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In comparison to monogastric animals, ruminants show some peculiarities in respect to the regulation of mineral homeostasis,
which can be regarded as a concerted interplay between gastrointestinal absorption, renal excretion and bone mobilisation to
maintain physiological Ca and phosphate (Pi) concentrations in serum. Intestinal absorption of Ca or Pi is mediated by two
general mechanisms: paracellular, passive transport dominates when luminal Ca or Pi concentrations are high and transcellular.
The contribution of active transport becomes more important when dietary Ca or Pi supply is restricted or the demand increased.
Both pathways are modulated directly by dietary interventions, influenced by age and regulated by endocrine factors such as
1,25-dihydroxyvitamin D3. Similar transport processes are observed in the kidney. After filtration, Ca and Pi are resorbed along
the nephron. However, as urinary Ca and Pi excretion is very low in ruminants, the regulation of these renal pathways differs
from that described for monogastric species, too. Furthermore, salivary secretion, as part of endogenous Pi recycling, and bone
mobilisation participate in the maintenance of Ca and Pi homeostasis in ruminants. Saliva contains large amounts of Pi for
buffering rumen pH and to ensure optimal conditions for the rumen microbiome. The skeleton is a major reservoir of Ca and Pi to
compensate for discrepancies between demand and uptake. But alterations of the regulation of mineral homeostasis induced by
other dietary factors such as a low protein diet were observed in growing ruminants. In addition, metabolic changes, for
example, at the onset of lactation have pronounced effects on gastrointestinal mineral transport processes in some ruminant
species. As disturbances of mineral homeostasis do not only increase the risk of the animals to develop other diseases, but are
also associated with protein and energy metabolism, further research is needed to improve our knowledge of its complex
regulation.
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Implications

Disturbances of mineral homeostasis are of significant
relevance not only in dairy cows but also in beef cattle
and small ruminants. In addition, the contribution of excreted
phosphorus to the pollution of surface waters necessitates
a revision of our livestock feeding regimes. The present
review gives an overview on our current knowledge of the
regulation of mineral transport across gastrointestinal and
renal epithelia derived from functional and structural studies
in different ruminant species as affected by age, lactation,
feeding regime, etc. It highlights the physiological differences
between monogastric animals and ruminants as well as the
importance of combining different scientific approaches to
improve our understanding of the complex mechanisms
crucial for the maintenance of mineral homeostasis.

Introduction

Depending on management strategies, milk fever occurs
in dairy cows with an incidence of 0% to 1%, 1.4% to
4%, and 5.7% to 6% in the first, the second and the third
lactation, while the prevalence of subclinical hypocalcaemia
defined as serum Ca concentration <2 mM amounts to
5.7% to 25%, 29.0% to 41%, and 49% (Reinhardt et al.,
2011; Venjakob et al., 2017). The physiological response
to transient hypocalcaemia is an increase in bone mobilisa-
tion followed by enhanced gastrointestinal absorption
(van´t Klooster, 1976). If these mechanisms are compro-
mised, either the extent or the duration of hypocalcaemia
is exacerbated resulting in increased risks of developing
different diseases in early lactation depending on the
duration of hypocalcaemia (Neves et al., 2018). Reliable
data on the prevalence of peripartum hypocalcaemia in
small ruminants are scarce. Like cows, goats develop† E-mail: Mirja.wilkens@tiho-hannover.de
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hypocalcaemia usually at the onset of lactation, while
Ca homeostasis of sheep is generally more severely
challenged during late gestation (Oetzel, 1988; Brozos
et al., 2011).

Homeostatic control of phosphate (Pi) is also challenged
at the onset of lactation. Subclinical hypophosphatemia
around parturition is observed in >50% of dairy cows
(Macrae et al., 2006), and low serum Pi concentrations in
cows suffering from milk fever are associated with an
increased risk of developing downer cow syndrome
(Menard and Thompson, 2007). However, high P percent-
age of pre-calving diets was identified as a risk factor for
hypocalcaemia in a meta-analysis (Lean et al., 2006),
and a prepartum ration low in P seems to have beneficial
effects on Ca homeostasis, probably because of an impact
on bone mobilisation and vitamin D metabolism (Cohrs
et al., 2018).

Restriction of P and CP intake may occur for economic
reasons or because animals are kept on deficient pastures
(McGrath et al., 2012; Elfers et al., 2015). This might be
especially relevant in growing or fattening animals. On
the other hand, environmental pollution with Pi and N
of animal origin is leading to legal incentives to reduce
the P and CP content of ruminant rations to the lowest
possible level that does not negatively affect health and
productivity.

In contrast to monogastric species, including rats and
horses, no significant changes in renal Ca and Pi excretion
are observed in bovines kept on restricted alimentary Ca
supply, and the adaptation of gastrointestinal absorption
seems to be less pronounced (Martz et al., 1999; van
Doorn et al., 2004; Zhang et al., 2008; Taylor et al.,
2009). In Table 1 we present data from balance studies
carried out in different ruminant species to illustrate that
Ca and P absorption and secretion out of and into different
gastrointestinal segments as well as urinary excretion
are influenced by age, lactation and type of diet. There is
inconsistency in the contribution of the forestomach of
ruminants to overall Ca absorption (Table 1), which can
partly be explained with differences in the composition of
rations as mineral homeostasis interferes with other dietary
factors such as dietary cation–anion difference, Mg and CP
supply (Goff, 2008; Muscher and Huber, 2010; Elfers et al.,
2016a; Wilkens et al., 2018). Therefore, studies using a
more mechanistic approach are an important tool to
enhance our knowledge.

Unfortunately, most research on the physiological mech-
anisms to maintain mineral homeostasis has used rodents as
models for mammals in general. It is, therefore, the aim of
this review to summarise the most important peculiarities
of Ca and Pi transport across gastrointestinal and renal
epithelia found in ruminants and highlight differences in
comparison to monogastric animals. Throughout the follow-
ing text, specific results obtained in ruminants will be
indicated, while more general aspects often refer to studies
done in rats and mice.

