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We investigate viscous dissipation in linear flows driven by small-amplitude longitudinal
librations in rotating fluid spheres focusing on the rapid rotation regime applicable to
planets. Viscous coupling can resonate with inertial modes in the bulk of the fluid when
the frequency of the forcing is within the range (0, 2Ω0), where Ω0 is the mean angular
velocity of the sphere. We solve the linearised equations of motion with a semi-spectral
numerical method and with an asymptotic expansion exploiting the small Ekman number,
E , which quantifies the strength of viscous forces relative to the Coriolis force. Our
results confirm that the dominant contribution to the dissipation occurs in the Ekman
boundary layer with leading-order scaling E1/2. When the forcing frequency coincides
with that of an inertial mode, dissipation is reduced by as much as 9 % compared with
boundary layer theory alone. The percentage-wise reduction is independent of E and the
frequency width of the reduction envelope scales as E1/2. At non-resonant frequencies
conic shear layers develop in the bulk interior and, together with the Ekman layer bulge
at critical latitude, slightly enhance dissipation. We confirm critical latitude bulge and
shear layer contributions to the overall dissipation scale as E4/5 and E6/5 respectively,
becoming negligible compared with dissipation in the main boundary layer as E → 0.
The frequencies at which the dissipation enhancement from critical latitude effects is
maximised are displaced from the inviscid limit periodic orbit frequencies by a factor
that scales with E0.23.
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1. Introduction
In a planetary system each orbiting body is deformed by the gravity of the massive central
primary. For an orbiting body in the system, this deformation gives rise to a quadrupole
moment in its mass distribution subject to periodic torques from the central body (Murray
& Dermott 1999). The component of torque along the rotation axis of the orbiting body
causes a periodic modulation to its rotation rate that is known as forced longitudinal
libration (Comstock & Bills 2003). As a consequence of the quadrupole mass moment,
there exist resonant configurations for certain orbits where the mean rotation rate, Ω0, of
the orbiting body is an integer or half-integer multiple of its mean motion, n (Murray &
Dermott 1999). An orbiting body locked in a 1:1 spin-orbit resonance in a circular orbit
has its equatorial long axis aligned with the direction of the central body in equilibrium;
in this case, the orbiting body experiences no torque. However, for the same spin-orbit
resonance, but in an elliptical orbit, the variation of the orbital velocity causes a periodic
misalignment of the long axis which implies a torque with a leading-order frequency equal
to the mean motion (Comstock & Bills 2003). For a spin-orbit configuration characterised
by p =Ω0/n not equal to unity, forced librations occur at the frequency 2(p − 1)n even in
a circular orbit (Comstock & Bills 2003); for Mercury (p = 3/2) the leading-order forced
longitudinal libration frequency is equal to the orbital mean motion.

Some planetary bodies contain global fluid layers being either subsurface oceans
encased in a shell of ice, as is the case for several outer solar system moons, or molten cores
encased in rocky mantles. The solid shell librates alone on top of the internal fluid layer
(e.g. Van Hoolst et al. 2009), leading to a differential motion at the fluidsolid boundary.
Drag forces cause the mechanical transfer of rotational energy from the mantle (ice shell)
to the outer core (ocean) where it is dissipated. Broadly, the exchange of energy is mediated
by three coupling mechanisms (e.g. Le Bars et al. 2015). Viscous coupling refers to the
influence of friction at the fluidsolid boundary. Topographical coupling is the pressure
interaction that results at points along the boundary where the latter is moving along its
own local normal direction; for longitudinal libration topographical coupling only occurs
in a non-axisymmetric container. Finally, magnetic coupling is also possible in cases when
a magnetic field permeates an electrically conducting fluid core, and if the lowermost
mantle is at least weakly electrically conducting.

In a fluid rotating with angular velocity Ω0, the Coriolis acceleration acts as the
restoring force for transverse ‘inertial’ waves with oscillation frequencies in the range
(0, 2Ω0). Inertial waves exhibit a special dispersion relation that links their frequency
to the direction of their wave vector (e.g. Greenspan 1968; Le Bars et al. 2015; Tilgner
2015). In a contained rotating fluid, inertial waves can coalesce to form normal modes
that store energy in the constructive interference patterns formed by the waves at specific
frequencies (Greenspan 1968). The natural frequencies and distributions of the modal
velocity and pressure fields are determined by the shape of the container. In a spherical
domain the analytical form of these normal modes were first presented by Bryan (1889);
for discussions of the details of these structures see Kudlick (1966), Greenspan (1968),
Zhang et al. (2004), Zhang & Liao (2017) and Ivers et al. (2015).

Longitudinal librations can excite inertial modes, as was studied experimentally by
Aldridge & Toomre (1969) and Aldridge (1972) and numerically by Rieutord (1991) in
both rotating spheres and spherical shells. Although it is often the case that a spherical
shell is more representative of the geometry of the fluid envelope of a planet, there is no
known method to extend the analytical representations of the inertial modes in a full sphere
to a spherical shell domain. A focusing effect occurs in certain geometries including the
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spherical shell (e.g. Maas & Lam 1995; Rieutord & Valdettaro 1997; Tilgner 1999) because
the angle between the wave vector and the rotation axis is conserved when an inertial wave
reflects at a boundary (Phillips 1963). Analytical forms of the inviscid inertial modes in
the spherical domain are possible because of the ideal shape of the container while for
more general geometries such as the spherical shell, inviscid solutions, aside from those
purely toroidal fields, typically exhibit singular behaviour (Rieutord et al. 2001).

In the case of a longitudinally librating, electrically insulating spherical container, the
mechanical forcing is communicated to the fluid exclusively by viscous coupling. In
planetary applications the Ekman number E , which characterises the strength of viscous
forces relative to the Coriolis force, is of the order of 10−1010−15. The influence of
viscosity can be taken into account asymptotically which leads to a boundary layer of
thickness proportional to E1/2 as described by Ekman (1905). The boundary layer flow
drives a mass flux in the direction normal to the boundary; the amplitude of this flux is also
proportional to E1/2 and this radial forcing can excite the inertial modes in the bulk of the
interior of the sphere when the system is driven at the appropriate frequency (Greenspan
1968). The inertial mode flow in the bulk induces patterns of lateral fluid motion that
modify the structure of the boundary layer from below, leading to an adjustment in the
Ekman flux that effectively damps the mode (e.g. Zhang & Liao 2017; Lin et al. 2023).
Since the damping and forcing effects of the radial Ekman flux are both proportional to
E1/2, the resulting excitation amplitude is independent of E in the limit E → 0 as was
explained by Zhang et al. (2013). This is in contrast to the case of topographic forcing
where the modes receive direct pressure forcing from the boundary while the damping
due to their Ekman layer is still proportional to E1/2. This leads to a resonant modal
amplitude proportional to E−1/2 as demonstrated by Zhang et al. (2012) for the case of an
oblate spheroid librating in latitude (see also Vantieghem et al. (2015)).

The existing studies of planetary flows forced by longitudinal libration are largely
focused on identifying the conditions for turbulent instability (Noir et al. 2009; Calkins
et al. 2010; Zhang et al. 2011; Cébron et al. 2012; Wu & Roberts 2013; Grannan et al.
2014; Favier et al. 2015; Lemasquerier et al. 2017; Le Reun et al. 2019), the structure of the
nonlinear mean zonal flow (Busse 2010; Sauret et al. 2010; Noir et al. 2012; Sauret & Le
Dizès 2012; Cébron et al. 2021; Lin & Noir 2021), computing the resonant amplitudes of
the driven inertial modes (Zhang et al. 2013; Lin et al. 2023), or scrutinising the structure
of the wave attractors in a spherical shell (Rieutord & Valdettaro 2018; Lin & Noir 2021;
He et al. 2022, 2023). The flow driven by viscous coupling in a longitudinally librating
planet is a mechanism for dissipation, it draws rotational energy from the mantle (ice shell)
enclosing the outer core (ocean). This energy is dissipated as heat in the bulk fluid possibly
helping to maintain a subsurface ocean in a liquid state. Furthermore, this dissipation will
play a role in the evolution of planetary orbits through spin-orbit coupling (Murray &
Dermott 1999; Le Bars et al. 2010; Cébron et al. 2012). If the fluid is conducting and the
driven flow in the bulk is destabilised it can even contribute to dynamo action (Le Bars
et al. 2011; Wu & Roberts 2013; Le Bars et al. 2015).

The viscous dissipation associated with inertial modes is well understood in the context
of the generic eigenvalue problem (e.g. Greenspan 1968; Zhang et al. 2004; Rieutord
& Valdettaro 2018). However, their influence on the dissipation in forced longitudinal
libration has yet to be extensively studied. Rekier et al. (2019) presented numerical findings
on the influence of inertial waves on dissipation in a longitudinally librating spherical
shell, however, they only addressed a limited parameter range focused on the physical
case of Enceladus. Cébron et al. (2019) studied dissipation in the flow forced by viscous
coupling in a related problem, that of a precessing spherical shell, although they focused
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on the potential for dynamo action in the nonlinear regime. Likewise, dissipation has been
studied in the case of flows driven by tidal forcing by Ogilvie (2005, 2009), Rieutord &
Valdettaro (2010), Rovira-Navarro et al. (2019) and Lin & Ogilvie (2021) for example.
All of these studies highlighted the role of inertial waves in enhancing diffusion. In
particular, Lin & Ogilvie (2021) showed that, although their presence may be obscured
by the influence of wave attractors, global eigenmode structures can still be excited by
tidal forcing in the spherical shell, as they are in a full sphere or spheroid. We therefore
believe that insight can be gained into the role of inertial waves in dissipation by studying
the case of the full sphere in detail through the use of the available explicit representations
of the inertial modes. Another motivation for studying the general subject of resonating
full sphere inertial modes is their detection in the convective cores of main sequence
stars through resonances with gravito-inertial modes in the surrounding radiative envelope
(Ouazzani et al. 2020).

