝜋
(
𝑝★𝑖 𝑗 𝑧𝑖 + 𝑧★𝑖 𝑗 , 𝑝★𝑖 𝑗

)
,
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where the inequality uses the definition of the perspective function and the trivial
observation that 𝑗 ∈ J + is a feasible choice for 𝑗 ′ ∈ [𝐽]. The last equality holds
once more because 𝑝★

𝑖 𝑗
= 0 implies 𝑧★

𝑖 𝑗
= 0 and (−ℓ 𝑗)𝜋(0, 0) = (−ℓ 𝑗)∞(0) = 0 by

the definition of the perspective and the recession function. In summary, the above
inequalities imply that P★ is optimal in (4.1). Hence assertion (i) follows.

As for assertion (ii), we first show that P𝑚 ∈ P for any fixed𝑚 ≥ max𝑖∈[𝑁 ] |J∞𝑖 |.
The constraints of problem (7.13) imply that 𝑝𝑚

𝑖 𝑗
≥ 0 for all 𝑗 ∈ J𝑖 and 𝑖 ∈ [𝑁]

and that
∑
𝑖∈[𝑁 ]

∑
𝑗∈J 𝑝𝑚

𝑖 𝑗
= 1. They also imply that 𝑧𝑚

𝑖 𝑗
∈ Z for every 𝑗 ∈ J𝑖 and

𝑖 ∈ [𝑁]. This is easy to see if 𝑗 ∈ J +
𝑖

. If 𝑗 ∈ J∞
𝑖

, on the other hand, then 𝑝★
𝑖 𝑗
= 0,

𝑧★
𝑖 𝑗

≠ 0 and 𝑔𝜋
𝑘

(𝑧★
𝑖 𝑗
, 0) ≤ 0 for all 𝑘 ∈ [𝐾], which implies via Rockafellar (1970,

Theorem 8.6) that 𝑧★
𝑖 𝑗

is a recession direction of Z . Geometrically, this means that
the ray emanating from any point in Z along the direction 𝑧★

𝑖 𝑗
never leaves Z . Thus

𝑧𝑚
𝑖 𝑗
= 𝑧𝑖 + 𝑚 𝑧★𝑖 𝑗/𝑝𝑖 ∈ Z for all 𝑖 ∈ [𝑁] and 𝑗 ∈ J∞

𝑖
. In addition, one verifies that∑︁

𝑖∈[𝑁 ]

∑︁
𝑗∈J𝑖

𝑝𝑚𝑖 𝑗 𝛿(𝑧𝑚
𝑖 𝑗
, �̂�𝑖) ∈ Γ(P★, P̂)

constitutes a valid transportation plan for morphing P̂ into P𝑚. Thus we find

OT𝑐(P𝑚, P̂)

≤
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J𝑖

𝑝𝑚𝑖 𝑗 𝑐(𝑧
𝑚
𝑖 𝑗 , 𝑧𝑖)

=
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J +

𝑖

𝑝★𝑖 𝑗

(
1 −
|J∞
𝑖
|

𝑚

)
𝑐

(
𝑧𝑖 +

𝑧★
𝑖 𝑗

𝑝★
𝑖 𝑗

, 𝑧𝑖

)
+

∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J∞

𝑖

𝑝𝑖

𝑚
𝑐

(
𝑧𝑖 + 𝑚

𝑧★
𝑖 𝑗

𝑝𝑖
, 𝑧𝑖

)

≤
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J +

𝑖

𝑝★𝑖 𝑗 𝑐

(
𝑧𝑖 +

𝑧★
𝑖 𝑗

𝑝★
𝑖 𝑗

, 𝑧𝑖

)
+

∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J∞

𝑖

lim
𝑚→∞

𝑝𝑖

𝑚
𝑐

(
𝑧𝑖 + 𝑚

𝑧★
𝑖 𝑗

𝑝𝑖
, 𝑧𝑖

)

=
∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J +

𝑖

𝑝★𝑖 𝑗 𝑐

(
𝑧𝑖 +

𝑧★
𝑖 𝑗

𝑝★
𝑖 𝑗

, 𝑧𝑖

)
+

∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈J∞

𝑖

lim
𝑚→∞

𝑝𝑖

𝑚
𝑐

(
𝑚
𝑧★
𝑖 𝑗

𝑝𝑖
, 𝑧𝑖

)
=

∑︁
𝑖∈[𝑁 ]

∑︁
𝑗∈[𝐽 ]

𝑐𝜋𝑖

(
𝑝★𝑖 𝑗 𝑧𝑖 + 𝑧★𝑖 𝑗 , 𝑝★𝑖 𝑗

)
≤ 𝑟,

where the first equality follows from the definitions of 𝑝𝑚
𝑖 𝑗

and 𝑧𝑚
𝑖 𝑗

. The second
inequality holds because the transportation cost function 𝑐(𝑧, 𝑧) is non-negative and
convex in 𝑧, which implies that both terms in the third line are non-decreasing in𝑚.
The second equality follows from Assumption 7.24, which ensures that 𝑐(𝑧, 𝑧) is
real-valued such that the reference point in the definition of the recession function
of 𝑐(·, 𝑧𝑖) can be chosen freely. The third equality exploits the definition of the
perspective function 𝑐𝜋

𝑖
and the observation that 𝑐𝜋

𝑖
(0, 0) = 𝑐∞

𝑖
(0) = 0. Finally,

the last inequality follows from the last constraint of problem (7.13). We have thus
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shown that P𝑚 is feasible in (4.1). In analogy to analysis for P★, one can show that
the asymptotic expected loss lim𝑚→∞ EP𝑚 [ℓ(𝑍)] is at least as large as the optimal
value

∑
𝑖∈[𝑁 ]

∑
𝑗∈[𝐽 ] −(−ℓ 𝑗)𝜋(𝑝★

𝑖 𝑗
𝑧𝑖 + 𝑧★𝑖 𝑗 , 𝑝★𝑖 𝑗) of the finite bi-dual reformulation

(7.13). However, as the suprema of (4.1) and (7.13) match, it is clear that the
distributions P𝑚, 𝑚 ∈ N, must be asymptotically optimal in (4.1).

If J∞
𝑖

≠ ∅ for some 𝑖 ∈ [𝑁], then the extremal distributions constructed in
Theorem 7.26 send atoms with decaying probabilities to infinity along specific
recession directions 𝑧★

𝑖 𝑗
, 𝑗 ∈ J∞

𝑖
, of the support set Z . Moving atoms to infinity is

possible even when only a finite transportation budget 𝑟 is available, provided that
the probability mass transported scales inversely with the transportation cost. The
following lemma establishes sufficient conditions for J∞

𝑖
to be empty for every

𝑖 ∈ [𝑁], which ensures via Theorem 7.26 (i) that problem (4.1) is solvable.

Lemma 7.27. If all assumptions of Theorem 7.26 are satisfied and either of the
following conditions holds, then J∞

𝑖
= ∅ for every 𝑖 ∈ [𝑁], and (4.1) is solvable.

(i) The transportation cost function grows superlinearly in its first argument. By
this we mean that 𝑐∞

𝑖
(𝑧) = ∞ for any 𝑧 ≠ 0 and for any 𝑖 ∈ [𝑁].

(ii) The support set Z is bounded.

Proof. As usual, let (𝑝★, 𝑧★) be a maximizer of problem (7.13), which exists
thanks to Lemma 7.25. As for assertion (i), assume that the transportation cost
function grows superlinearly. For the sake of argument, assume also that there
exists 𝑖 ∈ [𝑁] with J∞

𝑖
≠ ∅. For every 𝑗 ∈ J∞

𝑖
we thus have 𝑝★

𝑖 𝑗
= 0 and 𝑧★

𝑖 𝑗
≠ 0.

Hence we find

𝑐𝜋𝑖

(
𝑝★𝑖 𝑗 𝑧𝑖 + 𝑧★𝑖 𝑗 , 𝑝★𝑖 𝑗

)
= 𝑐∞𝑖 (𝑧★𝑖 𝑗) = ∞,

where the first equality uses the definition of the perspective function, and the
second equality holds because the transportation cost function grows superlinearly.
Thus (𝑝★, 𝑧★) violates the last constraint of problem (7.13), which contradicts its
assumed feasibility. We may thus conclude that J∞

𝑖
= ∅ and that (4.1) is solvable.

As for assertion (ii), assume now that Z is bounded. Without loss of generality,
we may also assume that 𝑝★

𝑖 𝑗
= 0 for some 𝑖 ∈ [𝑁] and 𝑗 ∈ [𝐽], for otherwise J∞

𝑖

is trivially empty. The constraints of problem (7.13) then ensure that 𝑔𝜋
𝑘

(𝑧★
𝑖 𝑗
, 0) ≤ 0

for all 𝑘 ∈ [𝐾], which implies via Rockafellar (1970, Theorem 8.6) that 𝑧★
𝑖 𝑗

is a
recession direction of Z . As Z is compact, however, this implies that 𝑧★

𝑖 𝑗
= 0. We

may thus again conclude that J∞
𝑖

= ∅ and that (4.1) is solvable.

Condition (i) of Lemma 7.27 is satisfied whenever P is a 𝑝-Wasserstein ball and
the transportation cost function is of the form 𝑐(𝑧, 𝑧) = ∥𝑧 − 𝑧∥ 𝑝 for some 𝑝 > 1.

The structural properties of the distributions that solve the worst-case expectation
problem (4.1) over an optimal transport ambiguity set, as well as necessary and
sufficient conditions for their existence, were studied by Wozabal (2012), Owhadi
and Scovel (2017), Yue et al. (2022) and Gao and Kleywegt (2023). In particular,
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significant efforts were spent on characterizing the extremal distributions of a
Wasserstein ball centred at a discrete reference distributions with 𝑁 atoms. The
earliest result in this domain is due to Wozabal (2012, Theorem 3.3), who showed
that the worst-case expectation of a continuous bounded loss function is attained by
a discrete distribution with at most 𝑁 + 3 atoms. Later, Owhadi and Scovel (2017,
Theorem 2.3) and Gao and Kleywegt (2023, Corollary 1) managed to sharpen this
result by showing that the worst-case expectation is in fact attained by a discrete
distribution with at most 𝑁 + 2 or even only 𝑁 + 1 atoms, respectively; see also
Yue et al. (2022, Theorem 4). Theorem 7.26 (i) and Lemma 7.27 reveal that if Z is
bounded and the loss function ℓ is concave, thus satisfying Assumption 7.19 (i) with
𝐽 = 1, then the worst-case expected loss is attained by an 𝑁-point distribution. For
more general loss functions, however, every 𝑁-point distributions can be strictly
suboptimal even if problem (4.1) is solvable; see Kuhn et al. (2019, Example 5).
The results in this section are based on Zhen et al. (2023, § 6).

7.5. Nash equilibria and adversarial attacks

The DRO problem (1.2) can be viewed as a zero-sum game in which the decision-
maker first chooses a decision 𝑥 ∈ X , and nature subsequently responds with a
distribution P ∈ P that adapts to 𝑥. Throughout this section we will refer to (1.2)
as the primal DRO problem. In addition, one can study the dual DRO problem

sup
P∈P

inf
𝑥∈X
EP [ℓ(𝑥, 𝑍)], (7.15)

where nature first selects a distribution P ∈ P , and the decision-maker subsequently
responds with a decision 𝑥 ∈ X that adapts to P. In contrast to the primal DRO
problem (1.2), whose objective function is linear in P, the objective function of the
dual DRO problem (7.15) is concave in P. This difference makes the dual DRO
problem more challenging to solve. It is now natural to seek conditions that imply
strong duality and thus ensure that the infimum of the primal DRO problem (1.2)
coincides with the supremum of the dual DRO problem (7.15). One readily verifies
that strong duality is implied, for example, by the existence of a Nash equilibrium
(𝑥★, P★) ∈ X × P satisfying the saddle point condition

EP [ℓ(𝑥★, 𝑍)] ≤ EP★ [ℓ(𝑥★, 𝑍)] ≤ EP★ [ℓ(𝑥, 𝑍)] for all 𝑥 ∈ X , P ∈ P . (7.16)

We emphasize that the reverse implication is false, that is, strong duality does not
necessarily imply the existence of a Nash equilibrium. The primal DRO problem
naturally arises in many applications. The practical usefulness of the dual DRO
problem, on the other hand, is less evident because this problem assumes somewhat
unrealistically that the decision-maker observes the distribution that governs 𝑍 .
Nevertheless, the dual DRO problem has deep connections to robust statistics and
machine learning, as well as several other disciplines, as we explain below.

From the perspective of robust statistics, a minimizer 𝑥★ of the primal DRO
problem (1.2) can be interpreted as a robust estimator for the minimizer of the
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stochastic program min𝑥∈X EP0 [ℓ(𝑥, 𝑍)] corresponding to an unknown distribution
P0. When 𝑥★ and P★ satisfy the saddle point condition (7.16), then the robust
estimator 𝑥★ constitutes a best response to P★. Hence it solves the stochastic
program corresponding to P★; see also Lehmann and Casella (2006, Chapter 5). For
this reason, P★ is often referred to as the least favourable distribution. The existence
of P★ makes 𝑥★ a plausible estimator because it ensures that 𝑥★ is the minimizer of
a stochastic program corresponding to some distribution in the ambiguity set.

Algorithms for computing Nash equilibria of DRO problems are also relevant
for applications in machine learning. To see this, recall that adversarial training
aims to immunize machine learning models against adversarial perturbations of the
input data (Szegedy et al. 2014, Goodfellow et al. 2015, Mądry et al. 2018, Wang
et al. 2019, Kurakin, Goodfellow and Bengio 2017). In this context, it is of interest
to generate adversarial examples, that is, maliciously designed inputs that mislead
prediction models encoded by parameters 𝑥 ∈ X . As a naïve approach to con-
structing adversarial examples, one could simply solve the worst-case expectation
problem

sup
P∈P
EP [ℓ(𝑥, 𝑍)], (7.17)

which seeks a test distribution that maximizes the expected prediction loss of one
particular model encoded by 𝑥. Thus any solution P★ of (7.17) can be viewed
as an adversarial attack, and samples drawn from P★ are naturally interpreted as
adversarial examples. In order to develop efficient strategies for attacking as well
as defending prediction models, however, it is desirable to construct adversarial
attacks that fool a broad spectrum of different models. Such attacks are called
transferable in the machine learning literature (Tramèr et al. 2017, Demontis et al.
2019, Kurakin et al. 2017). The dual DRO problem (7.15) can be used to construct
transferable attacks in a systematic manner. Indeed, the solutions of (7.15) are not
tailored to a particular model 𝑥 ∈ X . Instead, they aim to attack all models 𝑥 ∈ X
simultaneously. If the primal DRO problem (1.2) has a unique minimizer 𝑥★, then
this minimizer can be recovered by solving the stochastic program corresponding
to the adversary’s Nash strategy P★.

To date, dual DRO problems have only been investigated in the context of
specific applications. For example, it is known that the least favourable distribu-
tions in distributionally robust estimation and Kalman filtering problems with a
2-Wasserstein ambiguity set centred at a Gaussian reference distribution are them-
selves Gaussian and can be computed efficiently via semidefinite programming
(Shafieezadeh-Abadeh et al. 2018, Nguyen et al. 2023b). Several recent studies
describe similar results for distributionally robust optimal control problems with a
2-Wasserstein ambiguity set (Al Taha et al. 2023, Hajar et al. 2023, Kargin et al.
2024a,b,c,d, Taşkesen et al. 2024). When the Wasserstein ambiguity set is replaced
with a Kullback–Leibler ambiguity set around a Gaussian reference distribution,
then the least favourable distributions remain Gaussian and can be determined in
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quasi-closed form (Levy and Nikoukhah 2004, 2012). In fact, these results even
extend to generalized 𝜏-divergence ambiguity sets (Zorzi 2016, 2017b). Gaus-
sian distributions also solve several other minimax games reminiscent of DRO
problems, which are relevant for applications in statistics, control and information
theory (Başar and Mintz 1972, 1973, Başar and Max 1973, Başar 1977, Başar
and Başar 1982, Başar 1983, Başar and Başar 1984, Başar and Wu 1985, 1986).
Furthermore, it is possible to characterize the Nash equilibria of distributionally
robust pricing and auction design problems with support-only and Markov ambi-
guity sets in closed form (Bergemann and Schlag 2008, Koçyiğit et al. 2020, 2022,
Anunrojwong et al. 2024, Chen et al. 2024b). Minimax theorems establishing
strong duality between primal and dual DRO problems involving more general
optimal transport ambiguity sets are reported by Blanchet et al. (2022b), Shafiee
et al. (2023), Frank and Niles-Weed (2024b) and Pydi and Jog (2024).

8. Regularization by robustification
Classical stochastic optimization seeks decisions that perform well under a prob-
ability distribution P̂ estimated from training data. By ignoring any information
about estimation errors in P̂, however, stochastic optimization tends to output over-
fitted decisions that incur a low expected loss under P̂ but may perform poorly
under the unknown population distribution P. This problem becomes more acute if
training data is scarce. A key advantage of DRO vis-à-vis stochastic optimization
is that it has access to information about estimation errors. DRO uses this informa-
tion to prevent overfitting. Robustifying a stochastic optimization problem against
distributional uncertainty can thus be viewed as a form of implicit regularization.

We now show that there is often a deep connection between implicit regulariz-
ation (achieved by robustifying a problem against distributional uncertainty) and
explicit regularization (achieved by adding a penalty term to the problem’s objective
function). This discussion complements and extends several results from Section 6.
For example, in Section 6.9 we have seen that the worst-case expected value of
a linear loss function with respect to a Kullback–Leibler ambiguity set centred at
a Gaussian distribution coincides with the nominal expected loss and a variance
regularization term. Similarly, in Section 6.13 we have seen that the worst-case
expected value of a convex loss function with respect to a 1-Wasserstein ambiguity
set coincides with the nominal expected loss and a Lipschitz regularization term.
See also Sections 6.14 and 6.15 for some variants and generalizations of this result.

In Section 8.1 we will show – in broad generality – that the worst-case expected
loss over a 𝜙-divergence ambiguity set is closely related to the nominal expec-
ted loss with a variance regularization term. Similarly, in Section 8.2 we will
show that the worst-case expected loss over a Wasserstein ambiguity set is closely
related to the nominal expected loss with variation and Lipschitz regularization
terms. In Section 8.3 we will further show that many popular risk measures are
Lipschitz-continuous in the distribution of the relevant risk factors with respect to
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a Wasserstein distance. This implies that the worst-case risk over a Wasserstein
ambiguity set is closely related to the nominal risk and a Lipschitz regularization
term. We remark that the connections between robustification and regularization
are less well understood for moment ambiguity sets. From Section 6.8 we know
that the worst-case risk of a linear loss function over a Gelbrich ambiguity set often
coincides with the nominal risk and a 2-norm regularization term. However, it
is unclear whether similar results can be obtained for nonlinear loss functions or
other moment ambiguity sets. Therefore we will not touch on moment ambiguity
sets in this section. We emphasize that the connections between robustification and
regularization often enable statistical analyses of DRO problems; see Section 10.

8.1. 𝜙-divergence ambiguity sets

As a motivating example, we show that robustification with respect to a Pearson
𝜒2-divergence ambiguity set is closely related to variance regularization. To see
this, recall first that the Pearson 𝜒2-divergence ambiguity set (2.17) is defined as

P = {P ∈ P(Z) : 𝜒2(P, P̂) ≤ 𝑟}.
If ℓ is a bounded Borel function, Proposition 2.13 readily implies that

P ⊆
{
P ∈ P(Z) : EP [ℓ(𝑍)] ≤ EP̂ [ℓ(𝑍)] + 𝑟1/2VP̂ [ℓ(𝑍)]1/2

}
,

and thus we may conclude that

sup
P∈P
EP [ℓ(𝑍)] ≤ EP̂ [ℓ(𝑍)] + 𝑟1/2VP̂ [ℓ(𝑍)]1/2.

Hence the worst-case expected loss with respect to a Pearson 𝜒2-divergence ambi-
guity set of radius 𝑟 around P̂ is bounded above by the mean–standard deviation risk
measure with risk-aversion coefficient 𝑟1/2 evaluated under P̂. By slight abuse of
terminology, the scaled standard deviation 𝑟1/2VP̂ [ℓ(𝑍)]1/2 is commonly referred
to as a variance regularizer. By leveraging Theorem 4.15, the above bound can be
extended to arbitrary (possibly unbounded) Borel loss functions. This extension
critically relies on the following lemma.