Methods

To evaluate renal and gastrointestinal Ca or Pi absorption
and secretion in vivo, several different quantitative methods
applied: balance studies using intact or cannulated animals,
radioisotope tracer techniques, and the administration of
stable strontium that can be used for this purpose, as its
absorption shows a close correlation with that of Ca. As these
experiments do not give explanations for sometimes incon-
sistent results, ex vivo methods are necessary to reveal the
underlying mechanisms more precisely: isolated perfused
organs, micropuncture experiments on renal transport, the
everted sac technique that allows to control the composition
of the luminal and serosal buffer solution and thus the
chemical gradient, and the Ussing chamber is used to inves-
tigate transport mechanism by altering both the chemical
and electrical gradients across the epithelium to differentiate
between passive and active, paracellular and transcellular
mechanisms. These functional studies are completed by in
vitro experiments – for example, the quantification of RNA
and protein expression of transporters and the functional
characterisation applying electrophysiological techniques
on cloned transporters. Although all these methods can
greatly improve our understanding of physiological proc-
esses, the artificial conditions used or the fact that
transporter abundance does not always represent in vivo
activity may also provide challenges in interpretation.
Taken together, our knowledge will probably increase if
we combine the information derived from all these different
approaches.

Endocrine control of calcium and phosphate transport

The concentrations of ionised Ca (Ca2þ) and Pi in blood are
regulated in a narrow range by 1,25-dihydroxyvitamin D3
(1,25-(OH)2D3), parathyroid hormone (PTH), calcitonin
and fibroblast growth factor 23 (FGF23). Homeostasis is
maintained by the interplay of gastrointestinal absorption,
renal resorption and mobilisation of these inorganic ions
from bone. Within minutes, a drop in blood Ca2þ induces
the release of PTH from the parathyroid gland (Kumar
and Thompson, 2011) that stimulates the mobilisation of
Ca and Pi from the skeleton (Ben-awadh et al., 2014). In
monogastric animals, PTH also increases renal Ca resorption
and Pi excretion by direct, rapid mechanisms (Besarab and
Swanson, 1982). Furthermore, PTH enhances the expression
and activity of 1α-hydroxylase (CYP27B1), an enzyme
that converts 25-hydroxyvitamin D3 (25-OHD3) to the bio-
logically most active vitamin D metabolite 1,25-(OH)2D3
(Fraser and Kodicek, 1973). Furthermore, direct effects
of plasma Ca and Pi on 1,25-(OH)2D3 concentrations
were shown in rats (Bushinsky et al., 1985; Bushinsky
et al., 1989).

In lactating animals, PTH-related peptide (PTHrP) is
secreted by the mammary gland into both milk and blood.
Although it can bind the PTH receptor, it is probably not
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Table 1 Results from balance studies done with different ruminant species: intake, urinary excretion (UEX), pre-intestinal (PRE) and intestinal (INT) net absorption (ABS), faecal excretion (FEX) in grams per
day, apparent digestibility (AD) in percentage

Ca P

Treatment Source and animalsIntake UEX

ABS

FEX AD Intake UEX

ABS

FEX ADPRE INT PRE INT

24.9 1.20 1.2 −0.2 23.9 4.2 16.6 5.26 −19.3 25.9 10.0 39.8 GS Khorasani and Armstrong (1992)
25.1 1.00 1.9 2.6 20.7 17.7 16.8 4.50 −18.9 27.6 8.1 51.6 GS þ F
25.2 0.48 1.1 1.6 22.6 10.3 16.8 5.33 −18.5 26.1 9.3 44.9 GS þ FF Jersey cattle,
33.6 1.06 1.6 0.3 31.6 5.8 10.7 0.29 −17.9 21.4 7.2 32.4 Hay Male and female,
37.1 0.35 5.4 −1.3 33.0 11.1 14.8 2.53 −15.2 19.6 10.4 30.3 Hay þ SM Non-lactating
48.2 1.92 14.5 1.9 31.8 34.1 17.4 3.36 −18.1 26.3 9.1 47.4 GCS þ FF
51.4 0.49 20.9 −0.8 31.4 39.0 18.1 2.57 −16.7 23.4 11.3 37.2 GCS
51.7 1.38 19.8 −4.3 36.2 29.9 21.5 5.85 −12.4 21.1 12.8 40.4 GCS þ FF þ SM

50% concentrate Khorasani et al. (1997)
50% silage

115.0 n.d. −9.0 36.8 78.6 31.7 82.0 n.d. −60.5 85.0 65.5 20.1 Triticale Holstein cows, lactating
118.0 6.5 28.6 83.6 29.2 90.0 −53.9 81.0 55.0 38.9 Oat
150.0 19.1 28.0 107.4 28.4 97.0 −42.9 81.3 66.9 31.0 Barley
231.0 49.8 24.6 156.5 32.3 105.0 −33.9 70.5 68.3 35.0 Alfalfa
114.7 1.00 n.d. n.d. 78.2 32.1 61.3 0.74 n.d. n.d. 40.3 34.1 Second week of lactation,

increasing Ca intake
Taylor et al. (2009)

129.5 0.96 84.6 36.2 47.9 2.95 28.3 46.6
205.7 1.10 148.3 26.0 58.0 1.04 36.8 39.0 Holstein cows, lactating
125.3 0.64 88.1 29.6 82.5 0.65 50.3 38.6 Eighth week of lactation,

increasing Ca intake191.4 0.51 138.9 26.5 80.0 0.91 49.6 36.3
243.3 0.91 168.2 30.8 78.0 0.81 49.9 37.0
71.8 0.42 11.1 16.3 44.4 38.2 41.3 3.56 −12.1 35.4 18.0 56.5 High DCAD Oehlschlaeger et al. (2014)

