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We introduce a new model equation for Stokes gravity waves based on conformal
transformations of Euler’s equations. The local version of the model equation is relevant
for the dynamics of shallow water waves. It allows us to characterize the travelling periodic
waves both in the case of smooth and peaked waves and to solve the existence problem
exactly, albeit not in elementary functions. Spectral stability of smooth waves with respect
to co-periodic perturbations is proven analytically based on the exact count of eigenvalues
in a constrained spectral problem.
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1. Introduction

An irrotational motion of incompressible two-dimensional surface water waves can be
fully described by means of evolution equations for two canonical variables in one spatial
coordinate. This formalism was originated by Zakharov (1968) in the context of the
stability of travelling periodic waves.

One approach to developing this formalism systematically is based on the
Dirichlet-to-Neumann (D-N) operator (Craig & Sulem 1993). The two nonlinear evolution
equations closed with the D-N operator have been studied in many works on water waves,
including the recent study of modulational instability of travelling periodic waves (Berti,
Maspero & Ventura 2022). See also Creedon & Deconinck (2023), Hur & Yang (2023)
and Nguyen & Strauss (2023) for other recent works where three more methods have been
explored in the same context.
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Another approach to obtaining a closed system of two nonlinear evolution equations for
water waves is based on a conformal transformation which maps the fluid domain with a
variable surface profile to a fixed rectangular domain. This formalism was introduced in
Babenko (1987) and Tanveer (1991) and has been explored in the context of travelling
periodic waves in Dyachenko et al. (1996), Zakharov & Dyachenko (1996), Choi &
Camassa (1999) and more recently in Dyachenko, Lushnikov & Korotkevich (2016),
Dyachenko & Semenova (2023a,b), Korotkevich et al. (2023) and Lushnikov, Dyachenko
& Silantyev (2017). Our work contributes to the analysis of the nonlinear evolution
equations obtained in the latter approach.

The approach based on conformal transformations has been used to tackle many
mathematical problems related to water waves such as the existence of standing waves
(Wilkening 2020, 2021) and bifurcations of quasi-periodic wave solutions from the
standing periodic waves (Wilkening & Zhao 2021, 2023a,b). Holomorphic coordinates
were used for analysis of the well posedness of the water wave equations (Hunter, Ifrim &
Tataru 2016; Harrop–Griffiths, Ifrim & Tataru 2017). The particular problem addressed in
our work is the coexistence of smooth and peaked travelling periodic waves for different
intervals of wave speeds as well as the linear stability of waves with smooth profiles.

1.1. A new model equation
The purpose of this paper is to introduce a new model equation which shares the same
solutions as the travelling wave reduction of Euler’s equations in Babenko (1987) but
simplifies the time evolution and, particularly, the linear stability analysis of the travelling
periodic waves. This model equation can be written in the following non-local form:

2cT−1
h ∂tη = (c2Kh − 1)η − ηKhη − 1

2 Khη
2, (1.1)

where η = η(u, t) ∈ R is the surface elevation in the reference frame moving with the
constant wave speed c > 0, t ∈ R is time and u is the spatial coordinate defined on
the periodic domain T = R\(2πZ). The spatial coordinate u arises after the conformal
transformation of the fluid domain with variable surface elevation η to a rectangle
[−π, π] × [−h, 0], where h > 0 is the fluid depth. The linear skew–adjoint operator T−1

h
in L2(T) is defined by the Fourier symbol

̂
(T−1

h )n =
{−i coth(hn), n ∈ Z\{0},

0, n = 0,
(1.2)

whereas the linear, self-adjoint, positive operator Kh = T−1
h ∂u in L2(T) is defined by the

Fourier symbol

(̂Kh)n =
{

n coth(hn), n ∈ Z\{0},
0, n = 0.

(1.3)

Appendix A explains how the non-local evolution equation (1.1) arises in the context of
the original Euler’s equations.

Let us obtain the conserved quantities for the non-local model (1.1). Taking the mean
value of (1.1), we get the constraint∮

η(1 + Khη) du = 0, (1.4)

which represents the zero-mean constraint for the surface elevation η in the physical spatial
coordinate. Furthermore, differentiating (1.1) in u, multiplying by η and integrating over
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the period of T yields

c
d
dt

∮
ηKhη du =

∮
(c2ηKhηu − ηηu − ηηuKhη − η2Khηu − ηKhηηu) du

=
∮

∂u

(
1
2 c2ηKhη − 1

2η2 − η2Khη
)

du = 0, (1.5)

where we have used self-adjointness of Kh in L2(T) for every solution with η, ηu, ηηu in
the domain of Kh. It follows from (1.4) and (1.5) that the non-local evolution equation (1.1)
admits two conserved quantities∮

η du and
∮

ηKhη du. (1.6a,b)

In addition, the evolution equation (1.1) can be written in the Hamiltonian form

2cT−1
h ∂tη = Λ′

c(η), with Λc(η) := 1
2

∮
[c2ηKhη − η2(1 + Khη)] du, (1.7)

where Λc(η) is the action related to the conserved energy of the fluid. Critical points of
Λc in the corresponding energy space satisfy the Euler–Lagrange equation

(c2Kh − 1)η = 1
2 Khη

2 + ηKhη, (1.8)

which is known as Babenko’s equation because it coincides with the travelling wave
reduction of Euler’s equations after the conformal transformation (Babenko 1987). In the
context of the evolution equation (1.1) with u defined in the reference frame moving with
the wave speed c, solutions of (1.8) correspond to the time-independent solutions of (1.1).

1.2. Local model and main results
In the deep water limit (h → ∞), we have from (1.2) and (1.3) that

lim
h→∞

T−1
h = −H and lim

h→∞
Kh = −H∂u, (1.9a,b)

where H is the periodic Hilbert transform defined by the Fourier symbol

Ĥn = i sgn(n), n ∈ Z. (1.10)

This work explores the shallow water limit (h → 0), when we replace T−1
h and Kh by −∂u

and −∂2
u , respectively. In other words, we study herein the local evolution equation

2c∂u∂tη = (c2 − 2η)∂2
uη − (∂uη)2 + η. (1.11)

Appendix B describes how the local model (1.11) arises from T−1
h and Kh as h → 0 and

compares it with other phenomenological models for fluid dynamics.
It is important to emphasize that (1.11) is not the asymptotic reduction of (1.1) as h → 0

but rather a toy model to understand the existence and linear stability of travelling periodic
waves in the shallow water limit.

The local equation (1.11) without the last term was derived in Hunter & Saxton (1991)
in a different (geometric) context and has been referred to as the Hunter–Saxton equation
(Hunter & Zheng 1994). The same equation (1.11) with the last term was also discussed in
Alber et al. (1995, 1999) in connection to the high-frequency limit of the Camassa–Holm
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equation, one of the toy models for the physics of fluids with smooth and peaked waves.
Integrability of (1.11) was established in Hone, Novikov & Wang (2018) together with
other peaked wave equations such as the reduced Ostrovsky and short-pulse equations.
Some travelling wave solutions of this and similar equations were studied with Hirota’s
bilinear method in Matsuno (2020).