Lemma 8.1 (Variance formula). For any reference distribution P̂ ∈ P(Z), size
parameter 𝑟 > 0 and Borel function ℓ ∈ L(R𝑑) with EP̂ [|ℓ(𝑍)|] < ∞, we have

inf
𝜆0∈R,𝜆∈R+

𝜆𝑟 +
EP̂ [(ℓ(𝑍) − 𝜆0)2]

4𝜆
= 𝑟1/2VP̂ [ℓ(𝑍)]1/2. (8.1)

Proof. IfEP̂ [ℓ(𝑍)2] = ∞, then both sides of (8.1) evaluate to∞, and thus the claim
follows. In the remainder of the proof, we may thus assume that EP̂ [ℓ(𝑍)2] < ∞.
In this case, one readily verifies that the partial minimization problem over 𝜆0 is
solved by 𝜆★0 = EP̂ [ℓ(𝑍)]. Substituting 𝜆★0 back into the objective function reveals
that the infimum on the left-hand side of (8.1) equals inf𝜆∈R+ 𝜆𝑟 + VP̂ [ℓ(𝑍)]/4𝜆.
In order to prove (8.1), it suffices to realize that this minimization problem over 𝜆
is solved by 𝜆★ =

√︁
VP̂ [ℓ(𝑍)]/(4𝑟). This observation completes the proof.
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Theorem 8.2 (Variance regularization). If P is the Pearson 𝜒2-divergence am-
biguity set (2.17) and EP̂ [|ℓ(𝑍)|] < ∞, then we have

sup
P∈P
EP [ℓ(𝑍)] ≤ EP̂ [ℓ(𝑍)] + 𝑟1/2VP̂ [ℓ(𝑍)]1/2.

Proof. The claim trivially holds if 𝑟 = 0. We may thus assume that 𝑟 > 0.
Recall now that the entropy function 𝜙 inducing the Pearson 𝜒2-divergence satisfies
𝜙(𝑠) = (𝑠−1)2 if 𝑠 ≥ 0 and 𝜙(𝑠) = ∞ if 𝑠 < 0. Hence the conjugate entropy function
𝜙∗ satisfies 𝜙∗(𝑡) = 1

4 𝑡
2 + 𝑡 if 𝑡 ≥ −2 and 𝜙∗(𝑡) = −1 if 𝑡 < −2, and its domain

is given by dom(𝜙∗) = R. As 𝜙∞(1) = ∞, all distributions P ∈ P are absolutely
continuous with respect to P̂. Thus Theorem 4.15 applies, and we find

sup
P∈P
EP [ℓ(𝑍)] = inf

𝜆0∈R,𝜆∈R+
𝜆0 + 𝜆𝑟 + EP̂ [(𝜙∗)𝜋(ℓ(𝑍) − 𝜆0, 𝜆)]

≤ inf
𝜆0∈R,𝜆∈R+

EP̂ [ℓ(𝑍)] + 𝜆𝑟 +
EP̂ [(ℓ(𝑍) − 𝜆0)2]

4𝜆
= EP̂ [ℓ(𝑍)] + 𝑟1/2VP̂ [ℓ(𝑍)]1/2,

where the inequality holds because 𝜙∗(𝑡) ≤ 1
4 𝑡

2 + 𝑡, and the second equality follows
from Lemma 8.1. Thus the claim follows.

Most 𝜙-divergences are smooth and non-negative and thus resemble the Pearson
𝜒2-divergence locally around 1 (Polyanskiy and Wu 2024, § 7.10). Accordingly,
one can use a Taylor expansion to show that robustification over a 𝜙-divergence am-
biguity set of sufficiently small size 𝑟 is often equivalent to variance regularization.
To formalize this result, we assume from now on that 𝜙 is differentiable.

Assumption 8.3 (Differentiability). The entropy function 𝜙 is twice continu-
ously differentiable on a neighbourhood of 1 with 𝜙(1) = 𝜙′(1) = 0 and 𝜙′′(1) = 2.

The assumption that 𝜙′(1) = 0 incurs no loss of generality. Indeed, any entropy
function 𝜙 is equivalent to a transformed entropy function 𝜙 defined by 𝜙(𝑡) =

𝜙(𝑡) − 𝜙′(1) · 𝑡 + 𝜙′(1) with 𝜙′(1) = 0. That is, both 𝜙 and 𝜙 induce the same
divergence. Note that all entropy functions listed in Table 2.1 – except for the
one associated with the total variation – satisfy 𝜙′(1) = 0. The assumption that
𝜙′′(1) = 2 serves as an arbitrary normalization but will simplify calculations.

Recall now that the restricted 𝜙-divergence ambiguity set (2.11) is defined as

P = {P ∈ P(Z) : P ≪ P̂, D𝜙(P, P̂) ≤ 𝑟}.

Here Z is a closed support set, 𝑟 ∈ R+ is a size parameter, 𝜙 is an entropy function
in the sense of Definition 2.4, D𝜙 is the corresponding 𝜙-divergence in the sense
of Definition 2.5, and P̂ ∈ P(Z) is a reference distribution. The following theorem
provides a leading-order Taylor expansion of the worst-case expectation over P .
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Theorem 8.4 (Taylor expansion of worst-case expectation). If P is the restric-
ted 𝜙-divergence ambiguity set (2.11), the entropy function 𝜙 satisfies Assump-
tion 8.3 and the loss ℓ(𝑍) is P̂-almost surely bounded, then we have

sup
P∈P
EP [ℓ(𝑍)] = EP̂ [ℓ(𝑍)] + 𝑟1/2VP̂ [ℓ(𝑍)]1/2 + 𝑜(𝑟1/2). (8.2)

Proof. Note that (8.2) trivially holds if 𝑟 = 0. Similarly, if VP̂ [ℓ(𝑍)] = 0, then
ℓ(𝑍) coincides P̂-almost surely with EP̂ [ℓ(𝑍)]. As P is a restricted 𝜙-divergence
ambiguity set, this readily implies that EP [ℓ(𝑍)] = EP̂ [ℓ(𝑍)] for all P ∈ P . Indeed,
any P ∈ P satisfies P ≪ P̂. Hence (8.2) is again trivially satisfied. In the remainder
of the proof we my therefore assume that 𝑟 > 0 and that VP̂ [ℓ(𝑍)] > 0.

Assumption 8.3 implies that 𝜙(𝑠) = (𝑠 − 1)2 + 𝑜(𝑠2). By Taylor’s theorem with
Peano remainder, 𝜙 can thus be bounded from below (or above) locally around 1
by a quadratic function whose second derivative is slightly smaller (or larger) than
𝜙′′(1) = 2. Thus there exists a function 𝜅 : R+ → R+ with lim𝜀↓0 𝜅(𝜀) = 0 and

1
1 + 𝜅(𝜀)

· 𝑠2 ≤ 𝜙(1 + 𝑠) ≤ (1 + 𝜅(𝜀)) · 𝑠2 for all 𝑠 ∈ [−𝜀, +𝜀] (8.3)

for all sufficiently small 𝜀. The rest of the proof proceeds in two steps, both of
which exploit (8.3). First, we show that the right-hand side of (8.2) provides a lower
bound on the worst-case expected loss over P (Step 1). Next, we show that the
right-hand side of (8.2) also provides an upper bound on the worst-case expected
loss over P (Step 2). Taken together, Steps 1 and 2 will imply the claim.

Step 1. Every distribution P in the restricted 𝜙-divergence ambiguity set P satisfies
P ≪ P̂ and has thus a density function 𝑓 ∈ L1(P̂) with respect to P̂. Here L1(P̂)
denotes as usual the family of all Borel functions fromZ toR that are integrable with
respect to P̂. As P ≪ P̂, we have D𝜙(P, P̂) = EP̂ [𝜙( 𝑓 (𝑍))] (see also Section 2.2).
Thus the worst-case expectation problem over P can be recast as

sup
P∈P
EP [ℓ(𝑍)] =


sup
𝑓 ∈L1(P̂)

EP̂ [ℓ(𝑍) 𝑓 (𝑍)]

s.t. P̂( 𝑓 (𝑍) ≥ 0) = 1
EP̂ [ 𝑓 (𝑍)] = 1
EP̂ [𝜙( 𝑓 (𝑍))] ≤ 𝑟.

Renaming 𝑓 (𝑧) + 1 as 𝑓 (𝑧) further yields

sup
P∈P
EP [ℓ(𝑍)] = EP̂ [ℓ(𝑍)] +


sup
𝑓 ∈L1(P̂)

EP̂ [ℓ(𝑍) 𝑓 (𝑍)]

s.t. P̂( 𝑓 (𝑍) ≥ −1) = 1
EP̂ [ 𝑓 (𝑍)] = 0
EP̂ [𝜙(1 + 𝑓 (𝑍))] ≤ 𝑟.

(8.4)

Next, introduce an auxiliary function 𝜀 : R+ → R+ satisfying

𝜀(𝑟) = 2𝑟1/2 ·
ess supP̂ [|ℓ(𝑍) − EP̂ [ℓ(𝑍)] |]

VP̂ [ℓ(𝑍)]1/2
.
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In addition, for every 𝑟 ∈ R+, define the function 𝑓★𝑟 ∈ L1(P̂) through

𝑓★𝑟 (𝑧) =
𝑟1/2

(1 + 𝜅(𝜀(𝑟)))1/2 ·
ℓ(𝑧) − EP̂ [ℓ(𝑍)]
VP̂ [ℓ(𝑍)]1/2

.

By construction, we may thus conclude that

| 𝑓★𝑟 (𝑍)| ≤ 𝑟1/2 ·
|ℓ(𝑍) − EP̂ [ℓ(𝑍)] |
VP̂ [ℓ(𝑍)]1/2

≤ 𝜀(𝑟) P̂-a.s. (8.5)

for every 𝑟 ∈ R+, where the two inequalities follow from the definitions of 𝑓★𝑟 (𝑧)
and 𝜀(𝑟), respectively. In addition, we have EP̂ [ 𝑓★𝑟 (𝑍)] = 0 and

EP̂ [𝜙(1 + 𝑓★𝑟 (𝑍))] ≤ (1 + 𝜅(𝜀(𝑟))) · EP̂ [ 𝑓★𝑟 (𝑍)2)] = 𝑟

for all sufficiently small 𝑟 . The inequality in the above expression follows from
(8.5) and from the upper bound on 𝜙 in (8.3), which holds for all sufficiently
small 𝜀. The equality exploits the definition of 𝑓★𝑟 . This shows that 𝑓★𝑟 constitutes
a feasible solution for the maximization problem in (8.4) if 𝑟 is sufficiently small.
Substituting 𝑓★𝑟 into (8.4) then yields the desired lower bound. Indeed, we have

sup
P∈P
EP [ℓ(𝑍)] ≥ EP̂ [ℓ(𝑍)] + EP̂ [ℓ(𝑍) 𝑓★𝑟 (𝑍)]

= EP̂ [ℓ(𝑍)] + 𝑟1/2

(1 + 𝜅(𝜀(𝑟)))1/2 ·
EP̂ [ℓ(𝑍)(ℓ(𝑍) − EP̂ [ℓ(𝑍)])]

VP̂ [ℓ(𝑍)]1/2

= EP̂ [ℓ(𝑍)] + 𝑟1/2VP̂ [ℓ(𝑍)]1/2 + 𝑜(𝑟1/2),

for all sufficiently small 𝑟 , where the first equality follows from the definition of
𝑓★𝑟 . The second equality exploits the Taylor expansion of the inverse square root
function around 1 and the elementary observation that lim𝑟↓0 𝜅(𝜀(𝑟)) = 0.

Step 2. The Huber loss ℎ𝜀 : R→ R with tuning parameter 𝜀 > 0 is defined by

ℎ𝜀(𝑠) =

{
1
2 𝑠

2 if |𝑠 | ≤ 𝜀,
𝜀 |𝑠 | − 1

2𝜀
2 otherwise.

By construction, ℎ𝜀 is continuously differentiable, depends quadratically on 𝑠 if
|𝑠 | ≤ 𝜀 and depends linearly on 𝑠 if |𝑠 | > 𝜀. Its conjugate ℎ∗𝜀 : R→ R satisfies

ℎ∗𝜀(𝑡) =

{
1
2 𝑡

2 if |𝑡 | ≤ 𝜀,
∞ otherwise.

The lower bound on 𝜙 in (8.3) and the convexity of 𝜙 imply that

𝜙(𝑠) ≥ 2
1 + 𝜅(𝜀)

ℎ𝜀(𝑠 − 1) for all 𝑠 ∈ R
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whenever 𝜀 is sufficiently small. This uniform lower bound on 𝜙 in terms of ℎ𝜀
gives rise to a uniform upper bound on 𝜙∗ in terms of ℎ∗𝜀 . Indeed, we have

𝜙∗(𝑡) ≤ sup
𝑠∈R

𝑠𝑡 − 2
1 + 𝜅(𝜀)

ℎ𝜀(𝑠 − 1)

= 𝑡 + 2
1 + 𝜅(𝜀)

ℎ∗𝜀
( 1

2 𝑡(1 + 𝜅(𝜀))
)

= 𝑡 +


(1 + 𝜅(𝜀))𝑡2

4
if |𝑡 | ≤ 2𝜀

1 + 𝜅(𝜀)
,

∞ otherwise,
(8.6)

for all sufficiently small 𝜀. The first equality in (8.6) is obtained by applying the
variable transformation 𝑠← 𝑠 − 1 and by extracting the constant 2/(1 + 𝜅(𝜀)) from
the supremum. The second equality follows from the definition of ℎ∗𝜀 . By weak
duality as established in Theorem 4.15, we then find

sup
P∈P
EP [ℓ(𝑍)] ≤ inf

𝜆0∈R,𝜆∈R+
𝜆0 + 𝜆𝑟 + EP̂ [(𝜙∗)𝜋(ℓ(𝑍) − 𝜆0, 𝜆)]

≤


inf

𝜆0∈R,𝜆∈R+
EP̂ [ℓ(𝑍)] + 𝜆𝑟 + 1 + 𝜅(𝜀(𝑟))

4𝜆
EP̂ [(ℓ(𝑍) − 𝜆0)2]

s.t. P̂

(
|ℓ(𝑍) − 𝜆0 | ≤

2𝜀(𝑟)𝜆
1 + 𝜅(𝜀(𝑟))

)
= 1,

(8.7)

where the second inequality follows from the definition of the perspective function
and from (8.6), which holds for all sufficiently small 𝜀. Here we have re-used the
function 𝜀(𝑟) introduced in Step 1. Next, we set 𝜆★0 = EP̂ [ℓ(𝑍)] and define

𝜆★𝑟 =
(1 + 𝜅(𝜀(𝑟)))1/2

2𝑟1/2 · VP̂ [ℓ(𝑍)]1/2

for any 𝑟 > 0. Note that (𝜆★0 , 𝜆
★
𝑟 ) is feasible in (8.7) provided that 𝑟 is sufficiently

small; in particular, 𝑟 must be small enough to satisfy 𝜅(𝜀(𝑟)) ≤ 3. Indeed, we have

P̂

(
|ℓ(𝑍) − 𝜆★0 | ≤

2𝜀(𝑟)𝜆★𝑟
1 + 𝜅(𝜀(𝑟))

)
= P̂

(
|ℓ(𝑍) − EP̂ [ℓ(𝑍)] | ≤

𝜀(𝑟)VP̂ [ℓ(𝑍)]1/2

𝑟1/2(1 + 𝜅(𝜀(𝑟)))1/2

)
= P̂

(
|ℓ(𝑍) − EP̂ [ℓ(𝑍)] | ≤ 2

(1 + 𝜅(𝜀(𝑟)))1/2 ess supP̂ [|ℓ(𝑍) − EP̂ [ℓ(𝑍)] |]
)

= 1,

where the first equality follows from the definitions of 𝜆★0 and 𝜆★𝑟 , the second
equality follows from the definition of 𝜀(𝑟), and the last equality holds because

https://doi.org/10.1017/S0962492924000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000084


Distributionally robust optimization 737

𝜅(𝜀(𝑟)) ≤ 3. Substituting (𝜆★0 , 𝜆
★
𝑟 ) into (8.7) then yields the desired upper bound:

sup
P∈P
EP [ℓ(𝑍)] ≤ EP̂ [ℓ(𝑍)] + 𝜆★𝑟 𝑟 +

1 + 𝜅(𝜀(𝑟))
4𝜆★𝑟

EP̂
[
(ℓ(𝑍) − 𝜆★0 )2]

= EP̂ [ℓ(𝑍)] + (1 + 𝜅(𝜀(𝑟)))1/2

2
· 𝑟1/2VP̂ [ℓ(𝑍)]1/2

+ (1 + 𝜅(𝜀(𝑟)))1/2

2VP̂ [ℓ(𝑍)]1/2
𝑟1/2EP̂

[
(ℓ(𝑍) − EP̂ [ℓ(𝑍)])2]

= EP̂ [ℓ(𝑍)] + 𝑟1/2VP̂ [ℓ(𝑍)]1/2 + 𝑜(𝑟1/2)

Here the first equality follows from the definitions of 𝜆★0 and 𝜆★𝑟 , and the second
equality holds because lim𝑟↓0 𝜅(𝜀(𝑟)) = 0. Hence the claim follows.

Theorem 8.4 reveals that, up to leading order in 𝑟, robustification with respect
to a restricted divergence ambiguity set is equivalent to variance regularization.
The requirement that the loss must be almost surely bounded is restrictive but
necessary. However, it can be relaxed if the entropy function 𝜙 grows superlinearly.
As an example, recall from Proposition 6.12 that the worst-case expectation of a
linear loss function with respect to a Kullback–Leibler ambiguity set centred at a
Gaussian distribution equals precisely EP̂ [ℓ(𝑍)] + (2𝑟)1/2VP̂ [ℓ(𝑍)]1/2 without any
higher-order error terms. This formula is consistent with Theorem 8.4 because
the entropy function of the Kullback–Leibler divergence satisfies 𝜙′′(1) = 1. Thus
it must be scaled by 2 to satisfy Assumption 8.3. Note that any (non-constant)
linear loss functions fails to be P̂-almost surely bounded with respect to any (non-
degenerate) Gaussian distribution P̂. However, the conclusions of Theorem 8.4 hold
nevertheless because the underlying entropy function grows faster than linearly.

A Taylor expansion akin to (8.2) for empirical reference distributions and for
the Kullback–Leibler divergence ambiguity set (2.13) is due to Lam (2019). Duchi
et al. (2021) generalize this result to other 𝜙-divergences. Similar results for
empirical reference distributions are also reported by Lam (2016, 2018), Duchi
and Namkoong (2019) and Blanchet and Shapiro (2024) in different contexts. In
a parallel line of research, Gotoh, Kim and Lim (2018, 2021) derive a Taylor
expansion of the penalty-based worst-case expected loss supP∈P(Z) EP [ℓ(𝑍)] −
1
𝑟
D𝜙(P, P̂). They focus again on discrete empirical reference distributions and

provide both first- and higher-order terms of the corresponding Taylor expansion.
Maurer and Pontil (2009) show that variance-regularized empirical risk min-

imization may provide faster rates of convergence to the expected loss under the
population distribution compared to standard empirical risk minimization. This
improved convergence highlights the potential benefits of incorporating variance
regularization in the learning process. Unfortunately, simple stochastic optimiza-
tion problems with a mean–variance objective are NP-hard even if the underlying
loss function is convex in the decision variables (Ahmed 2006). In contrast, the
worst-case expectation with respect to any ambiguity set preserves the convexity of
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the underlying loss function. Theorem 8.4 thus suggests that the worst-case expec-
ted loss over a restricted 𝜙-divergence ambiguity set provides a convex surrogate for
the non-convex – but statistically attractive – variance-regularized empirical loss.

8.2. Wasserstein ambiguity sets

As a motivating example, we show that robustification with respect to a 1-Wasser-
stein ambiguity set is closely related to Lipschitz regularization. To see this, recall
first that the 𝑝-Wasserstein ambiguity set (2.28) for 𝑝 ∈ [1,∞) is defined as

P = {P ∈ P(Z) : W𝑝(P, P̂) ≤ 𝑟}.

Here Z is a closed support set, 𝑟 ∈ R+ is a size parameter, W𝑝 is the 𝑝-Wasserstein
distance induced by a norm ∥ · ∥ on R𝑑 (see Definition 2.18) and P̂ ∈ P(Z) is a ref-
erence distribution. If the loss function ℓ is piecewise concave, then the worst-case
expectation problem (4.1) over P can be reformulated as a finite convex program
(see Theorem 7.20). For more general loss functions, however, exact reformulations
of (4.1) are unavailable. We now show that if 𝑝 = 1 and ℓ is Lipschitz-continuous
as well as P̂-integrable, then the worst-case expectation problem (4.1) admits a
simple upper bound that involves the Lipschitz modulus of ℓ.

Proposition 8.5 (Lipschitz regularization). Suppose thatP is the 1-Wasserstein
ambiguity set of radius 𝑟 ∈ R+ around P̂ ∈ P(Z), and W1 is induced by a norm
∥ · ∥ on R𝑑 . In addition, suppose that ℓ is Lipschitz-continuous on Z with respect
to the same norm ∥ · ∥ and that EP̂ [|ℓ(𝑍)|] < ∞. Then we have

sup
P∈P
EP [ℓ(𝑍)] ≤ EP̂ [ℓ(𝑍)] + 𝑟 · lip(ℓ). (8.8)

We emphasize that evaluating the Lipschitz modulus of a generic loss function
is computationally challenging. For example, one can show that computing lip(ℓ)
is NP-hard even if ∥ · ∥ is the ∞-norm and even if ℓ is a (convex) conic quadratic
loss function; see e.g. Kuhn et al. (2019, Remark 3) for a simple proof.