Holstein cows, lactating72.4 6.10 −2.9 26.7 48.6 32.8 40.4 5.05 −26.8 50.0 17.2 57.5 Low DCAD
71.9 10.15 3.3 34.7 33.9 52.9 42.4 7.80 −23.8 53.3 12.9 69.6 Low DCAD þ 25-OHD
65.7 0.9 n.d. n.d. 60.7 7.6 26.1 0.9 n.d. n.d. 20.4 21.8 Control McGrath et al. (2012)
66.4 2.5 n.d. n.d. 55.8 16.0 26.4 1.1 n.d. n.d. 17.2 34.8 25-OHD Brangus steers
6.4 n.d. 0.5 0.0 5.9 7.8 0.96 n.d. −1.88 1.65 1.19 −24.0 P depletion Breves et al. (1985)
6.2 0.0 1.3 4.9 21.0 4.19 −2.51 4.27 2.43 42.0 P repletion Black headed mutton wethers
8.32 0.09 1.04 −0.03 7.31 12.1 5.83 2.16 −4.25 7.12 2.96 49.2 0.09% Na Khorasani and Armstrong (1990)
8.32 0.01 1.12 0.05 7.15 14.1 5.76 1.92 −3.86 6.56 3.06 46.9 0.6% Na
8.46 0.02 1.32 −0.14 7.28 13.9 5.85 2.26 −3.28 6.53 2.60 55.6 1.3% Na
8.49 0.06 1.29 −0.03 7.50 11.7 5.81 2.17 −4.33 7.32 2.82 51.5 0.65% K Suffolk halfbred wethers
8.28 0.01 1.07 −0.21 7.00 15.5 5.72 2.06 −3.36 6.21 2.87 49.8 3.0% K
7.22 0.14 n.d. n.d. 5.09 29.5 2.94 0.04 n.d. n.d. 1.75 40.5 1.09% Ca, 0.46% P Pfeffer et al. (1995)
5.76 0.20 n.d. n.d. 5.35 7.1 1.08 0.01 n.d. n.d. 1.11 −2.7 1.09% Ca, 0.20% P
3.07 0.06 n.d. n.d. 1.51 50.8 3.20 0.34 n.d. n.d. 1.69 47.2 0.39% Ca, 0.46% P
2.39 0.22 n.d. n.d. 1.97 17.6 1.18 0.02 n.d. n.d. 1.03 12.7 0.39% Ca, 0.21% P Saanen-type, male goat kids

Adequate P Müschen et al. (1988)
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involved in vitamin D metabolism but likely to act on bone
mobilisation (Hernández-Castellano et al., 2019). In addition,
it was suggested to exert effects on renal Ca handling such as
prolactin (Herm et al., 2015).

Depending on the concentrations of plasma Ca and
calcitonin, 1,25-(OH)2D3 either increases or inhibits bone
mobilisation (Kurbel et al., 2003). Via its genomic effects
on Ca transporter expression that become present after a
certain time lag, 1,25-(OH)2D3 stimulates renal resorption
and intestinal absorption of Ca (Dusso et al., 2005) and limits
its own synthesis by inhibiting CYP27B1 and stimulating the
expression of 24-hydroxylase, the enzyme that initiates the
inactivation of both 25-OHD3 and 1,25-(OH)2D3 (Chen and
DeLuca, 1995; Beckman and DeLuca, 2002).

In addition, 1,25-(OH)2D3 induces the production of a
bone-derived phosphatonin, FGF23 (Saji et al., 2010), that
interacts with PTH expression and vitamin D metabolism
and thus decreases plasma concentrations of 1,25-(OH)2D3
(Schiavi and Kumar, 2004; Krajisnik et al., 2007). Low dietary
P intake decreased plasma concentrations of FGF23 and
concomitantly increased 1,25-OH2D3 while plasma PTH
was low (Antoniucci et al., 2006).

Protein intake also interferes with vitamin D metabolism.
Growth hormone acts mainly through insulin-like growth
factor 1 (IGF1). Uncoupling of this somatotropic axis indi-
cated by low IGF1 plasma concentrations was observed
during dietary protein restriction in growing goats and
in peripartum dairy cows (Muscher et al., 2011; Piechotta
et al., 2014). Reduced IGF1 was associated with decreased
expression of CYP27B1 and affected bone mobilisation
and intestinal Ca absorption probably via diminished plasma
concentrations of 1,25-(OH)2D3 (Wilkens et al., 2018).

As all these aspects might interfere with the strategies
applied to stabilise mineral homeostasis in dairy cows and
beef cattle – for example, dietary interventions, vitamin D
supplementation, oral and parental administration of Ca,
low IGF1 during negative energy balance, etc. (Reist et al.,
2003; Wilkens et al., 2012a; Domino et al., 2017) – a better
understanding of the exact mechanisms is urgently needed.

Sites and mechanisms of gastrointestinal calcium
absorption

Paracellular calcium absorption
Gastrointestinal Ca absorption can occur via the transcellular
as well as paracellular pathways (Hoenderop et al., 2005).
Passive, paracellular absorption can take place when the
chemical gradient is high enough (>6 mM on the luminal
side) to overcome the electrical gradient and the barrier
formed by tight junction proteins, both of which hinder
the transport of cations (Bronner, 1987). As paracellular
Ca transport is dependent on its luminal concentration, it
is dominant when Ca intake is high (Bronner and Pansu,
1999) – for example, when Ca is provided as a bolus or
via drenching. In addition, paracellular absorption can be
driven by the so-called solvent drag effect. When water is
absorbed due to hydrostatic and osmotic pressure, mineralTa
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ions solubilised by water dipole–ion interactions can also
pass through the paracellular pathway (Goff, 2018). The
osmotic pressure contributing, to a large extent, to the
solvent drag effect depends mainly on the transepithelial
Na gradient generated by Naþ-Kþ-ATPase (Karbach, 1992).

Paracellular Ca transport in both directions can be found
throughout the entire intestine, depending on the gradient. It
is likely that the rumen multilayer epithelium is too dense
to allow significant amounts of Ca to be absorbed via the
interstitial fluid unless the luminal concentration of Ca is
increased dramatically by additional supply. This hypothesis
is also supported by the comparison of rumen Ca flux rates
and mannitol flux rates that are used to estimate transepithe-
lial movement of water (Figure 1) (Wilkens et al., 2011
and 2012b).

Although it has been demonstrated that 1,25-(OH)2D3 has
an effect on the expression of several tight junction proteins
(Chirayath et al., 1998; Kutuzova and DeLuca, 2004), it is not
clear to what extend it regulates paracellular Ca absorption.
A stimulation of the expression of claudin-2 and claudin-12,
tight junction proteins that increase the permeability for Ca,
was found in response to long-term dietary Ca restriction in
the small intestine of goats (Elfers et al., 2016b); and in
CaCo-2 cells treated with 1,25-(OH)2D3, paracellular per-
meability was increased (Chirayath et al., 1998).