Here, we investigate the viscous dissipation in a fluid, rotating sphere that is induced
by longitudinal libration of its surface. We examine the properties of the analytical and
numerical solutions to the linearised fluid equations for this problem which is applicable
to the case of weak amplitude libration. We limit our attention to solutions of the linearised
problem. The nonlinear response of the rotating fluid sphere to longitudinal libration of its
boundary surface is multifaceted. At larger forcing amplitude the Ekman layer becomes
centrifugally unstable (e.g. Noir et al. 2009; Calkins et al. 2010). Moreover, it is well
known (e.g. Busse 2010; Sauret et al. 2010; Noir et al. 2012; Sauret & Le Dizès 2012;
Cébron et al. 2021; Lin & Noir 2021) that nonlinear interactions can generate a mean flow,
largely a differential rotation, as well as small oscillations at frequencies corresponding to
the higher harmonics of the forcing frequency (Koch et al. 2013). Furthermore, in a general
geometry attractors and focusing can produce localised nonlinear effects (e.g. Le Dizès
2020; Boury et al. 2021) in the limit E → 0. It is outside the scope of this work to explore
how such nonlinear interactions contribute to a change in the dissipation. By focusing on
the linear problem, we can establish a general lower bound on the viscous dissipation as
a function of frequency. This should then assist future studies targeting dissipation in the
nonlinear regime.

In the linear regime the dissipation induced by the Ekman boundary layer flow scales
as E1/2 (Cébron et al. 2019). As highlighted by the recent study of Lin et al. (2023), the
kinetic energy of the flow in the interior peaks at discrete frequencies that match those of
the inertial modes, but it is minimised at frequencies that match those of wave attractors
focused in conic shear layers. The primary question we want to address is how these
interior flows alter the global dissipation of energy in the context of the forced problem.
To do so, we use both analytical and numerical methods.

Our study is organised as follows. In § 2.1 we formulate the system of linear partial
differential equations of the hydrodynamics problem and present the expressions of the
kinetic energy and dissipation. In § 2.2 we provide an overview of the semi-spectral
numerical method we use to compute our solutions. In § 2.3, we derive an analytical
solution of the amplitude of a given inertial mode driven by longitudinal libration. The
solution is based on a matched asymptotic approach. A similar approach was used by
Zhang et al. (2013); Lin et al. (2023) although their results are restricted to the resonant
amplitude when the forcing frequency exactly matches the natural frequency of a mode.
We extend this analytical solution to all frequencies in the range of (0, 2Ω0). Furthermore
we present expressions for the dissipation and kinetic energy of the boundary layer alone
as a function of forcing frequency that are accurate to leading order in E . This allows us
to further understand theoretical aspects of the spectrum of kinetic energy and dissipation
in the linear regime. In 2.4 we briefly review how shear layers can develop in the sphere
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volume at certain frequencies. Results are presented in § 3, followed by a discussion and a
summary of conclusions (§ 4).

2. Theory

2.1. Formulation of the linearised libration forcing problem
Consider a sphere, S, of radius R and volume V , filled with an incompressible fluid of
uniform density and temperature rotating with angular velocity Ω0 about a fixed axis êz .
The rotation axis defines the pole of the spherical-polar coordinate system (r, θ, ϕ) where
r is the radius, and θ and ϕ are colatitude and longitude, respectively. The amplitude of
the angular velocity of the spherical container, ΩS , is perturbed by a harmonic oscillation
about Ω0 of the form

ΩS(t)=Ω0(1 + ε cos(Ω0λt)), (2.1)

where ε� 1 and 0< λ< 2 are the amplitude and frequency of the oscillation, respectively,
and t is time. In what follows, all quantities are non-dimensionalised using the length scale
R and the time scale Ω−1

0 .
In the reference frame rotating with (dimensional) angular velocity Ω0 êz , the velocity

of the fluid, u, obeys the momentum equation

∂u
∂t

+ u · ∇u + 2êz × u + ∇P = E∇2u, (2.2)

where P is the reduced pressure that includes the centrifugal force, and the Ekman number
E is given by

E = ν

Ω0 R2 , (2.3)

where ν is the kinematic viscosity of the fluid.
The motion of the fluid is also subject to incompressible mass conservation

∇ · u = 0, (2.4)

and the following no-slip and non-penetration conditions at the surface, S of the spherical
container

êϕ · u|S = ε sin θ cos(λt), (2.5a)
êθ · u|S = 0, (2.5b)
êr · u|S = 0, (2.5c)

where êr , êθ and êϕ are the unit vectors of the spherical coordinate system.
The nonlinear term in equation 2.2 is second order in ε, which provides the basis for

ignoring its effects in the limit of weak forcing. Admittedly, the nonlinear term may still
become locally important even for quite weak forcing due, for example, to shear layers
associated with inertial wave attractors in the limit E → 0. Nonlinear effects contributing
to enhanced dissipation in these regions could render the linear estimates invalid even for
very weak forcing when the Ekman number is taken to be small enough. In all, determining
a threshold forcing amplitude associated with the onset of nonlinearities in the these flows
in the limit E → 0 is a formidable task which lies outside the scope of this work.

Because of the harmonic time dependence of the boundary condition (equation 2.5), we
restrict our attention to oscillatory solutions with harmonic periodicity and do not attempt
to capture any transient fluid motions resulting from a particular set of initial conditions.

1007 A1-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

97
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.97


I. MacPherson and M. Dumberry

In this limit, we seek solutions that have the form of complex phasors with frequency λ

u(r, t)= 1
2

(
q(r)eiλt + q†(r)e−iλt

)
, (2.6a)

P(r, t)= 1
2

(
φ(r)eiλt + φ†(r)e−iλt

)
, (2.6b)

where the spatial parts of the solution given by q and φ may be complex valued and †
represents complex conjugation. By substituting this ansatz into equations 2.2, 2.4, and
2.5 and neglecting the nonlinear term, we write the equivalent equations of motion in
terms of spatial variables alone and parametrised by the forcing frequency,

iλq + 2êz × q + ∇φ = E∇2q, (2.7a)
∇ · q = 0, (2.7b)

subject to the following conditions at the surface of the spherical container:

êϕ · q|S = ε sin θ, (2.8a)
êθ · q|S = 0, (2.8b)
êr · q|S = 0. (2.8c)

To consider the energy budget of the linearised system, we take the scalar product of u
with equation 2.2. Neglecting the nonlinear term, integrating over the volume V of the
fluid, using the divergence theorem and taking into account equations 2.4 and 2.5c leads
to the following power relation:

dK
dt

=P −D, (2.9)

where K is the net kinetic energy of the fluid, P is the power transferred into the fluid
region by viscous stresses at the librating boundary, and D is the dissipation in the bulk of
the fluid. In terms of the velocity field, they are expressed as

K =
∫

V

1
2
|u|2, (2.10a)

P = E
∫

S
(u ⊗ êr ) : (∇u + ∇uT ), (2.10b)

D = E
∫

V
∇u : (∇u + ∇uT ), (2.10c)

where ⊗ is the outer product and : denotes the full contraction of two second rank tensors.
Let us denote the integral time average of a quantity over a libration period, 2π/λ, that

begins at an arbitrary time t0 by

〈·〉 = λ

2π

∫ t0+2π/λ

t0
· dt. (2.11)

Since we restrict our attention to perfectly oscillatory solutions, the left hand side of
equation 2.9 vanishes under time averaging since〈

dK
dt

〉
= λ

2π

∫ t0+2π/λ

t0

dK
dt

dt = λ

2π

[K|t0+2π/λ −K|t0
] = 0. (2.12)

Then the time-average of equation 2.9 leads to the relation

〈P〉 = 〈D〉, (2.13)
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which states that for oscillatory solutions there must be equilibrium between the energy
added into the system and the energy dissipated in the bulk over the course of a libration
period. This assumes that the surface S has been librating at the same amplitude and
frequency for a sufficiently long time that any transient fluid motion due to different
conditions in the past has attenuated.