Proof of Proposition 8.5. The Kantorovich–Rubinstein duality implies that

sup
P∈P
EP [ℓ(𝑍)] = EP̂ [ℓ(𝑍)] + lip(ℓ) ·

(
sup
P∈P
EP

[
ℓ(𝑍)
lip(ℓ)

]
− EP̂

[
ℓ(𝑍)
lip(ℓ)

])
≤ EP̂ [ℓ(𝑍)] + 𝑟 · lip(ℓ).

Indeed, the normalized function ℓ/lip(ℓ) is Lipschitz-continuous and has Lipschitz
modulus at most 1. By Corollary 2.19, we thus have for every P ∈ P that

EP

[
ℓ(𝑍)
lip(ℓ)

]
− EP̂

[
ℓ(𝑍)
lip(ℓ)

]
≤ W1(P, P̂) ≤ 𝑟.

Therefore the claim follows.
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Close connections between Wasserstein distributionally robust optimization and
Lipschitz regularization have been discovered in different contexts (Mohajerin Es-
fahani and Kuhn 2018, Shafieezadeh-Abadeh et al. 2015, 2019, Gao et al. 2024b).
Recall that the upper bound in (8.8) is tight. Indeed, Proposition 6.17 implies that
(8.8) collapses to an equality if ℓ is convex and Z = R𝑑 . The Lipschitz modulus
of the loss function encodes its variability. Thus the Lipschitz regularization term
in (8.8) penalizes loss functions that display a high degree of variability. In the
following we will derive generalized variation regularization bounds akin to (8.8)
for worst-case expectation problems over 𝑝-Wasserstein ambiguity sets for 𝑝 ∈ N.

Toward this goal, for any 𝑘 ∈ Z+ we use 𝐷𝑘ℓ(𝑧), to denote the totally sym-
metric tensor of all 𝑘th-order partial derivatives of ℓ(𝑧) at 𝑧 = 𝑧. Accordingly,
𝐷𝑘ℓ(𝑧)[𝑧1, . . . , 𝑧𝑘] stands for the directional derivative of ℓ(𝑧) along the directions
𝑧𝑖 ∈ R𝑑 for 𝑖 ∈ [𝑘]. If 𝑧𝑖 = 𝑧 for all 𝑖 ∈ [𝑘], then we use 𝐷𝑘ℓ(𝑧)[𝑧]𝑘 as shorthand
for 𝐷𝑘ℓ(𝑧)[𝑧, . . . , 𝑧]. Any norm ∥ · ∥ on R𝑑 induces a norm on the space of totally
symmetric 𝑘th-order tensors through

∥𝐷𝑘ℓ(𝑧)∥ = sup
𝑧1,...,𝑧𝑘∈R𝑑

{|𝐷𝑘ℓ(𝑧)[𝑧1, . . . , 𝑧𝑘] | : ∥𝑧𝑖 ∥ ≤ 1 ∀𝑖 ∈ [𝑘]}

= sup
𝑧∈R𝑑
{|𝐷𝑘ℓ(𝑧)[𝑧]𝑘 | : ∥𝑧∥ ≤ 1},

where the second equality exploits the symmetry of 𝐷𝑘ℓ(𝑧) (Banach 1938, Satz 1).
By slight abuse of notation, we use the same symbol ∥ · ∥ for the tensor norm as for
the underlying vector norm ∥ · ∥. The following theorem generalizes Proposition 8.5
to any 𝑝 ∈ N. This result is due to Shafiee et al. (2023, Theorem 3.2).

Theorem 8.6 (Variation and Lipschitz regularization). If P is the 𝑝-Wasserstein
ambiguity set (2.28) for some 𝑝 ∈ N, where W𝑝 is induced by a norm ∥ · ∥ on R𝑑 ,
Z is convex and ℓ is 𝑝 − 1 times continuously differentiable, then we have

sup
P∈P
EP [ℓ(𝑍)] ≤ EP̂ [ℓ(�̂�)] +

𝑝−1∑︁
𝑘=1

𝑟𝑘

𝑘!
EP̂ [∥𝐷𝑘ℓ(�̂�)∥𝑞𝑘 ]1/𝑞𝑘 + 𝑟

𝑝

𝑝!
lip(𝐷 𝑝−1ℓ),

where 𝑝𝑘 = 𝑝/𝑘 and 𝑞𝑘 = 𝑝/(𝑝 − 𝑘) for all 𝑘 ∈ [𝑝 − 1].

Proof. Select any P ∈ P and any optimal coupling 𝛾★ ∈ Γ(P, P̂) with W𝑝(P, P̂) =
E𝛾★ [∥𝑍 − �̂� ∥ 𝑝]1/𝑝, which exists by Lemma 3.17. As 𝛾★ ∈ Γ(P, P̂), we have

EP [ℓ(𝑍)] − EP̂ [ℓ(�̂�)] = E𝛾★ [ℓ(𝑍) − ℓ(�̂�)] .

By Krantz and Parks (2002, Theorem 2.2.5), we can expand ℓ(𝑧) − ℓ(𝑧) as a Taylor
series with Lagrange remainder. Thus there exists a Borel function 𝑓 : Z ×Z → Z
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that maps any pair (𝑧, 𝑧) to a point on the line segment between 𝑧 and 𝑧 such that

ℓ(𝑧) − ℓ(𝑧) =
𝑝−1∑︁
𝑘=1

1
𝑘!
𝐷𝑘ℓ(𝑧)[𝑧 − 𝑧]𝑘 + 1

𝑝!
𝐷 𝑝ℓ( 𝑓 (𝑧, 𝑧))[𝑧 − 𝑧] 𝑝

≤
𝑝−1∑︁
𝑘=1

1
𝑘!
∥𝐷𝑘ℓ(𝑧)∥∥𝑧 − 𝑧∥𝑘 + 1

𝑝!
∥𝐷 𝑝ℓ( 𝑓 (𝑧, 𝑧))∥∥𝑧 − 𝑧∥ 𝑝 . (8.9)

The inequality in (8.9) follows from the definition of the tensor norm. By Hölder’s
inequality, the expected value of the 𝑘th term in (8.9) with respect to 𝛾★ satisfies

E𝛾★ [∥𝐷𝑘ℓ(�̂�)∥∥𝑍 − �̂� ∥𝑘] ≤ E𝛾★ [∥𝑍 − �̂� ∥𝑘𝑝𝑘 ]1/𝑝𝑘E𝛾★ [∥𝐷𝑘ℓ(�̂�)∥𝑞𝑘 ]1/𝑞𝑘

≤ 𝑟𝑘EP̂ [∥𝐷𝑘ℓ(�̂�)∥𝑞𝑘 ]1/𝑞𝑘 ,

where 𝑝𝑘 = 𝑝/𝑘 and 𝑞𝑘 = 𝑝/(𝑝 − 𝑘) represent conjugate exponents. The second
inequality in the above expression holds because 𝛾★ ∈ Γ(P, P̂), which implies that

E𝛾★ [∥𝑍 − �̂� ∥𝑘𝑝𝑘 ]1/𝑝𝑘 = E𝛾★ [∥𝑍 − �̂� ∥ 𝑝]𝑘/𝑝 = W𝑝(P, P̂)𝑘 ≤ 𝑟𝑘 .

As Z is convex, we may conclude that 𝑓 (𝑧, 𝑧) ∈ Z for all 𝑧, 𝑧 ∈ Z . Thus the
expected value of the Lagrange remainder in (8.9) with respect to 𝛾★ satisfies

E𝛾★ [∥𝐷 𝑝ℓ( 𝑓 (𝑍, �̂�))∥∥𝑍 − �̂� ∥ 𝑝] ≤ sup
�̂�∈Z
∥𝐷 𝑝ℓ(𝑧)∥ E𝛾★ [∥𝑍 − �̂� ∥ 𝑝]

≤ 𝑟 𝑝 sup
�̂�∈Z
∥𝐷 𝑝ℓ(𝑧)∥

≤ 𝑟 𝑝 lip(𝐷 𝑝−1ℓ),

where the second inequality again exploits Hölder’s inequality and the properties
of the optimal coupling 𝛾★. The third inequality follows from the mean value
theorem. The desired inequality is finally obtained by combining the upper bounds
on the expected values of all terms in (8.9) with respect to 𝛾★.

Theorem 8.6 shows that the worst-case expected loss over a 𝑝-Wasserstein ball
is bounded above by the sum of the expected loss under the reference distribution,
𝑝 − 1 variation regularization terms, and a Lipschitz regularization term. Note that
𝑝1 = 𝑝 and 𝑞 = 𝑞1 = 𝑝/(𝑝−1) are Hölder conjugates and that 𝐷1ℓ = ∇ℓ. Thus the
term corresponding to 𝑘 = 1 in the upper bound of Theorem 8.6 can be expressed
more explicitly as EP̂ [∥∇ℓ(�̂�)∥𝑞]]1/𝑞. The next theorem, which is adapted from
Bartl, Drapeau, Oblój and Wiesel (2021) and Gao et al. (2024b), reveals that
this variation regularizer matches the leading term of a Taylor expansion of the
worst-case expected loss in the radius 𝑟 of the 𝑝-Wasserstein ball for any 𝑝 > 1.

Theorem 8.7 (Taylor expansion of worst-case expectation). Suppose that P is
the 𝑝-Wasserstein ambiguity set (2.28) for some 𝑝 ≥ 1, where W𝑝 is induced by a
norm ∥ · ∥ on R𝑑 , and Z is convex. Suppose also that the following hold.
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(i) Growth condition. There exist 𝑔, 𝛿0 > 0 such that ℓ(𝑧)− ℓ(𝑧) ≤ 𝑔∥𝑧 − 𝑧∥ 𝑝 for
all 𝑧, 𝑧 ∈ Z with ∥𝑧 − 𝑧∥ > 𝛿0.

(ii) Smoothness condition. There exists 𝐿 > 0 such that ∥∇ℓ(𝑧) − ∇ℓ(𝑧)∥∗ ≤
𝐿∥𝑧 − 𝑧∥ for all 𝑧, 𝑧 ∈ Z , where ∥ · ∥∗ is the norm dual to ∥ · ∥.

(iii) Integrability condition. Both EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ] and EP̂ [∥∇ℓ(�̂�)∥2𝑞−2
∗ ] are finite,

where 𝑞 = 𝑝/(𝑝 − 1) is the Hölder conjugate of 𝑝.

Then we have

sup
P∈P
EP [ℓ(𝑍)] = EP̂ [ℓ(𝑍)] + 𝑟 · EP̂ [∥∇ℓ(𝑍)∥𝑞∗ ]1/𝑞 + 𝑜(𝑟). (8.10)

Recall that all norms onR𝑑 are topologically equivalent. Thus, in the smoothness
condition we could equivalently use the primal norm instead of the dual norm to
measure differences between gradients. However, working with the dual norm is
more convenient and will simplify the proof of Theorem 8.7.

Proof of Theorem 8.7. For any fixed 𝛿 ∈ R+ and 𝑧 ∈ Z , we define the variation of
the loss function ℓ over a norm ball of radius 𝛿 around 𝑧 as

𝑉𝛿(𝑧) = sup
𝑧∈Z
{ℓ(𝑧) − ℓ(𝑧) : ∥𝑧 − 𝑧∥ ≤ 𝛿}.

Note that𝑉𝛿(𝑧) is finite because ℓ is continuous thanks to the smoothness condition.
As a preparation to prove the theorem, we first establish simple upper and lower
bounds on𝑉𝛿(𝑧). AsZ is convex, the line segment from 𝑧 to any 𝑧 ∈ Z is contained
in Z . The mean value theorem then implies that there exists a point 𝑧 ∈ Z on this
line segment that satisfies ℓ(𝑧) − ℓ(𝑧) = ∇ℓ(𝑧)⊤(𝑧 − 𝑧). Thus we have

|ℓ(𝑧) − ℓ(𝑧) − ∇ℓ(𝑧)⊤(𝑧 − 𝑧)| = |∇ℓ(𝑧)⊤(𝑧 − 𝑧) − ∇ℓ(𝑧)⊤(𝑧 − 𝑧)|
≤ ∥∇ℓ(𝑧) − ∇ℓ(𝑧)∥∗∥𝑧 − 𝑧∥
≤ 𝐿∥𝑧 − 𝑧∥2,

where the two inequalities follow from the definition of the dual norm and from
the smoothness condition, respectively. This implies that

∇ℓ(𝑧)⊤(𝑧 − 𝑧) − 𝐿∥𝑧 − 𝑧∥2 ≤ ℓ(𝑧) − ℓ(𝑧) ≤ ∇ℓ(𝑧)⊤(𝑧 − 𝑧) + 𝐿∥𝑧 − 𝑧∥2. (8.11)

The first inequality in (8.11) gives rise to a lower bound on 𝑉𝛿(𝑧). Indeed, we find

𝑉𝛿(𝑧) ≥ sup
𝑧∈Z
{∇ℓ(𝑧)⊤(𝑧 − 𝑧) − 𝐿∥𝑧 − 𝑧∥2 : ∥𝑧 − 𝑧∥ ≤ 𝛿}

≥ sup
𝑧∈Z
{∇ℓ(𝑧)⊤(𝑧 − 𝑧) : ∥𝑧 − 𝑧∥ ≤ 𝛿} − 𝐿𝛿2

= ∥∇ℓ(𝑧)∥∗𝛿 − 𝐿𝛿2, (8.12)

where the equality follows from the definition of the dual norm. Similarly, the
second inequality in (8.11) gives rise to the following upper bound on 𝑉𝛿(𝑧):

𝑉𝛿(𝑧) ≤ ∥∇ℓ(𝑧)∥∗𝛿 + 𝐿𝛿2 for all 𝛿 ∈ R+ (8.13)
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This upper bound grows quadratically with 𝛿 and is therefore too loose for our
purposes if 𝑝 < 2. In this case, we must establish an alternative upper bound that
grows only as 𝛿𝑝. This is possible thanks to the growth condition on ℓ. To see this,
define the worst-case variation of ℓ over any ball of radius 𝛿0 as

𝑉 = sup{ℓ(𝑧) − ℓ(𝑧) : 𝑧, 𝑧 ∈ Z , ∥𝑧 − 𝑧∥ ≤ 𝛿0}.

One can show that 𝑉 is finite. If Z is compact, then this is a consequence of
Weierstrass’s maximum theorem, which applies because ℓ is continuous. If Z is
unbounded, on the other hand, then this is a consequence of the convexity of Z
and the growth condition on ℓ. In this case, there exists a recession direction 𝑑 of
Z with ∥𝑑∥ = 2𝛿0. Thus, for all 𝑧, 𝑧 ∈ Z with ∥𝑧 − 𝑧∥ ≤ 𝛿, we have

ℓ(𝑧) − ℓ(𝑧) ≤ |ℓ(𝑧) − ℓ(𝑧 + 𝑑)| + |ℓ(𝑧 + 𝑑) − ℓ(𝑧)|
≤ 𝑔∥𝑑∥ 𝑝 + 𝑔∥𝑧 + 𝑑 − 𝑧∥ 𝑝

≤ 𝑔((2𝛿0)𝑝 + (3𝛿0)𝑝).

The second inequality follows from the growth condition on ℓ and the estimates
∥𝑧 − (𝑧 + 𝑑)∥ = 𝛿0 and ∥(𝑧 + 𝑑)− 𝑧∥ ≥ ∥𝑑∥ − ∥𝑧 − 𝑧∥ ≥ 𝛿0. Thus ℓ(𝑧)− ℓ(𝑧) admits
a finite upper bound independent of 𝑧 and 𝑧, which confirms that 𝑉 is finite.

The growth condition on ℓ ensures that 𝑉𝛿(𝑧) ≤ max{𝑉, 𝑔𝛿𝑝}. Combining this
estimate with (8.13) and defining 𝑢(𝛿) = min{max{𝑉, 𝑔𝛿𝑝}, 𝐿𝛿2} yields

𝑉𝛿(𝑧) ≤ min{max{𝑉, 𝑔𝛿𝑝}, ∥∇ℓ(𝑧)∥∗𝛿 + 𝐿𝛿2} ≤ ∥∇ℓ(𝑧)∥∗𝛿 + 𝑢(𝛿).

Note that 𝑢(𝛿) = 𝑔𝛿𝑝 for all sufficiently large 𝛿 and 𝑢(𝛿) = 𝐿𝛿2 for all sufficiently
small 𝛿. In between there is a (possibly empty) interval on which 𝑢(𝛿) = 𝑉 is
constant. Since 𝑝 ≤ 2, in all three regimes, 𝑢(𝛿) can be bounded above by 𝑔′𝛿𝑝
for some growth parameter 𝑔′ ∈ R+. Setting 𝐺 to the largest of these three growth
parameters, we may thus conclude that

𝑉𝛿(𝑧) ≤ ∥∇ℓ(𝑧)∥∗𝛿 + 𝐺𝛿𝑝 for all 𝛿 ∈ R+. (8.14)

Thus, if 𝑝 ≤ 2, then 𝑉𝛿(𝑧) admits an upper bound that grows only as 𝛿𝑝.
The remainder of the proof proceeds in two steps. First, we show that the right-

hand side of (8.10) provides a lower bound on the worst-case expected loss over P
(Step 1). Next, we show that the right-hand side of (8.10) also provides an upper
bound on the worst-case expected loss over P (Step 2). This will prove the claim.

Step 1. Define F as the family of all Borel functions 𝑓 : Z → Z . Any 𝑓 ∈ F
induces a pushforward distribution P = P̂ ◦ 𝑓 −1 supported on Z . By restricting the
Wasserstein ball around P̂ to contain only such pushforward distributions, we find

sup
P∈P
EP [ℓ(𝑍)] ≥ sup

𝑓 ∈F
{EP̂ [ℓ( 𝑓 (�̂�))] : EP̂ [∥ 𝑓 (�̂�) − �̂� ∥ 𝑝] ≤ 𝑟 𝑝} (8.15a)

≥ EP̂ [ℓ(�̂�)] + sup
𝛿∈Δ

{
EP̂

[
𝑉𝛿(�̂�)(�̂�)

]
: EP̂ [𝛿(�̂�)𝑝] ≤ 𝑟 𝑝

}
, (8.15b)
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where the set Δ in (8.15b) represents the family of all Borel functions 𝛿 : Z → R+.
The second inequality in the above expression can be justified as follows. Select
any 𝛿 ∈ Δ feasible in (8.15b), and define 𝑓 ∈ F as any Borel function satisfying

𝑓 (𝑧) ∈ arg max
𝑧∈Z
{ℓ(𝑧) : ∥𝑧 − 𝑧∥ ≤ 𝛿(𝑧)} for all 𝑧 ∈ Z .

Such a Borel function exists thanks to Rockafellar and Wets (2009, Corollary 14.6
and Theorem 14.37). As 𝛿 is feasible in (8.15b), this function 𝑓 satisfies

EP̂ [∥ 𝑓 (�̂�) − �̂� ∥ 𝑝] ≤ EP̂ [𝛿(�̂�)𝑝] ≤ 𝑟 𝑝

and is thus feasible in (8.15a). Its objective function value in (8.15a) satisfies

EP̂ [ℓ( 𝑓 (�̂�))] = EP̂ [ℓ(�̂�)] + EP̂ [𝑉𝛿(�̂�)(�̂�)] .

Hence any feasible solution in (8.15b) gives rise to a feasible solution in (8.15a)
with the same objective function value. This proves the inequality in (8.15a).
Substituting the lower bound (8.12) on 𝑉𝛿(𝑧) into (8.15b) then yields the estimate

sup
P∈P
EP [ℓ(𝑍)] ≥ EP̂ [ℓ(�̂�)] +


sup
𝛿∈Δ

EP̂ [∥∇ℓ(�̂�)∥∗𝛿(�̂�) − 𝐿𝛿(�̂�)2]

s.t. EP̂ [𝛿(�̂�)𝑝] ≤ 𝑟 𝑝 .
(8.16)

If ∥∇ℓ(�̂�)∥∗ = 0 P̂-almost surely, then we have established the desired lower bound.
From now on we may thus assume that EP̂ [∥∇ℓ(�̂�)∥∗] > 0. Next, we construct a
function 𝛿★ ∈ Δ feasible in the maximization problem in (8.16) and use its objective
function value as a lower bound on the problem’s supremum. Specifically, we set

𝛿★(𝑧) =
∥∇ℓ(𝑧)∥𝑞−1

∗ 𝑟

EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ]1/𝑝
for all 𝑧 ∈ Z ,

which is well-defined by the integrability condition. As 𝑞 − 1 = 𝑞/𝑝, we find

EP̂ [𝛿★(�̂�)𝑝] = 𝑟 𝑝 and EP̂ [∥∇ℓ(�̂�)∥∗𝛿★(�̂�)𝑝] = 𝑟 · EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ]1/𝑞 .

Hence 𝛿★ is feasible in (8.16), and its objective function value amounts to

EP̂ [∥∇ℓ(�̂�)∥∗𝛿★(�̂�)− 𝐿𝛿★(�̂�)2] = 𝑟 · EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ]1/𝑞 − 𝐿𝑟2 ·
EP̂ [∥∇ℓ(�̂�)∥2𝑞−2

∗ ]
EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ]2/𝑝

.