Transcellular, pre-intestinal calcium absorption
In monogastric animals, transcellular Ca absorption mainly
occurs in the duodenum and upper jejunum (Hoenderop
et al., 2005). The cellular mechanism consists of at least
three steps: Ca enters the cell via the transient receptor poten-
tial vanilloid channel type 6 (TRPV6), is bound to the cytosolic
protein calbindin-D9K (CaBPD9K), translocated to the basolat-
eral membrane and extruded mainly by the plasma membrane
Ca2þ-ATPase isoform 1b (PMCA1b) (Figure 2). A significant
stimulation of expression by 1,25-(OH)2D3 has been shown

Figure 2 Ca transport mechanisms and transepithelial potential difference
in the rumen, small intestine, the thick ascending limp of the loop of
Henle (TAL), and the distal and connecting tubules (DT, CT) of the kidneys
in ruminant species. PMCA, plasma membrane Ca2þ-ATPase isoform 1b;
TRPV6/5, transient receptor potential vanilloid channel type 6/5;
CaBPD9K/CaBPD28K, calbindin-D9K/D9K; NKCC2, Naþ-Kþ-Cl– co-transporter
type 2; ROMK1, renal outer medullary Kþ channel type 1; NCX,
Naþ/Ca2þ exchanger type 1. Explanations of the mechanisms are given
in the corresponding text.

Figure 1 Unidirectional flux rates (J) frommucosal to serosal (ms) and from serosal to mucosal (sm) of Ca as a function of those of mannitol (Man) in the rumen
tissues of sheep (n= 20) and goats (n= 20) determined using the Ussing chamber in the absence of any electrochemical gradient. As mannitol is used as a
marker for paracellular transport of water, the lack of any relationship between Ca J ms and Man J ms indicates transcellular Ca absorption. Modified from
Wilkens et al. (2011) and (2012b).
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in all three of the abovementioned structures (Hoenderop
et al., 2005).

Marked differences to monogastric species have been
described for ruminants, concerning the localisation and
vitamin D sensitivity of Ca absorption along the gastrointesti-
nal axis, particularly with respect to the forestomach compart-
ment. While active Ca transport (3.0 ± 1.9 nmol/cm2·h)
determined in Ussing chambers in the omasum has only been
investigated and demonstrated in sheep (Höller et al., 1988b),
greater Ca net flux rates in the rumen were reported for sheep,
goats (Figure 3) and cattle (13.8± 1.8 nmol/cm2·h). But as
TRPV6 and CaBPD9K are not expressed in ovine, caprine and
bovine rumen epithelia, this pre-intestinal Ca absorption is
probably not mediated by the classical mechanism described
for the intestine of monogastric animals (Höller et al., 1988a;
Schröder et al., 2001, 2015; Wilkens et al., 2011, 2012b).
Neither long-term dietary Ca restriction of sheep and
goats nor administration of supraphysiological amounts of
1,25-(OH)2D3 resulted in increased Ca net flux rates across
rumen epithelia measured in Ussing chambers (Figure 3)
(Wilkens et al., 2011 and 2012b). Hyde and Fraser estimated
Ca transport in vivo by an administration of stable strontium.
In contrast to the abovementioned studies, they observed that
rumen Ca transport doubled after treatment of sheep with
1α-OHD3 (Hyde and Fraser, 2014). However, no satisfying
explanation for this inconsistency was found. It might be
speculated that alterations regarding passage rate and rumen
motility as a response to the hypercalcaemic effect of the
treatment contribute to overall Ca transport in vivo (Daniel,
1983). In vitro, rumen Ca net flux rates of sheep determined
in Ussing chambers seem to depend on the presence of
short-chain fatty acids (SCFA; 0, 40 and 100 mmol/l in the
mucosal buffer: 2.41 ± 0.55, 9.59± 1.55 and 19.41± 3.37
nmol/cm2·h) and are increased by feeding 15 g of concentrate
per kilogram body weight for 3 weeks in comparison to a

ration consisting of hay only (5.63± 0.54, 17.43 ± 0.70 and
34.54 ± 2.67 nmol/cm2·h) (Uppal et al., 2003a). Therefore,
an apical transport mechanism based on a Ca2þ/Hþ exchange
system was discussed (Lutz and Scharrer, 1991; Schröder
et al., 2015). Whether a higher Ca intake in the concentrate
fed sheep might have altered rumen Ca transport mechanisms
directly cannot be clarified. On the one hand, low luminal Ca
concentrations before sacrifice did not influence the flux rates
in sheep and goats (Figure 3). On the other hand, a greater
contribution of pre-intestinal Ca to overall absorption was
reported in a meta-analysis (Schröder and Breves, 2006).

As Na transport is also – although to a lesser extent –
increased by higher luminal concentrations of SCFA (Uppal
et al., 2003b), rumen Ca transport could be mediated by a
more complex ion exchanging mechanism. Another candi-
date for the apical uptake of Ca could be transient receptor
potential vanilloid channel type 3 (TRPV3). In patch clamp
measurements, agonists of this channel were shown
to stimulate currents mediated by Ca2, NH4 and Na into
HEK-293 cells expressing bovine TRPV3 (Schrapers et al.,
2018). An involvement of Na transport might also explain
the finding that feeding a ration negative in dietary
cation–anion difference (DCAD) to sheep affects the ratio
of the electroneutral to the electrogenic component of rumen
Ca transport from the mucosal to the serosal side (Figure 4)
(Wilkens et al., 2016). In vivo and in vitro studies have
reported both a stimulating effect of essential oils,
substances that are known to interfere with TRP channels,
and also interactions between the absorption of Ca, NH4
and Na. A conductance for NH4 was blocked by divalent
cations in bovine rumen epithelial cells. Addition of 10 μM

Figure 4 Correlation between electrical driving force and unidirectional Ca
fluxes (J) from mucosal to serosal (ms) and from serosal to mucosal (sm)
of castrated male sheep aged 8 months kept either on a ration positive
in dietary cation–anion difference (DCAD) (control, n= 4) or negative in
DCAD (low DCAD, n= 5). The electroneutral component of Jms represented
by the intercept of the linear function revealed by regression analysis
is greater (P< 0.01) in sheep kept on a diet low in DCAD (control:
Jms= 7.76 (±1.23)þ 7.53 (±0.77)·ξ–0.5; low DCAD: Jms= 13.32
(±4.42)þ 9.95 (±2.77)·ξ–0.5). Means ± SEM. Modified from Wilkens
et al. (2016).