Next, we discuss the time evolution and the conserved quantities for the local model
(1.11). Taking the mean value of (1.11) for smooth 2π-periodic solutions and integrating
by parts yields the constraint ∮

[η + (∂uη)2] du = 0, (1.12)

which corresponds to (1.4) also after integration by parts. Let Π0 : L2(T) → L2(T)|{1}T

be a projection operator to the periodic functions with zero mean. The evolution equation
(1.11) can be written in the form

2c∂tη = (c2 − 2η)∂uη + Π0∂
−1
u Π0[(∂uη)2 + η], (1.13)

where Π0∂
−1
u Π0 is uniquely defined on the zero-mean functions in L2(T) with the

zero-mean constraint. The evolution equation (1.13) is a non-local version of the inviscid
Burgers equation. The initial-value problem for the inviscid Burgers equation is locally
well posed in H1

per(T) ∩ W1,∞(T). Since the mapping

Π0∂
−1
u Π0[(∂uη)2 + η] : H1

per(T) ∩ W1,∞(T) → H1
per(T) ∩ W1,∞(T) (1.14)

is bounded on every bounded subset, there exists a unique local solution of the evolution
equation (1.13) for every initial data in H1

per(T) ∩ W1,∞(T).
To get the conserved quantities, we multiply (1.11) by ∂uη and integrate over the period

for smooth 2π-periodic solutions η. This implies the conservation of

Q(η) :=
∮

(∂uη)2 du, (1.15)

and, in view of the constraint (1.12), the conservation of

M(η) :=
∮

η du. (1.16)

The conserved quantities (1.15) and (1.16) correspond to (1.6a,b). Furthermore, similar to
(1.7), we can write (1.13) in the Hamiltonian form

2c∂tη = −Π0∂
−1
u Π0

[
1
2 c2Q′(η) − 1

2 H′(η)
]
, (1.17)

where H is the third conserved quantity given by

H(η) :=
∮

[η2 + 2η(∂uη)2] du. (1.18)

The existence of travelling periodic waves in the local model (1.11) is defined by the
second-order equation

(c2 − 2η)η′′ − (η′)2 + η = 0, u ∈ T, (1.19)

where η = η(u) is the 2π-periodic wave profile satisfying the constraint (1.12). The linear
stability of the travelling wave with the profile η is defined by the linearized equation

2c∂tη̂ = −Π0∂
−1
u Π0Lη̂, L := −∂u(c2 − 2η)∂u − 1 + 2η′′, (1.20a,b)

where η̂ = η̂(u, t) is the perturbation to the travelling wave with the profile η = η(u)

satisfying the orthogonality condition 〈1 − 2η′′, η̂〉 = 0 with the standard inner product in
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Figure 1. Profiles in the family of smooth periodic waves (a) and singular periodic waves (b) vs u for different
values of wave speeds c ∈ (1, c∗) and c ∈ (c∗, c∞), respectively. The dashed line shows the profile of the
peaked periodic wave (1.23).

L2(T). The orthogonality condition 〈1 − 2η′′, η̂〉 = 0 follows by expanding the nonlinear
constraint (1.12) near η.

The following two theorems describe the main results of this work. Our results are
formulated for the single-lobe periodic solutions with an even profile η which possesses
a single maximum on T placed at u = 0. Such single-lobe periodic solutions are often
referred to as Stokes waves.

THEOREM 1.1. There exist c∗ := π/(2
√

2) and c∞ ∈ (c∗, ∞) such that the stationary
equation (1.19) admits a unique single-lobe solution with the profile η ∈ C∞

per(T) for every
c ∈ (1, c∗) such that

‖η‖L∞ → 0 as c → 1, (1.21)

and a single-lobe solution with the profile η ∈ C0
per(T) for every c ∈ (c∗, c∞) satisfying

η(u) = c2

2
− A(c)|u|2/3 + O(|u|4/3) as u → 0, (1.22)

for some constant A(c) > 0. At c = c∗, there exists a unique single-lobe solution with the
profile η ∈ C0

per(T) ∩ W1,∞(T) given explicitly as

η(u) = 1
16(π2 − 4π|u| + 2u2), u ∈ [−π, π], (1.23)

and extended as a 2π-periodic function on T.

REMARK 1.1. Figure 1 shows profiles of the periodic waves of Theorem 1.1. The profiles
were obtained numerically by using solutions of the second-order equation (1.19).

REMARK 1.2. There exists another single-lobe solution with the singular behaviour (1.22)
for every c ∈ (0, c∞) which is not included in the statement of Theorem 1.1 as it does
not bifurcate from the zero solution as c → 1 compared with (1.21). See figure 2 for the
bifurcation diagram of all single-lobe solutions of (1.19).

REMARK 1.3. The special solution (1.23) has a peaked profile with a finite jump of the
first derivative. It is usually referred to as the peaked periodic wave. Such peaked periodic
waves are commonly known in other fluid models such as the reduced Ostrovsky equation
(Geyer & Pelinovsky 2019, 2020; Bruell & Dhara 2021), the Camassa–Holm equation
(Madiyeva & Pelinovsky 2021) and the Degasperis–Procesi equation (Geyer & Pelinovsky
2024).
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Figure 2. Dependence of E := ‖η‖L∞ vs wave speed c for periodic solutions of (1.19). The smooth solutions
of Theorem 1.1 exist between the black dots. The singular solutions of Theorem 1.1 exist between the rightmost
black and red dots. The singular solutions which are not included in the statement of Theorem 1.1 exist between
the red dots.

REMARK 1.4. The singular behaviour (1.22) corresponds to the singularity of the
limiting Stokes wave with a 120o angle in the physical coordinate after the conformal
transformation. The behaviour was rigorously proven for the original Euler’s equation
in Amick, Fraenkel & Toland (1982), Plotnikov (2002) and Toland (1978), with many
asymptotic results known in the literature (see Lushnikov (2016) and references therein).
Note that

max
u∈T

η(u) = η(0) = c2

2
(1.24)

holds for every limiting Stokes wave for which the horizontal velocity at the wave height
coincides with the wave speed c, see the second equation in system (A3) of Appendix A.

THEOREM 1.2. Consider the unique single-lobe solution with the profile η ∈ C∞
per(T) in

Theorem 1.1 for c ∈ (1, c∗). For every initial data η̂0 ∈ H1
per(T) satisfying

〈1, η̂0〉 = 0 and 〈η′′, η̂0〉 = 0, (1.25a,b)

there exists a unique solution η̂ ∈ C0(R, H1
per(T)) of the linearized equation (1.20a,b) with

η̂|t=0 = η̂0 and a unique a ∈ C1(R, R) such that

‖η̂(·, t) − a(t)η′‖H1
per

≤ C‖η̂0‖H1
per

, |a′(t)| ≤ C‖η̂0‖H1
per

, t ∈ R, (1.26a,b)

where C > 0 is independent of η̂0.

REMARK 1.5. Constraints (1.25a,b) are preserved in the time evolution of the linearized
equation (1.20a,b) because they are linearizations of the conserved quantities (1.15) and
(1.16). In view of the constraint 〈1 − 2η′′, η̂〉 = 0 imposed on solutions of the linearized
equation (1.20a,b), only one constraint in (1.25a,b) is linearly independent. Imposing
〈η′′, η̂0〉 = 0 is equivalent to the requirement that the perturbation η̂ does not change
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the conserved quantity Q in (1.15) up to the linear approximation. The bound (1.26a,b)
expresses the concept of linear orbital stability of the orbit {η(· + 𝔲)}𝔲∈T of the travelling
periodic wave with the profile η.

REMARK 1.6. The linear orbital stability of Theorem 1.2 implies spectral stability of
the travelling periodic wave in the sense that the spectrum of the associated linearized
operator ∂−1

u L in L2(T) belongs to iR. It is also worthwhile to point out that an
eigenfunction η̂0 of the spectral stability problem

∂−1
u Lη̂0 = λ0η̂0, η0 ∈ H1

per(T) (1.27)

for every non-zero eigenvalue λ0 ∈ C\{0} must satisfy the two constraints in (1.25a,b).
The spectral stability problem in the form (1.27) was also considered in Stanislavova &
Stefanov (2016).