Note that the last term is again finite thanks to the integrability condition. Substi-
tuting this expression back into (8.16) yields the desired lower bound

sup
P∈P
EP [ℓ(𝑍)] ≥ EP̂ [ℓ(�̂�)] + 𝑟 · EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ]1/𝑞 +𝑂(𝑟2).
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Step 2. By strong duality as established in Theorem 4.18, we have

sup
P∈P
EP [ℓ(𝑍)] = inf

𝜆∈R+
𝜆𝑟 𝑝 + EP̂

[
sup
𝑧∈Z

ℓ(𝑧) − 𝜆∥𝑧 − �̂� ∥ 𝑝
]

= inf
𝜆∈R+

𝜆𝑟 𝑝 + EP̂
[
ℓ(�̂�) + sup

𝛿∈R+
𝑉𝛿(�̂�) − 𝜆𝛿𝑝

]
, (8.17)

where the second equality follows from the observation that

sup
𝑧∈Z

ℓ(𝑧) − 𝜆∥𝑧 − 𝑧∥ 𝑝 = sup
𝑧∈Z

sup
𝛿∈R+
{ℓ(𝑧) − 𝜆𝛿𝑝 : ∥𝑧 − 𝑧∥ ≤ 𝛿}

= ℓ(𝑧) + sup
𝛿∈R+

𝑉𝛿(𝑧) − 𝜆𝛿𝑝 .

Next, we construct an upper bound on (8.17). In fact, we need separate constructions
for 𝑝 > 2 and 𝑝 ≤ 2. Assume first that 𝑝 > 2. In this case, we have

sup
P∈P
EP [ℓ(𝑍)] − EP̂ [ℓ(�̂�)]

≤ inf
𝜆1,𝜆2∈R+

(𝜆1 + 𝜆2)𝑟 𝑝 + EP̂
[

sup
𝛿∈R+
∥∇ℓ(�̂�)∥∗𝛿 + 𝐿𝛿2 − (𝜆1 + 𝜆2)𝛿𝑝

]
≤ inf
𝜆1∈R+

𝜆1𝑟
𝑝 + EP̂

[
sup
𝛿∈R+
∥∇ℓ(�̂�)∥∗𝛿 − 𝜆1𝛿

𝑝

]
(8.18a)

+ inf
𝜆2∈R+

𝜆2𝑟
𝑝 + sup

𝛿∈R+
𝐿𝛿2 − 𝜆2𝛿

𝑝, (8.18b)

where the first inequality follows from the estimate (8.13), and the second inequality
holds because the supremum over 𝛿 is duplicated. The resulting upper bound on
the worst-case expected loss thus coincides with the sum of two infima. One
readily verifies that the maximization problem over 𝛿 in (8.18a) is solved by 𝛿★ =

(𝑝𝜆1)−𝑞/𝑝 ∥∇ℓ(�̂�)∥𝑞/𝑝∗ . Thus the infimum in (8.18a) equals

inf
𝜆1∈R+

𝜆1𝑟
𝑝 + 1

𝑞
(𝜆1𝑝)−𝑞/𝑝EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ] = 𝑟 · EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ]1/𝑞, (8.19a)

where the equality holds because the resulting minimization problem over 𝜆1 is
solved by 𝜆★1 = 𝑝𝑟−𝑝/𝑞EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ]1/𝑞. Similarly, the maximization problem
over 𝛿 in (8.18b) is solved by 𝛿★ = 𝐶1𝜆

−1/(𝑝−2)
2 , where 𝐶1 represents a positive

constant that only depends on 𝑝 and 𝐿. Thus the infimum in (8.18b) equals

inf
𝜆2∈R+

𝜆2𝑟
𝑝 + 𝐶2𝜆

−2/(𝑝−2)
2 = 𝐶3𝑟

2, (8.19b)

where 𝐶2 and 𝐶3 are other positive constants depending on 𝑝 and 𝐿. The equality
in (8.19b) is obtained by solving the minimization problem over 𝜆2 in closed form.
Replacing (8.18a) with (8.19a) and (8.18b) with (8.19b) finally yields

sup
P∈P
EP [ℓ(𝑍)] ≤ EP̂ [ℓ(�̂�)] + 𝑟 · EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ]1/𝑞 +𝑂(𝑟2).
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Assume next that 𝑝 ≤ 2. In this case, we have

sup
P∈P
EP [ℓ(𝑍)] ≤ inf

𝜆1,𝜆2∈R+
(𝜆1 + 𝜆2)𝑟 𝑝 + EP̂

[
sup
𝛿∈R+
∥∇ℓ(�̂�)∥∗𝛿 + 𝐺𝛿𝑝 − (𝜆1 + 𝜆2)𝛿𝑝

]
≤ inf
𝜆1∈R+

𝜆1𝑟
𝑝 + EP̂

[
sup
𝛿∈R+
∥∇ℓ(�̂�)∥∗𝛿 − 𝜆1𝛿

𝑝

]
(8.20a)

+ inf
𝜆2∈R+

𝜆2𝑟
𝑝 + sup

𝛿∈R+
𝐺𝛿𝑝 − 𝜆2𝛿

𝑝, (8.20b)

where the first inequality follows from the estimate (8.14). Note that the infimum
in (8.20a) is identical to that in (8.18a) and thus simplifies to (8.19a). Next, note
that the maximization problem over 𝛿 in (8.20b) is unbounded unless 𝜆2 ≥ 𝐺. This
condition thus constitutes an implicit constraint for the minimization problem over
𝜆2. Whenever 𝜆2 satisfies this constraint, however, the supremum over 𝛿 evaluates
to 0, and therefore the infimum over 𝜆2 evaluates to 𝐺𝑟 𝑝. Replacing (8.20a) with
(8.19a) and (8.20b) with 𝐺𝑟 𝑝 finally yields

sup
P∈P
EP [ℓ(𝑍)] ≤ EP̂ [ℓ(�̂�)] + 𝑟 · EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ]1/𝑞 +𝑂(𝑟 𝑝).

As both𝑂(𝑟2) and𝑂(𝑟 𝑝) for 0 < 𝑝 ≤ 2 are of the order 𝑜(𝑟), the claim follows.

The proof of Theorem 8.7 reveals that the variation𝑉𝛿(𝑧) equals ∥∇ℓ(𝑧)∥∗𝛿 to first
order in 𝛿. Hence it is natural to refer to the regularization term EP̂ [∥∇ℓ(�̂�)∥𝑞∗ ]1/𝑞
appearing in (8.10) as the total variation.

Regularizers penalizing the Lipschitz moduli, gradients, Hessians or tensors of
higher-order partial derivatives are successfully used in the adversarial training of
neural networks (Lyu, Huang and Liang 2015, Jakubovitz and Giryes 2018, Finlay
and Oberman 2021, Bai, He, Jiang and Obloj 2023a) and in the stabilizing training
of generative adversarial networks (Roth, Lucchi, Nowozin and Hofmann 2017,
Nagarajan and Kolter 2017, Gulrajani et al. 2017). However, these regularizers
introduce non-convexity into an otherwise convex optimization problem. Theor-
ems 8.6 and 8.7 thus suggest that the worst-case expected loss with respect to a
Wasserstein ambiguity set provides a convex surrogate for the empirical loss with
Lipschitz and/or variation regularizers.

8.3. Lipschitz continuity of law-invariant convex risk measures

Let 𝜚 be a law-invariant convex risk measure as introduced in Section 5. Recall that
all convex risk measures are translation-invariant, monotone and convex. Assume
also that 𝜚 is an L𝑝-risk measure for some 𝑝 ≥ 1. By this we mean that 𝜚P [ℓ(𝑍)]
is finite whenever ℓ ∈ L𝑝(P) and P ∈ P(R𝑑), that is, whenever EP [|ℓ(𝑍)|𝑝] < +∞.
The aim of this section is to derive interpretable and easily computable upper
bounds on the worst case of 𝜚P [ℓ(𝑍)] with respect to all distributions P of 𝑍 in a
𝑝-Wasserstein ball. To this end, we first recall the definition of a subgradient.
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Definition 8.8 (Subgradient). If 𝜚 is a law-invariant convex L𝑝-risk measure for
some 𝑝 ≥ 1, then ℎ ∈ L𝑞(P) is a subgradient of 𝜚P at ℓ0 ∈ L𝑝(P) if 1

𝑝
+ 1
𝑞
= 1 and

𝜚P [ℓ(𝑍)] ≥ 𝜚P [ℓ0(𝑍)] + EP [ℎ(𝑍) · (ℓ(𝑍) − ℓ0(𝑍))] for all ℓ ∈ L𝑝(P).

We say that 𝜚P is subdifferentiable at ℓ0 if it has at least one subgradient at ℓ0.

Definition 8.9 (Lipschitz continuity). Let 𝜚 be a law-invariant convex L𝑝-risk
measure for some 𝑝 ≥ 1. Then 𝜚 is Lipschitz-continuous if there exists 𝐿 ≥ 0 with

|𝜚P [ℓ(𝑍)] − 𝜚P [ℓ0(𝑍)] | ≤ 𝐿 · EP [|ℓ(𝑍) − ℓ0(𝑍)|𝑝]1/𝑝

for all ℓ, ℓ0 ∈ L𝑝(P), P ∈ P(R𝑑). We use lip(𝜚) to denote the Lipschitz modulus,
i.e. the smallest 𝐿 with this property.

Lemma 8.10 (Subgradient bounds). Let 𝜚 be a law-invariant convex L𝑝-risk
measure and ℎ ∈ L𝑞(P) a subgradient of 𝜚P at ℓ0 ∈ L𝑝(P) for some P ∈ P(R𝑑),
where 1

𝑝
+ 1
𝑞
= 1. If 𝜚 is Lipschitz-continuous, then EP [|ℎ(𝑍)|𝑞]1/𝑞 ≤ lip(𝜚).

Proof. By the Lipschitz continuity of 𝜚 and the definition of subgradients, we
have

𝜚P [ℓ0(𝑍)] + lip(𝜚) · EP [|ℓ(𝑍) − ℓ0(𝑍)|𝑝]1/𝑝

≥ 𝜚P [ℓ(𝑍)]
≥ 𝜚P [ℓ0(𝑍)] + EP [ℎ(𝑍) · (ℓ(𝑍) − ℓ0(𝑍))]

for every ℓ ∈ L𝑝(P). This inequality is equivalent to

lip(𝜚) ≥ sup
ℓ∈L𝑝(P)
ℓ≠ℓ0

EP

[
ℎ(𝑍) · ℓ(𝑍) − ℓ0(𝑍)

EP [|ℓ(𝑍) − ℓ0(𝑍)|𝑝]1/𝑝

]
= EP [|ℎ(𝑍)|𝑞]1/𝑞,

where the equality holds because the L𝑞-norm is dual to the L𝑝-norm.

The results of this section also rely on the fundamentals of comonotonicity
theory, which we review next. For any Borel-measurable function 𝑓 : R𝑑 → R,
the distribution function 𝐹 : R → [0, 1] of the random variable 𝑓 (𝑍) under P is
defined by 𝐹(𝜏) = P( 𝑓 (𝑍) ≤ 𝜏) for every 𝜏 ∈ R, and the corresponding (left)
quantile function 𝐹← : [0, 1] → R is defined by 𝐹←(𝑞) = inf{𝜏 ∈ R : 𝐹1(𝜏) ≥ 𝑞}
for every 𝑞 ∈ [0, 1]. Note that if 𝐹 is invertible, then 𝐹← = 𝐹−1. Note also
that 𝐹 is generally right-continuous, whereas 𝐹← is generally left-continuous. The
definition of the quantile function 𝐹← also readily implies the equivalence

𝐹(𝜏) ≥ 𝑞 ⇐⇒ 𝜏 ≥ 𝐹←(𝑞) for all 𝜏 ∈ R, 𝑞 ∈ [0, 1] . (8.21)

Definition 8.11 (Comonotonicity). Two random variables 𝑓 (𝑍) and 𝑔(𝑍) in-
duced by Borel-measurable functions 𝑓 , 𝑔 : R𝑑 → R are comonotonic under P if

P( 𝑓 (𝑍) ≤ 𝜏1 ∧ 𝑔(𝑍) ≤ 𝜏2) = min{𝐹(𝜏1), 𝐺(𝜏2)} for all 𝜏1, 𝜏2 ∈ R,
where 𝐹 and 𝐺 denote the distribution functions of 𝑓 (𝑍) and 𝑔(𝑍) under P.
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The following proposition sheds more light on Definition 8.11. It shows that
comonotonic random variables can essentially always be expressed as functions of
each other (McNeil, Frey and Embrechts 2015, Corollary 5.17).

Proposition 8.12 (Comonotonicity). Let 𝑓 (𝑍) and 𝑔(𝑍) be two random variables
with respective distribution functions 𝐹 and 𝐺 under P as in Definition 8.11. If 𝐹
is continuous, then 𝑓 (𝑍) and 𝑔(𝑍) are comonotonic under P if and only if

𝑔(𝑍) = 𝐺←(𝐹( 𝑓 (𝑍))) P-a.s.

Proof. Note first that 𝐹( 𝑓 (𝑍)) follows the standard uniform distribution on [0, 1]
under P. To see this, note that for any 𝑞 ∈ [0, 1] we have

P(𝐹( 𝑓 (𝑍)) ≤ 𝑞) = P( 𝑓 (𝑍) ≤ 𝐹←(𝑞)) = 𝐹(𝐹←(𝑞)) = 𝑞,

where the first two equalities follow from the definitions of 𝐹← and 𝐹, respectively,
while the last equality holds because 𝐹 is continuous.

Assume now that 𝑓 (𝑍) and 𝑔(𝑍) are comonotonic under P. Hence we have

P( 𝑓 (𝑍) ≤ 𝜏1 ∧ 𝑔(𝑍) ≤ 𝜏2) = min{𝐹(𝜏1), 𝐺(𝜏2)}
= P(𝐹( 𝑓 (𝑍)) ≤ min{𝐹(𝜏1), 𝐺(𝜏2)})
= P(𝐹( 𝑓 (𝑍)) ≤ 𝐹(𝜏1) ∧ 𝐹( 𝑓 (𝑍)) ≤ 𝐺(𝜏2))
= P(𝐹←(𝐹( 𝑓 (𝑍))) ≤ 𝜏1 ∧ 𝐺←(𝐹( 𝑓 (𝑍))) ≤ 𝜏2)

for all 𝜏1, 𝜏2 ∈ R. Here the second equality holds because 𝐹( 𝑓 (𝑍)) follows the
standard uniform distribution under P. The last equality holds thanks to (8.21). As
𝐹←(𝐹( 𝑓 (𝑍))) is P-almost surely equal to 𝑓 (𝑍), we thus have

P( 𝑓 (𝑍) ≤ 𝜏1 ∧ 𝑔(𝑍) ≤ 𝜏2) = P( 𝑓 (𝑍) ≤ 𝜏1 ∧ 𝐺←(𝐹( 𝑓 (𝑍))) ≤ 𝜏2)

for all 𝜏1, 𝜏2 ∈ R. Hence ( 𝑓 (𝑍), 𝑔(𝑍)) and ( 𝑓 (𝑍), 𝐺←(𝐹( 𝑓 (𝑍)))) are equal in law
under P. This implies in particular that the distribution of 𝑔(𝑍) conditional on 𝑓 (𝑍)
coincides with the distribution of 𝐺←(𝐹( 𝑓 (𝑍))) conditional on 𝑓 (𝑍) under P. As
the latter distribution is given by the Dirac point mass at 𝐺←(𝐹( 𝑓 (𝑍))), we may
conclude that 𝑔(𝑍) is P-almost surely equal to 𝐺←(𝐹( 𝑓 (𝑍))).

Assume now that 𝑔(𝑍) = 𝐺←(𝐹( 𝑓 (𝑍))) P-almost surely. Thus we have

P( 𝑓 (𝑍) ≤ 𝜏1 ∧ 𝑔(𝑍) ≤ 𝜏2) = P( 𝑓 (𝑍) ≤ 𝜏1 ∧ 𝐺←(𝐹( 𝑓 (𝑍))) ≤ 𝜏2)
= min{𝐹(𝜏1), 𝐺(𝜏2)},

where the second equality follows from the first part of the proof.

Next, we show that the correlation of two random variables with fixed marginals
is maximal if they are comonotonic (McNeil et al. 2015, Theorem 5.25).

Theorem 8.13 (Attainable correlations). Let 𝑓 , 𝑓★, 𝑔 and 𝑔★ be real-valued
Borel-measurable functions on R𝑑 . Assume that if 𝑍 is governed by P, then 𝑓 (𝑍)
and 𝑓★(𝑍) have the same distribution function 𝐹, whereas 𝑔(𝑍) and 𝑔★(𝑍) have the
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same distribution function 𝐺. If 𝑓★(𝑍) and 𝑔★(𝑍) are comonotonic, then

EP [ 𝑓 (𝑍) · 𝑔(𝑍)] ≤ EP [ 𝑓★(𝑍) · 𝑔★(𝑍)] .

Proof. Define the joint distribution function 𝐻 : R2 → [0, 1] of 𝑓 (𝑍) and 𝑔(𝑍)
under P via 𝐻(𝜏1, 𝜏2) = P( 𝑓 (𝑍) ≤ 𝜏1 ∧ 𝑔(𝑍) ≤ 𝜏2) for all 𝜏1, 𝜏2 ∈ R. By McNeil
et al. (2015, Lemma 5.24), the covariance of 𝑓 (𝑍) and 𝑔(𝑍) under P satisfies

covP( 𝑓 (𝑍), 𝑔(𝑍)) =
∫ +∞

−∞

∫ +∞

−∞
(𝐻(𝜏1, 𝜏2) − 𝐹(𝜏1)𝐺(𝜏2)) d𝜏1 d𝜏2. (8.22)

In addition, by the classical Fréchet bounds for copulas (McNeil et al. 2015,
Remark 5.8), we know that 𝐻(𝜏1, 𝜏2) ≤ min{𝐹(𝜏1), 𝐺(𝜏2)} for all 𝜏1, 𝜏2 ∈ R. As
the marginal distribution functions 𝐹 and 𝐺 are fixed, it is evident from (8.22)
that the covariance of the random variables 𝑓 (𝑍) and 𝑔(𝑍) is maximized if their
joint distribution function 𝐻(𝜏1, 𝜏2) coincides with its Fréchet upper bound. This,
however, happens if and only if 𝑓 (𝑍) and 𝑔(𝑍) are comonotonic under P. We have
thus shown that covP( 𝑓 (𝑍), 𝑔(𝑍)) ≤ covP( 𝑓★(𝑍), 𝑔★(𝑍)), which in turn implies that

EP [ 𝑓 (𝑍) · 𝑔(𝑍)] = covP( 𝑓 (𝑍), 𝑔(𝑍)) + EP [ 𝑓 (𝑍)] · EP [𝑔(𝑍)]
≤ covP( 𝑓★(𝑍), 𝑔★(𝑍)) + EP [ 𝑓★(𝑍)] · EP [𝑔★(𝑍)]
= EP [ 𝑓★(𝑍) · 𝑔★(𝑍)] .

Here the inequality exploits the assumption that 𝑓 (𝑍) equals 𝑓★(𝑍) in law and that
𝑔(𝑍) equals 𝑔★(𝑍) in law under P. Hence the claim follows.

We are now ready to show that if 𝜚 is a Lipschitz-continuous L𝑝-risk measure
and ℓ is a Lipschitz-continuous loss function, then the risk 𝜚P [ℓ(𝑍)] is Lipschitz-
continuous in the distribution P with respect to the 𝑝-Wasserstein distance.

Theorem 8.14 (Lipschitz continuity of risk measures). If ℓ : R𝑑 → R is a
Lipschitz-continuous loss function with respect to some norm ∥ · ∥ on R𝑑 , 𝑝 ≥ 1
and 𝜚 a Lipschitz-continuous and law-invariant convex L𝑝-risk measure, then

|𝜚P [ℓ(𝑍)] − 𝜚P̂ [ℓ(�̂�)] | ≤ lip(𝜚) · lip(ℓ) ·W𝑝(P, P̂)

for all P, P̂ ∈ P(R𝑑). Here W𝑝 is defined with respect to ∥ · ∥, and 1
𝑝
+ 1
𝑞
= 1.