Figure 3 Rumen Ca net flux rates (Jnet) of female sheep and goats aged 6 to
7 months kept on adequate (con, 0.92% and 1.10%, n= 5) or restricted Ca
supply (Ca–, 0.26% and 0.22%, n= 5) treated with a placebo or fed the
same diets and treated with 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3,
n= 5) (0.5 μg/kg body weight) 12 h before sacrifice determined in
Ussing chambers in the absence of any electrochemical gradient.
Means ± SEM. Modified from Wilkens et al. (2011) and (2012b).
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menthol enhanced Ca net flux rates determined for ovine
rumen epithelia in Ussing chambers from 8.60 ± 1.43 to
13.24 ± 0.91 nmol/cm2·h and Na-mediated short-circuit
currents (Rosendahl et al., 2016). In dairy cows, oral admin-
istration of 1.2 g essential oils with menthol as the major
compound increased plasma Ca from 2.46 to 2.53 mM and
decreased plasma urea from 4.28 to 3.92 mM (Braun
et al., 2019).

As also shown in Table 1, these findings show that rumen
Ca transport depends on luminal abundance of different
factors and nutrients. Therefore, greater Ca flux rates deter-
mined for rumen tissue of lactating goats in comparison to
dried-off animals (2.28 ± 0.35 v. 6.75 ± 1.16 nmol/cm2·h)
could be either a direct effect of lactation or be caused by
the different feeding regime and/or an enlargement of the
luminal surface (Starke et al., 2016). In cows, rumen Ca trans-
port estimated by the administration of stable strontium is
stimulated by lactation and decreased when forestomach
motility is reduced (Hyde et al., 2019). As impaired motility
was observed with decreased plasma Ca concentrations
(Daniel, 1983), inefficient ruminal Ca absorption following
a disturbance of Ca mobilisation from the skeleton might
aggravate hypocalcaemia in peripartum cows.

Transcellular, intestinal calcium absorption
Studies provide conflicting results on the intestinal absorp-
tion of Ca. 1,25-(OH)2D3-regulated proteins, essential for
transcellular Ca absorption, have been identified in the
small intestine of cattle (Yamagishi et al., 2006; Schröder
et al., 2015), sheep (Schröder et al., 2001; Wilkens et al.,
2009, 2011) and goats (Wilkens et al., 2012b; Elfers et al.,
2015). However, Ca transport across ovine and caprine
epithelia when determined in vitro in the absence of an
electrochemical gradient appears to be very low compared
to monogastric animals such as horses using the same meth-
ods (Figure 5) (Wilkens et al., 2017). In the colon, Ca net flux
rates are also very low. As in the rumen, significant active Ca
transport (6.55 ± 2.01 nmol/cm2·h) across the colon of sheep
is only detectable in the presence of SCFA. Unfortunately, no

published data are available on intestinal Ca transport deter-
mined for bovine epithelia.

In goats kept on a low Ca diet or treated with vitamin D,
duodenal Ca flux rates measured in Ussing chambers were
significantly increased in some (Wilkens et al., 2012b) but
not in all studies (Schröder et al., 1997; Sidler-Lauff et al.,
2010). Higher flux rates and a more pronounced stimulation
of transcellular Ca transport by dietary Ca restriction was
accompanied by an increase in RNA, and protein expression
of TRPV6 could be shown for the jejunum of goats indicating
that this segment is more active for overall Ca absorption
(Figure 6a) (Wilkens et al., 2012b; Elfers et al., 2015).
Although the efficiency of net Ca absorption from the jeju-
num, measured by applying the Thiry-Vella loop technique,
was increased in sheep with dietary Ca restriction (Abdel-
Hafeez et al., 1982), this could not be demonstrated in pro-
tein expression studies and Ussing chamber experiments
(Figure 6b) (Wilkens et al., 2011). In goats kept on a reduced
protein diet, the intestinal absorption of Ca was diminished
with a concomitant reduction of CaBPD9K and PMCA1b,
probably caused by decreased 1,25-(OH)2D3 concentrations
(Figure 6c) (Elfers et al., 2015).

Taken together with results from lactating and dried-off
sheep and goats, it might be concluded that the responsive-
ness of intestinal Ca absorption to enhanced demand or
restricted supply varies between different species and ages
(Wilkens et al., 2014; Klinger et al., 2016; Starke et al.,
2016). In lactating and non-lactating cows, balance studies
demonstrated that Ca digestibility is not increased with
dietary Ca restriction, although lactation itself seems to
enhance gastrointestinal absorption (Table 1). However, a
full adaptation to increased Ca demand during lactation
seems to take at least 2 days (van´t Klooster, 1976).

Salivary secretion of phosphorus

As rumen Pi concentrations play a pivotal role for rumen
buffering, fermentation andmicrobial protein synthesis, large
amounts of Pi are secreted with saliva and resorbed in the
lower digestive tract. Rumen Pi concentration thus depends
on dietary P intake and the rate of salivary Pi secretion
(Breves and Schröder, 1991). The role of salivary Pi is
also reflected by the observation that salivary Pi concentra-
tions and expression of NaPi IIb (SLC34A2) and Pi transporter
PiT1 (SLC20A1), both Na-dependent Pi transporters, increase
with age, that is, with the development of the gastrointesti-
nal tract (Huber et al., 2003). Interestingly, significant
differences in both rumen Pi concentrations (see below)
and salivary Pi were found when adult sheep
(11.3 ± 1.2 mM) and goats (23.1 ± 3.2 mM) were kept on
the same ration, indicating species differences in respect
to salivary Pi secretion (Wilkens et al., 2014).

Data on the regulation of salivary Pi secretion are incon-
sistent. Furthermore, data on potential molecular regulatory
mechanisms of Pi transport in salivary glands are lacking.
Intravenous loading with Pi resulted in an increase in Pi secre-
tion via the parotid gland of sheep and cows, indicating

Figure 5 Intestinal Ca net flux rates (Jnet) of horses of both sexes, aged 3 to
22 years (n= 10), female sheep (n= 5) and female goats (n= 5) aged 6 to
7months kept on adequate Ca supply determined in Ussing chambers in the
absence of any electrochemical gradient. Means ± SEM. Modified from
Wilkens et al. (2011), (2012b) and (2017).
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plasma Pi concentration is the most important factor (Scott
and Beastall, 1978; Riad et al., 1987). In goats and sheep,
the administration of PTH induced an increase in saliva
Pi concentration in some studies (Wright et al., 1982;
Isac et al., 1989), while others found a decreasing effect
(Mañas-Almendros et al., 1982). An injection of exogenous
1,25-(OH)2D3 reduced salivary Pi concentrations in sheep
and cows (Mañas-Almendros et al., 1982; Riad et al.,
1987). A possible explanation for these contradictions could
be the alteration of saliva flow rate, which is difficult to be
addressed in the experimental design (Isac et al., 1989). The
salivary flow rate is mainly regulated by the physical nature of
the diet fed (Wilson and Tribe, 1963). Pelleted diets induced
lower daily saliva flow rates than chopped or long hay based
on less chewing (Duric et al., 1994).