REMARK 1.7. The proof of Theorem 1.2 relies on the construction of the coercive
quadratic form 〈Lη̂, η̂〉 for η̂ ∈ H1

per(T) under the three constraints

〈1, η̂〉 = 〈η′, η̂〉 = 〈η′′, η̂〉 = 0. (1.28)

The quadratic form is invariant in the time evolution of the linearized equation (1.20a,b).
This yields the energetic stability of the travelling periodic wave, ensuring that the periodic
wave with the profile η is a local minimizer of the energy H subject to fixed Q and M
in H1

per(T). If local well posedness of the nonlinear evolution equation (1.13) can be
shown in H1

per(T), then the energetic stability implies the nonlinear orbital stability of
the travelling periodic wave. However, the local well posedness of (1.13) holds only in
H1

per(T) ∩ W1,∞(T) and the control of ‖∂uη̂‖L∞ for the perturbation η̂ does not follow
from the conserved quantities (1.15), (1.16) and (1.18).

1.3. Discussion
The local model (1.11) shows a pattern of the existence and stability of travelling periodic
waves parameterized by the wave speed c. There is a continuum of wave speeds for the
smooth waves with profile η ∈ C∞(T) bifurcating from the linear limit in (1.21) and a
continuum of wave speeds for the cusped waves with the profile η ∈ C0(T) satisfying
(1.22). The two continuous families are connected together at a particular value of the
wave speed c = c∗ for which the wave is peaked with the profile η ∈ C0(T) ∩ W1,∞(T).
The same phenomenon is observed in the Camassa–Holm equation (Lenells 2005b; Geyer
et al. 2022) and the Degasperis–Procesi equation (Lenells 2005a; Geyer & Pelinovsky
2024).

It is rather remarkable that exactly the same |u|2/3 singularity in the limiting wave profile
with

max
u∈T

η(u) = η(0) = c2

2
(1.29)

is recovered by the local model (1.11) as predicted by the full model for any depth h
(Plotnikov 2002). After the conformal transformation, this singularity yields the limiting
Stokes wave with the 120o angle in the physical coordinates. More precise details of such
singular profiles are beyond the current capacities of the asymptotic (Lushnikov 2016) or
numerical (Dyachenko et al. 2016; Lushnikov et al. 2017) methods. The local model (1.11)
gives precise conclusions that the |u|2/3 singularity is obtained in a range of wave speeds c
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and that the borderline wave profile η ∈ H1
per(T) ∩ W1,∞(T) has a peaked profile at c = c∗

before getting the |u|2/3 singularity for c > c∗. This might be an artefact of the local model
(1.11) since the non-local models typically predict only the |u|2/3 singularity in the fluid
models, see Locke & Pelinovsky (2025).

Stability of the travelling periodic waves with singular profiles is a complicated problem,
which is out of reach in the current analytical and numerical methods in the non-local
models (Dyachenko & Semenova 2023a; Korotkevich et al. 2023). The local model (1.11)
is a promising candidate for showing linear instability of the peaked wave (based on a
similar analysis in Geyer & Pelinovsky 2019, 2020; Madiyeva & Pelinovsky 2021) and for
attacking linear instability of the cusped wave with the |u|2/3 singularity.

The remainder of this paper is organized as follows. Section 2 contains the proof of
Theorem 1.1 on the existence of smooth and peaked periodic waves. Section 3 gives the
proof of Theorem 1.2 on linear stability of the smooth periodic waves. Appendix A reviews
the Euler equations after the conformal transformation and discusses how the non-local
model (1.1) arises. Appendix B describes the local model (1.11) in the context of other
phenomenological models for dynamics of fluid surfaces.

2. Existence of smooth and peaked travelling periodic waves

We consider the single-lobe periodic solutions of the second-order equation (1.19). Recall
that a single-lobe periodic solution has the even profile η with a single maximum on
T placed at u = 0. Theorem 1.1 is proven by using the period function for the planar
Hamiltonian systems used in a similar context in Geyer et al. (2022), Geyer & Pelinovsky
(2017, 2024) and Long & Liu (2023).

We start with the first-order invariant of the second-order equation (1.19) given by the
following lemma.

LEMMA 2.1. For every solution η ∈ C2(a, b) of the second-order equation (1.19) with
−∞ ≤ a < b ≤ ∞, the following function:

E(η, η′) := 1
2 (c2 − 2η)(η′)2 + 1

2η2 (2.1)

is constant for u ∈ (a, b).

Proof . It is based on the elementary computation

d
du

E(η, η′) = (c2 − 2η)η′η′′ − (η′)3 + ηη′

= η′[(c2 − 2η)η′′ − (η′)2 + η]

= 0, (2.2)

since η ∈ C2(a, b) satisfies (1.19).

The next lemma explores the phase portrait for the second-order equation (1.19) on
the phase plane (η, η′) obtained from the level curves of E(η, η′) in (2.1). We obtain the
existence of smooth and singular solutions in terms of the level E of E(η, η′).
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Figure 3. Phase portrait from the level curves of E(η, η′) = E for c = 1.

LEMMA 2.2. For every c > 0, there exists Ec := c4/8 such that every periodic solution
to (1.19) with profile η ∈ C∞(R) belongs to E(η, η′) = E with E ∈ (0, Ec). For E(η, η′) =
Ec, the only solution to (1.19) is the parabola

η(u) = −c2

2
+ (u − u0)

2

8
, (2.3)

with arbitrary u0 ∈ R. For E(η, η′) = E with E ∈ (Ec, ∞), there exist no bounded
solutions to (1.19) with profile η ∈ C∞(R).

Proof . The only equilibrium point of (1.19) is the centre (η, η′) = (0, 0), which
corresponds to the minimum of E(η, η′) if c > 0. Every periodic solution to (1.19) belongs
to the period annulus, which is the largest punctured neighbourhood of the centre (0, 0)

consisting entirely of periodic orbits.
The phase portrait from the level curves of E(η, η′) = E is shown on figure 3. Each level

curve defines the profile η from integration of(
dη

du

)2

= 2E − η2

c2 − 2η
. (2.4)

The vertical line corresponds to η = c2/2 and divides the phase plane into two half-planes.
For η > c2/2, the level curves of E(η, η′) = E contain no bounded solutions. For η <

c2/2, bounded level curves exist for E ∈ (0, Ec) with Ec := c4/8 and contain periodic
solutions with profile η ∈ C∞(R). For E = Ec, all solutions are given by integrating(

dη

du

)2

= 2Ec − η2

c2 − 2η
= 1

4 (c2 + 2η). (2.5)

Differentiating in u gives η′′(u) = 1
4 . Integrating twice and using (2.5) yields (2.3)

with profile η ∈ C∞(R). Finally, for E > Ec, the level curve reaches η = c2/2 with
the singularity of η′, which rules out the existence of bounded solutions with profile
η ∈ C∞(R).
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S. Locke and D.E. Pelinovsky

The next lemma clarifies how the solutions for η < c2/2 reach the singularity line
η = c2/2.

LEMMA 2.3. Let η ∈ C0(u−, u+) be a solution for the level curve E(η, η′) = E for
E ∈ (Ec, ∞) such that η(u) → ±c2/2 as u → u±. Then, −∞ < u− < u+ < ∞ and the
solution satisfies

η(u) = c2

2
− 32/3

22/3 (E − Ec)
1/3|u − u±|2/3 + O(|u − u±|4/3) as u → u±. (2.6)

Proof . We consider the level curve E(η, η′) = E with E ∈ (Ec, ∞) for η < c2/2. Then,
we have (

dη

du

)2

= 2E − η2

c2 − 2η

= 2(E − Ec)

c2 − 2η
+ 1

2
c2 + 1

4
(2η − c2)

= 2(E − Ec)

c2 − 2η
+ O(1) as η → c2

2
. (2.7)

This yields√
c2 − 2η[1 + O(|c2 − 2η|)]dη

du
= ±
√

2(E − Ec) as u → u± ∓ 0. (2.8)

Integrating in u yields√
(c2 − 2η)3[1 + O(|c2 − 2η|)] = ∓3

√
2(E − Ec)(u − u±) as u → u± ∓ 0, (2.9)

which results in the expansion (2.6). It remains to prove that [u−, u+] is compact. This
follows from the bounds

u+ − u− = 2
∫ c2/2

−√
2E

√
c2 − 2η√
2E − η2

dη

≤ 2
√

c2 + 2
√

2E
∫ c2/2

−√
2E

dη√
2E − η2

< ∞, (2.10)

since the integral in the upper bound is finite.