2.2. Numerical solution of the linear problem
To compute numerical solutions to equation 2.7, we use the following decomposition of
the velocity field q (e.g. Tilgner 1999):

q = ∇ × (∇ × (W êr ))+ ∇ × (Z êr ), (2.14)

where W and Z are the scalar poloidal and toroidal potential fields respectively; this
expansion automatically ensures that q satisfies mass conservation (equation 2.7b). The
scalar potentials are expanded as a summation of fully normalised surface spherical
harmonics Y m


 of degree 
 and order m

W (r)=

max.∑

=1


∑
m=−


W m

 (r)Y

m

 (θ, ϕ), (2.15a)

Z(r)=

max.∑

=1


∑
m=−


Zm

 (r)Y

m

 (θ, ϕ), (2.15b)

where W m

 (r) and Zm


 (r) are numerical coefficient functions and where

∫ 2π

0

∫ π

0
Y m

 (θ, ϕ)Y

m′

′ (θ, ϕ)

† sin θ dθ dϕ = δ

′δmm′ . (2.16)

By taking the operations er · ∇× and er · ∇ × (∇×) on equation 2.7a, then substituting
the decomposition (equation 2.14) into the resulting equations and making use of
equation 2.16 we obtain at each radius r and for each distinct pair (
,m) (see Rieutord
1987)

Am

 Zm


 = Cm

 W m


−1 + Dm

 W m


+1, (2.17a)
Am

 Bm


 W m

 = Cm


 Zm

−1 + Dm


 Zm

+1, (2.17b)

where Am

 , Bm


 , Cm

 and Dm


 are operators defined by

Am

 = i(
(
+ 1)λ− 2m)+ 
(
+ 1)E Bm


 , (2.18a)

Bm

 =

(

(
+ 1)

r2 − d2

dr2

)
, (2.18b)

Cm

 = 2(
− 1)(
+ 1)

√
(
− m)(
+ m)

(2
− 1)(2
+ 1)

[
d

dr
− 


r

]
, (2.18c)

Dm

 = 2
(
+ 2)

√
(
+ 1 − m)(
+ 1 + m)

(2
+ 1)(2
+ 3)

[
d

dr
+ 
+ 1

r

]
. (2.18d)
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Written in terms of W m

 and Zm


 , the boundary conditions (equation 2.8) on the spherical
surface at r = 1 are given by

Zm



∣∣
S = ε

√
4π
3
δ
1δm0, (2.19a)

W m



∣∣
S = 0 for all 
,m, (2.19b)

dW m



dr

∣∣∣∣
S
= 0 for all 
,m. (2.19c)

Due to symmetry the system of equations 2.17 decouples across spherical harmonic
order. Since longitudinal libration involves a purely axisymmetric forcing, we restrict our
attention to zonal coefficients with m = 0. Upon close examination, the structure of the
system of equations 2.17 implies that only those zonal toroidal coefficients Z0


 of odd
degree and poloidal coefficients W 0


 of even degree are non-zero in the solution; these
modes comprise the equatorially symmetric part of the field q. The set of zonal coefficients
of reverse symmetry comprise the equatorially anti-symmetric part of the solution which
vanishes due to the equatorial symmetry of the forcing. Equations 2.17 can therefore be
structured formally as the following tri-diagonal matrix system⎡

⎢⎢⎢⎢⎣
A0

1 −D0
1 0 0 0 . . . 0

−C0
2 A0

2 B0
2 −D0

2 0 0 . . . 0
0 −C0

3 A0
3 −D0

3 0 . . . 0
...

. . .
. . .

. . .
...

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Z0
1

W 0
2

Z0
3
...

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Ẑ0
1

0
0
...

⎤
⎥⎥⎥⎥⎦ (2.20)

where the symbol Ẑ0
1 is a place holder for the term that arises due to the libration

forcing boundary condition, the exact form of which is determined by the choice of radial
discretisation.

To solve the system of ordinary differential equations (ODEs), we use a second-order
finite difference scheme on a radial grid of N Chebyshev like points that are modified by
the nonlinear scaling suggested by Lin et al. (2023)

rk = cos
(
π

2
k

N

) [
1 + 0.45 sin2

(
π

2
k

N

)]
, k = 0, 1, . . . , N − 1. (2.21)

This choice of radial grid concentrates the points in the thin boundary layer.
Once discretised, the system is solved directly by Gaussian elimination. Additional
considerations are necessary to ensure regularity of the solution at the origin; although
they use a spectral approach for the radial discretisation, Lin et al. (2023) provides relevant
information on this subject as well as further references.

Let N denote the number of radial grid points used in the discretisation, while 
max .
denotes the maximal spherical harmonic degree used in the solution. The resolution that
is necessary to sufficiently converge the numerical solution depends strongly on E . Lower
values of E demand that an increasingly small boundary layer be resolved. As such, in
our calculations we found a resolution of N = 160, 
max . = 80 was sufficient for E =
10−4 − 10−5, while N = 250 and 
max . = 180 for E = 10−6 − 10−7, and finally N = 350,

max . = 250 was used for E = 10−8. At these resolutions all computations were practical
on a regular PC, to access even lower values of E numerically, the required resolution
demands a larger amount of memory than is typical for a regular PC.

The linearised approach is valid for ε� 1. The nonlinear perturbations to the linearised
solution that arise from its self interaction scale with ε2, but the dependence on E has

1007 A1-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

97
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.97


Journal of Fluid Mechanics

not been extensively explored. At larger forcing amplitude the Ekman layer becomes
centrifugally unstable (e.g. Noir et al. 2009; Calkins et al. 2010). Numerical results
reported by Calkins et al. (2010) for libration with a rotating spherical shell show that
Taylor–Görtler vortices form at first in the equatorial region when ε > 46E1/2, however,
these results are not necessarily valid below E = 10−6. At lower Ekman numbers the
influence of the nonlinearities may be significant in localised regions like those associated
with attractors (Boury et al. 2021) for weaker forcing than the boundary layer stability
criterion of Calkins et al. (2010) suggests. In particular, nonlinear production of vorticity
in these localised regions could have a significant influence on total dissipation even at
low forcing amplitudes.

2.3. Approximate solution by matched asymptotics
In this section we construct an approximate analytical solution to the linearised problem
(equation 2.7). Motivated by the smallness of E and following the general approach of
Greenspan (1968), we seek an asymptotic solution to equation 2.7 that has the form

q = q0 + q1 E1/2 + q2 E +O(E3/2), (2.22)

φ = φ0 + φ1 E1/2 + φ2 E +O(E3/2). (2.23)

We then deal with the solution to each term separately. The leading-order terms, q0, φ0
as well as the first-order correction terms, q1, φ1 satisfy the inviscid momentum equation
asymptotically

iλ(q0 + E1/2q1)+ 2êz × (q0 + E1/2q1)+ ∇(φ0 + E1/2φ1)=O(E). (2.24a)

It is well known (e.g. Greenspan 1968; Zhang et al. 2004; Kida 2011; Lin et al. 2023)
that equation 2.24 is an overdetermined problem when subject to both no-slip and non-
penetration boundary conditions (equation 2.8). This necessitates the existence of a
boundary layer solution that is introduced as follows:

q = b0 +ψ0 + (b1 +ψ1)E
1/2 + (b2 +ψ2)E +O(E3/2), (2.25)

φ = φb0 + φψ0 + (φb1 + φψ1)E
1/2 + (φb2 + φψ2)E +O(E3/2). (2.26)

The part denoted by b, φb is the solution in the interior region which satisfies equation
2.24 and ψ , φψ is the solution in the boundary layer.

2.3.1. Ekman boundary layers
The boundary layer expansion is handled by the introduction of a stretched boundary layer
coordinate (e.g. Zhang et al. 2004)

ξ = 1 − r

E1/2 . (2.27)

Furthermore, it is assumed that the gradients of boundary layer quantities are O(E−1/2)
in the normal (radial) direction and O(1) in the lateral directions

∂ψ

∂r
= −E−1/2 ∂ψ

∂ξ
=O(E−1/2),

∂ψ

∂θ
,
∂ψ

∂ϕ
=O(1). (2.28)

These assumptions lead to the following greatly simplified version of equation 2.7 that is
accurate to leading order in the boundary layer (e.g. Ekman 1905)
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iλ(êθ ·ψ0)− 2(êϕ ·ψ0) cos θ = ∂2(êθ ·ψ0)

∂ξ2 , (2.29a)

iλ(êϕ ·ψ0)+ 2(êθ ·ψ0) cos θ = ∂2(êϕ ·ψ0)

∂ξ2 . (2.29b)

If the lateral motion of the boundary layer at the surface S is specified by an arbitrary
vector field v with êr · v ≡ 0, then the solution to equations 2.29 that satisfies the no-slip
condition on S with respect to this lateral motion is given by

Ψ 0{v} = 1
2
(C+{v} exp(−γ+ξ)+ C−{v} exp(−γ−ξ)) êθ ,

+ 1
2i
(C+{v} exp(−γ+ξ)− C−{v} exp(−γ−ξ)) êϕ,

(2.30)

where

C±{v} = (êθ · v)± i(êϕ · v), (2.31a)

γ± = √|λ± 2 cos θ | exp
(

i
π

4
sign{λ± 2 cos θ}

)
. (2.31b)

Moreover, the O(E1/2) radial Ekman pumping at the bottom of the boundary layer is
derived from mass conservation (∇ · (ψ0 + E1/2ψ1)= 0)

Φ1{v}(θ, ϕ) := lim
ξ→∞(êr ·ψ1(ξ ; θ, ϕ))

= 1
sin θ

∫ ∞

0

(
∂(êθ ·Ψ 0{v}(ξ ′; θ, ϕ) sin θ)

∂θ
+ ∂(êϕ ·Ψ 0{v}(ξ ′; θ, ϕ))

∂ϕ

)
dξ ′.