However, rumen Pi concentrations were significantly
increased in sheep (24.2 ± 1.0 v. 28.0 ± 0.9 mM) and
goats (42.1 ± 2.9 v. 50.0 ± 3.8 mM) kept on a Ca-restricted
ration for several weeks that led to an increase in an endog-
enous production of 1,25-(OH)2D3, even though plasma
(1.97 ± 0.13 v. 1.87 ± 0.21 mM) and salivary concentrations
of Pi (37.3 ± 3.4 v. 37.0 ± 1.2 mM) were not affected by this
feeding regime in goats (Wilkens et al., 2012b, 2014).

Sites and mechanisms of gastrointestinal phosphorus
absorption

The absorption of Pi takes place along the whole of the
intestinal tract. In principle, Pi absorption can be divided into

a passive paracellular process and a saturable, active trans-
cellular process. In vivo studies with the temporarily isolated
reticulo-rumen from sheep demonstrated a positive linear
relationship between rumen Pi concentrations and net Pi
disappearance, indicating passive paracellular absorption
of Pi. No indications of active Pi transport or saturation
phenomena could be determined (Breves et al., 1988;
Beardsworth et al., 1989). In vitro studies with rumen epi-
thelium confirmed that no Pi net flux was found under
short-circuit conditions, that is, in the absence of any electro-
chemical gradient, in Ussing chamber experiments (Breves
et al., 1988). A passive process of Pi absorption also occurs
in the omasal epithelium of sheep (Höller et al., 1988b).
However, balance studies clearly indicate that there is no
net absorption from but a substantial secretion of Pi into
the forestomach in vivo (Table 1).

In ruminants as in monogastric species, the small intestine
is the major site for Pi absorption (Pfeffer et al., 1970). Dietary
P concentration and 1,25-(OH)2D3 are the main regulators of
intestinal Pi transport in monogastric species. Paracellular Pi
transport across the intercellular spaces of the small intes-
tines has been postulated. However, no potential candidate
genes which might mediate such mechanisms have been
identified.

An Hþ-dependent Pi co-transport into duodenal brush
border membrane vesicles (BBMV) from sheep and cattle
was demonstrated, and this was stimulated by low dietary
P (Shirazi-Beechey et al., 1989, 1991). In the jejunum of
sheep, the saturation of Pi absorption was demonstratedwith

Figure 6 Intestinal Ca net flux rates (Jnet) of female sheep and goats aged 6 to 7 months kept on adequate (control, 0.92% and 1.10%, n= 5) or restricted Ca
supply (Ca restriction, 0.26% and 0.22%, n= 5) and male goats aged 3 to 4 months kept on adequate (control, 22% CP, n= 7) or restricted n supply
(n restriction, 8% CP, n= 6) determined in Ussing chambers in the absence of any electrochemical gradient. Significant differences revealed by the
Student’s t test are marked with asterisks. Means ± SEM; *, P< 0.05. Modified from Elfers et al. (2015), Wilkens et al. (2011) and (2012b).
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the use of a Thiry-Vella loop when the infused solution was as
high as 15 mM of Pi (Care et al., 1980). Interestingly, studies
on jejunal unidirectional Pi flux rates in Ussing chambers
using intestinal tissue from sheep and goats demonstrated
a substantial part of active Pi transport which was inhibited
by arsenate by a reduction of luminal Naþ concentrations
and by serosal addition of ouabain. This Naþ-dependent Pi
co-transport could be stimulated by dietary P depletion, while
changes in vitamin D metabolism were not involved
(Schröder et al., 1995). This provides evidence for an active
Pi transport mechanism like that in non-ruminant species,
with the highest absorption rates being found in the ileum
of young goats (about 3 to 4 months) and adult sheep
(Schröder et al., 1995; Elfers et al., 2015). To confirm that
active Pi transport is Naþ-dependent, Pi uptake studies into
isolated BBMV from goat jejunum were performed under
different conditions of extravesicular Naþ and Hþ concentra-
tions (Schröder and Breves, 1996). The results are similar to
data from monogastric species and showed that a major
proportion of jejunal Pi uptake is Naþ-dependent, and can
be stimulated by Hþ, in contrast to duodenal Pi transport
which is Hþ-dependent and Na-sensitive.

After the molecular identification of an intestinal Naþ-
dependent Pi transporter in mice (NaPi IIb) (Hilfiker et al.,
1998), it could be shown that caprine NaPi IIb expression
corresponded to murine NaPi IIb (Huber et al., 2000). Both
NaPi IIb mRNA and protein were absent in the duodenum
of goats, while NaPi IIb was strongly expressed in the jeju-
num (Huber et al., 2002). With jejunal BBMV, it could be
shown that a high linear correlation exists between transport
capacity for Pi and NaPi IIb protein expression, indicating that
the majority of Na-dependent Pi transport was mediated by
NaPi IIb. Furthermore, the existence of an additional electro-
genic Na-dependent Pi transporter, called PiT1, was shown in
the small intestine of goats (Figure 7) (Elfers et al., 2015).
PiT1 belongs to the Pi transporter family that uses either
Na or Hþ gradients to transport Pi (Saier, 2000). The mecha-
nism for extrusion of Pi is still under investigation. In Holstein
cows, the highest NaPi IIb RNA expression was found in the
distal jejunum and ileum, while the expression in the upper
intestinal segments was nearly absent (Foote et al., 2011).

To characterise Pi transport in the duodenum in more
detail, transepithelial Pi flux rates have been performed in
Ussing chamber experiments, in the presence or absence

Figure 7 Pi transport mechanisms and transepithelial potential difference in the small intestine and proximal tubule of the kidneys in ruminant species. Apical
entry occurs through Na-dependent Pi transporter family (NaPi) subtypes IIa and IIc or IIb and Na-dependent phosphate transporter 1 (PiT1). Basolateral
extrusion mechanism of Pi is currently unknown. Further explanations of the mechanisms are given in the corresponding text.
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of mucosal Na at different pH levels. From these studies, it
could be concluded that at least two different Pi transport
mechanisms exist in the goat intestinal tract which are
regionally separate: in the duodenum, Pi uptake is mainly
mediated by an Hþ-dependent Na-sensitive mechanism,
while in the jejunum, Pi uptake is mainly Na-dependent
and Hþ-sensitive (Schröder et al., 1995; Huber et al., 2002).