Proof. Consider an arbitrary P ∈ P(R𝑑). By Ruszczyński and Shapiro (2006,
Corollary 3.1), 𝜚P is continuous and subdifferentiable on the whole Banach space
L𝑝(P) equipped with its norm topology. The Fenchel–Moreau theorem thus implies
that

𝜚P [ℓ′(𝑍)] = sup
ℎ′∈L𝑞(P)

EP [ℎ′(𝑍) · ℓ′(𝑍)] − 𝜚∗P [ℎ′(𝑍)] (8.23a)

for all ℓ′ ∈ L𝑝(P), where

𝜚∗P [ℎ′(𝑍)] = sup
ℓ′∈L𝑝(P)

EP [ℎ′(𝑍) · ℓ′(𝑍)] − 𝜚P [ℓ′(𝑍)] (8.23b)
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for all ℎ′ ∈ L𝑞(P) (Rockafellar 1974, Theorem 5). The relation (8.23b) defines
a law-invariant convex risk measure 𝜚∗. Indeed, 𝜚∗ is convex because pointwise
suprema of affine functions are convex. In addition, 𝜚∗ inherits law-invariance
from 𝜚. Note that ℎ ∈ L𝑞(P) attains the supremum in (8.23a) at ℓ′ = ℓ if and only if

𝜚P [ℓ(𝑍)] = EP [ℎ(𝑍) · ℓ(𝑍)] − 𝜚∗P [ℎ(𝑍)]
⇐⇒ 𝜚∗P [ℎ(𝑍)] = EP [ℎ(𝑍) · ℓ(𝑍)] − 𝜚P [ℓ(𝑍)]
⇐⇒ EP [ℎ(𝑍) · ℓ′(𝑍)] − 𝜚P [ℓ′(𝑍)]

≤ EP [ℎ(𝑍) · ℓ(𝑍)] − 𝜚P [ℓ(𝑍)] ∀ℓ′ ∈ L𝑝(P),

where the last equivalence follows from the definition of 𝜚∗P [ℎ(𝑍)] in (8.23b). By
rearranging terms, we then find that the last inequality is equivalent to

𝜚P [ℓ(𝑍)] + EP [ℎ(𝑍) · (ℓ′(𝑍) − ℓ(𝑍))] ≤ 𝜚P [ℓ′(𝑍)] ∀ℓ′ ∈ L𝑝(P).

Thus ℎ attains the supremum in (8.23a) at ℓ if and only if it represents a subgradient
of 𝜚P at ℓ. As 𝜚P is subdifferentiable throughoutL𝑝(P), the above reasoning implies
that the supremum in (8.23a) is always attained.

Now select any P, P̂ ∈ P(R𝑑) with W𝑝(P, P̂) < +∞. We assume temporarily that
P and P̂ are non-atomic, that is, P(𝑍 = 𝑧) = P̂(𝑍 = 𝑧) = 0 for all 𝑧 ∈ R𝑑 . Thus, for
any admissible distribution function 𝐹, there exists a Borel-measurable function
𝑓 : R𝑑 → R such that P( 𝑓 (𝑍) ≤ 𝜏) = 𝐹(𝜏) for all 𝜏 ∈ R; see e.g. Delage, Kuhn and
Wiesemann (2019, Lemma 1). Note that non-atomicity will later be relaxed. Now
also select any ℎ ∈ L𝑞(P) that attains the supremum in (8.23a) at ℓ′ = ℓ, which is
guaranteed to exist. The representation (8.23a) then implies that

𝜚P [ℓ(𝑍)] − 𝜚P̂ [ℓ(�̂�)]
= EP [ℎ(𝑍) · ℓ(𝑍)] − 𝜚∗P [ℎ(𝑍)] − sup

ℎ̂∈L𝑞(P̂)

{
EP̂ [ℎ̂(�̂�) · ℓ(�̂�)] − 𝜚∗

P̂
[ℎ̂(�̂�)]

}
.

In the following, we use 𝐹 to denote the distribution function of ℎ(𝑍) under P and
�̂� to denote the distribution function of ℓ(�̂�) under P̂. In addition, we restrict the
above maximization problem to functions ℎ̂ for which the distribution function of
the random variable ℎ̂(�̂�) coincides with 𝐹. As restricting the feasible set of a
maximization problem leads to a lower bound on its optimal value, we find

𝜚P [ℓ(𝑍)] − 𝜚P̂ [ℓ(�̂�)]

≤ EP [ℎ(𝑍) · ℓ(𝑍)] −


sup
ℎ̂∈L𝑞(P̂)

EP̂ [ℎ̂(�̂�) · ℓ(�̂�)]

s.t. P̂(ℎ̂(�̂�) ≤ 𝜏) = 𝐹(𝜏) ∀𝜏 ∈ R.
(8.24)

Here we have exploited the law-invariance of the risk measure 𝜚∗, which implies
that 𝜚∗P [ℎ(𝑍)] and 𝜚∗

P̂
[ℎ̂(�̂�)] match. Next, define the function ℎ̂★ : R𝑑 → R through

ℎ̂★(𝑧) = 𝐹←(�̂�(ℓ(𝑧))) for all 𝑧 ∈ R𝑑 .
Note that �̂� is continuous because P̂ is non-atomic and ℓ is (Lipschitz-) continuous.
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By Proposition 8.12, the random variables ℎ̂★(�̂�) and ℓ(�̂�) are thus comonotonic
and have distribution functions 𝐹 and �̂� under P̂, respectively. Hence ℎ̂★ is feasible
in the maximization problem in (8.24). In addition, by Theorem 8.13, ℎ̂★ is optimal.

Next, select any transportation plan 𝛾 ∈ Γ(P, P̂). As the marginal distributions
of 𝑍 and �̂� under 𝛾 are given by P and P̂, respectively, the above implies that

𝜚P [ℓ(𝑍)] − 𝜚P̂ [ℓ(�̂�)]

≤ E𝛾 [ℎ(𝑍) · ℓ(𝑍)] −


sup
ℎ̂∈L𝑞(𝛾)

E𝛾 [ℎ̂(𝑍, �̂�) · ℓ(�̂�)]

s.t. 𝛾(ℎ̂(𝑍, �̂�) ≤ 𝜏) = 𝐹(𝜏) ∀𝜏 ∈ R.
(8.25)

Note that we have relaxed the maximization problem in (8.25) by allowing the
function ℎ̂ to depend on both 𝑍 and �̂� . However, this extra flexibility does not
result in a higher optimal value. Indeed, Theorem 8.13 ensures that the supremum
is attained by any function ℎ̂ for which the random variables ℎ̂(𝑍, �̂�) and ℓ(�̂�) are
comonotonic and for which ℎ̂(𝑍, �̂�) has distribution function 𝐹. As we have seen
before, there exists a function with these properties that does not depend on 𝑍 .
Hence the right to select a function ℎ̂ that depends on 𝑍 is worthless.

Observe now that the function ℎ̂(𝑍, �̂�) = ℎ(𝑍) is feasible in (8.25). Thus we find

𝜚P [ℓ(𝑍)] − 𝜚P̂ [ℓ(�̂�)] ≤ E𝛾 [ℎ(𝑍) · ℓ(𝑍)] − E𝛾 [ℎ(𝑍) · ℓ(�̂�)]
≤ E𝛾 [ℎ(𝑍) · |ℓ(𝑍) − ℓ(�̂�)|]
≤ E𝛾 [ℎ(𝑍) · lip(ℓ) · ∥𝑍 − �̂� ∥]
≤ lip(ℓ) · E𝛾 [∥𝑍 − �̂� ∥ 𝑝]1/𝑝 · EP [ℎ(𝑍)𝑞]1/𝑞,

where the second inequality holds because all convex risk measures are monotonic,
which implies that the subgradient ℎ(𝑍) is P-almost surely non-negative. The third
inequality exploits the Lipschitz continuity of the loss function, and the fourth
inequality follows from Hölder’s inequality. As the resulting inequality holds for
all couplings 𝛾 ∈ Γ(P, P̂), the definition of the 𝑝-Wasserstein distance implies that

𝜚P [ℓ(𝑍)] − 𝜚P̂ [ℓ(�̂�)] ≤ lip(ℓ) ·W𝑝(P, P̂) · EP [ℎ(𝑍)𝑞]1/𝑞

≤ lip(𝜚) · lip(ℓ) ·W𝑝(P, P̂),

where the second inequality follows from Lemma 8.10. The claim then follows by
interchanging the roles of P and P̂.

Recall now that we assumed P and P̂ are non-atomic. This assumption was
needed to show that the supremum in (8.24) is attained. In general, one can extend
P to a distribution P′ on R𝑑+1 under which (𝑍1, . . . , 𝑍𝑑) and 𝑍𝑑+1 are independent
and have marginal distributions equal to P and to the uniform distribution on [0, 1],
respectively. In the same way, P̂ can be extended to a distribution P̂′ on R𝑑+1. By
construction, P′ and P̂′ are non-atomic. As 𝜚 is law-invariant, we further have

|𝜚P [ℓ(𝑍)] − 𝜚P̂ [ℓ(�̂�)] | = |𝜚P′ [ℓ(𝑍)] − 𝜚P̂′ [ℓ(�̂�)] |.
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The right-hand side of this equation can now be bounded as above.

Theorem 8.14 immediately implies the following worst-case risk bound.

Corollary 8.15. If all assumptions of Theorem 8.14 hold and

P = {P ∈ P(R𝑑) : W𝑝(P, P̂) ≤ 𝑟}

is a 𝑝-Wasserstein ball of radius 𝑟 ≥ 0 for any 𝑝 ≥ 1, then

sup
P∈P

𝜚P [ℓ(𝑍)] ≤ 𝜚P̂ [ℓ(𝑍)] + 𝑟 · lip(𝜚) · lip(ℓ).

Theorem 8.14 and Corollary 8.15 are due to Pichler (2013). Corollary 8.15
shows that the worst-case risk over all distributions in a 𝑝-Wasserstein ball is
upper-bounded by the sum of the nominal risk and a Lipschitz regularization term
for a broad spectrum of law-invariant convex risk measures. If the loss function ℓ
is linear, that is, if ℓ(𝑧) = 𝜃⊤𝑧 for some 𝜃 ∈ R𝑑 , then this upper bound is often tight
(Pflug et al. 2012, Wozabal 2014). In this case the Lipschitz modulus of ℓ simplifies
to ∥𝜃∥∗. For example, the CVaR at level 𝛽 ∈ (0, 1] is a law-invariant convex L𝑝-
risk measure, and it is Lipschitz-continuous with Lipschitz modulus 𝛽−1/𝑝. Thus
Corollary 8.15 applies. From Proposition 6.20 we know, however, that the upper
bound is exact in this case. If additionally 𝑝 = 1, then Proposition 6.18 implies that
the upper bound remains exact whenever ℓ is convex and Lipschitz-continuous.

9. Numerical solution methods for DRO problems
The finite convex reformulations of the worst-case expectation problem (4.1)
presented in Section 7 are often susceptible to standard optimization software,
that is, they obviate the need for tailored algorithms. However, these reformu-
lations can have two significant drawbacks. First, the corresponding monolithic
optimization problems can become large and hence challenging to solve. Second,
depending on the chosen ambiguity set, the emerging reformulations may belong
to a class of optimization problems that are more difficult to solve than a determ-
inistic version of the original problem. For instance, even if the loss function ℓ
in the worst-case expectation (4.1) is piecewise affine and the support set Z is an
ellipsoid, the finite dual reformulation over Chebyshev ambiguity sets, as provided
by Theorem 7.9, results in a semidefinite program, as opposed to a numerically
favourable quadratically constrained quadratic program. Both disadvantages can
be alleviated by resorting to tailored algorithms, which we discuss in this section.

Most numerical methods for solving the DRO problem (1.2) address an equival-
ent reformulation of (1.2) obtained by dualizing the inner worst-case expectation
problem. This reformulation is usually constructed by leveraging one of the strong
duality theorems from Section 4. The resulting reformulation of (1.2) is thus
representable as a semi-infinite program of the form

inf{ 𝑓 (𝑦) : 𝑦 ∈ Y , 𝑔 𝑗(𝑦, 𝑧 𝑗) ≤ 0 ∀𝑧 𝑗 ∈ Z , 𝑗 ∈ [𝑚]}. (9.1)
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Note that (9.1) is naturally interpreted as a classical robust optimization problem.
As an example, assume that P is the generic moment ambiguity set (2.1) and

that some mild regularity conditions hold. In this case, Theorem 4.5 implies that

inf
𝑥∈X

sup
P∈P
EP [ℓ(𝑥, 𝑍)] =


inf 𝜆0 + 𝛿∗F (𝜆)
s.t. 𝑥 ∈ X , 𝜆0 ∈ R, 𝜆 ∈ R𝑚

𝜆0 + 𝑓 (𝑧)⊤𝜆 ≥ ℓ(𝑥, 𝑧) ∀𝑧 ∈ Z .

If the support function 𝛿∗F (𝜆) is known in closed form, then the resulting minimiz-
ation problem becomes an instance of (9.1) with 𝑦 = (𝑥, 𝜆0, 𝜆), Y = X × R × R𝑚,
𝑓 (𝑦) = 𝜆0 + 𝛿∗F (𝜆), 𝑚 = 1 and 𝑔1(𝑦, 𝑧1) = 𝜆0 + 𝑓 (𝑧1)⊤𝜆 − ℓ(𝑥, 𝑧1). Alternatively,
𝛿∗F (𝜆) can be recast as the optimal value of a dual minimization problem, and
the underlying decision variables can be appended to 𝑦. As another example,
if P is the 𝜙-divergence ambiguity set (2.10) centred at a discrete distribution
P̂ =

∑
𝑖∈[𝑁 ] 𝑝𝑖𝛿 �̂�𝑖 and if mild regularity conditions hold, then Theorem 4.14 im-

plies that

inf
𝑥∈X

sup
P∈P
EP [ℓ(𝑥, 𝑍)] =


inf 𝜆0 + 𝜆𝑟 +

∑︁
𝑖∈[𝑁 ]

𝑝𝑖 · (𝜙∗)𝜋(ℓ(𝑧𝑖) − 𝜆0, 𝜆)

s.t. 𝑥 ∈ X , 𝜆0 ∈ R, 𝜆 ∈ R+
𝜆0 + 𝜆 𝜙∞(1) ≥ ℓ(𝑥, 𝑧) ∀𝑧 ∈ Z .

This minimization problem is readily recognized as an instance of (9.1). Note
also that if P is the restricted 𝜙-divergence ambiguity set (2.10) and P̂ is discrete,
then, under mild regularity conditions, Theorem 4.15 implies that the above refor-
mulation remains valid provided that Z is replaced with {𝑧𝑖 : 𝑖 ∈ [𝑁]}. Finally,
when P is the optimal transport ambiguity set (2.27) centred at a discrete reference
distribution and if mild regularity conditions hold, then Theorem 4.18 implies that

inf
𝑥∈X

sup
P∈P
EP [ℓ(𝑥, 𝑍)] =


inf 𝜆𝑟 +

∑︁
𝑖∈[𝑁 ]

𝑝𝑖𝑠𝑖

s.t. 𝑥 ∈ X , 𝜆 ∈ R+, 𝑠 ∈ R𝑁

ℓ(𝑥, 𝑧) − 𝜆𝑐(𝑧, 𝑧𝑖) ≤ 𝑠𝑖 ∀𝑧𝑖 ∈ Z , 𝑖 ∈ [𝑁] .

This minimization problem is again an instance of (9.1).
In the remainder of this section we discuss various numerical methods for solving

the semi-infinite program (9.1). Some of these methods solve one or several
relaxations of (9.1) that enforce the uncertainty-affected constraint only for a finite
subset Z̃ of Z . Hence these methods assume access to a scenario oracle.

Definition 9.1 (Scenario oracle). Given any finite scenario set Z̃ ⊆ Z , a scen-
ario oracle outputs a solution to the scenario problem

inf{ 𝑓 (𝑦) : 𝑦 ∈ Y , 𝑔 𝑗(𝑦, 𝑧 𝑗) ≤ 0 ∀𝑧 𝑗 ∈ Z̃ ,∀ 𝑗 ∈ [𝑚]}. (9.2)
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As we will see below, cutting-plane algorithms refine scenario relaxations of the
semi-infinite program (9.1) by iteratively adding those parameter realizations 𝑧 ∈
Z \ Z̃ for which the constraint violation is maximal. Identifying such realizations
requires a noise oracle as per the following definition.

Definition 9.2 (Noise oracle). Given any fixed decision �̃� ∈ Y , a noise oracle
outputs a solution to the noise problem

sup
𝑧∈Z

max
𝑗∈[𝑚]

𝑔 𝑗(�̃�, 𝑧). (9.3)

In the following, we first survey the scenario approach, which replaces the
semi-infinite program (9.1) with a finite scenario problem that offers stochastic
approximation guarantees. This approach calls the scenario oracle only once. We
then review cutting-plane techniques that iteratively call scenario and noise oracles
to generate a solution sequence that attains the optimal value of problem (9.1),
either within finitely many iterations or asymptotically. Next, we study online
convex optimization algorithms, which do not require expensive scenario and/or
noise oracles and instead solve only deterministic versions of problem (9.1) and
use cheap first-order updates of the candidate decisions and/or incumbent worst-
case parameter realizations. We close with an overview of specialized numerical
solution methods that are tailored to specific ambiguity sets.

9.1. The scenario approach

The scenario approach was pioneered by De Farias and Van Roy (2004) in the
context of robust Markov decision processes, and by Calafiore and Campi (2005,
2006) and Campi and Garatti (2008, 2011) in the context of generic robust optimiz-
ation problems of the form (9.1). The scenario approach replaces the semi-infinite
constraint in (9.1) with a collection of finitely many constraints corresponding to
uncertainty realizations sampled from some fixed distribution Q ∈ P(Z).

Algorithm 1 (Scenario approach).
(1) Initialization. Fix a distribution Q ∈ P(Z).
(2) Sampling. Draw 𝑁 independent samples 𝑍1, . . . , 𝑍𝑁 from Q and construct

the scenario set Z̃ = {𝑍1, . . . , 𝑍𝑁 }.
(3) Termination. Return the output 𝑌 of the scenario oracle (9.2) with input Z̃ .

Note that, as the input to the scenario oracle (9.2) is a random scenario set
governed by the 𝑁-fold product distribution Q𝑁 , its output 𝑌 is also random. Now
fix a constraint violation probability 𝛿 ∈ (0, 1), a significance level 𝜂 ∈ (0, 1), and
ensure that the sample size 𝑁 in step (2) of Algorithm 1 satisfies 𝑁 ≥ 𝑁(𝑑𝑦 , 𝛿, 𝜂),
where 𝑑𝑦 is the dimension of the decision vector 𝑦 and

𝑁(𝑑𝑦 , 𝛿, 𝜂) = min

{
𝑁 ∈ N :

𝑑𝑦−1∑︁
𝑖=0

(
𝑁

𝑖

)
𝛿𝑖(1 − 𝛿)𝑁−𝑖 ≤ 𝜂

}
.
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Assuming that the objective and constraint functions of problem 9.1 are convex
in 𝑦 for any fixed 𝑧 𝑗 , 𝑗 ∈ [𝑚], and that the optimal solution to (9.2) exists and is
unique for any fixed scenario set Z̃ , Algorithm 1 then guarantees that

Q𝑁 (Q(𝑔 𝑗(𝑌, 𝑍) ≤ 0 ∀ 𝑗 ∈ [𝑚]) ≥ 1 − 𝛿) ≥ 1 − 𝜂,

where 𝑍 follows Q and 𝑌 is governed by Q𝑁 ; see Campi and Garatti (2008,
Theorem 1). In other words, the output 𝑌 of the scenario oracle (9.2) constitutes a
feasible solution of the chance-constrained program

inf{ 𝑓 (𝑦) : 𝑦 ∈ Y , Q(𝑔 𝑗(𝑦, 𝑍) ≤ 0 ∀ 𝑗 ∈ [𝑚]) ≥ 1 − 𝛿}.

with probability at least 1 − 𝜂, where 𝜂 can be interpreted as the (small) chance of
poorly approximatingQ in step (2) of Algorithm 1. We emphasize that the convexity
of (9.1) plays a crucial role in the derivation of this probabilistic guarantee.

Two remarks on the scenario approach are in order. First, its performance
guarantee is stochastic as it relates to a chance-constrained program that relaxes
the semi-infinite program (9.1). Second, the sample size 𝑁(𝑑𝑦 , 𝛿, 𝜂) needed for
a probabilistic guarantee is of the order �̃�((𝑑𝑦 + log(1/𝜂))/𝛿), that is, it grows
linearly with the dimension 𝑑𝑦 of the decision vector 𝑦. This dependence limits
the problem dimensions that can be handled in practice. Robust performance
guarantees for the scenario approach have been studied by Mohajerin Esfahani,
Sutter and Lygeros (2015). The dependence of the probabilistic performance
guarantees on the dimension of the decision vector 𝑦 can be improved by using
regularization (Campi and Caré 2013), one-off calibration schemes (Caré, Garatti
and Campi 2014) and sequential validation (Calafiore, Dabbene and Tempo 2011),
or by exploiting limited support ranks (Schildbach, Fagiano and Morari 2013) and
solution-dependent numbers of support constraints (Campi and Garatti 2018). In
general, however, the number of sampled constraints may remain large, which can
be an impediment to the adoption of the scenario approach in large-scale problems.

9.2. Cutting-plane algorithms

Mutapcic and Boyd (2009) propose an iterative method for solving the semi-infinite
program (9.1), which is based on Kelley’s cutting-plane algorithm (Kelley Jr 1960).
Their method can be described as follows.

Algorithm 2 (Cutting-plane algorithm).

(1) Initialization. Select a non-empty finite scenario set Z̃ ⊆ Z , and set the
feasibility threshold parameter 𝜀 to a small value.