(2.32)

The Ekman pumping is evaluated for the general solution (equation 2.30) for an arbitrary
lateral forcing v to yield

Φ1{v} = 1
2 sin θ

[
∂

∂θ

(
sin θ

(C+{v}
γ+

+ C−{v}
γ−

))
− i

∂

∂ϕ

(C+{v}
γ+

− C−{v}
γ−

)]
. (2.33)

For longitudinal librations, taking v = sin θ êϕ in equations 2.30 and 2.33 yields

Ψ 0{sin θ êϕ} = −sin θ
2i

(exp(−γ+ξ)− exp(−γ−ξ)) êθ

+ sin θ
2

(exp(−γ+ξ)+ exp(−γ−ξ)) êϕ,
(2.34a)

Φ1{sin θ êϕ} = − 1
2i sin θ

∂

∂θ

(
sin2 θ

(
1
γ+

− 1
γ−

))
. (2.34b)

Equations 2.34 comprise the leading-order response in the boundary layer to the
longitudinal libration motion of the surface S with ε= 1.

2.3.2. The interior region
Now we are equipped to address the interior flow b, φb. By equations 2.24–2.26, and
since the boundary layer component of the solution vanishes in the interior region, the
leading-order term in the interior solution satisfies

iλb0 + 2êz × b0 + ∇φb0 =O(E1/2), (2.35a)

∇ · b0 =O(E1/2), (2.35b)
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and the non-penetration condition on the sphere surface S

êr · b0
∣∣
S = 0. (2.36)

The solution of this system is a superposition of the inviscid inertial modes of the sphere
(see Greenspan (1964); Ivers et al. (2015); Zhang & Liao (2017) for details)

b0 =
∑

,k,m

A
,k,m q
,k,m, (2.37a)

φb0 =
∑

,k,m

A
,k,mφ
,k,m, (2.37b)

where A
,k,m are the amplitude coefficients of the modes and 
, k,m are the wavenumber
indices in the notation of Greenspan (1968) of the eigenfunction solutions. The
wavenumbers broadly control the spatial scales of the modes such that their volumetric
damping under the influence of viscosity is proportional to 
2, k2 and m2. For sufficiently
large wavenumbers it is possible for the volumetric damping to become outsised, such that
‖∇2q
,k,m‖�O(E−1/2), violating the assumption of approximately inviscid dynamics for
the first-order correction to the interior flow, b1, φb1 (see equation 2.24). To construct a
solution that is consistent with the asymptotic expansion (equation 2.26) where the viscous
term is neglected in the O(E1/2) interior solution, it is necessary to restrict the expansion
to those inertial modes with 
, k,m �O(E−1/4) (see Zhang et al. 2004). The high
wavenumber modes play a negligible role in the solution since they have overwhelming
volumetric dissipation which prevents them from ever attaining significant amplitude.

The eigenfunctions q
,k,m , φ
,k,m each satisfy the inviscid equations

iλ
,k,m q
,k,m + 2êz × q
,k,m + ∇φ
,k,m = 0, (2.38a)
∇ · q
,k,m = 0, (2.38b)

subject to non-penetration on the surface S of the sphere

êr · q
,k,m
∣∣
S = 0. (2.39)

Although the eigenvalues lie in the range −2< λ
,k,m < 2, the distribution is symmetrical
for zonal modes (m = 0), the only modes excited by longitudinal libration; that is, for each
eigenvalue λ
,k,0, the value −λ
,k,0 is also an eigenvalue (corresponding to inertial waves
travelling in the opposite direction). Moreover, the eigenvalues are all real valued. It is
useful to note (Greenspan 1968) that the pressure eigenfunctions satisfy on the surface of
the sphere (only at r = 1)

φ
,k,m |S(θ, ϕ)=N
,k,mY m

 (θ, ϕ), (2.40)

where N
,k,m is an arbitrary constant that depends on the choice of normalisation, and
Y m

 is a degree 
 and order-m surface spherical harmonic. The expression of the surface

pressure distribution in terms of Y m

 provides a clear interpretation of the mode indices


, m. The third index, k, takes a finite number of values for each pair (
,m) and selects
the internal structure of the mode. Finally, it will be necessary in the solution to use the
orthogonality of the inertial modes (Greenspan 1964; Ivers et al. 2015)∫

V
q
,k,m · q†


′,k′,m′ = δ

′δkk′δmm′
∫

V
|q
,k,m |2. (2.41)
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This orthogonality relation implies that the amplitude of each eigenmode that appears in
equation 2.37 is determined by the Fourier type integral

A
,k,m = 1∫
V |q
,k,m |2

∫
V

b0 · q†

,k,m . (2.42)

The numerical values of the coefficients A
,k,m depend on the choice of normalisation for
the inertial modes. In this work we shall always use the same normalisation as Zhang et al.
(2004, 2013); Zhang & Liao (2017) in order to facilitate direct comparison between results
when possible. The normalisation is arbitrary and is designed to allow the simplest form
of the inertial modes in spherical-polar coordinates. It is defined as follows for the zonal
(m = 0) and equatorially symmetric (
 even) modes∫

V
|q
,k,0|2 =


/2∑
i=0


/2−i∑
j=0


/2∑
q=0


/2−q∑
n=0

[
(−1)i+ j+q+nπ

2(2(i + j + q + n)+ 1)!!
]

×
[

8iq(2i + 2q − 3)!!( j + n)!
λ2

,k,0

+ jn(1 + λ2

,k,0/4)(2i + 2q − 1)!!( j + n − 1)!

(1 − λ2

,k,0/4)

2

]

×
[(
λ
,k,0

2

)2(i+q) (1 − λ2

,k,0/4)

j+n(2(
/2 + i + j)− 1)!!(2(
/2 + q + n)− 1)!!
(2i − 1)!!(2q − 1)!!(
/2 − i − j)!(
/2 − q − n)!i !q!( j !)2(n!)2

]
,

(2.43)

where (2i − 1)!! = (2i − 1)(2i − 3) . . . (3)(1) and (−1)!! = 1 and (0)! = 1.
Libration forcing only excites those zonal modes with equatorial symmetry (even 
).


= 4 is the lowest degree at which a mode exists. For such modes the number of values
taken by the index k is 
/2 − 1, that is, for 
= 4 there is only one mode (4, 1, 0), while
for 
= 6 there are two, (6, 1, 0) and (6, 2, 0) and so on. Let 
max. be the maximal modal
degree excited to leading order in the expansion of b0. The total number of modes excited
to leading order is then

Nexcited = 
max.

4

(

max.

2
− 1

)
. (2.44)

Respecting the restriction of the expansion to low wavenumber modes we have 
max . �
O(E−1/4) which implies that Nexcited �O(E−1/2).

The objective is now to determine an expression for the modal coefficients, A
,k,m .
Previous studies (e.g. Greenspan 1968; Zhang et al. 2013; Lin et al. 2023) have derived
analytical expressions for the amplitude A
,k,m of an individual inertial mode when
the system is forced at precisely the resonant frequency λ
,k,m of that mode. Under
this resonance condition, the amplitude A
,k,m driven purely by the Ekman pumping is
independent of E . The explanation of this phenomenon is as follows. When an inertial
mode is excited to resonance the boundary layer flow must adjust to ensure that the no-slip
condition remains satisfied. The adjustment of the boundary layer leads to an additional
O(E1/2) Ekman pumping that acts like a drag force on the mode, opposing the Ekman
pumping induced by the viscous coupling, and thus damping the excitation. Because the
damping and forcing are each O(E1/2), the excitation amplitude is then O(1), that is,
independent of E in the asymptotic limit.

In the theoretical development by Greenspan (1968) the viscous damping of the inertial
mode is derived separately from the forcing problem as a O(E1/2) correction to the natural
frequency of the mode. The correction to the frequency adds an imaginary part scaling
with E1/2 that captures the damping. Then, separately, Greenspan (1968) derives an
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expression for the amplitude A
,k,m in the context of the forcing problem. This expression
involves a term (λ− λ
,k,m) on the denominator which seemingly produces a divergent
amplitude if λ
,k,m = λ. However, instead of using the real eigenvalue λ
,k,m , it is the
O(E1/2) correction that is substituted and its imaginary part means that (λ− λ
,k,m) 
= 0
for any real valued forcing frequency λ; this leads to a finite resonance that is damped by
viscosity.

The approach used by both Zhang et al. (2013) and Lin et al. (2023) is to treat the
correction to the boundary layer flow induced by an inertial mode simultaneously to that
which is induced by the viscous coupling to the laterally moving surface. Ultimately, they
find the same result as Greenspan (1968) for the resonant amplitude of the inertial mode
when λ
,k,m = λ but without the added step of separately deriving the damping factor as a
correction to the natural frequency of the mode.