In lactating goats, Pi flux rates from the mucosal to the
serosal side of the epithelium, determined in the duodenum
and jejunum, were significantly smaller in comparison to
dried-off animals, resulting in a reduced net absorption
(Figure 8). This was accompanied by a downregulation of
jejunal NaPi IIb, both on RNA and protein levels, probably
as a consequence of either higher P intake or enhanced
mobilisation of Pi from the skeleton (Starke et al., 2016).
In line with other studies, NaPi IIb was not detectable in
the duodenum (Huber et al., 2002). An ontogenetic study
with goats found that Pi-binding properties changed during
the development of the gastrointestinal tract of growing
animals, indicating that alterations of NaPi IIb and/or PiT1
must be taking place (Huber et al., 2003).

Interestingly, dietary P depletion modifies the intestinal
absorption of Pi in young goats (4 to 5 months) but without
the involvement of vitamin D metabolism (Schröder et al.,
1995). Therefore, an unknown Pi-sensing mechanism is
hypothesised in the small intestine of ruminant species.
Even when 1,25-(OH)2D3 concentrations were altered during
dietary protein reduction, modulation of the expression of
NaPi IIb and PiT1 in the small intestine was not found
(Elfers et al., 2015). These results contrast with data from
monogastric species where a 1,25-(OH)2D3-dependent
regulation of NaPi IIb was found (Murer et al., 2004).

In young lambs (1 week old), the efficacy of Pi absorption
from the colon was almost the same as in the upper and
mid-jejunum, but the velocity of Pi absorption decreased
during subsequent development (Scharrer, 1985). In adult
sheep fitted with re-entrant cannulae, the proximal colon

was perfused with an electrolyte solution free of Pi, and
net Pi secretion was determined. Net absorption of Pi from
the colon was shown when Pi concentrations of the
electrolyte solution were between 2.5 and 6.5 mM (Höller
et al., 1988c).

Renal handling of calcium

In the kidneys of rats and hamsters, 70% of filtered Ca is
resorbed paracellulary in the proximal tubules, while up to
20% is resorbed in the thick ascending limb of the loop of
Henle (TAL) (Lassiter et al., 1963). In the proximal tubules,
where an osmotic gradient is built up due to the resorption
of Na, glucose and amino acids, paracellular Ca transport
is driven mainly by the solvent drag effect (Friedman and
Gesek, 1995). In TAL, a lumen-positive transepithelial poten-
tial difference is generated by the electroneutral uptake of
Na, K and Cl via the Naþ-Kþ-2Cl–-co-transporter (NKCC)
followed by the basolateral extrusion of Cl and the apical
secretion of K. Tight junctions in this segment contain
claudin-16 that increases cation permeability, claudin-19
that blocks anion permeability, and claudin-14 that
decreases cation permeability mediated by claudin-16
(Negri, 2015). Interestingly, we observed a downregulation
of claudin-19 with dietary Ca restriction in sheep and goats,
which contrasts findings in rats (Frick et al., 2013), and
an upregulation of claudin-16 during lactation in goats
(unpublished results).

Active, transcellular, 1,25-(OH)2D3-regulated Ca transport
is found in the distal and connecting tubules. For active
resorption of Ca, a transport mechanism similar to that gen-
erally accepted for the small intestine (TRPV5, calbindin-D28K
and basolateral extrusion by the Naþ/Ca2þ exchanger NCX1)
has been described (Figure 2) (Hoenderop et al., 2002). In
rodents fed a diet low in Ca, there was an increase in
RNA expression of TRPV5 and CaBPD28K (Hoenderop et al.,
2002; Ko et al., 2009). Furthermore, it was demonstrated
in mice that lactation stimulated renal RNA expression of
TRPV5 and CaBPD28K (van Cromphaut et al., 2003). For adult
sheep and goats, we found that ruminant kidney does not
respond to a challenge of Ca homeostasis by altered expres-
sion of structures mediating Ca resorption. With respect to
CaBPD28K, we even observed a downregulation in dietary
Ca-restricted or lactating goats, instead of the stimulation
that has been reported for mice (Herm et al., 2015).
Interestingly, in lactating goats, urinary Ca excretion was
not increased. We speculated that enhanced resorption in
TAL mediated by prolactin and/or PTHrP might have compen-
sated for the downregulation of TRPV5, CaBPD28K and NCX1
RNA expressions in the distal parts of nephron (Herm et al.,
2015). Our findings on the structural level regarding animals
kept on a low Ca diet could be explained by characteristically
low renal Ca excretion in adult ruminants that cannot
be further diminished when Ca homeostasis is challenged.
As in cattle and lactating cows (Table 1), fractional excretion
of Ca was not reduced by dietary Ca restriction in

Figure 8 Unidirectional, duodenal (Duo) and jejunal (Jeju) Pi flux rates (J)
from serosal to mucosal (sm) and from mucosal to serosal (ms) of dried-off
(n= 6) and lactating goats (n= 6) determined in Ussing chambers in the
absence of any electrochemical gradient. Significant differences revealed by
the Student’s t test are marked with asterisks. Means ± SEM; *, P< 0.05.
Modified from Starke et al. (2016).
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small ruminants (sheep: 0.83 ± 0.22 v. 1.06 ± 0.24%, goats:
0.71 ± 0.13 v. 1.03 ± 0.21%).

However, in young goats (3 to 4 months) kept on a Ca-
reduced diet, a stimulation of CaBPD28K and NCX1 RNA
expression occurred based on elevated 1,25-(OH)2D3 levels.
This is in line with data from balance studies conducted with
goat kids (Table 1). A concomitant decrease in dietary Ca
and protein in these young animals caused a decrease in
1,25-(OH)2D3 concentrations, resulting in a downregulation
of TRPV5, CaBPD28K and NCX1 protein expressions
(Firmenich et al., 2018).