(2) Master problem. Solve the scenario oracle problem (9.2) to find �̃�.
(3) Sub-problem. Solve the noise oracle problem (9.3) to find 𝑧.
(4) Termination. If 𝑔 𝑗(�̃�, 𝑧) ≤ 𝜀 for all 𝑗 ∈ [𝑚], terminate with �̃� as a 𝜀-feasible

solution to (9.1). Otherwise, update Z̃ ← Z̃ ∪ {𝑧} and return to step (2).
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Algorithm 2 alternates between two steps. Step (2) solves the scenario oracle
problem (9.2) for a finite scenario set Z̃ and outputs a candidate solution �̃�. Step (3)
then solves the noise oracle problem (9.3) for the given candidate solution �̃� and
outputs a most violated scenario 𝑧. If the optimal value of (9.3) exceeds 𝜀, then the
scenario 𝑧 is added to the scenario set Z̃ and the process is repeated. Otherwise, �̃�
from step (2) is returned as an 𝜀-feasible solution to the semi-infinite program (9.1),
that is, a solution �̃� ∈ Y that satisfies 𝑔 𝑗(�̃�, 𝑧 𝑗) ≤ 𝜀 for all 𝑧 𝑗 ∈ Z and 𝑗 ∈ [𝑚].

Cutting-plane algorithms replace the sampling procedure of the scenario ap-
proach with a noise oracle, but they still require access to a scenario oracle that
solves the master problems. In contrast to the scenario approach, however, the
number of constraints in the master problem increases with each iteration, which
can limit scalability. If the constraint functions 𝑔 𝑗(𝑦, 𝑧 𝑗) are Lipschitz-continuous
in 𝑦, then Algorithm 2 terminates after 𝑂(𝛿−𝑑𝑦 ) iterations, which, however, is ex-
ponential in the dimension of 𝑦 (Mutapcic and Boyd 2009, § 5.2). Despite this, in
practice, cutting-plane algorithms often converge to near-optimal solutions in very
few iterations, which has contributed to their widespread use in robust optimization.

9.3. Online convex optimization algorithms

Cutting-plane algorithms can become computationally expensive due to their reli-
ance on scenario and noise oracles for the solution of the master and sub-problems,
respectively. In the following, we review how ideas from online convex optimiza-
tion can help to alleviate these shortcomings (Shalev-Shwartz 2012, Hazan 2022).

In their seminal work on this topic, Ben-Tal, Hazan, Koren and Mannor (2015b)
employ a bisection search to reduce the solution of problem (9.1) to the solution of
a sequence of robust feasibility problems of the form

inf{0: 𝑦 ∈ Y , 𝑓 (𝑦) ≤ 𝑐, 𝑔 𝑗(𝑦, 𝑧 𝑗) ≤ 0 ∀𝑧 𝑗 ∈ Z , ∀ 𝑗 ∈ [𝑚]}. (9.4)

More precisely, the following bisection algorithm can be used to solve (9.1).

Algorithm 3 (Bisection algorithm).

(1) Initialization. Find an interval [𝑎, 𝑏] that contains the optimal value of (9.1),
and select an arbitrary feasible solution �̃�.

(2) Decision problem. Set 𝑐 = (𝑎 + 𝑏)/2, and check if (9.4) is feasible or not.
(3) Update. If (9.4) is feasible, update �̃� to a solution of the feasibility problem

(9.4), and set 𝑏 ← 𝑐; otherwise, set 𝑎 ← 𝑐.
(4) Termination. If 𝑏 − 𝑎 ≤ 𝛿, terminate with �̃� as an approximately optimal

solution to (9.1). Otherwise, return to step (2).

Ben-Tal et al. (2015b) use techniques from online convex optimization to solve
the robust feasibility problem (9.4). In particular, they develop a method similar
to Algorithm 2 that approximately solves a nominal feasibility problem instead of
calling the scenario oracle and that uses a first-order update rule instead of calling
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the noise oracle. Accordingly, they require the constraint functions 𝑔 𝑗 , 𝑗 ∈ [𝑚], to
be differentiable. Their algorithm can be summarized as follows.

Algorithm 4 (Dual-subgradient meta algorithm).

(1) Initialization. Choose initial uncertainty realizations 𝑧 𝑗 ∈ Z , 𝑗 ∈ [𝑚].
(2) Nominal problem. Find �̃� that solves the approximate feasibility problem

inf{0: 𝑓 (𝑦) ≤ 𝑐, 𝑔 𝑗(𝑦, 𝑧 𝑗) ≤ 𝜀 ∀ 𝑗 ∈ [𝑚]}

corresponding to the current uncertainty realizations and corresponding to
some 𝜀 > 0. If no such �̃� exists, terminate and report that (9.4) is infeasible.

(3) Update parameters. Update 𝑧 𝑗 , 𝑗 ∈ [𝑚], using the gradient rule

𝑧 𝑗 ← ProjZ [𝑧 𝑗 + 𝜂∇𝑧𝑔 𝑗(�̃�, 𝑧 𝑗)] for all 𝑗 ∈ [𝑚],

where 𝜂 is a given stepsize and ProjZ denotes the Euclidean projection ontoZ .
(4) Termination. Once a termination condition is met, return the average of all

candidate solutions �̃� found in step (2).

Algorithms 3 and 4 can be combined into a single algorithm that finds a 𝛿-optimal
and 𝜀-feasible solution to the semi-infinite program (9.1) in 𝑂(𝜀−2 log(1/𝛿)) iter-
ations. This convergence guarantee holds under the following assumptions. The
feasible sets Y and Z are closed and convex, the objective function 𝑓 : Y → R is
convex and Lipschitz-continuous, and the constraint functions 𝑔 𝑗 : Y × Z → R,
𝑗 ∈ [𝑚], constitute saddle functions. Specifically, 𝑔(𝑦, 𝑧 𝑗) is convex and Lipschitz-
continuous in 𝑦 as well as concave and upper semicontinuous in 𝑧 𝑗 for every
𝑗 ∈ [𝑚]. We refer to Ben-Tal et al. (2015b) for further implementation details.

Algorithm 4 still solves multiple nominal feasibility problems in step (2), which
can be expensive. As a remedy, Ho-Nguyen and Kılınç-Karzan (2018) reduce the
solution of the feasibility problem (9.4) to the verification of the inequality

min
𝑦∈Y𝑐

max
𝑧∈Z

max
𝑗∈[𝑚]

𝑔 𝑗(𝑦, 𝑧) ≤ 𝜀 (9.5)

for a given tolerance 𝜀 > 0, where Y𝑐 = {𝑦 ∈ Y : 𝑓 (𝑦) ≤ 𝑐}. Checking (9.5)
requires the solution of a saddle point problem. Note that the objective function of
this saddle point problem is convex in 𝑦 but but fails to be concave in 𝑧 when𝑚 > 1.
Therefore, standard primal–dual algorithms from online convex optimization do
not apply. Nevertheless, Ho-Nguyen and Kılınç-Karzan (2018) construct an online
algorithm that outputs a trajectory of candidate solutions �̃� and uncertainty realiza-
tions 𝑧 that converge to a saddle point. This method uses a first-order algorithm A𝑦

for solving the (parametric) minimization problem min𝑦∈Y𝑐 max 𝑗∈[𝑚] 𝑔 𝑗(𝑦, 𝑧) as
well as a first-order algorithm A 𝑗 for solving the (parametric) maximization prob-
lem max𝑧∈Z 𝑔 𝑗(𝑦, 𝑧) for each 𝑗 ∈ [𝑚] as subroutines. Specifically, A𝑦 is assumed
to map any history of candidate solutions �̃�1, . . . , �̃�𝑡 and uncertainty realizations
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𝑧1
𝑗
, . . . 𝑧𝑡

𝑗
∈ Z for 𝑗 ∈ [𝑚] and 𝑡 ∈ N to a new candidate solution �̃�𝑡+1 such that∑︁

𝑡∈[𝑇 ]
max
𝑗∈[𝑚]

𝑔 𝑗(�̃�𝑡 , 𝑧𝑡𝑗) − min
𝑦∈Y𝑐

∑︁
𝑡∈[𝑇 ]

max
𝑗∈[𝑚]

𝑔 𝑗(𝑦, 𝑧𝑡𝑗) ≤ R𝑦(𝑇) for all 𝑇 ∈ N,

where R𝑦(𝑇) is a sublinear regret bound. Similarly, it is assumed that A 𝑗 maps
any history of candidate solutions and uncertainty realizations of length 𝑡 ∈ N to a
new uncertainty realization 𝑧𝑡+1

𝑗
such that

max
𝑧∈Z

∑︁
𝑡∈[𝑇 ]

𝑔 𝑗(�̃�𝑡 , 𝑧) −
∑︁
𝑡∈[𝑇 ]

𝑔 𝑗(�̃�𝑡 , 𝑧𝑡𝑗) ≤ R 𝑗(𝑇) for all 𝑇 ∈ N,

where R 𝑗(𝑇) is a sublinear regret bound for every 𝑗 ∈ [𝑚]. The algorithm by
Ho-Nguyen and Kılınç-Karzan (2018) can now be summarized as follows.

Algorithm 5 (Online learning framework).

(1) Initialization. Initialize the solution history to H← ∅.
(2) Find candidate solution. Use algorithm A𝑦 with input H to construct a new

candidate solution, that is, set �̃� ← A𝑦(H).

(3) Find uncertainty realizations. Use algorithm A 𝑗 with input H to construct a
new uncertainty realization, that is, set 𝑧 𝑗 ← A 𝑗(H) for all 𝑗 ∈ [𝑚].

(4) Update history. Update the solution history to H← H ∪ {(�̃�, (𝑧 𝑗) 𝑗)}.
(5) Termination. Once a termination condition is met, return the average of all

candidate solutions �̃� found in step (2).

Ho-Nguyen and Kılınç-Karzan (2018) show that Algorithm 5 solves the saddle
point problem on the left-hand side of (9.5) approximately with regret guarantee∑︁

𝑡∈[𝑇 ]
max
𝑧∈Z

max
𝑗∈[𝑚]

𝑔 𝑗(�̃�𝑡 , 𝑧) − min
𝑦∈Y𝑐

max
𝑗∈[𝑚]

𝑔 𝑗(𝑦, 𝑧𝑡 ) ≤ R𝑦(𝑇) + max
𝑗∈[𝑚]

R 𝑗(𝑇)

for all𝑇 ∈ N. The total regret bound in the above expression grows sublinearly with
𝑇 . Under the usual convexity assumptions, Algorithms 3 and 5 can be combined
into a joint algorithm that finds a 𝛿-optimal and 𝜀-feasible solution to the semi-
infinite program (9.1) in 𝑂(𝜀−2 log(1/𝛿)) iterations. Thus the iteration complexity
did not improve vis-à-vis the algorithm by Ben-Tal et al. (2015b). However, the
computational effort per iteration is significantly lower for Algorithm 5 than for
Algorithm 4. Indeed, Algorithm 4 solves a feasibility problem with 𝑚 uncertainty
realizations in each iteration, whereas Algorithm 5 only calls the algorithms A𝑦

and A 𝑗 , 𝑗 ∈ [𝑚], which compute cheap first-order updates. For further details,
we refer to Ho-Nguyen and Kılınç-Karzan (2018). In addition, Ho-Nguyen and
Kılınç-Karzan (2019) exploit structural properties of the objective and constraint
functions to reduce the overall iteration complexity to 𝑂(𝜀−1 log(1/𝛿)).
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Up until now, all the algorithms discussed in this section relied on the bisection
method to reduce the semi-infinite program (9.1) to a sequence of robust feasib-
ility problems (9.4). This introduces unnecessary computational overhead. As a
remedy, Postek and Shtern (2024) use primal–dual saddle point algorithms that ad-
dress the following perspective reformulation of problem (9.1), which was initially
introduced in Appendix A of the work by Ho-Nguyen and Kılınç-Karzan (2018):

min
𝑦∈Y

max
𝑧∈Z ,𝜆∈Δ𝑚

𝑓 (𝑦) +
∑︁
𝑗∈[𝑚]

𝜆 𝑗𝑔 𝑗(𝑦, 𝑧/𝜆 𝑗).

Here,

Δ𝑚 =

{
𝜆 ∈ R𝑚+ :

∑︁
𝑗∈[𝑚]

𝜆 𝑗 = 1

}
,

and 0 · 𝑔 𝑗(𝑦, 𝑧/0) is interpreted as the negative recession function of the convex
function −𝑔 𝑗(𝑦, ·). By construction, the objective function of this reformulation is
convex in 𝑦 and jointly concave in 𝑍 and 𝜆. While the primal–dual saddle point
algorithm of Postek and Shtern (2024) typically enjoys an iteration complexity of
𝑂(𝜀−2), where 𝜀 now represents the primal–dual gap in the saddle point formulation,
it requires more sophisticated oracles than those used by Ho-Nguyen and Kılınç-
Karzan (2018, 2019). This is primarily because the perspective transformation
eliminates favourable properties such as strong convexity and smoothness, and it
also significantly degrades the Lipschitz constants. To address this challenge while
still relying on standard oracles as in Ho-Nguyen and Kılınç-Karzan (2018, 2019),
Tu, Chen and Yue (2024) propose a two-layer algorithm based on the following
Lagrangian formulation of (9.1):

max
𝜆∈R𝑚+

min
𝑦∈Y

max
𝑧∈Z

𝑓 (𝑦) +
∑︁
𝑗∈[𝑚]

𝜆 𝑗𝑔 𝑗(𝑦, 𝑧)

Tu et al. (2024) show that their algorithm has an iteration complexity of 𝑂(𝜀−3) or
𝑂(𝜀−2), depending on the smoothness of the objective and constraint functions.

9.4. Tailored numerical solution methods for specific ambiguity sets

With the exception of some of the online optimization algorithms, the numerical
solution methods discussed thus far still rely on general-purpose solvers to solve
auxiliary nominal, scenario, master and/or sub-problems. General-purpose solvers
are typically based on second-order interior-point methods that may fail to offer
scalability to large-scale problem instances. To alleviate this concern, several
first-order methods have been developed for specific classes of ambiguity sets.

9.4.1. Gelbrich ambiguity sets
Gelbrich ambiguity sets naturally emerge in signal processing and control applica-
tions. The standard reformulations of DRO problems over Gelbrich ambiguity sets,
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however, constitute semidefinite programs (see Theorem 7.10), which significantly
limits their scalability. To circumvent this shortcoming, Shafieezadeh-Abadeh et al.
(2018) develop a Frank–Wolfe algorithm whose direction-finding subproblem ad-
mits a quasi-closed-form solution. This algorithm enjoys a sublinear convergence
rate. Leveraging the strong convexity of the Gelbrich ambiguity set, Nguyen
et al. (2023b) improve this Frank–Wolfe algorithm to achieve a linear convergence
rate whenever the loss function satisfies the Levitin–Polyak condition (Levitin
and Polyak 1966). Using frequency-domain techniques, Kargin et al. (2024b,c)
introduce a Frank–Wolfe algorithm for infinite-horizon robust control problems
that involve infinite-dimensional moment matrices. Finally, McAllister and Mo-
hajerin Esfahani (2024) propose a Newton method for solving a class of DRO
problems over Gelbrich ambiguity sets that converges superlinearly in numerical
experiments.

9.4.2. 𝜙-divergence ambiguity sets
The existing literature largely focuses on DRO problems over the restricted 𝜙-
divergence ambiguity set (2.11), including the group DRO formulation introduced
by Sagawa, Koh, Hashimoto and Liang (2020) as a special case. Unfortunately,
stochastic gradient methods applied directly to the dual minimization problem
(4.12) are known to be unstable. This challenge motivated Namkoong and Du-
chi (2016) to adopt a direct saddle point formulation of the DRO problem with a
discrete reference distribution P̂, which they solve iteratively with a bandit mirror
descent algorithm. Several other algorithms address the saddle point formulation,
including customized multilevel Monte Carlo methods (Levy, Carmon, Duchi and
Sidford 2020, Hu, Chen and He 2021, Hu, Wang, Chen and He 2024), accel-
erated methods that query ball optimization oracles (Carmon and Hausler 2022)
and biased stochastic gradient methods (Ghosh, Squillante and Wollega 2021,
Wang, Gao and Xie 2024b, Azizian, Iutzeler and Malick 2023b). Gürbüzbal-
aban, Ruszczyński and Zhu (2022) and Zhu, Gürbüzbalaban and Ruszczyński
(2023) solve non-convex DRO problems over classes of 𝜙-divergence ambiguity
sets. Specifically, Gürbüzbalaban et al. (2022) introduce a subgradient algorithm
for non-smooth and non-convex loss functions, while Zhu et al. (2023) establish
convergence rates and finite-sample guarantees for a subgradient method targeted
at weakly convex loss functions. Both works build on the foundational results of
Ruszczyński (2021), which laid the groundwork for efficient first-order methods
for multilevel optimization problems.

9.4.3. Optimal transport ambiguity sets
Li, Huang and So (2019c) develop a first-order iterative method for distributionally
robust logistic regression problems over 1-Wasserstein balls. This method is based
on a variant of the proximal alternating direction method of multipliers (ADMM).
Numerical experiments demonstrate that the proposed algorithm is several orders
of magnitude faster than general-purpose solvers. A similar conclusion is drawn by
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Li, Chen and So (2020), who introduce epigraphical projection-based algorithms
to solve distributionally robust support vector machine problems. When the loss
function ℓ(𝑥, 𝑧) is either convex–concave or convex–convex in 𝑥 and 𝑧, respectively,
the reformulation of the DRO problem (1.2) reveals a structure that is conducive
to distributed implementation. Consequently, Cherukuri and Cortés (2019) use
saddle point algorithms related to the augmented Lagrangian method to solve the
reformulated problem over a network of agents. For convex–concave loss functions,
Li and Martínez (2020) propose a hybrid algorithm that combines Frank–Wolfe
and subgradient methods. For any fixed 𝑥 ∈ X , their approach solves the inner
maximization problem in (1.2) with a variant of the Frank–Wolfe algorithm. The
resulting maximizer is then used to construct an approximate subgradient for the
outer minimization problem. All of these algorithms crucially rely on the reference
distribution P̂ being discrete. Blanchet and Kang (2020) and Blanchet et al. (2022c)
propose a stochastic gradient descent algorithm to solve DRO problems over op-
timal transport ambiguity sets with generic reference distributions. Other stochastic
optimization schemes leverage variance reduction techniques (Yu, Lin, Mazumdar
and Jordan 2022) and zeroth-order random reshuffling algorithms (Maheshwari
et al. 2022). These works typically rely on the duality results introduced in Sec-
tion 4, and subsequently apply stochastic subgradient descent, using subgradients
of the regularized loss function ℓ𝑐(𝑥, 𝑧) = sup𝑧∈Z ℓ(𝑥, 𝑧) − 𝜆𝑐(𝑧, 𝑧) with respect to
𝑥 and 𝜆. Ho-Nguyen and Wright (2023) extend this approach to non-convex robust
binary classification problems. Sinha et al. (2018) examine relaxed distributionally
robust neural network training problems, assuming that the required level of ro-
bustness against adversarial perturbations is sufficiently small. This is tantamount
to forcing 𝜆 to exceed a sufficiently large threshold. If 𝑐(𝑧, 𝑧) = ∥𝑧− 𝑧∥22, this in turn
ensures that the maximization problem over 𝑧 that defines ℓ𝑐(𝑥, 𝑧) has a strongly
concave objective function and is thus efficiently solvable. Stochastic subgradients
of ℓ𝑐(𝑥, 𝑧) are therefore readily available thanks to Danskin’s theorem. Shafiee et al.
(2023) leverage non-convex duality theorems, such as Toland’s duality principle,
to solve distributionally robust portfolio selection problems. Algorithms that min-
imize the variation-regularized nominal loss, which is known to approximate the
worst-case expected loss thanks to Theorem 8.7, are explored by Li et al. (2022)
and Bai et al. (2023a). Finally, Wang et al. (2021, 2024b) and Azizian et al.
(2023b) introduce entropy and 𝜙-divergence regularizers to improve the efficiency
of algorithms for Wasserstein DRO problems, and Vincent, Azizian, Malick and
Iutzeler (2024) provide a Python library for training related distributionally robust
machine learning models.

10. Statistical guarantees
Despite ample empirical evidence that distributionally robust decisions can out-
perform those provided by alternative methodologies for decision-making under
uncertainty, the statistical properties of DRO remain under-explored. This section
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aims to survey some of the key techniques and methods employed in the literature
to analyse the statistical aspects of DRO, while at the same time acknowledging
that numerous questions remain open in this domain.

The statistical guarantees of moment-based ambiguity sets are relatively weak in
the sense that the optimal value of problem (1.2) under a moment-based ambiguity
set P does not match the optimal value of the corresponding stochastic program
(1.1) under the unknown true distribution P = P0 even if P0 was known exactly
when P is constructed. The reason for this is that exact knowledge of lower-order
moments of P0 is not sufficient to uniquely characterize P0 itself. For this reason,
our review focuses on 𝜙-divergence and optimal transport ambiguity sets, which
offer asymptotic consistency guarantees as the number of samples available from
P0 grows, and we refer to Delage and Ye (2010) and Nguyen et al. (2021) for
statistical analyses of Chebyshev and Gelbrich ambiguity sets, respectively.

Section 10.1 introduces the data-driven optimization framework that we will
be interested in, as well as the two key performance criteria of excess risk and
out-of-sample disappointment. Subsequently, Section 10.2 surveys asymptotic
analyses, which are based on the laws of large numbers, the central limit theorem
and the empirical likelihood approach, as well as the large and moderate deviations
principles. Finally, Section 10.3 reviews non-asymptotic analyses, which rely on
measure concentration bounds as well as generalization bounds.