Here, we use an approach that extends the techniques used by Lin et al. (2023) and
Zhang et al. (2013) to determine the leading-order amplitude of all inertial modes not only
for λ= λ
,k,m , but for a range of forcing frequencies in a window around each resonant
peak. The correction to the boundary layer flow that is induced by the excitement of
inertial modes is taken into account simultaneously to the boundary layer that forms in
response to the libration of S. Since the inertial modes are excited by the radial Ekman
pumping, we turn our attention to the first-order correction b1, φb1 in the expansion of
equations 2.24–2.26, this O(E1/2) flow must match the O(E1/2) Ekman pumping from
the full boundary layer solution. This first-order correction satisfies the inviscid equations
in the bulk

iλb1 + 2êz × b1 + ∇φb1 =O(E1/2), (2.45)

∇ · b1 =O(E1/2), (2.46)

and the matching condition implies an inhomogeneous boundary condition on the
surface S

êr · b1
∣∣
S = lim

ξ→∞ êr ·ψ1 =Φ1{ψ0|S}. (2.47)

From equations 2.24–2.26 we infer that together, the leading-order interior solution b0, φb0
and the first-order correction b1, φb1 satisfy the following equation in the interior region:

iλ(b0 + E1/2b1)+ 2êz × (b0 + E1/2b1)+ ∇(φ0 + E1/2φ1)=O(E). (2.48)

The inertial mode expansion (equation 2.37) is substituted to equation 2.48 and use
is made of the orthogonality of the modes (equation 2.41), we obtain, after algebraic
manipulations, the following expression:

i(λ− λ
,k,m)
[
A
,k,m + E1/2

∫
V b1 · q†


,k,m∫
V |q
,k,m |2

]
= − E1/2∫

V |q
,k,m |2
∫

S
φ

†

,k,m(êr · b1)+O(E).

(2.49)

The details of the derivation of this expression are given in Appendix A. Note that
equation 2.49 links the coefficients, A
,k,m of the inertial mode expansion of b0
(equation 2.37) to the matching condition (equation 2.47) involving the correction b1.

Now that the link between the Ekman pumping and the modal coefficients of the
leading-order solution is established, we turn our attention to the no-slip boundary
condition and libration forcing that determine the Ekman pumping itself. The no-slip
boundary condition on the surface S (equation 2.8) for the leading-order terms implies
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b0|S + ψ0|S = ε sin θ êϕ +O(E1/2). (2.50)

Substituting the inertial mode expansion of b0 (equation 2.37) the leading-order boundary
layer solution ψ0 must obey the boundary condition

ψ0
∣∣
S = ε sin θ êϕ −

∑

,k,m

A
,k,m q
,k,m |S. (2.51)

Because the governing equations 2.29 are linear, the solution can be written as follows:

ψ0 = εΨ 0{sin θ êϕ} −
∑

,k,m

A
,k,mΨ 0{q
,k,m |S}, (2.52)

where Ψ 0{sin θ êϕ} is given by equation 2.34a.
Each part of the solution in equation 2.52 induces a radial Ekman pumping

Φ1{ψ0|S} = lim
ξ→∞(êr ·ψ1)= εΦ1{sin θ êϕ} −

∑

,k,m

A
,k,mΦ1{q
,k,m |S}, (2.53)

where Φ1{sin θ êϕ} is given by equation 2.34b. By substituting equation 2.53 into
equation 2.49 using the matching condition (equation 2.47) we obtain

i(λ− λ
,k,m)
[
A
,k,m + E1/2

∫
V b1 · q†


,k,m∫
V |q
,k,m |2

]
− E1/2

∑

′,k′,m′

A
′,k′,m′S(1)
,k,m{q
′,k′,m′ |S}

= −E1/2εS(1)
,k,m{sin θ êϕ} +O(E),
(2.54)

where S(1)
,k,m is defined by

S(1)
,k,m{·} = 1∫
V |q
,k,m |2

∫
S
φ

†

,k,mΦ1{·}. (2.55)

When this integral is evaluated for the Ekman pumping that results from the mode
itself, S
,k,m{q
,k,m}, it is identical to the viscous damping correction (equation 2.9.12)
of Greenspan (1968). On the other hand, when it is evaluated for the Ekman pumping that
results from the lateral motion of the boundary, S
,k,m{sin θeϕ}, it bears resemblance to
the forcing integral (equation 2.13.17) of Greenspan (1968).

By comparing the order of terms in equation 2.54 we must have

i(λ− λ
,k,m)A
,k,m =O(E1/2), (2.56)

for each (
, k,m). The set of all eigenvalues λ
,k,0 is dense in [0, 2] meaning that
λ− λ
,k,m =O(E1/2) may in principle be simultaneously true for multiple inviscid
eigenvalues. However, modes of a sufficiently large wavenumber are never excited due
to their volumetric damping so the total number of modes excited to leading order is
Nexcited �O(E−1/2) (equation 2.44). The factor δλ= 1/Nexcited serves as a heuristic for
the typical spacing between low wavenumber eigenvalues in the frequency domain. Note
that δλ�O(E1/2) This gives some basis for assuming that λ− λ
,k,m =O(E1/2) can
only be satisfied asymptotically for a single low wavenumber eigenvalue λ
,k,m at a time.
Our numerical results in figure 5 serve to validate this assumption, for example when
E = 10−4, there are only Nexcited ∼ 5 prominently excited modes, while E−1/2 = 100.

We therefore assume that there is a O(E1/2) frequency window around each low
wavenumber inertial mode eigenvalue. Then, for the other eigenvalues λ
′,k′,m′ 
= λ
,k,m
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we have that, λ− λ
′,k′,m′ =O(1), which implies A
′,k′,m′ =O(E1/2) by equation 2.56
making all terms in the summation in equation 2.54 O(E), except the term involving
A
,k,m . Additionally, due to the assumption that λ− λ
,k,m =O(E1/2), the term involving
the inner product

∫
V b1 · q†


,k,m becomes O(E). Under these assumptions and only
retaining the terms that are then O(E1/2) in equation 2.54 we obtain the following closed
form solutions for the modal amplitudes as a function of forcing frequency

A
,k,m(λ)= − εS(1)
,k,m{sin θ êϕ}
i(λ− λ
,k,m)/E1/2 − S(1)
,k,m{q
,k,m |S}

+O(E1/2). (2.57)

By setting λ= λ
,k,m equation 2.57 reduces to equation 30 of Lin et al. (2023). However,
our solution for A
,k,m is valid for a range of frequencies in the vicinity of λ
,k,m .

Consider the square modulus of the amplitude coefficient which is essentially a Cauchy–
Lorentz distribution in frequency

|A
,k,m |2(λ)=
ε2

∣∣∣S(1)
,k,m{sin θ êϕ}
∣∣∣2

E−1
[
λ−

(
λ
,k,m + E1/2Im

[
S(1)
,k,m{q
,k,m |S}

])]2+ Re
[
S(1)
,k,m{q
,k,m |S}

]2 .

(2.58)

We then see that the imaginary part of S(1)
,k,m{q
,k,m |S} induces a O(E1/2) shift of the

frequency of the peak, while the real part of S(1)
,k,m{q
,k,m |S} represents damping and
controls the maximal height of the resonance peak. It is worth emphasising that the
compatibility integrals S(1)
,k,m have their own implicit dependence on the forcing frequency
λ through equation 2.33 for the Ekman pumping, this feature is not retrieved when the
damping factor is derived separately as a frequency correction as in Greenspan (1968).
The frequency dependence arises due to the complex wave-numbers γ± (equation 2.31b),
which are independent of E . Due to this fact, the subtle frequency dependence of S(1)
,k,m
becomes less important as the frequency window λ− λ
,k,m =O(E1/2) is progressively
narrower in the limit E → 0. This means that we can obtain asymptotically valid
expressions related to the maximum of equation 2.58 by simply ignoring the frequency
dependence of the compatibility integrals. With this in mind, the (asymptotically valid)
maximal value of |A
,k,m |2 is given by

|A
,k,m |2 = ε2

∣∣∣S(1)
,k,m{sin θ êϕ}
∣∣∣2

Re
[
S(1)
,k,m{q
,k,m |S}

]2 , (2.59)

which is achieved at the frequency

λ(
,k,m)max. = λ
,k,m + E1/2Imag
[
S(1)
,k,m{q
,k,m |S}

]
. (2.60)

The square modulus of the amplitude coefficient takes half of its maximal value when

λ−
(
λ
,k,m + E1/2Im

[
S(1)
,k,m{q
,k,m |S}

])
= E1/2

∣∣∣Re
[
S(1)
,k,m{q
,k,m |S}

]∣∣∣ , (2.61)

which means that the frequency widths of the resonance peaks are O(E1/2). Figure 1
shows a comparison between the frequency λ(
,k,m)max. (equation 2.60) and the frequency λ at
which the true maximum (including the frequency dependence of S(1)
,k,m) of equation 2.58
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Figure 1. Difference between the frequency λ at which equation 2.58 achieves its maximum (solid lines) and
the inviscid eigen-frequency for three modes (colour in legend) as a function of E . The dashed lines show the
O(E1/2) correction to the natural frequency λ
,k,m (equation 2.60) when ignoring the frequency dependence
of S(1)
,k,m for the same three modes.

is achieved for three fundamental inertial modes and as a function of E . Indeed, in the
limit E → 0 these quantities come into close correspondence with each other within a
O(E1/2) window about each natural frequency. Figure 1 also confirms that, as E → 0, the
frequency dependence of S(1)
,k,m becomes negligible and that equation 2.60 approximates
well the viscous detuning of the frequency position of the resonance maximum.

With the expression for the modal amplitude coefficients in hand, we can now write
down the leading-order solution for an arbitrary forcing frequency

q0 = εΨ 0{sin θ êϕ} −
∑

,k,m

A
,k,mΨ 0{q
,k,m |S} +
∑

,k,m

A
,k,m q
,k,m . (2.62)

This solution is referred to as the ‘matched asymptotic’ solution or simply by MA from
this point onward. Figure 2 shows a comparison between the modal coefficients predicted
by equation 2.57 and the linear numerical solution computed by the method in § 2.2 at
E = 10−7. The modal amplitude coefficients of the numerical solution are approximated
as follows:

A(num.)