In order to analyse bounded periodic solutions in Lemma 2.2, we introduce the following
period function associated with (2.1) and (2.4):

T(E, c) := 2
∫ √

2E

−√
2E

√
c2 − 2η√
2E − η2

dη, E ∈ (0, Ec). (2.11)

For the singular solutions in Lemma 2.3, we augment the period function for E ≥ Ec as

T(E, c) := 2
∫ c2/2

−√
2E

√
c2 − 2η√
2E − η2

dη, E ∈ [Ec, ∞). (2.12)

The next result describes properties of the period function (0, ∞) � E �→ T(E, c) for
every fixed c > 0.
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Travelling waves in a local model for shallow water waves

LEMMA 2.4. For every c > 0, there exist E∗, E∗∗ ∈ (Ec, ∞) that depend on c such that

∂

∂E T(E, c) < 0, E ∈ (0, E∗), (2.13)

and

∂

∂E T(E, c) > 0, E ∈ (E∗∗, ∞), (2.14)

with

T(E, c) → 2πc as E → 0,

T(E, c) → 4
√

2c as E → Ec,

}
(2.15)

and T(E, c) → ∞ as E → ∞. In addition, we have

∂

∂c
T(E, c) > 0, E ∈ (0, ∞), c ∈ (0, ∞). (2.16)

Proof . For the smooth periodic solutions, we use the change of variables η = √
2Ex in

(2.11) and obtain

T(E, c) = 2
∫ 1

−1

√
c2 − 2

√
2Ex√

1 − x2
dx, E ∈ (0, Ec). (2.17)

Since the weak singularity is independent of E , we can differentiate under the integration
sign and obtain

∂

∂E T(E, c) = − 2√
2E

∫ 1

−1

x dx√
1 − x2
√

c2 − 2
√

2Ex
, E ∈ (0, Ec). (2.18)

The result is strictly negative since

|x|
√

1 − x2
√

c2 + 2
√

2E |x|
<

x√
1 − x2
√

c2 − 2
√

2Ex
, x ∈ (0, 1). (2.19)

This proves (2.13) for E ∈ (0, Ec). We also obtain from the same representation

T(E, c) → 2c
∫ 1

−1

dx√
1 − x2

= 2πc as E → 0, (2.20)

and

T(E, c) → 2c
∫ 1

−1

√
1 − x√
1 − x2

dx = 4
√

2c as E → Ec. (2.21)

Monotonicity (2.16) follows from the positive derivative of (2.11) in c.
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S. Locke and D.E. Pelinovsky

For the singular solutions, we break (2.12) into the sum of two terms and use the same
change of variables only in the first term

T(E, c) = 2
∫ −c2/2

√
2E

−1

√
c2 − 2

√
2Ex√

1 − x2
dx + 2

∫ c2/2

−c2/2

√
c2 − 2η√
2E − η2

dη, E ∈ [Ec, ∞).

(2.22)

Since 8E > c4, both terms are differentiable under the integration sign and we obtain

∂

∂E T(E, c) = − 2√
2E

∫ −c2/2
√

2E

−1

x dx√
1 − x2
√

c2 − 2
√

2Ex
− 2
∫ c2/2

−c2/2

√
c2 − 2η√

(2E − η2)3
dη,

(2.23)

where the first term is positive and the second term is negative. The first term is zero as
E → Ec, monotonically increasing for E � Ec and monotonically decreasing as E → ∞.
The second term is strictly negative as E → Ec and is monotonically increasing towards 0
for E > Ec. Since∫ −c2/2

√
2E

−1

√
c2 − 2

√
2Ex√

1 − x2
dx ∼ (8E)1/4

∫ 0

−1

√|x|dx√
1 − x2

as E → ∞, (2.24)

and ∫ c2/2

−c2/2

√
c2 − 2η√
2E − η2

dη ∼ (2E)−1/2
∫ c2/2

−c2/2

√
c2 − 2ηdη as E → ∞, (2.25)

the first term in the decomposition (2.23) is larger than the second term at infinity and we
have T(E, c) = O(E1/4) as E → ∞ so that

T(E, c) → ∞ as E → ∞. (2.26)

At the same time, the first term in the decomposition (2.23) is zero at E = Ec, hence there
exist E∗, E∗∗ ∈ (Ec, ∞) such that (2.13) and (2.14) hold. Monotonicity (2.16) follows from
the positive derivative of (2.12) in c.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We consider the family of solutions of Lemmas 2.2 and 2.3 for E ∈
(0, ∞) and η < c2/2. For every c > 0, we select the intersection of the period function
T(E, c) of Lemma 2.4 with the 2π period on T. It follows from (2.16) that the period
function is monotonically increasing in c for every E ∈ (0, ∞).

For the smooth periodic solutions with the period function (2.11), there exists only
one root E ∈ (0, Ec) of T(E, c) = 2π for every c ∈ (1, c∗) with c∗ = π/(2

√
2) due to

monotonicity (2.13) and the limiting values T(0, c) = 2πc and T(Ec, c) = 4
√

2c. This
gives the first assertion of the theorem with the limit (1.21) since the smooth periodic
solution shrinks to the centre point (0, 0) on the (η, η′) plane as E → 0. At c = c∗, we
have E = Ec∗ for the root of T(E, c) = 2π. The unique single-lobe solution (1.23) follows
from the unique solution (2.3) at E = Ec from Lemma 2.2 by the translation u0 = π for
u ∈ [0, π] and an even reflection on [−π, 0].

For the singular solutions with the period function (2.12), we have a root E ∈ (Ec, ∞) of
T(E, c) = 2π for every c ∈ (c∗, c∞) due to monotonicity (2.13). The value c∞ is obtained
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Travelling waves in a local model for shallow water waves

0 0.5 1.0 1.5 2.0 2.5 3.0
5.5
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6.5
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E

Figure 4. Period function T vs E for c = 1.05 (solid blue) and c = 1.1 (dashed blue). Black dots show the
values T(0, c) = 2πc and T(Ec, c) = 4

√
2c. The red dashed line gives the level T(E, c) = 2π for periodic

solutions on T.

from the intersection of T(E∗, c) with 2π. The asymptotic expansion (1.22) of the singular
single-lobe solutions follows from the expansion (2.6) with the translation u− = 0 of the
solution in Lemma 2.3 for u ∈ [0, π] with η(π) = −√

2E and η′(π) = 0 and an even
reflection on [−π, 0].