Our review of the statistical properties of DRO omits several important topics.
For example, we do not cover domain adaptation guarantees (Farnia and Tse 2016,
Volpi et al. 2018, Lee and Raginsky 2018, Lee, Park and Shin 2020, Sutter, Krause
and Kuhn 2021, Taşkesen et al. 2021, Rychener et al. 2024), which ensure that a
DRO model trained on data from some source distribution generalizes to a different
target distribution. We also omit discussions of adversarial generalization bounds
(Sinha et al. 2018, Wang et al. 2019, Tu, Zhang and Tao 2019, Kwon, Kim, Won and
Paik 2020, An and Gao 2021), which use DRO to analyse model robustness against
adversarial perturbations, as well as applications in high-dimensional statistical
learning (Aolaritei, Shafiee and Dörfler 2022b). Finally, we do not cover Bayesian
guarantees (Gupta 2019, Shapiro, Zhou and Lin 2023, Liu, Su and Xu 2024b),
which focus on average-case rather than worst-case performance guarantees.

10.1. Excess risk and out-of-sample disappointment

Consider the idealized scenario in which the uncertainty underlying a decision
problem follows a known probability distribution P0 ∈ P(Z). In this case, we aim
to determine a decision 𝑥0 that minimizes the expected value of a loss function
ℓ : X × Z → R with respect to P0. That is, we seek an element 𝑥0 of

X0 = arg min
𝑥∈X

EP0 [ℓ(𝑥, 𝑍)] . (10.1)

Note that problem (10.1) constitutes a classical stochastic program. While (10.1) is
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theoretically sound, it faces two significant practical limitations. First, the distribu-
tion P0 underlying a decision problem is rarely known in practice. Second, even if
P0 was known, evaluating the objective function of (10.1) requires the computation
of an integral, which is intractable in high dimensions even for simple nonlinear
loss functions (Dyer and Stougie 2006, Hanasusanto, Kuhn and Wiesemann 2016).

In practice, we often observe the true probability distribution P0 indirectly
through historical data. From now on we thus assume we have access to 𝑁 inde-
pendent training samples from P0, denoted as 𝑍1, . . . , 𝑍𝑁 . The goal of data-driven
optimization is to construct a decision from the training samples. This decision
should perform well not just on the training data but also on unseen test samples
from P0. The performance of a data-driven decision on test data is also called
its out-of-sample performance. Formally, data-driven optimization aims to learn a
decision rule T𝑁 : Z𝑁 ⇒ X that maps training samples from the product spaceZ𝑁

to a set of candidate decisions in the decision space X . Note that T𝑁 constitutes a
set-valued mapping because it is usually constructed as the set of minimizers of an
optimization problem depending on the training samples. A data-driven decision
is then any (Borel-measurable) function �̂�𝑁 of the training samples that satisfies

�̂�𝑁 ∈ T𝑁 (𝑍1, . . . , 𝑍𝑁 ).

Note that �̂�𝑁 inherits the randomness of the training samples and is therefore a
random vector. However, we notationally suppress its dependence on the training
samples in order to avoid clutter. Instead we use the superscript ‘ˆ’ together with
the subscript ‘𝑁’ to designate any random objects that are defined as functions of
𝑍1, . . . , 𝑍𝑁 and are thus governed by the product distribution P𝑁0 .

Arguably the simplest approach to data-driven optimization is the sample average
approximation (SAA), which is also known as empirical risk minimization in
statistics. The idea of SAA is to replace the unobservable true distribution P0 in
(10.1) with the observable empirical distribution

P̂𝑁 =
1
𝑁

∑︁
𝑖∈[𝑁 ]

𝛿𝑍𝑖 (10.2)

formed from the training samples 𝑍1, . . . , 𝑍𝑁 and to construct the decision rule

T𝑁 (𝑍1, . . . , 𝑍𝑁 ) = arg min
𝑥∈X

EP̂𝑁 [ℓ(𝑥, 𝑍)] . (10.3)

As the empirical distribution is discrete, the SAA approach obviates the need to
evaluate high-dimensional integrals and is thus computationally attractive. Never-
theless, the performance of its optimal solutions on test data can be disappointing
even when the test data are independently sampled from the true distribution P0.
This phenomenon has been observed across various application domains and has
been given different names depending on the context. In finance, Michaud (1989)
identifies this issue as the error maximization effect of portfolio optimization. Stat-
istics and machine learning recognizes it as overfitting, a well-known challenge
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where models perform well on training data but fail to generalize to new, unseen
test data. In the stochastic programming literature, Shapiro (2003) refers to this
phenomenon as the optimization bias, and in decision analysis the effect has been
described as the optimizer’s curse (Smith and Winkler 2006).

The disappointing out-of-sample performance of the SAA decisions prompted
statisticians and machine learners to add a regularization term to the objective
function in (10.3). The regularization term serves two purposes. It not only
combats overfitting to the training data, but it also encourages simpler decisions.
Such simplicity aligns with the principle of parsimony and reflects nature’s inherent
tendency towards simplicity. As Jeffreys and Wrinch (1921) aptly noted,

The existence of simple laws is, then, apparently, to be regarded as a quality of nature; and
accordingly we may infer that it is justifiable to prefer a simple law to a more complex one
that fits our observations slightly better.

Formally, the regularized SAA approach provides the decision rule

T𝑁 (𝑍1, . . . , 𝑍𝑁 ) = arg min
𝑥∈X

EP̂𝑁 [ℓ(𝑥, 𝑍)] + 𝑅(𝑥),

where the regularization function 𝑅 : X → R+ penalizes the complexity of de-
cision 𝑥. In the classical statistics literature, the regularization function is mostly
data-independent, that is, it only depends on the decision 𝑥 and not on the observed
training data 𝑍1, . . . , 𝑍𝑁 . The most prominent examples include norm regulariza-
tion, where 𝑅(𝑥) = ∥𝑥∥, and Tikhonov regularization, where 𝑅(𝑥) = ∥𝑥∥2. These
regularization techniques balance the conflicting goals of computing decisions that
are optimal for the observed training data and maintaining model simplicity, thereby
improving the generalization capability of the derived decisions to unseen data.

Recall from Sections 6 and 8 that regularization and distributional robustness
are closely intertwined. Assume that we use the empirical distribution P̂𝑁 as the
centre of a 𝜙-divergence ambiguity set (2.10) or optimal transport ambiguity set
(2.27). Then the DRO approach provides the decision rule

T𝑁 (𝑍1, . . . , 𝑍𝑁 ) = arg min
𝑥∈X

sup
P∈P̂𝑁

EP [ℓ(𝑥, 𝑍)],

which can be viewed as a variant of the regularized SAA decision rule. The cor-
responding data-dependent regularization function is called the DRO regularizer
and is given by

�̂�𝑁 (𝑥) = sup
P∈P̂𝑁

EP [ℓ(𝑥, 𝑍)] − EP̂𝑁 [ℓ(𝑥, 𝑍)] . (10.4)

Thus it depends on both the decision 𝑥 and the observed training data 𝑍1, . . . , 𝑍𝑁 .
The regularizer (10.4) quantifies how much the worst-case expected loss across all
distributions P ∈ P̂𝑁 can exceed the in-sample expected loss EP̂𝑁 [ℓ(𝑥, 𝑍)].

The performance of decision rules in data-driven optimization is primarily meas-
ured by two criteria, each of which is aligned with a different field of study and
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addresses a different set of practical concerns. The first criterion, excess risk, is
predominantly used in statistics. It quantifies the distance of a data-driven decision
�̂�𝑁 to an optimal decision 𝑥0. The second criterion, out-of-sample disappointment,
is more commonly employed in operations research. It provides a measure of how
much the out-of-sample risk of a data-driven decision �̂�𝑁 exceeds the in-sample
risk of �̂�𝑁 . In the following, we formally define both criteria.

Excess risk. Let 𝜂 ∈ (0, 1) be a significance level, let T𝑁 be a decision rule, and let
Δ : X ×X0 → R+ be a performance function. Suppose that �̂�𝑁 ∈ T𝑁 (𝑍1, . . . , 𝑍𝑁 ).
The excess risk criterion offers the guarantee that for any size 𝑁 ≥ 𝑁(X ,Z , 𝜂) of
the training set, we have

P𝑁0 [Δ(�̂�𝑁 , 𝑥0) ≤ 𝛿𝑁 ] ≥ 1 − 𝜂 (10.5)

for some (possibly data-dependent) error certificate 𝛿𝑁 . In statistical learning
theory, performance functions often measure the regret in terms of the loss function
ℓ under the true distribution P0. Specifically, for any feasible candidate decisions
𝑥 ∈ X and any optimal decision 𝑥0 ∈ X0, the regret takes the form

Δ(𝑥, 𝑥0) = EP0 [ℓ(𝑥, 𝑍)] − EP0 [ℓ(𝑥0, 𝑍)] = EP0 [ℓ(𝑥, 𝑍)] − min
𝑥∈X
EP0 [ℓ(𝑥, 𝑍)] ≥ 0.

In compressed sensing and M-estimation problems with linear models, performance
is often defined as the estimation error in the decision space, and it takes the form

Δ(𝑥, 𝑥0) = ∥𝑥 − 𝑥0∥22.

Here we assume for simplicity that the minimizer 𝑥0 is unique. We refer to
Mendelson (2003) and Bousquet, Boucheron and Lugosi (2004) for an introduction
to statistical learning theory. For more advanced treatments, we refer to Anthony
and Bartlett (1999), Koltchinskii (2011), Vapnik (2013), Shalev-Shwartz and Ben-
David (2014), Vershynin (2018) and Wainwright (2019).

Out-of-sample disappointment. Let 𝜂 ∈ (0, 1) be a significance level and let T𝑁
be a decision rule. Suppose that �̂�𝑁 ∈ T𝑁 (𝑍1, . . . , 𝑍𝑁 ). The out-of-sample
disappointment criterion offers the guarantee that for any size 𝑁 ≥ 𝑁(X ,Z , 𝜂) of
the training set, we have

P𝑁0
[
EP0 [ℓ(�̂�𝑁 , 𝑍)] ≤ �̂�𝑁

]
≥ 1 − 𝜂 (10.6)

for some (possibly data-dependent) loss certificate �̂�𝑁 . Alternatively, one can
express (10.6) as a probabilistic bound on the difference between the out-of-sample
performance and the in-sample performance,

P𝑁0
[
EP0 [ℓ(�̂�𝑁 , 𝑍)] − EP̂𝑁 [ℓ(�̂�𝑁 , 𝑍)] ≤ 𝛿𝑁

]
≥ 1 − 𝜂,

for some error certificate 𝛿𝑁 . Both criteria become equivalent when we set 𝛿𝑁 =

EP̂𝑁 [ℓ(�̂�𝑁 , 𝑍)] + �̂�𝑁 . Unlike the excess risk bound (10.5), the out-of-sample
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disappointment bound (10.6) does not require explicit knowledge of an optimal
decision 𝑥0 and solely leverages the statistical properties of P0. As we will see in
the following sections, �̂�𝑁 and 𝛿𝑁 typically correspond to the optimal value of the
DRO problem (1.2) and the DRO regularizer (10.4), respectively.

The next sections focus on ambiguity sets that are centred at the empirical distri-
bution P̂𝑁 defined in (10.2). Specifically, we consider ambiguity sets constructed
using a discrepancy measure D : P(Z) × P(Z)→ [0,∞]:

P̂𝑁 = {P ∈ P(Z) : D(P, P̂𝑁 ) ≤ 𝑟𝑁 }. (10.7)

The discrepancy measure D could be a 𝜙-divergence or a Wasserstein distance.
We will explain how the radius 𝑟𝑁 should scale with the training sample size 𝑁 to
obtain the least conservative statistical guarantees.

10.2. Asymptotic analyses

The laws of large numbers and the central limit theorem provide foundational
insights into the statistical properties of the SAA approach. Under appropriate
regularity conditions, the laws of large numbers guarantee that the empirical loss
EP̂𝑁 [ℓ(𝑥, 𝑍)] converges P0-almost surely to the true expected loss EP0 [ℓ(𝑥, 𝑍)],
uniformly on X (see e.g. Shapiro et al. 2009, § 7.2.5). This implies that the optimal
value and the set of optimal solutions of the SAA problem exhibit asymptotic
consistency, that is, they both converge to their counterparts in the stochastic
program under P0 as the sample size 𝑁 approaches infinity. The central limit
theorem, on the other hand hand, implies that the scaled difference between the
empirical loss (under P̂𝑁 ) and true expected loss (under P0) converges weakly to a
normal distribution with mean zero and variance equal to the true variance of the
loss under P0 (see e.g. Shapiro et al. 2009, § 5.1.2). Thus the optimal value of the
SAA problem also exhibits asymptotic normality. The asymptotic properties of the
SAA decision rule have been studied extensively; see e.g. Cramér (1946), Huber
(1967), Dupacová and Wets (1988), Shapiro (1989, 1990, 1991, 1993), King and
Wets (1991), King and Rockafellar (1993), Van der Vaart (1998) and Lam (2021).

Building on these foundations, we will next review the asymptotic consistency
and normality of DRO decision rules. While studying these asymptotic beha-
viours, different theoretical frameworks provide distinct insights. The central limit
theorem and empirical likelihood approaches characterize the typical fluctuations
around the mean under an appropriate scaling. The central limit theorem estab-
lishes Gaussian convergence, whereas the empirical likelihood theory provides a
non-parametric framework for constructing likelihood ratio tests with asymptotic
𝜒2-limits, enabling hypothesis testing without specific parametric assumptions.
In contrast, large deviations theory examines the tail behaviour of distribution
sequences. Rather than focusing on typical fluctuations, it characterizes the expo-
nential decay rate of probabilities associated with rare events far from the mean.
Moderate deviations theory bridges the gap between the typical and rare event
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analyses provided by the aforementioned frameworks. It studies the asymptotic
behaviour of distribution sequences at intermediate scales, thus investigating lar-
ger deviations than the central limit theorem but smaller deviations than large
deviations theory.

10.2.1. Asymptotic consistency and normality
Lam (2019, Theorem 6) establishes the asymptotic (uniform strong) consistency of
the optimal value of DRO decision rules over likelihood ambiguity sets. The proof
relies on the preservation theorem of Glivenko–Cantelli classes (Van Der Vaart and
Wellner 2000, Theorem 3), which intuitively says that function classes maintain
their uniform convergence properties when combined through continuous opera-
tions, assuming that the original classes are well-behaved. Duchi et al. (2021,
Theorem 6) extend the analysis to more general 𝜙-divergence ambiguity sets.

Mohajerin Esfahani and Kuhn (2018, Theorem 3.6) establish the asymptotic
consistency of the optimal value and the optimal solutions of DRO decision rules
over 1-Wasserstein balls of the form (10.7). Their proof combines the Borel–
Cantelli lemma (Kallenberg 1997, Theorem 2.18) with measure concentration
results by Fournier and Guillin (2015, Theorem 2). Intuitively, the Borel–Cantelli
lemma asserts that if probabilities of an infinite sequence of events (E𝑁 )𝑁 ∈N have
a finite sum, then the probability of infinitely many occurrences of these events is
zero. Leveraging its contraposition, Mohajerin Esfahani and Kuhn (2018) consider
the events E𝑁 = W1(P0, P̂𝑁 ) ≤ 𝑟𝑁 , where P̂𝑁 is the empirical distribution over
𝑁 independent samples from P0; see (10.2). By selecting a converging sequence
of radii (𝑟𝑁 )𝑁 ∈N that decay according to a scaling law informed by Fournier and
Guillin (2015, Theorem 2), they prove that P∞0 (lim𝑁→∞W1(P0, P̂𝑁 ) = 0) = 1. This
enables them to show that the optimal value of the DRO problem (1.2) over the
1-Wasserstein ball (10.7) converges asymptotically from above to the optimal value
of the stochastic program (10.1). They also establish asymptotic convergence of
the optimal solutions under an additional continuity assumption. This result can be
extended to general 𝑝-Wasserstein ambiguity sets (Kuhn et al. 2019, Theorem 20).
Similar asymptotic convergence results have been established by Gao et al. (2024b,
Proposition 1), albeit through a different approach. Their proof does not rely
on measure concentration results or an explicit characterization of the radius 𝑟𝑁 .
Instead, it leverages Theorem 4.18 together with the reverse Fatou lemma and
the monotone convergence theorem. This approach, however, does not explicitly
determine whether the asymptotic convergence occurs from above or below.

Lam (2019, Theorem 4) establishes the asymptotic normality of the optimal
values of DRO problems over likelihood ambiguity sets. In a similar fashion,
Duchi and Namkoong (2019, Theorem 10) establish the asymptotic normality of
the optimal solutions of DRO problems over Pearson 𝜒2-divergence ambiguity
sets. Duchi and Namkoong (2021, Theorem 11) extend this result to Cressie–
Read ambiguity sets. The asymptotic normality of DRO decision rules over 𝑝-
Wasserstein balls, finally, is established by Blanchet et al. (2019b, 2022a,b).
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More recently, Blanchet and Shapiro (2024) have developed a comprehensive
framework for analysing statistical limit theorems for DRO decision rules over both
𝜙-divergences and Wasserstein ambiguity sets of the form (10.7). By connecting
data-driven DRO formulations to their regularized counterparts (see Section 8),
their framework provides insights into how DRO decision rules behave depending
on the rate at which the radius 𝑟𝑁 decreases with the sample size 𝑁 . Specifically,
Blanchet and Shapiro (2024, § 2.2) show that, under suitable regularity conditions,
DRO formulations typically exhibit three distinct asymptotic behaviours.

(i) When 𝑟𝑁 decreases faster than the critical statistical rate of 𝑁−1/2, the DRO
effect becomes negligible compared to the sampling error, and the asymptotic
behaviour of DRO mirrors that of standard empirical risk minimization.

(ii) When 𝑟𝑁 decreases at precisely the critical rate 𝑁−1/2, the DRO effect mani-
fests itself as a quantifiable asymptotic bias term that acts as a regularizer,
and its interaction with the statistical noise results in a shifted normal limiting
distribution.

(iii) When 𝑟𝑁 decreases more slowly than 𝑁−1/2, the DRO effect dominates the
statistical noise, leading to a limiting behaviour governed primarily by the
geometry of the ambiguity set.

The analysis employs the functional central limit theorem alongside careful Taylor
expansions of the worst-case expectation akin to those presented in Section 8. In
particular, Blanchet and Shapiro (2024) establish that, under appropriate regularity
conditions, the limiting distributions are normal with explicitly characterized means
and variances.

10.2.2. Empirical likelihood approach
The (generalized) empirical likelihood theory introduced by Owen (1988, 1990,
1991, 2001) provides a powerful non-parametric analogue to parametric maximum
likelihood theory. At its core, the empirical distribution P̂𝑁 serves as a non-
parametric maximum likelihood estimator for the unknown true distribution P̂0,
and statistically relies on empirical likelihood ratios. Under suitable conditions, the
empirical likelihood ratio statistic converges to a 𝜒2-distribution. Unlike the central
limit theorem, which yields normal approximations and thus symmetric confidence
intervals, the empirical likelihood theory typically produces asymmetric confidence
regions. A key advantage of this approach is that the resulting data-driven con-
fidence regions automatically adapt to the geometry of the underlying distribution
and naturally respect constraints such as boundedness or non-negativity, without
requiring explicit transformations or variance estimation. However, this theoretical
elegance and flexibility comes at the computational overhead of computing both
the lower and upper bounds of the confidence interval separately.

In the following, we briefly review the empirical likelihood approach and its
application to DRO decision rules. Let 𝑍1, . . . , 𝑍𝑁 be independent samples from
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P0, and let 𝜃 : P(Z)→ R be a statistical quantity of interest (e.g. the expected value
of 𝑍𝑖). Empirical likelihood confidence regions for 𝜃(P0) can be constructed as

Ĉ𝑁 =

{
𝜃(P) : D𝜙(P, P̂𝑁 ) ≤ 𝑟

𝑁

}
(10.8)

for some 𝑟 ∈ R+. Thus the set Ĉ𝑁 is the image of a 𝜙-divergence neighbour-
hood around the empirical distribution P̂𝑁 under 𝜃. The key tool for establishing
probabilistic bounds is the so-called profile divergence 𝜋𝑁 : R → R+, which is
defined by

𝜋𝑁 (𝜏) = inf
P∈P(Z)

{D𝜙(P, P̂𝑁 ) : 𝜃(P) = 𝜏}. (10.9)

For a functional 𝜃 satisfying suitable smoothness conditions, the empirical likeli-
hood method provides asymptotically exact coverage guarantees of the form

lim
𝑁→∞

P𝑁0 (𝜃(P0) ∈ Ĉ𝑁 ) = lim
𝑁→∞

P𝑁0

(
𝜋𝑁 (𝜃(P0)) ≤ 𝑟

𝑁

)
= 1 − 𝜂,

where 𝜂 represents a significance level determined by 𝑟 and 𝜃.
The classical empirical likelihood approach (Owen 1988, 2001) relies on the

empirical likelihood divergence with entropy function 𝜙(𝑠) = − log(𝑠) + 𝑠 − 1 if
𝑠 ≥ 0 and 𝜙(𝑠) = ∞ if 𝑠 < 0 (see Table 2.1). In this case, 𝜋𝑁 is called the profile
likelihood. Assume that 𝑍 is a 𝑑-dimensional random vector that is governed by
the distribution P0 and whose covariance matrix has rank 𝑑0 ≤ 𝑑. For the expected
value 𝜃(P0) ≔ EP0 [𝑍], Owen (1990) proves that, as 𝑁 →∞, we have

𝜋𝑁 (EP0 [𝑍])
𝑑→ 𝜒2

𝑑0
,

where 𝜒2
𝑑0

denotes the 𝜒2-distribution with 𝑑0 degrees of freedom. Thus Ĉ𝑁
constitutes an asymptotically exact (1 − 𝜂)-confidence interval for 𝜃(P0) if we set 𝑟
in (10.8) to the (1 − 𝜂)-quantile of a 𝜒2-distribution with 𝑑0 degrees of freedom.