A way to increase renal Ca excretion in ruminants is to
feed a ration negative in DCAD (Table 1). This feeding
regime induces a compensated acidosis that results in
increased tissue responsiveness to PTH (Goff et al.,
2014). In addition, DCAD treatment leads to significant
changes in Ca balance before parturition. Several studies
in dairy cows have demonstrated that urinary pH is
decreased, while renal excretion of Ca is increased up to
10-fold (0.4 ± 0.2 v. 4.1 ± 0.9 g per day) (Grünberg et al.,
2011; Wilkens et al., 2012a). As TRPV5 activity is pH-
dependent, increased renal Ca excretion might be caused
by a direct inhibitory effect of tubular acidosis on renal
resorption of Ca as shown in the kidney of dogs and for
rabbit TRPV5 (Sutton et al., 1979; Yeh et al., 2003). In
preliminary experiments conducted with sheep, we
observed that the expression of TRPV5, CaBPD28K and
NCX1 was not significantly altered under these conditions
(unpublished results). Assuming that this occurs in cows
kept on a low DCAD ration, too, this might indicate that
renal resorption is immediately restored when the ration
is changed postpartum. An adaptation on the functional
level occurs faster than the stimulation of gene expression
and could contribute to the beneficial effects of a low DCAD
diet in peripartum cow.

Renal handling of phosphorus

During normophosphataemia, about 98% to 99% of filtered
Pi is resorbed in the kidneys of ruminant species (Widiyono
et al., 1998). The mean plasma threshold for renal Pi
excretion in goats lies around 4.3 mM (Widiyono et al.,
1998). Filtered Pi is reabsorbed mainly by the proximal tubule
cells. The uptake of filtered Pi at the apical side is mediated by
Naþ-dependent Pi transporters: electrogenic NaPi IIa
(SLC34A1) and electroneutral NaPi IIc (SLC34A3) in both
ruminant and non-ruminant species (Figure 7) (Biber and
Murer, 1994; Shirazi-Beechey et al., 1996; Huber et al.,
2003; Starke et al., 2013). Ovine and caprine amino acid
sequence, kinetic and stoichiometric parameters of renal
cortex Naþ-dependent Pi transport are comparable to the
type IIa Naþ/Pi co-transport in monogastric species
(Schröder et al., 2000). Basolateral Pi extrusion mechanism
is still unknown.

Changes in dietary P intake and consequent changes in
extracellular Pi and PTH are the main regulators of renal Pi

transporters in monogastric species (Biber et al., 1998). In
mature goats and sheep on a P-reduced diet, no changes
in renal transport capacities (Schröder et al., 2000) or on
NaPi IIa expression (Huber et al., 2007) were determined.
In contrast, dietary P restriction altered urinary Pi excretion
in goat kids (Table 1). In young goats (3 to 4 months) on
a high P diet, there was a decrease in renal Pi reabsorption
capacity and an internalisation of NaPi IIa occurred (Huber
et al., 2007; Muscher et al., 2008). Strong correlations
between NaPi IIa mRNA and plasma Pi as well as plasma
PTH concentrations indicated that elevated Pi and high
PTH concentrations were able to modulate renal Pi excretion
by reducing Pi reabsorption (Muscher et al., 2008). This phe-
nomenon is different to that in monogastric animals where
NaPi IIa expression was decreased only at the protein level
(Murer et al., 1999).

Besides dietary P and PTH, a reduction in dietary
protein also modulates mineral homeostasis in young goats
(4 to 5 months) (Muscher et al., 2011). A significant increase
in NaPi IIa expression and a concomitant decrease in PTH
receptor expression were observed in young goats (4 to 5
months) when dietary protein was diminished. The concen-
tration of 1,25-(OH)2D3 was reduced while PTH levels were
not affected (Starke et al., 2013; Starke and Huber, 2014;
Firmenich et al., 2018). The stimulation of NaPi IIa expres-
sion during a protein-reduced diet is not obvious. It
was postulated that a reduction in Pi concentrations in
the ultrafiltrate stimulated the expression of NaPi IIa in
apical membranes. The decline in Pi in the ultrafiltrate
could be caused by a drop in the glomerular filtration
rate (GFR) to conserve urea because a reduction in GFR
by 60% was detected in goats fed a low protein diet
(Eriksson and Valtonen, 1982; Valtonen et al., 1982).
Therefore, an unknown Pi-sensing mechanism(s) in the
proximal tubules must exist. Interestingly, a stimulation
of NaPi IIa expression was accomplished by dietary protein
reduction and thereby, presumably, a reduction in Pi in the
ultrafiltrate. A direct dietary Pi depletion without manipula-
tion of GFR did not show the same effects (Schröder
et al., 2000).

In pre-ruminant animals, the kidneys are the main excre-
tory pathway for an excess of Pi. During the development of
the rumen, changes occurred. When the threshold of plasma
Pi exceeded, renal elimination of Pi is neither stimulated nor
eliminated, but more Pi is secreted in the saliva to the rumen,
where it is used by microorganisms. Therefore, PTH-mediated
regulation of renal Pi excretion is less important in adult rumi-
nants than in growing ruminants.

In adult ruminants, renal Pi excretion does not seem
to be regulated. An intravenous infusion of PTH did not
alter renal excretion of Pi in sheep, and a dietary Ca restric-
tion for several weeks did not affect fractional excretion of Pi
in small ruminants (sheep: 1.23 ± 0.23% v. 0.82 ± 0.07%,
goats: 2.26 ± 0.0.80% v. 2.79 ± 0.80%) (Clark et al.,
1975; Herm et al., 2015). This is in line with former
results from sheep and cows (Braithwaite, 1975; Taylor
et al., 2009).
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Conclusions and perspectives

The regulation of mineral homeostasis in ruminants differs
not only from monogastric animals but also between and
within ruminant species. Although the molecular structures
that are involved in Ca and Pi transports in the intestinal tract
and the kidneys have been characterised in several ruminant
species, the modulation of these by different dietary interven-
tions, by the supply of other minerals and nutrients, or as a
consequence of hormonal changes in 1,25-(OH)2D3, FGF23,
PTH or calcitonin are still under investigation. Ruminal Ca
transport mechanisms are still not clarified. In addition, more
information is required in respect to the contribution of
salivary mineral secretion and bone turnover. Further
research is also needed to better understand imbalances of
mineral homeostasis, such as hypocalcaemia and the
capacities of ruminants to adapt to marginal mineral supply
when kept on P-deficient pasture. In this regard, the interplay
between mineral homeostasis, availability and digestibility of
nutrients and metabolic pathways regulating energy and
protein metabolism should be elucidated as they are impor-
tant for lactating cows as well as animals kept for meat
production.
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