Figure 4 illustrates the result of Lemma 2.4 and the proof of Theorem 1.1. The period
functions (2.11) and (2.12) can be computed in terms of complete elliptic integrals by using
3.141 (integrals 2 and 9) in Gradshteyn & Ryzhik (2007)

T(E, c) = 4
√

c2 + 2
√

2EE

⎛⎝√ 4
√

2E
c2 + 2

√
2E

⎞⎠ , E ∈ (0, Ec), (2.27)

and

T(E, c) = 4(2E)1/4

⎡⎣2E

⎛⎝√c2 + 2
√

2E
4
√

2E

⎞⎠
+
(

c2

2
√

2E − 1
)

K

⎛⎝√c2 + 2
√

2E
4
√

2E

⎞⎠⎤⎦ , E ∈ (Ec, ∞), (2.28)

where K(k) and E(k) are complete elliptic integrals of the first and second kind,
respectively. The two definitions agree at T(Ec, c) = 4

√
2c, where Ec = c4/8 shown by

the black dot in figure 4. We can also see from figure 4 that the monotonicity results (2.13),
(2.14) and (2.16) hold true with E∗ = E∗∗. The periodic solutions of Theorem 1.1 on T are
obtained by the intersection of the plot of the period function with the level T(E, c) = 2π.
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S. Locke and D.E. Pelinovsky

3. Stability of smooth travelling periodic waves

We consider the unique single-lobe solution with the profile η ∈ C∞
per(T) in Theorem 1.1

which exists in the second-order equation (1.19) for c ∈ (1, c∗) with c∗ = π/(2
√

2).
Theorem 1.2 is proven by showing that the periodic solution is a constrained minimizer of
the quadratic form 〈Lη̂, η̂〉 associated with the linear operator

L = −∂u(c2 − 2η)∂u − 1 + 2η′′, (3.1)

in the function space H1
per(T) ∩ Xc, where

Xc := {η̂ ∈ L2(T) : 〈1, η̂〉 = 〈η′′, η̂〉 = 0}. (3.2)

The minimizer is only degenerate due to the translational symmetry which results in the
one-dimensional kernel Ker(L) = span(η′) with η′ ∈ Xc.

We start with the count of the negative eigenvalues of L : H2
per(T) ⊂ L2(T) → L2(T)

in the following lemma.

LEMMA 3.1. Let η ∈ C∞
per(T) be the profile of the single-lobe solution in Theorem 1.1

for c ∈ (1, c∗) and L : H2
per(T) ⊂ L2(T) → L2(T) be the linear operator given by (3.1).

Then, L has two simple negative eigenvalues and a simple zero eigenvalue, with the rest of
its spectrum bounded away from zero.

Proof . Since L : H2
per(T) ⊂ L2(T) → L2(T) is a self-adjoint Sturm–Liouville operator

with η′′ ∈ L∞(T) and c2 − 2η(u) > 0 for every u ∈ T, its spectrum consists of isolated
eigenvalues located on the real line.

For fixed c ∈ (1, c∗), differentiating (1.19) in u yields Lη′ = 0 with η′ ∈ H2
per(T).

Hence, L admits a zero eigenvalue with the spatially odd eigenfunction η′. To consider
the second linearly independent solution of Lη̂ = 0, we define the family {η(u; E)}E∈(0,Ec)

of spatially even, smooth periodic solutions of the second-order equation (1.19) with

η(0; E) =
√

2E, ∂uη(0; E) = 0, (3.3a,b)

and
η(T(E, c); E) =

√
2E, ∂uη(T(E, c); E) = 0, (3.4a,b)

where T(E, c) is the period function (2.11) satisfying (2.13). Let E(c) be the root of the
period function T(E, c) = 2π in the proof of Theorem 1.1 such that η(u) = η(u; E(c)) ∈
C∞

per(T). Differentiating (1.19) in E along the family {η(u; E)}E∈(0,Ec) and setting E = E(c)
yields the second linearly independent solution of Lη̂ = 0. The solution is given by the
spatially even function ∂Eη(·; E(c)) which satisfies

∂Eη(0; E) = 1√
2E , ∂u∂Eη(0; E) = 0, (3.5a,b)

and

∂Eη(T(E, c); E) = 1√
2E , ∂u∂Eη(T(E, c); E) = ∂ET(E, c)

√
2E

c2 − 2
√

2E , (3.6a,b)

where we have used (1.19) at u = T(E, c) which implies

∂2
uη(T(E, c); E) = −

√
2E

c2 − 2
√

2E . (3.7)
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Travelling waves in a local model for shallow water waves

We thus have ∂Eη(·; E(c)) ∈ H2
per(T) if and only if ∂ET(E(c), c) = 0, which is impossible

due to monotonicity (2.13). Hence, 0 is a simple eigenvalue of L bounded away from the
rest of its spectrum in L2(T).

To prove that there exist two negative eigenvalues of L below the zero eigenvalue, we use
Proposition 1 in Geyer et al. (2022) and construct the following two normalized solutions:

η1(u) :=
√

2E∂Eη(u; E) and η2(u) := η′(u)

η′′(0)
, (3.8a,b)

where η2(u + 2π) = η2(u) and η1(u + 2π) = η1(u) + θη2(u) with

θ := ∂ET(E(c), c)
√

2E(c)
c2 − 2

√
2E(c)

< 0, (3.9)

due to monotonicity (2.13). By Proposition 1 in Geyer et al. (2022), 0 is the third eigenvalue
of L with two simple negative eigenvalues below 0.

REMARK 3.1. One can prove the assertion of Lemma 3.1 by using small-amplitude
expansions. The periodic solution with the profile η ∈ C∞

per(T) is expanded near the trivial
solution, see (1.21), as

η = a cos(u) − a2 sin2(u) + O(a3), c2 = 1 + 1
2 a2 + O(a4), (3.10a,b)

where a > 0 is a small parameter. Then, L along the solution family has one negative
eigenvalue −1 + O(a2) and a small negative eigenvalue −a2 + O(a4) with 0 being the
third eigenvalue. Since Ker(L) = span(η′) along the family of smooth periodic solutions
for c ∈ (1, c∗), the inertia index of L remains the same for every c ∈ (1, c∗).

The next lemma specifies the criterion for the constrained linear operator L|Xc to be
positive, where L|Xc = L|{1,η′′}⊥ is defined by the two constraints in (3.2).

LEMMA 3.2. Let L : H2
per(T) ⊂ L2(T) → L2(T) be given by (3.1) as in Lemma 3.1 and

Xc be the constrained subspace of L2(T) given by (3.2). Then, L|Xc has a simple zero
eigenvalue and no negative eigenvalues, with the rest of its spectrum being bounded away
from zero, if and only if the mapping

(1, c∗) � c �→ M(c) :=
∮

η du (3.11)

is monotonically decreasing for c ∈ (1, c∗).

Proof . By Proposition 2 in Geyer et al. (2022), we construct the 2-by-2 matrix related to
the two constraints in Xc

A :=
[ 〈L−11, 1〉 〈L−11, η′′〉
〈L−1η′′, 1〉 〈L−1η′′, η′′〉

]
. (3.12)

The inverse operator L−1 on span(1, η′′) is well defined since

Ker(L) = span(η′) ⊥ span(1, η′′). (3.13)

Differentiating (1.19) in c yields
L∂cη = 2cη′′, (3.14)

where ∂cη is defined along the family of 2π-periodic solutions {η}c∈(1,c∗). The family is
smooth in c since T(E, c) is C1 on (0, Ec) × (0, c∗) and E(c) is C1 on (0, c∗) due to the
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implicit function theorem for T(E(c), c) = 2π with ∂ET(E(c), c) < 0. In addition, we have
L1 = 2η′′ − 1 so that

L(c−1∂cη − 1) = 1. (3.15)

By using (3.14) and (3.15), we compute

A =
[

c−1〈∂cη, 1〉 − 2π c−1〈∂cη, η′′〉
(2c)−1〈∂cη, 1〉 (2c)−1〈∂cη, η′′〉

]
. (3.16)

Since A is symmetric, we have 〈∂cη, 1〉 = 2〈∂cη, η′′〉. Furthermore,

det(A) = − π

2c
〈∂cη, 1〉 = − π

2c
M′(c), (3.17)

where M(c) is given by (3.11). Since c > 0, we have the following trichotomy from
Proposition 2 in Geyer et al. (2022):

(i) If M′(c) > 0, then det(A) < 0, hence A has one negative and one positive
eigenvalue so that L|Xc admits one simple negative and a simple zero eigenvalue.