,k,m = 1∫

V |q
,k,m |2
∫

V
qnum. · q†


,k,m, (2.63)

where qnum. denotes the velocity field of the numerical solution at a given frequency.
The matched asymptotic solution agrees well with the numerical solution in the vicinity
of resonance peaks, generally confirming the predicted amplitude and width. Away from
resonant peaks (i.e. in the trough regions of the spectrum discussed by Lin et al. (2023))
the matched asymptotic solution is less accurate because features of the flow involving
length scales other than E1/2 become relatively important in the absence of inertial mode
excitations.

2.3.3. Time-averaged dissipation and kinetic energy
Equation 2.13 is convenient since it allows us to evaluate the time-averaged dissipation in
the fluid by a surface integral where the boundary layer approximation applies. Once again
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Figure 2. The (a) real and (b) imaginary parts of the inertial mode amplitude coefficients predicted by the
matched asymptotic solution in equation 2.57 (dashed lines) and the inertial mode amplitude coefficients of the
linear numerical solution computed by equation 2.63 (solid lines) as a function of libration frequency λ in a
small window around their eigenfrequency, λ
,k,m for several choices of inertial mode indices (
, k,m) (colour
in legend). The frequency windows are renormalised by

√
E , where E = 10−7. These results have the forcing

amplitude fixed at ε= 1.

invoking the boundary layer scaling of equation 2.28, it follows that

〈D〉 = E
∫

S
〈(u ⊗ êr ) : (∇u + ∇uT )〉 = −E1/2

∫
S

∂

∂ξ

〈
1
2
|u|2

〉
+O(E). (2.64)

By evaluating equation 2.64 for the leading-order asymptotic solution (equation 2.62) we
obtain

〈D〉M A(λ)= ε2 E1/2π

2
√

2

∫ π

0
sin3 θ

[
|λ+ 2 cos θ |1/2 + |λ− 2 cos θ |1/2

]
dθ

− εE1/2π

2

∑

,k,m

Imag
{
A
,k,m(λ)

∫ π

0
sin2 θ

[C+{q
,k,m |S}γ+ − C−{q
,k,m |S}γ−
]

dθ
}

+O(E).
(2.65)

Note that this expression shows the dissipation of the MA solution is O(E1/2) and
scales with ε2 (note the factor of ε contained by each A
,k,m , equation 2.57). The first
term represents the dissipation contributed by the primary Ekman layer, Ψ 0{sin θ êϕ},
associated with viscous coupling to the libration forcing. The remaining terms represent
the interactions between the primary Ekman layer and the Ekman layers that form as
viscous corrections to the inertial modes excited in the bulk. This term turns out to lead to
reduced dissipation near inertial mode resonances. We also evaluate the (time-averaged)
kinetic energy integral (equation 2.10a) for the leading-order asymptotic solution (equation
2.62) to obtain
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〈K〉M A(λ)= 1
4

∑

,k,m

|A
,k,m |2
∫

V
|q
,k,m |2

+ ε2 E1/2

4

∫
S

[∫ ∞

0
|Ψ 0{sin θ êϕ}|2dξ

]

− εE1/2

2

∑

,k,m

Real
{
A†

,k,m

∫
S

[∫ ∞

0
Ψ 0{sin θ êϕ} ·Ψ 0{q
,k,m |S}†dξ

]}

+ εE1/2

2

∑

,k,m

Real
{
A†

,k,m

∫
S

[∫ ∞

0
Ψ 0{sin θ êϕ}dξ · q†


,k,m

]}

− E1/2

2

∑

,k,m

|A
,k,m |2Real
{∫

S

[∫ ∞

0
Ψ 0{q
,k,m |S}dξ · q†


,k,m

]}

+ E1/2

4

∑

,k,m

|A
,k,m |2
∫

S

[∫ ∞

0
|Ψ 0{q
,k,m |S}|2dξ

]
+O(E).

(2.66)

Note that the first term is O(1) and corresponds to the kinetic energy of the bulk inertial
mode flows. We have also retained all the first-order corrections at O(E1/2) which
represent the (leading-order) kinetic energy stored in the boundary layer. Although these
expressions are lengthy, the terms that solely involve the boundary layer response to the
libration of S itself, Ψ 0{sin θ êϕ}, can be evaluated explicitly yielding

〈D〉BL(λ)= −ε
2 E1/2

4

∫
S

∂

∂ξ
(|Ψ 0{sin θ êϕ}|2)

= 2πε2 E1/2

15
√

2

[
(2 − λ)5/2 + (2 + λ)5/2 − 1

7

(
(2 − λ)7/2 + (2 + λ)7/2

)]
,

(2.67)

〈K〉BL(λ)= ε2 E1/2

4

∫
S

[∫ ∞

0
|Ψ 0{sin θ êϕ}|2dξ

]

= πε2 E1/2

3
√

2

[
(2 − λ)3/2 + (2 + λ)3/2 − 1

5

(
(2 − λ)5/2 + (2 + λ)5/2

)]
,

(2.68)

valid only for |λ|� 2. Equations 2.68 and 2.67 represent the time-averaged kinetic energy
and dissipation that is due solely to the viscous coupling to the oscillating solid boundary;
they express the baseline frequency dependence of the boundary layer response that is
driven by the boundary motion before the influence of inertial mode excitation in the
interior region is taken into account.

As 2.67 shows, the dissipation caused by the flow adjustment in the viscous boundary
layer to the librating boundary scales as E1/2. Because the amplitude of inertial modes in
the interior region is (at most) independent of E , the contribution of inertial modes to the
dissipation also scales as E1/2 (see equation 2.65). However, it is a priori unclear whether
inertial modes lead to an enhancement or reduction of the overall dissipation, and whether
this change is significant compared with 〈D〉BL . We will show in our results that, at
frequencies matching inertial modes with the largest spatial scales (lowest wavenumbers),
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dissipation decreases by as much as approximately 10 %. This decrease is caused by the
second term in equation 2.65.

2.4. Critical latitude singularity and shear layers
One aspect of the linear response of the fluid is not addressed by the matched asymptotic
analysis presented in §2.3. It has long been known that the boundary layer solution
(equation 2.30) breaks down around certain ‘critical circles’ (e.g. Proudman 1956; Roberts
& Stewardson 1963; Stewartson 1966) of constant latitude. This occurs when γ± = 0 in
equation 2.31b, i.e. for the latitude angles α± such that

sin α± = ±λ
2
. (2.69)

The apparent singularity in the Ekman pumping at the critical latitude is an artefact of the
chosen boundary layer scaling. Roberts & Stewardson (1963) showed that the singularity
can be removed by a different choice of scaling, where the boundary layer thickens to
a depth scaling with E2/5 over an angular size scaling with E1/5 centred on the critical
latitudes; these scalings have been confirmed by the recent theoretical and numerical work
of Kida (2011) and Lin & Noir (2021).

The modification to the boundary layer scalings near the critical latitudes leads to an
additional localised Ekman pumping with modified asymptotic scaling. The influence of
these bands of locally intensified Ekman pumping is propagated around the interior region
by inertial waves that roughly satisfy the inviscid equation 2.24. For an incompressible
fluid, the velocity field can be eliminated from the momentum equation (e.g. Kerswell
1995) which leads to the Poincaré equation for an inviscid pressure field φ in the interior
region

∇2φ = 4
λ2
∂2φ

∂z
, (2.70)

where z is the coordinate along the rotation axis. When |λ|< 2, the Poincaré equation
is hyperbolic (Kerswell 1995; Le Bars et al. 2015) and supports inertial wave solutions.
Such solutions propagate along special surfaces called characteristics. The characteristic
surfaces are cones co-axial with the rotation axis with the half-apex angle α (Rieutord
et al. 2001). The transport of the localised critical latitude Ekman suction along the
conical characteristic surfaces leads to a pattern of shear layers in the bulk which has
been explicitly computed by Kida (2011). These shear layers inherit the width scaling with
E1/5 and have an amplitude that also scales as E1/5 (Lin & Noir 2021). Figure 3 provides
a schematic illustration of the propagation of the shear layers from the critical latitude in
a meridional plane.

The path followed by the shear layers as they reflect off of the boundaries of the
container has been studied by Maas & Lam (1995), Rieutord & Valdettaro (1997) and
Rieutord et al. (2001, 2002) where the mapping that represents successive reflections of
the characteristics is treated as a discrete-time dynamical system. For the full sphere the
situation is straightforward, as Rieutord et al. (2001) have shown that when the critical
latitude α satisfies for some integers p, q

α= π

2
p

q
, (2.71)

then the characteristics form closed periodic orbits that return to their initial point after a
finite number of reflections. Conversely, for all α that are not rational multiples of π/2,
the characteristics never return to their initial point. At these frequencies the mapping
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Figure 3. Diagram after Kerswell (1995) that illustrates the viscous response in a meridional plane of the full
sphere to longitudinal libration forcing of its outer boundary. The path of the shear layer spawned from the
critical latitude, α, is shown in red, the boundary layer in grey and the asymptotic scalings with E of several
aspects of the solution are indicated.

is ergodic meaning that the characteristics eventually touch all points in the spherical
volume. Rieutord et al. (2001) connect these ergodic frequencies to the eigenfrequencies,
λ
,k,m , of the inviscid inertial modes. Readers are directed to Rieutord et al. (2000) for a
comprehensive discussion of the dynamics of the characteristics of the inviscid system in
a general container.