In the context of stochastic programming problems, the statistical quantity of
interest is typically the optimal value of the stochastic program, that is, 𝜃(P) =

inf𝑥∈X EP [ℓ(𝑥, 𝑍)]. In this case, the set Ĉ𝑁 becomes the interval

Ĉ𝑁 =

[
inf
P∈P̂𝑁

inf
𝑥∈X
EP [ℓ(𝑥, 𝑍)], sup

P∈P̂𝑁
inf
𝑥∈X
EP [ℓ(𝑥, 𝑍)]

]
,

where P̂𝑁 is the 𝜙-divergence ambiguity set of the form (10.7) around P̂𝑁 . If P̂𝑁 is
a likelihood ambiguity set, Lam (2019) investigates the asymptotic coverage prob-
ability of this interval by leveraging asymptotic guarantees for the SAA decision
rule by Lam and Zhou (2017). In particular, he shows that if suitable regularity
conditions hold and 𝑟𝑁 = 𝑟/𝑁 , where 𝑟 is the (1 − 𝜂)-quantile of a 𝜒2-distribution
with a single degree of freedom, then Ĉ𝑁 becomes an asymptotically exact (1− 𝜂)-
confidence interval. One can thus show that the resulting confidence bounds
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achieve the asymptotically exact coverage at the parametric rate 𝑂(𝑁−1/2). Duchi
et al. (2021) further generalize these results to DRO decision rules over broader
classes of 𝜙-divergence ambiguity sets. Additionally, He and Lam (2021) examine
higher-order coverage errors and introduce a correction term similar to the Bartlett
correction. They derive higher-order correction terms for general von Mises dif-
ferentiable functionals and thus move beyond the approximately smooth functions
previously studied in the empirical likelihood literature.

In a parallel line of research, Blanchet et al. (2019b, 2022a,b), Blanchet and
Kang (2021) and Lin, Blanchet, Glynn and Nguyen (2024) introduce the Wasser-
stein profile function as a Wasserstein analogue to the profile divergence (10.9).
This approach replaces the 𝜙-divergence with the 2-Wasserstein distance, and it
offers a geometric perspective on uncertainty quantification. This approach yields
confidence bounds that achieve asymptotic parametric rate 𝑂(𝑁−1/2). For more
details, we direct the readers to the recent survey by Blanchet et al. (2021).

10.2.3. Large and moderate deviations principles
Unlike the central limit theorem and the empirical likelihood approach, which
characterize limits of distribution sequences, the theories of large and moderate de-
viations study the asymptotic tail behaviour of distribution sequences. Specifically,
they prove exponential decay rates of probabilities of rare events over sequences
of random variables. The foundations of large deviations theory trace back to
two seminal developments in physics and mathematics. The first is Boltzmann’s
groundbreaking works on statistical mechanics and entropy. The second is Cramér’s
pioneering paper on the asymptotic behaviour of sums of random variables (Cramér
1938). Despite these early advances, the field lacked a unified mathematical frame-
work until Varadhan’s seminal paper (Varadhan 1966), which introduces a formal
definition of a large deviation principle. We refer to the textbooks by Ellis (2007)
and Dembo and Zeitouni (2009) for a modern treatment of the topic.

Assume now that the unknown true distribution P0 is known to belong to a para-
metric distribution family {P𝜃 : 𝜃 ∈ Θ} ⊆ P(Z), where 𝜃 ranges over a prescribed
parameter space Θ. In this case, estimating P0 is tantamount to estimating the
unknown true parameter vector 𝜃0 ∈ Θ that satisfies P0 = P𝜃0 . A statistic 𝜃𝑁
is a random variable valued in Θ and constructed from (𝑍1, . . . , 𝑍𝑁 ) ∼ P𝑁

𝜃
that

converges in probability to 𝜃 as 𝑁 grows, for any 𝜃 ∈ Θ. Formally, we say that
the statistic 𝜃𝑁 satisfies a large deviations principle with speed 𝑏𝑁 and with lower
semicontinuous rate function 𝐼 : Θ × Θ→ [0,∞] if

− inf
𝜃 ′∈int(B)

𝐼(𝜃′, 𝜃) ≤ lim inf
𝑁→∞

1
𝑏𝑁

logP𝜃 (𝜃𝑁 ∈ B)

≤ lim sup
𝑁→∞

1
𝑏𝑁

logP𝜃 (𝜃𝑁 ∈ B)

≤ − inf
𝜃 ′∈cl(B)

𝐼(𝜃′, 𝜃) (10.10)
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for all 𝜃 ∈ Θ and for all Borel sets B ⊆ Θ. Here we assume that the sequence 𝑏𝑁 ,
𝑁 ∈ N, tends monotonically towards infinity. If (10.10) holds, one can show under
mild conditions that 𝐼(𝜃, 𝜃) = 0 because 𝜃𝑁 converges to 𝜃 in probability under P𝜃 .
It is therefore natural to interpret 𝐼(𝜃′, 𝜃) as a discrepancy function that quantifies
the dissimilarity between the estimator realization 𝜃′ and the probabilistic model 𝜃.
As 𝐼 is lower semicontinuous, the minimization problems on the left- and right-hand
sides of (10.10) share the same infimum 𝑟 = inf 𝜃 ′∈int(B) 𝐼(𝜃′, 𝜃) = inf 𝜃 ′∈cl(B) 𝐼(𝜃′, 𝜃)
for most Borel sets B of interest. In these cases, the inequalities in (10.10) collapse
to equalities, and (10.10) simplifies to the more intuitive statement

P𝜃 (𝜃𝑁 ∈ B) = exp(−𝑟𝑏𝑁 + 𝑜(𝑏𝑁 )).

That is, the probability of the estimator 𝜃𝑁 falling into the setB decays exponentially
at rate 𝑟 with speed 𝑏𝑁 , where 𝑟 can be interpreted as the 𝐼-distance from 𝜃 to B.

Several statistics of practical interest satisfy large deviations principles. For
example, if Z is finite and {P𝜃 : 𝜃 ∈ Θ} is the family of all distributions on Z en-
coded by the corresponding probability vectors 𝜃 ∈ Θ, where Θ is the probability
simplex of appropriate dimension, then the empirical distribution P̂𝑁 correspond-
ing to the empirical probability vector 𝜃𝑁 is an estimator for the data-generating
distribution P𝜃 . In this case, Sanov’s theorem (Cover and Thomas 2006, The-
orem 11.4.1) asserts that 𝜃𝑁 satisfies a large deviations principle with rate function
𝐼(𝜃′, 𝜃) = KL(P𝜃 ′ , P𝜃 ) and speed 𝑏𝑁 = 𝑁 . Similarly, if {P𝜃 : 𝜃 ∈ Θ} is any
distribution family parametrized by its unknown mean vector 𝜃 = EP𝜃 [𝑍] and if
the log-moment generating function Λ𝜃 (𝑡) = log(EP𝜃 [exp(𝑡⊤𝑍)]) is finite for all
𝑡, 𝜃 ∈ R𝑑 , then the sample mean 𝜃𝑁 = 1

𝑁

∑
𝑖∈[𝑁 ] 𝑍𝑖 is an estimator for 𝜃. In this

case, Cramér’s theorem (Cramér 1938) asserts that 𝜃𝑁 satisfies a large deviations
principle with rate function 𝐼(𝜃′, 𝜃) = Λ∗

𝜃
(𝜃′) and speed 𝑏𝑁 = 𝑁 . Note that the log-

moment generating function Λ𝜃 as well as its conjugate Λ∗
𝜃

are both convex. We
remark that a large deviations principle with sublinear speed (lim𝑁→∞ 𝑏𝑁/𝑁 = 0)
is sometimes referred to as a moderate deviations principle. For an example of a
moderate deviations principle we refer to Jongeneel, Sutter and Kuhn (2022).

Van Parys et al. (2021) leverage Sanov’s theorem to show that the optimal
value of the DRO problem with a likelihood ambiguity set of radius 𝑟 around the
empirical distribution P̂𝑁 yields the least conservative confidence bound on the
optimal value of the true stochastic program, asymptotically as the sample size
𝑁 grows large, with significance level 𝜂 decaying exponentially as e−𝑟𝑁 . More
generally, Sutter, Van Parys and Kuhn (2024) assume that P0 is known to belong
to a parametric distribution family {P𝜃 : 𝜃 ∈ Θ} and that 𝜃 admits an estimator 𝜃𝑁
that satisfies a large deviations principle with rate function 𝐼 and speed 𝑏𝑁 = 𝑁 .
Under some regularity conditions, they then show that the optimal value of the
DRO problem with ambiguity set P̂𝑁 = {P𝜃 : 𝜃 ∈ Θ, 𝐼(𝜃𝑁 , 𝜃) ≤ 𝑟} again yields
the least conservative confidence bound on the optimal value of the true stochastic
program with significance level 𝜂 ∝ e−𝑟𝑁 . Similar statistical optimality results can
sometimes be obtained even when the training samples are serially dependent, for

https://doi.org/10.1017/S0962492924000084 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000084


Distributionally robust optimization 771

example when they are generated by a Markov process with unknown transition
probability matrix or certain autoregressive processes (Sutter et al. 2024).

The DRO estimators by Van Parys et al. (2021) and Sutter et al. (2024) lack
asymptotic consistency because they exploit large deviations principles with linear
speed 𝑏𝑁 = 𝑁 . Bennouna and Van Parys (2021) show that asymptotic consistency
can be recovered by relying on moderate deviations principles with sublinear speed.
This line of research has seen significant recent developments. The use of large
and moderate deviations principles has also been extended to various learning
and control settings such as distributionally robust Markov decision processes (Li,
Sutter and Kuhn 2021), bandit problems (Van Parys and Golrezaei 2024), bootstrap-
based methods (Bertsimas and Van Parys 2022), optimal learning (Ganguly and
Sutter 2023, Liu et al. 2023), control (Jongeneel, Sutter and Kuhn 2021, Jongeneel
et al. 2022), contextual learning (Srivastava, Wang, Hanasusanto and Ho 2021) and
robust statistics (Chan, Van Parys and Bennouna 2024).

10.3. Non-asymptotic analyses

Non-asymptotic statistics seeks finite-sample guarantees that hold regardless of the
sample size. This is in contrast to the asymptotic methods described in Section 10.2,
which rely on properties that emerge as sample size tends infinity. Non-asymptotic
methods allow for a rigorous control over error rates, which makes them robust
in situations where asymptotic approximations might produce misleading results.
In the following, we review two major classes of non-asymptotic analyses, that is,
measure concentration bounds and generalization bounds.

10.3.1. Measure concentration bounds
The most elementary approach to obtaining finite sample guarantees is to design
the ambiguity set P̂𝑁 such that it contains the unknown true probability distribution
P0 with high probability. This requires an analysis of the convergence rate of P̂𝑁
towards P0, and it leads to out-of-sample disappointment bounds that depend only
on P̂𝑁 and not on the complexity of the loss function ℓ or the decision space X .

Theorem 10.1 (Out-of-sample disappointment). Suppose that the ambiguity
set P̂𝑁 defined in (10.7) satisfies

P𝑁0 (P0 ∈ P̂𝑁 ) ≥ 1 − 𝜂. (10.11)

We then have

P𝑁0

(
EP0 [ℓ(𝑥, 𝑍)] ≤ sup

P∈P̂𝑁
EP [ℓ(𝑥, 𝑍)] ∀𝑥 ∈ X

)
≥ 1 − 𝜂. (10.12a)

Moreover, if �̂�𝑁 is an optimizer of the distributionally robust decision problem
with respect to the ambiguity set P̂𝑁 , then we have

P𝑁0

(
EP0 [ℓ(�̂�𝑁 , 𝑍)] ≤ min

𝑥∈X
sup
P∈P̂𝑁

EP [ℓ(𝑥, 𝑍)]
)
≥ 1 − 𝜂. (10.12b)
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The proof of (10.12a) and (10.12b) readily follows from the measure concen-
tration bound (10.11) and is therefore omitted. Theorem 10.1 asserts that the
worst-case expected loss provides an upper confidence bound on the true expec-
ted loss under the unknown data-generating distribution uniformly across all loss
functions. Moreover, it also asserts that the optimal value of the DRO problem
(1.2) provides an upper confidence bound on the out-of-sample performance of its
optimizers.

When using 𝜙-divergences to construct P̂𝑁 as in (10.7), the probabilistic re-
quirement (10.11) only applies to underlying distributions P0 that are discrete
(Polyanskiy and Wu 2024, § 7). In contrast, the Wasserstein distance applies to
generic distributions P0. This area of study has a rich history, with seminal con-
tributions from Dudley (1969), Ajtai, Komlós and Tusnády (1984) and Dobrić and
Yukich (1995). More recent advancements have been made by Bolley, Guillin and
Villani (2007), Boissard and Le Gouic (2014), Dereich, Scheutzow and Schottstedt
(2013) and Fournier and Guillin (2015). Of particular importance to our discussion
is the following measure concentration result, which serves as the foundation for
finite sample guarantees in DRO over 𝑝-Wasserstein ambiguity sets.

Theorem 10.2 (Measure concentration (Fournier and Guillin 2015, Thm 2)).
Suppose that P̂𝑁 is the empirical distribution constructed from 𝑁 independent
samples from P0, 𝑝 ≠ 𝑑/2, and that P0 is light-tailed in the sense that there exist
𝛼 > 𝑝 and 𝐴 > 0 such that EP0(exp(∥𝑍 ∥𝛼)) ≤ 𝐴. Then there are constants
𝑐1, 𝑐2 > 0 that depend on P0 only through 𝛼, 𝐴, and 𝑑 such that, for any 𝜂 ∈ (0, 1],
the concentration inequality P𝑁0 (𝑊𝑝(P0, P̂) ≤ 𝑟𝑁 ) ≥ 1−𝜂 holds whenever 𝑟 exceeds

𝑟(𝑑, 𝑁, 𝜂) =


(

log(𝑐1/𝜂)
𝑐2𝑁

)min{1/𝑑,1/2}
if 𝑁 ≥ log(𝑐1/𝜂)

𝑐2
,(

log(𝑐1/𝜂)
𝑐2𝑁

)1/𝛼
if 𝑁 <

log(𝑐1/𝜂)
𝑐2

.

(10.13)

The result remains valid for 𝑝 = 𝑑/2 but with a more complicated formula
for 𝑟(𝑑, 𝑁, 𝜂) (Fournier and Guillin 2015, Theorem 2). Intuitively, Theorem 10.2
asserts that any 𝑝-Wasserstein ball P̂𝑁 of 𝑟𝑁 ≥ 𝑟(𝑑, 𝑁, 𝜂) around P̂𝑁 represents
a (1 − 𝜂)-confidence set for the unknown data-generating distribution P0. For
uncertainty dimensions 𝑑 > 2, the critical radius 𝑟(𝑑, 𝑁, 𝜂) of this confidence set
decays as 𝑂(𝑁−1/𝑑). In other words, to reduce the critical radius by 50%, the
sample size must increase by 2𝑑 . Unfortunately, this curse of dimensionality is
fundamental, and the decay rate of 𝑟(𝑑, 𝑁, 𝜂) is essentially optimal (Fournier and
Guillin 2015, § 1.3). Explicit constants 𝑐1 and 𝑐2 are provided by Fournier (2023).

Generic measure concentration bounds suffer from a curse of dimensionality.
Shafieezadeh-Abadeh et al. (2019) and Wu et al. (2022) show that this curse can
be overcome in the context of linear prediction models by projecting 𝑍 to a one-
dimensional random variable, yielding the parametric convergence rate 𝑂(𝑁−1/2).
Nietert et al. (2024a) develop a similar approach for rank-𝑘 linear models, where
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2 < 𝑘 < 𝑑, and achieve an improved rate of𝑂(𝑁−1/𝑘) based on 𝑘-sliced Wasserstein
distances. The 1-sliced Wasserstein distance is also used by Olea et al. (2022) to
obtain the parametric rate 𝑂(𝑁−1/2) for a class of regression problems.

We conclude this section by highlighting that the DRO approach admits instance-
dependent regret bounds, which essentially depend on no complexity measures of
the decision space or the loss function. Instead, they only depend on the complexity
of the optimal solution 𝑥0 through the DRO regularizer �̂�𝑁 (𝑥0). Zeng and Lam
(2022, Theorem 4.1) and Nietert et al. (2024a, Theorem 1) establish such bounds
for DRO problems over the ambiguity set (10.7) when D is the maximum mean
discrepancy and the (outlier-robust) Wasserstein distance, respectively. Similar
instance-dependent guarantees for DRO problems with Wasserstein ambiguity sets
have been developed by Hou et al. (2023).

10.3.2. Generalization bounds
An alternative approach to obtaining statistical guarantees leverages the union
bound from probability theory and covering numbers or complexity measures from
statistical learning theory. The first step consists in deriving an inequality of
the form

P𝑁0 (EP0 [ℓ(𝑥, 𝑍)] ≤ �̂�𝑁 (𝑥)) ≥ 1 − 𝜂 for all 𝑥 ∈ X , (10.14)

where the loss certificate �̂�𝑁 (𝑥) depends on the decision 𝑥 ∈ X . For example, a
guarantee of the form (10.14) can be obtained by combining empirical Bernstein
inequalities (Maurer and Pontil 2009) and a DRO model with a 𝜒2-divergence
ambiguity set (Duchi and Namkoong 2019, Theorem 2). In this case, the certificate
�̂�𝑁 (𝑥) reduces to the sum of the expected loss under P̂𝑁 and a variance regularizer
under P0. Alternatively, a guarantee of the form (10.14) can also be obtained
by combining transport inequalities (Marton 1986, Talagrand 1996) and a DRO
model with a Wasserstein ambiguity set (Gao 2023, Theorem 1). In this case,
�̂�𝑁 (𝑥) reduces to the sum of the expected loss under P̂𝑁 and a variation regularizer
under P0. The second step consists in converting the individual guarantee (10.14)
to a uniform guarantee. For example, if X is finite, this can easily be achieved by
using the union bound. If X is uncountable, one may use one of several standard
techniques. If the loss function is Lipschitz-continuous in 𝑥 ∈ X uniformly across
all 𝑧 ∈ Z and X is compact, then one can discretize X by uniform gridding. In
this case, the loss at an arbitrary point is uniformly approximated by the loss at
the nearest grid point, and a uniform guarantee can again be obtained by using the
union bound. However, the number of grid points needed for an 𝜀-approximation
is of the order 𝑂((1/𝜀)𝑑), which is impractical in high dimensions 𝑑. A more
sophisticated approach to discretizing X exploits structural knowledge of the loss
function at multiple scales. However, obtaining tight approximation in high dimen-
sions remains challenging. In order to mitigate the computational burden related
to discretization, one may exploit several complexity measures that quantify the
expressiveness of the functions ℓ(𝑥, ·) for all 𝑥 ∈ X such as the VC dimension or
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the Rademacher complexity as well as its local version. Nonetheless, Rademacher
complexities can be computationally challenging to compute. For full details we
refer to Boucheron, Lugosi and Massart (2013), Vershynin (2018) and Wainwright
(2019).

The last step consists in approximating the certificate �̂�𝑁 (𝑥) by the worst-case
expected loss over a data-driven ambiguity set P̂𝑁 based on the 𝜒2-divergence
or a Wasserstein distance. The corresponding approximation error can be con-
trolled by leveraging Taylor approximations as in Theorems 8.4 and 8.7 together
with appropriate concentration inequalities. In summary, this procedure shows
that the optimal value of a data-driven DRO problem over a 𝜒2-divergence or a
Wasserstein ambiguity set provides a finite-sample upper confidence bound on the
corresponding stochastic program under the unknown true distribution P0.

Duchi and Namkoong (2019) and Gao (2023) derive generalization bounds of this
kind for 𝜒2-divergence and Wasserstein ambiguity sets, respectively, while Azizian,
Iutzeler and Malick (2023a) extend their analysis to entropic regularized optimal
transport ambiguity sets. All these bounds exhibit the parametric rate 𝑂(𝑁−1/2).
In addition, Duchi and Namkoong (2019) demonstrate that, under certain curvature
conditions, 𝜒2-divergence decision rules can achieve the fast rate 𝑂(𝑁−1).
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