(ii) If M′(c) = 0, then det(A) = 0 but tr(A) < 0, hence A has one negative and one zero
eigenvalue so that L|Xc admits a double zero eigenvalue and no negative eigenvalues.

(iii) If M′(c) < 0, then det(A) > 0, hence A has two negative eigenvalues so that L|Xc
admits a simple zero eigenvalue and no negative eigenvalues.

The last case yields the assertion of the lemma.

REMARK 3.2. Due to constraint (1.12), we have

M(η) =
∮

η du = −
∮

(∂uη)2 du = −Q(η), (3.18)

so that the criterion in Lemma 3.2 is equivalent to the mapping of

(1, c∗) � c �→ Q(c) :=
∮

(η′)2 du (3.19)

being monotonically increasing for c ∈ (1, c∗).

Since M(c) → 0 as c → 1 by (1.21) and M(c) < 0 by (3.18), it is clear that M′(c) < 0
for c � 1. The next lemma asserts that M′(c) < 0 for every c ∈ (1, c∗).

LEMMA 3.3. The mapping (3.11) is monotonically decreasing for every c ∈ (1, c∗).
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Travelling waves in a local model for shallow water waves

Proof . Differentiating T(E(c), c) = 2π in c yields

∂cT(E(c), c) + E ′(c)∂ET(E(c), c) = 0, (3.20)

where

∂cT(E, c) = 2c
∫ √

2E

−√
2E

dη√
2E − η2

√
c2 − 2η

,

∂ET(E, c) = −E−1
∫ √

2E

−√
2E

ηdη√
2E − η2

√
c2 − 2η

,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.21)

and we have used (2.18) with the substitution η = √
2Ex. By using the same substitution,

we define M(c) ≡ M(E(c), c) with

M(E, c) := 2
∫ √

2E

−√
2E

η
√

c2 − 2ηdη√
2E − η2

= 2
√

2E
∫ 1

−1

x
√

c2 − 2
√

2Exdx√
1 − x2

, (3.22)

from which we obtain

∂cM(E, c) = 2c
∫ √

2E

−√
2E

ηdη√
2E − η2

√
c2 − 2η

,

∂EM(E, c) = E−1
∫ √

2E

−√
2E

η
√

c2 − 2ηdη√
2E − η2

− E−1
∫ √

2E

−√
2E

η2dη√
2E − η2

√
c2 − 2η

.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.23)

Since ∂ET(E(c), c) < 0, we obtain

M′(c) = ∂cM(E(c), c) + E ′(c)∂EM(E(c), c)

= 2c
E(c)|∂ET(E(c), c)|Δ(E(c), c), (3.24)

where

Δ(E, c) :=
(∫ √

2E

−√
2E

ηdη√
2E − η2

√
c2 − 2η

)2

+
(∫ √

2E

−√
2E

dη√
2E − η2

√
c2 − 2η

)(∫ √
2E

−√
2E

η(c2 − 3η) dη√
2E − η2

√
c2 − 2η

)
. (3.25)

We show that Δ(E, c) < 0, which implies that M′(c) < 0. Indeed, since

η
√

c2 − 2η√
2E − η2

<
|η|
√

c2 + 2|η|√
2E − η2

, η ∈ (0,
√

2E), (3.26)

we have (∫ √
2E

−√
2E

dη√
2E − η2

√
c2 − 2η

)(∫ √
2E

−√
2E

η
√

c2 − 2ηdη√
2E − η2

)
< 0. (3.27)
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The remaining part of Δ(E, c) is also negative since(∫
η dη√

2E − η2
√

c2 − 2η

)2

−
(∫

dη√
2E − η2

√
c2 − 2η

)(∫
η2dη√

2E − η2
√

c2 − 2η

)

=
∫ ∫

η1η2 − η2
2√

2E − η2
1

√
c2 − 2η1

√
2E − η2

2

√
c2 − 2η2

dη1 dη2

= −1
2

∫ ∫
(η1 − η2)

2√
2E − η2

1

√
c2 − 2η1

√
2E − η2

2

√
c2 − 2η2

dη1 dη2 < 0, (3.28)

where the integrations are defined on [−√
2E,

√
2E]. Hence, Δ(E(c), c) < 0 and the

assertion of the lemma has been proven.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. First, we prove that the two constraints (1.25a,b) are preserved in
the time evolution of the linearized equation (1.20a,b). Since Π0∂

−1
u Π0 is defined on

zero-mean functions with the zero-mean constraint, taking the mean value of (1.20a,b)
yields

2c
d
dt

〈1, η̂〉 = 0. (3.29)

Multiplying (1.20a,b) by η′′ and integrating by parts, we obtain for any solution η̂ ∈
C0(R, H1

per(T))

2c
d
dt

〈η′′, η̂〉 = 〈(c2 − 2η)η′′, ∂uη̂〉 − 〈(1 − 2η′′)η′, η̂〉

= 〈(η′)2 − η, ∂uη̂〉 − 〈(1 − 2η′′)η′, η̂〉
= 〈η′ − 2η′η′′, η̂〉 − 〈(1 − 2η′′)η′, η̂〉
= 0, (3.30)

where (1.19) has been used with η ∈ C∞
per(T). Hence, the two constraints (1.25a,b) are

preserved in time and the solution η̂ ∈ C0(R, H1
per(T)) of the linearized equation (1.20a,b)

with η̂(·, 0) = η̂0 and η̂0 ∈ Xc satisfies η̂(·, t) ∈ Xc for every t ∈ R. Thus, we have

〈1, η̂(·, t)〉 = 0, 〈η′′, η̂(·, t)〉 = 0, t ∈ R. (3.31a,b)

If we further decompose

η̂(·, t) = a(t)η′ + w(·, t), t ∈ R, (3.32)

then w(·, t) ∈ H1
per(T) ∩ Xc for t ∈ R satisfies the additional constraint

〈η′, w(·, t)〉 = 0, t ∈ R. (3.33)

Next, the existence and uniqueness of solutions η̂ ∈ C0(R, H1
per(T)) of the linearized

equation (1.20a,b) such that η̂(·, 0) = η̂0 follow by the energy method (Renardy &
Rogers 2004). The energy quadratic form 〈Lη̂, η̂〉 is bounded and conserved for the
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Figure 5. Dependence of E (a) and M (b) on c along the family of solutions of T(E(c), c) = 2π. The black
dots show the values E(1) = 0, M(1) = 0 and E(c∗) = π4/512, M(c∗) = −(π3/24).

solution η̂ ∈ C0(R, H1
per(T)) of the linearized equation (1.20a,b). Since Lη′ = 0, we get

〈Lw(·, t), w(·, t)〉 = 〈Lη̂(·, t), η̂(·, t)〉 = 〈Lη̂0, η̂0〉 ≤ β‖η̂0‖2
H1

per
, (3.34)

for some fixed β > 0. By Lemmas 3.2 and 3.3, 〈Lw(·, t), w(·, t)〉 is coercive for w(·, t) ∈
H1

per(T) ∩ Xc and is non-degenerate if w(·, t) is orthogonal to η′. Hence, we get the lower
bound with some fixed α > 0

α‖w(·, t)‖2
H1

per
≤ 〈Lw(·, t), w(·, t)〉 ≤ β‖η̂0‖2

H1
per

, (3.35)

which implies the first estimate (1.26a). In addition, we get from (1.20a,b) due to Lη′ = 0

2ca′(t)η′ + 2c∂tw = −Π0∂
−1
u Π0Lw, (3.36)

which allows us to control the unique a ∈ C1(R, R) from the bound

2ca′(t)‖η′‖2
L2 = 〈(c2 − 2η)η′, ∂uw(·, t)〉 − 〈(1 − 2η′′)η, w(·, t)〉

≤ γ ‖w(·, t)‖H1
per

, (3.37)

for some fixed γ > 0, which yields the second estimate (1.26b).