From equations 2.10a and 2.10c and the geometric properties outlined in figure 3 we
can build expected scaling laws for the dissipation and kinetic energy contributions of the
critical latitude shear layers when they lie on closed periodic orbits. The contribution of
the shear layers to the kinetic energy, 〈K〉SL , is O(E3/5), while their contribution to the
dissipation, 〈D〉SL , is O(E6/5). This implies that for small values of E , 〈D〉SL � 〈D〉BL .
In addition to the shear layers in the bulk, we may also consider the contribution of
the critical latitude bulges to the dissipation and kinetic energy. Let |q|C L denote the
amplitude of the velocity field within the critical latitude bulges, then their contribution to
the dissipation, 〈D〉C L , is O(|q|2C L E4/5), while their contribution to the kinetic energy,
〈K〉C L , is O(|q|2C L E3/5). We are not aware of an established scaling law for |q|C L ,
although the results shown in Lin & Noir (2021) appear to suggest that |q|C L should
depend only very weakly on E . Ultimately the scaling with E of the velocity field
in the critical latitude bulge will determine whether the contribution of the bulge to
dissipation and kinetic energy dominates over that of the bulk shear layers in the limit
E → 0. Certainly we can expect that |q|C L �O(1) so that we at least know a priori that
O(〈D〉C L) <O(〈D〉BL). In our results we seek to resolve this question, and to investigate
the validity of these expected scaling laws.
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Figure 4. The time-averaged dissipation, 〈D〉 (blue, left axis) and the kinetic energy, 〈K〉 (red, right axis)
as a function of the libration frequency, λ. The solid curves show the results from the linear numerical (LN)
model and the dashed curves are for the pure boundary layer (BL) approximation (equation 2.68 and 2.67). The
Ekman number is fixed at E = 10−6. The kinetic energy peaks and dissipation troughs associated with some of
the lower-order inertial modes are indicated by the labels (
, k,m).

3. Results
For all our numerical results the amplitude of the libration is fixed as ε= 1. The velocity
field scales linearly with ε so it is straightforward to scale all results to any choice
of ε. Figure 4 shows the time-averaged dissipation, 〈D〉L N , and kinetic energy, 〈K〉L N ,
computed with the linear numerical (LN) model as a function of the longitudinal libration
frequency, λ. The frequency range is restricted to 0< λ< 2 and we have chosen the
moderate value E = 10−6 to demonstrate the general features of the spectrum. This
kinetic energy spectrum has already been computed by Lin et al. (2023) but, here, we
also show the associated dissipation. The boundary layer estimates 〈D〉BL and 〈K〉BL
from equations 2.67 and 2.68, which only takes into account the direct boundary layer
response to viscous coupling, captures the broad trend of the frequency dependence of the
dissipation and kinetic energy. However, in the vicinity of inertial mode eigenvalues, the
dissipation spectrum features narrow valleys that mirror the resonance peaks in the kinetic
energy spectrum. In these regions the dissipation is reduced by as much as approximately
10 % from the estimate in equation 2.67. To provide a sense of how the features of the
dissipation spectrum depend on E , figure 5 shows the ratio 〈D〉L N / 〈D〉BL for several
choices of E . This reveals that as E is reduced (moving toward the planetary regime)
the valley regions associated with inertial mode excitations become increasingly narrow.
Furthermore, for progressively smaller values of E the percentage-wise reduction of
〈D〉L N/〈D〉BL associated with each inertial mode frequency remains fixed.

Figures 4 and 5 both show the solution’s extreme behaviour as λ approaches zero. In
this limit, the oscillation period of the boundary motion is long compared with the rotation
period. Hence, the flow is nearly geostrophic and is well approximated by a uniform axial
vorticity flow, that is an oscillating solid body rotation. For λ= 0, the exact solution is
simply given by u = εr sin θ êϕ . The time-averaged kinetic energy of this flow is 4π/15ε2

and it is completely non-dissipative: there is no velocity differential between the boundary
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Figure 5. The ratio of the time-averaged dissipation from the LN model, 〈D〉L N , to the time-averaged
dissipation of the boundary layer approximation, 〈D〉BL , as a function of the libration frequency, λ, and for
several choices of the Ekman number, E , indicated in the legend. The valleys associated with the four lowest-
order inertial modes are indicated by the labels, (
, k,m), and four particular frequencies associated with
periodic characteristic orbits are illustrated by dashed vertical lines. The time-averaged dissipation at a limited
choice of frequencies from the direct numerical simulations at E = 10−4 and ε= 10−3 are shown with open
red squares.

motion and the interior region flow so there is no boundary layer, and the rigid body
rotation flow features no shear. Figure 5 shows that the influence of this geostrophic flow
regime on dissipation is restricted to ever smaller values of λ as E is reduced.

Figure 5 also shows the time-averaged dissipation computed using a three dimensional,
nonlinear time domain direct numerical simulation (DNS) of the libration forcing
problem at selected frequencies. The DNS were computed with the open source code
MagIC (Christensen et al. 2001; Wicht 2002; Schaeffer 2013). Because of the increased
computational intensity of the direct numerical simulations, result were obtained only for
E = 10−4. The amplitude of the libration forcing was set to ε= 10−3 so that the resulting
flow occupies the linear regime. Time-averaged dissipations were computed from the
direct numerical simulations with the omission of the initial ∼ 10 − 30 libration periods
where the transient flow is developing into the harmonic oscillatory state. The results
of the DNS match well with those of the linear theory, validating our omission of the
nonlinear term in the governing equations for small-amplitude forcing, ε� 1 at least for
the Ekman number E = 10−4. It is important to note that, although the forcing amplitude
may be small, it is possible for the boundary layer Reynolds number, Re = εE−1/2, to
still be large enough that the boundary layer is centrifugally unstable (Noir et al. 2009;
Calkins et al. 2010). For ε= 10−3 and E = 10−4, Re = 0.1 which remains well below the
estimated Re ∼ 50 required to trigger instability. However, this should not be misconstrued
as evidence for the validity of this assumption at lower values of E , where the amplitude
of the forcing, even at Re = 0.1, may be large enough to support significant localised
nonlinearities.

Figure 6 focuses on narrow frequency windows of the time-averaged dissipation
spectrum centred on the excitation frequencies of the four lowest-order equatorially
symmetric, zonal inertial modes, λ4,1,0, λ6,1,0, λ6,2,0, λ8,1,0 that are labelled in figure 5.
The dissipation curves predicted by the asymptotic analysis (equation 2.65) are overlaid on
the results of the LN model. This reveals significant disagreements outside the asymptotic
regime when E = 10−4, 10−5. However, at E = 10−8 the discrepancies between the
numerical solution and the asymptotic solution become very small within the narrow
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Figure 6. The ratios of the time-averaged dissipation from the LN model, 〈D〉L N (solid lines), and the matched
asymptotic model, 〈D〉M A (dashed lines), to the time-averaged dissipation of the boundary layer, 〈D〉BL , as a
function of libration frequency, λ, in small windows around the inertial mode frequencies (a) λ4,1,0, (b) λ6,1,0,
(c) λ6,2,0, (d) λ8,1,0. Results are shown for several Ekman numbers, E , as indicated in the legend, and the
frequency windows have been renormalised by a factor E1/2.

excitation windows of each eigenmode. The error between the numerical solution and
the asymptotic solution decreases as E is reduced, as is expected due to the assumptions
underlying the asymptotic approximation. The agreement between the curves at E = 10−8

indicates that the reduction of the time-averaged dissipation in the valleys is primarily
explained by the excitation of the inertial modes since they are the only flow structure in
the interior region taken into account by the asymptotic analysis. The asymptotic solution
for the amplitude coefficient of a given inertial mode near resonance (equation 2.57)
predicts that the resonance frequency width should scale with E1/2, and the widths of
the reduction valleys in the time-averaged dissipation spectrum inherit this scaling. The
disagreements between the numerical and asymptotic solutions when E is still relatively
large can be a result of the truncation of the series representation of the solution (equations
2.24–2.26); near those frequencies associated with periodic orbits of characteristics, the
matched asymptotic solution fails to converge or converges more slowly than expected
to the numerical solution due to the influence of conic shear layers. Table 1 gives the
normalised dissipation and modal coefficients based on the MA solution at the natural
frequencies of several of the fundamental inertial modes for E = 10−15. The inertial modes
that are excited to larger amplitudes lead to a greater reduction in the dissipation.