Figure 5 displays the dependence of E and M on c for c ∈ (1, c∗) computed along the
family of solutions of T(E(c), c) = 2π. The mass integral can be computed in terms of
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complete elliptic integrals by using 3.141 (integral 20) in Gradshteyn & Ryzhik (2007)

M(E, c) = −2
∫ √

2E

−√
2E

√
2E − η2√
c2 − 2η

dη

= −4E
∫ 1

−1

√
1 − x2√

c2 − 2
√

2Ex
dx

= −2
3

√
c2 + 2

√
2E
⎡⎣c2E

⎛⎝√ 4
√

2E
c2 + 2

√
2E

⎞⎠
− (c2 − 2

√
2E)K

⎛⎝√ 4
√

2E
c2 + 2

√
2E

⎞⎠⎤⎦ , (3.38)

where K(k) and E(k) are complete elliptic integrals of the first and second kind,
respectively. The values of E = E(c) are computed numerically from T(Ec, c) = 2π by
a root-finding algorithm. Figure 5 illustrates the monotonicity result of Lemma 3.3. Since
E(c) → 0 as c → 1 follows from (1.21), we have M(c) → 0 as c → 1. On the other hand,
E(c∗) → c4∗/8 = π4/512 as c → c∗ follows by Lemma 2.4 and we compute from (1.23)
that

M(c∗) = 1
8

∫ π

0
(π2 − 4πu + 2u2) du = −π3

24
, (3.39)

which agrees well with the numerical data in figure 5.
Numerical methods. The numerical data in figure 2 are an extended version of

figure 5(a), where all roots of T(E, c) = 2π have been computed numerically from a
bisection method, see figure 4. The numerical data in figure 1 were obtained from finding
roots of the implicit function

|u| =
∫ ηmax

η

√
c2 − 2η√

2E(c) − η2
dη, (3.40)

where ηmax := √
2E(c) for smooth profiles (panel a) and ηmax := c2/2 for singular profiles

(panel b) and E(c) is a root of T(E(c), c) = 2π obtained on the lower part of the bifurcation
diagram in figure 2.

Supplementary material. The data that support the findings of this study are available upon request from
the authors.

Acknowledgements. This work is a part of the undergraduate thesis of S. Locke at McMaster University
(2023–2024). The authors thank S. Dyachenko, P. Lushnikov, J. Weber and X. Zhao for many discussions
related to the content of this work. Figure 1 was prepared by S. Wang as a part of an undergraduate summer
project (2024).

Funding. D.E.P. acknowledges the funding of this study provided by the grant no. FSWE-2023-0004 through
the State task program in the sphere of scientific activity of the Ministry of Science and Higher Education of
the Russian Federation and grant no. NSH-70.2022.1.5 for the State support of leading Scientific Schools of
the Russian Federation.

Declaration of interests. The authors report no conflict of interest.

Author ORCID.
Dmitry E. Pelinovsky https://orcid.org/0000-0001-5812-440X.

1004 A1-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-5812-440X
https://orcid.org/0000-0001-5812-440X
https://doi.org/10.1017/jfm.2024.1118


Travelling waves in a local model for shallow water waves

Appendix A. Euler equations after a conformal transformation

Let y = η(x, t) be the profile for the free surface of an incompressible and irrotational fluid
in the 2π-periodic domain and assume a flat bottom at y = −h0, where the vertical velocity
vanishes. For a proper definition of the fluid depth h0, we add the zero-mean constraint on
the free surface, that is ∮

η(x, t) dx = 0, (A1)

which is invariant in the time evolution of Euler’s equations.
Let ϕ(x, y, t) be the velocity potential, which satisfies the Laplace equation in the

time-dependent spatial domain

Dη := {(x, y) ∈ R2 : −π ≤ x ≤ π, −h0 ≤ y ≤ η(x, t)}, (A2)

subject to the periodic boundary conditions at x = ±π and the Neumann boundary
condition at y = −h0. The formulation of the water wave problem is completed by two
additional (kinematic and dynamic) conditions at the free surface y = η(x, t)

ηt + ϕxηx − ϕy = 0,

ϕt + 1
2 (ϕx)

2 + 1
2 (ϕy)

2 + η = 0,

}
at y = η(x, t), (A3)

where the gravitational constant g is set to unity for convenience.
The method of conformal transformations is used to map the spatial domain Dη to the

flat domain

D := {(u, v) ∈ R2 : −π ≤ u ≤ π, −h ≤ v ≤ 0}, (A4)

where h may be different from h0. The transformation is based on the conformal mapping
x + iy = z(u + iv, t), where w := u + iv is a new complex variable and z ∈ Cω(D) is a
holomorphic function, the real and imaginary parts of which satisfy the Cauchy–Riemann
equations

∂x
∂u

= ∂y
∂v

,
∂x
∂v

= − ∂y
∂u

. (A5a,b)

To preserve the flat bottom y = −h0 at v = −h, one needs to add the Neumann condition
∂vx|v=−h = 0, which ensures that y(u, −h, t) = −h0 is u-independent. In addition, we
require x − u and y − v be 2π-periodic functions of u ∈ T := R\(2πZ) to ensure that
x(π, v, t) − x(−π, v, t) = 2π.

Abusing notations we refer to x = x(u, t) and y = η(u, t) at the top boundary of D

x(u, t) + iη(u, t) = z(u, t), at v = 0. (A6)

Similarly, we abuse notations for the velocity potential ϕ(u, v, t) and define

ξ(u, t) := ϕ(u, v = 0, t), (A7)

on the flat top boundary of D. Since the conformal transformation preserves the periodic
boundary conditions and the zero vertical velocity condition at v = −h, the Laplace
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equation can be solved with the following Fourier series:

ϕ(u, v, t) =
∑
n∈Z

ξ̂n(t) einu cosh(n(v + h))

cosh(nh)
, (A8)

where ξ̂n(t) is the Fourier coefficient for ξ(u, t) = ϕ(u, v = 0, t). Similarly, we obtain

x(u, v, t) = u +
∑
n∈Z

x̂n(t) einu cosh(n(v + h))

cosh(nh)
,

y(u, v, t) = v + η̂0 +
∑
n∈Z

x̂n(t) einui
sinh(n(v + h))

cosh(nh)
.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A9)

It follows from y(u, −h, t) = −h0 that η̂0 = h − h0. If η̂0(t) = (1/2π)
∮

η(u, t)du depends
on time t, so does h(t) which satisfies ∂tη(u, −h, t) − h′(t)∂vη(u, −h, t) = 0 for all u ∈ T.

Reducing the Fourier series for x(u, v, t) and y(u, v, t) on v = 0 yields

x(u, t) = u + x̂0(t) +
∑

n∈Z\{0}
η̂n(t) einu(−i) coth(nh),

η(u, t) = η̂0(t) +
∑

n∈Z\{0}
η̂n(t) einu,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A10)

with the correspondence η̂n(t) = i tanh(nh)x̂n(t) for n ∈ Z\{0}.
Let us introduce the non-local operator Th with the Fourier symbol given by

(̂Th)n = i tanh(hn), n ∈ Z, (A11)

so that η = η̂0 + Th(x − u). The inverse of Th is only defined on the zero-mean functions
with the Fourier symbol given by

̂
(T−1

h )n =
{−i coth(hn), n ∈ Z\{0},

0, n = 0.
(A12)

Inverting η = η̂0 + Th(x − u) yields x = u + x̂0 + T−1
h η and

xu = 1 + Khη, (A13)

where Kh := T−1
h ∂u is a linear, self-adjoint, positive operator on L2(T). We set x̂0 = 0 in

x = u + x̂0 + T−1
h η without loss of generality.

The equations of motion can be derived from the following Lagrangian (see Dyachenko
et al. (1996) and Dyachenko et al. (2016), Appendix A for h = ∞):

L(ξ, η, x) :=
∮

ξ(ηtxu − ηuxt) du + 1
2

∮
ξThξu du − 1

2

∮
η2xu du

+
∮

f (η − Th(x − u)) du, (A14)

where f is the Lagrange multiplier satisfying
∮

f du = 0. Variation of L in ξ , η and x yields
the system of equations

ηtxu − ηuxt + Thξu = 0,

−ξtxu + ξuxt − ηxu + f = 0,

ξtηu − ξuηt + ηηu + Thf = 0,

⎫⎬⎭ (A15)
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with the additional constraint due to the reduction h = h0 + (1/2π)
∮

η du

1
2

∮
ξ(∂hTh)ξu du −

∮
f (∂hTh)(x − u) du = 0. (A16)

Taking mean values in each equation of system (A15) and integrating by parts yields
three conserved quantities

M1(η) =
∮

ηxu du =
∮

η(1 + Khη) du = 0, (A17)

M2(ξ, η) =
∮

ξxu du =
∮

ξ(1 + Khη) du, (A18)

M3(ξ, η) =
∮

ξηu du, (A19)

where the constraint M1(η) = 0 follows from the zero-mean constraint (A1) in physical
coordinates. We express f from the second equation of system (A15), substitute it into the
third equation and invert Th on the periodic functions with zero mean. This transforms the
system (A15) to the following system of two equations for ξ and η:

ηtxu − ηuxt + Thξu = 0,

ξtxu − ξuxt + η(1 + Khη) + T−1
h (ξtηu − ξuηt + ηηu) = 0.

}
(A20)

The constraint (A16) is rewritten in the equivalent form

1
2

∮
ξ(∂hTh)ξu du +

∮
T−1

h (ξtηu − ξuηt + ηηu)(∂hTh)(T−1
h η) du = 0. (A21)

The conserved energy of system (A20) is given by

H(ξ, η) =
∮

[ξThξu − η2(1 + Khη)] du. (A22)

To derive (A22), we multiply the first equation of system (A20) by ξt and the second
equation by ηt, integrate over the period and subtract one equation from another. After
integration by parts, we get (d/dt)H(ξ, η) = 0 if and only if

− 1
2 h′(t)
∮

ξ(∂hTh)ξu du − h′(t)
∮

ηηu(∂hT−1
h )η du

−
∮

(ξtηu − ξuηt)(xt − T−1
h ηt) du = 0. (A23)

Since xt − T−1
h ηt = h′(t)(∂hT−1

h )η, ∂hT−1
h = −T−1

h (∂hTh)T−1
h and T−1

h is skew–adjoint,
the last constraint is identical to the constraint (A21) for every h′(t). This proves the
conservation of H(ξ, η).

The conserved quantities (A17), (A18), (A19) and (A22) coincide with the conserved
quantities for Euler’s equation in physical coordinates, see Benjamin & Olver (1982) and
Dyachenko et al. (1996) for h = ∞.
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In order to introduce the scalar model (1.1), we rewrite (A20) in the reference frame
moving with the wave speed c

ηtxu − ηuxt + Thξu − cηu = 0,

ξtxu − ξuxt + η(1 + Khη) − cξu + T−1
h (ξtηu − ξuηt + ηηu) = 0,

}
(A24)

where u now stands for u − ct and we have used the chain rule with

ξt → ξt − cξu,

ηt → ηt − cηu,

xt → xt + c − cxu.

⎫⎪⎬⎪⎭ (A25)

We introduce a change of variables by

ξ = cT−1
h η + ζ, (A26)

after which the system (A24) can be rewritten in the form

ηtxu − ηuxt + Thζu = 0,

ζtxu − ζuxt + η(1 + Khη) − cζu + cxt − c2Khη

+ T−1
h (ζtηu − ζuηt + ηηu + cηuxt − cηtKhη) = 0.

⎫⎪⎪⎬⎪⎪⎭ (A27)

Substituting −cζu = cT−1
h (ηtxu − ηuxt) to the second equation of system (A27) and taking

the derivative of x = u + T−1
h η in t yields

ζtxu − ζuxt + T−1
h (ζtηu − ζuηt) + h′(t)(∂hT−1

h )η

+ 2cT−1
h ηt − c2Khη + η(1 + Khη) + 1

2 Khη
2 = 0. (A28)

The scalar model (1.1) follows by ignoring the constraint (A21) and the first equation
of system (A27) and by setting ζ ≡ 0 and h′(t) ≡ 0 in (A28). Babenko’s equation (1.8),
which is the exact equation for travelling waves, see Babenko (1987), corresponds to the
time-independent solutions of (A27) and (A28) with ζ ≡ 0 and h′(t) ≡ 0 since u in (1.1)
stands for u − ct.

Appendix B. Introducing the local model

One popular model for fluid motion is the intermediate long-wave (ILW) equation written
in the form

∂tη + η∂uη = Kh(∂uη), (B1)

where Kh is defined by the Fourier symbol

(̂Kh)n =
{

n coth(hn), n ∈ Z\{0},
h−1, n = 0.

(B2)

In comparison with (1.3), we have the correspondence

Kh = Kh + 1
2πh

∮
·du. (B3)

The ILW equation (B1) is integrable by inverse scattering and many results on well
posedness and the dynamics of nonlinear waves have been obtained for this fluid model,
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see review in Saut (2019). In the shallow water limit h → 0, the scaling transformation

η(u, t) := hη̃(ũ, t̃), ũ := u + h−1t, t̃ := ht, (B4)

recovers formally the Korteweg–de Vries (KdV) equation

∂t̃η̃ + η̃∂ũη̃ + 1
3∂3

ũ η̃ = 0, (B5)

due to the asymptotic expansion

Kh = 1
h

− 1
3 h∂2

u + O(h3). (B6)

For completeness, in the deep water limit h → ∞, the ILW equation (B1) becomes the
Benjamin–Ono (BO) equation

∂tη + η∂uη + H(∂2
uη) = 0, (B7)

where H is the periodic Hilbert transform defined by (1.10). Both the KdV and BO
equations are also integrable by inverse scattering.

To obtain the local evolution equation (1.11) from the non-local model (1.1), we replace
Kh given by (1.3) with

K̃h = Kh + 1
2πh

∮
·du − 1

h
= Kh − 1

h
. (B8)

The difference between K̃h and Kh appears in the local term 1/h. It is removed from the
mean term in the definition of Kh and from all Fourier modes in the definition of K̃h. Since
Kh = T−1

h ∂u, we can similarly define K̃h = T̃−1
h ∂u and expand asymptotically as h → 0

K̃h = −1
3 h∂2

u + O(h3), T̃−1
h = −1

3 h∂u + O(h3). (B9a,b)

By using the scaling transformation

η(u, t) := h−1η̃(ũ, t̃), u := 3−1/2ũ, t := 3−1/2h1/2 t̃, c = h−1/2c̃, (B10a–d)

we obtain the formal limit of the non-local model (1.1) as h → 0 in the form

−2c̃∂ũ∂t̃η̃ = (−c̃2∂2
ũ − 1)η̃ + η̃∂2

ũ η̃ + 1
2∂2

ũ η̃2. (B11)

Expanding the derivatives, changing the sign and removing the tilde notations yields the
local model (1.11).
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