As E is reduced, figure 5 also shows that an increasing number of progressively weaker
reduction valleys appear in the spectrum, illustrating the density of the inviscid eigenvalues
in [0, 2]. These correspond to the excitations of progressively higher-order inertial modes
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(
, k,m) A
,k,m(λ
,k,m)
(〈D〉M A)
(〈D〉BL )

(λ
,k,m) A
,k,m(λ
(
,k,m)
max. )

(〈D〉M A)
(〈D〉BL )

(λ
(
,k,m)
max. )

(4, 1, 0) 0.13640979 + 0.03415593i 0.91207166 0.14071516 + 0.01696142i 0.90783257
(6, 1, 0) −0.06999910 − 0.00842058i 0.90770488 −0.07057734 − 0.00361380i 0.90661124
(6, 2, 0) −0.01829790 − 0.00565719i 0.98556841 −0.01920057 − 0.00273755i 0.98448020
(8, 1, 0) 0.03040571 + 0.00225331i 0.92360180 0.03050777 + 0.00087617i 0.92324525
(8, 2, 0) 0.01521534 + 0.00252490i 0.97254607 0.01546058 + 0.00104700i 0.97191591
(8, 3, 0) 0.00331400 + 0.00110422i 0.99618875 0.00350606 + 0.00052783i 0.99585115
(10, 1, 0) −0.01300931 − 0.00066800i 0.93852200 −0.01303126 − 0.00024053i 0.93838087
(10, 2, 0) −0.00845206 − 0.00092661i 0.96848525 −0.00851553 − 0.00034767i 0.96815903
(10, 3, 0) −0.00365847 − 0.00069128i 0.98995452 −0.00373597 − 0.00028116i 0.98965271
(10, 4, 0) −0.00073157 − 0.00025277i 0.99866857 −0.00077745 − 0.00011998i 0.99854098

Table 1. Amplitude coefficients of the zonal, equatorially symmetric inertial modes up to degree 
= 10 and
normalised dissipation fractions evaluated with the matched asymptotic solution (2.57 and 2.65) at their natural
frequencies λ
,k,m and the corresponding asymptotic maximal frequencies (2.60). The Ekman number is fixed
at E = 10−15 for these calculations. The amplitude coefficients are calculated based on the normalisation used
by Zhang & Liao (2017).

that are comparatively more strongly damped, so their influence on the dissipation is
weaker. At larger values of E the influence of these more highly damped modes is drowned
out by the wide and overlapping resonance windows of the least damped inertial modes
and probably also by the influence of the thick critical latitude shear layers. But as E is
reduced the resonance windows and shear layers become increasingly narrow so that for
forcing frequencies close to their eigenfrequencies, the more highly damped modes reveal
themselves. A similar behaviour was observed in the kinetic energy spectrum by Lin et al.
(2023).

In order to understand the reason why, on the one hand, dissipation is reduced when
λ= λ
,k,m for some inertial mode frequency and why, on the other hand, it converges
toward 〈D〉BL when the forcing frequency is associated with periodic characteristic orbits
(as is illustrated in figure 5), it is informative to look at the time-averaged kinetic energy.
Figure 7 shows the distribution in a meridional plane of the time-averaged kinetic energy
density of the LN solutions for λ= λ4,1,0 and when λ= 1. When the forcing frequency
matches the frequency of an inertial mode, an O(1) velocity field fills the entire spherical
volume, the time-averaged kinetic energy density below the Ekman layer is uniformly
non-zero and persists as E is reduced. Conversely, when the forcing frequency is near a
frequency for which the characteristic paths form closed periodic orbits (such as for λ= 1),
then the time-averaged kinetic energy density in the interior region is negligible for small
values of E since the most significant contributions are localised to shear layers spawned
from the critical latitudes that have asymptotically vanishing width and amplitude. The
presence of significant kinetic energy density at the bottom of the Ekman layer in the
former case is fundamentally what causes the reduction in dissipation near inertial mode
resonances. It is useful to define Pr , the power transferred by viscous stresses across a
spherical surface of radius r � 1 which is given by

Pr = Er2
∫ 2π

0

∫ π

0
(u ⊗ êr ) : (∇u + ∇uT ) sin θdθdϕ, (3.1)

as well as Kr , the kinetic energy on the same spherical surface, given by

Kr = r2

2

∫ 2π

0

∫ π

0
|u|2 sin θdθdϕ. (3.2)
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Figure 7. The distribution of time-averaged kinetic energy density, 〈1/2|u|2〉L N from the LN model in a
meridional plane at libration frequencies (a) λ= λ4,1,0 = √

12/7, and (b) λ= 1. The ticks at the outer boundary
indicate the position of the critical latitudes. In (b), the characteristic paths originating from the critical latitudes
are overlaid as white dashed lines, the solid line indicates the position of the cross-layer cut used in figure 10.
The Ekman number is E = 10−8.

Within the boundary layer (1 − r =O(E1/2)), using equation 2.28 we can expect that

Pr = E
dKr

dr
+O(E3/2). (3.3)

This is useful since, averaged over one libration period, we have that 〈Pr=1〉 = 〈D〉
(equation 2.13). Figure 8(a) shows the radial profiles of 〈Kr 〉 from the LN model within the
boundary layer for two choices of forcing frequency, λ= λ4,1,0 and λ= 1. The significant
kinetic energy offset that is present at the bottom of the boundary layer in the case
of λ= λ4,1,0 is readily observed. This situation is characteristic of the flow whenever
λ= λ
,k,m for an inertial mode that is excited by the boundary forcing. In contrast, the
results for λ= 1 demonstrate the lack of any significant kinetic energy density at the
base of the boundary layer, which is the general condition for all frequencies λ that are
associated with closed periodic characteristic orbits. Figure 8(b) shows the radial profiles
in the boundary layer of the quantities 〈Pr 〉 and E(d〈Kr 〉/dr) from the LN model at
E = 10−8 for both λ= λ4,1,0 and λ= 1. In each case, the profiles are markedly similar, as
is expected from equation 3.3. The reduction of both 〈Pr 〉 and E(d〈Kr 〉/dr) for λ= λ4,1,0
is readily observed. The suppression of the radial derivative of 〈Kr 〉 near the boundary is
connected to a reduction in dissipation through 〈Pr=1〉 = 〈D〉.

The results in figure 5 generally show that near libration frequencies λ that are associated
with periodic characteristic orbits, the time-averaged dissipation of the numerical solution
asymptotically approaches the boundary layer prediction, 〈D〉BL , as E is reduced. In
their study of the kinetic energy spectrum, Lin et al. (2023) found that these frequencies
are associated with troughs of low kinetic energy that have a frequency width scaling
of E0.23. Moreover, the actual frequency λ associated with the centre of the trough is
always slightly larger than the expected periodic frequency and the offset scales also as
E0.23. Figure 9(a) focuses on a narrow frequency window around the frequency λ= 1
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Figure 8. (a) The time-averaged kinetic energy density, 〈Kr 〉, as a function of radius, r , in the vicinity of the
boundary (r = 1) for several choices of the Ekman number, E (colour in legend). (b) The radial derivative of
the time-averaged kinetic energy density (red) and the time-averaged radial power transfer by viscous stresses
(blue) as a function of radius in the vicinity of the boundary for E = 10−8. In both (a) and (b) solid and dashed
lines respectively correspond to results where λ= λ4,1,0 and λ= 1.
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Figure 9. (a) The ratio of the time-averaged dissipation of the LN model 〈D〉L N to the time-averaged
dissipation of the boundary layer 〈D〉BL (solid lines, left-hand axis) and the time-averaged kinetic energy
of the LN model, 〈K〉L N (dashed lines, right-hand axis) for several choices of the Ekman number, E (colour
in legend), in a small frequency window near λ= 1 renormalised with the scaling E0.23. Results from the
DNS with E = 10−4 are plotted as open squares with the associated legend colour. (b) The frequency offsets
from λ= 1 at which the time-average dissipation (kinetic energy) value is maximal (minimal) in (a) shown as
triangles (diamonds) as a function of the Ekman number, E . The best fit power laws are indicated in the legend
and overlaid in (a) as vertical solid and dashed lines.

(associated with the periodic characteristic orbits and shear layers shown in figure 7b). We
observe the same frequency offset of the kinetic energy minimum as Lin et al. (2023),
and furthermore we show that the normalised dissipation, 〈D〉L N / 〈D〉BL , is maximised
at a similarly offset frequency. Figure 9(b) shows the best fit power laws for the scaling of
these frequency offsets with E . For the kinetic energy, the minimum is achieved with
λ= 1 + 0.789E0.231±0.002, while for the normalised dissipation the local maximum is
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λ= 1 E = 10−4 E = 10−5 E = 10−6 E = 10−7 E = 10−8

(〈D〉L N )/(〈D〉BL ) 0.98275 0.99967 1.00280 1.00240 1.00157

λ= 1 + 0.718E0.23 E = 10−4 E = 10−5 E = 10−6 E = 10−7 E = 10−8

(〈D〉L N )/(〈D〉BL ) 1.00701 1.01088 1.00783 1.00470 1.00260

Table 2. The ratio of the dissipation of the LN model to the pure boundary layer prediction, (〈D〉L N )/(〈D〉BL ),
evaluated at λ= 1 and λ= 1 + 0.718E0.23 (corresponding to the offset found in figure 9) for several choices of
the Ekman number, E .

achieved with λ= 1 + 0.718E0.230±0.002. The offsets do not precisely coincide with each
other. We do not have, and are not aware of a theoretical explanation of this effect, nor
of the E0.23 scaling of the offsets. The maximum value achieved by the normalised
dissipation at the frequency λ= 1 + 0.718E0.23 exceeds unity. This implies a small
enhancement of the dissipation of the flow associated with this frequency as compared
with 〈D〉BL . This effect can be explained by the contribution to the dissipation of the shear
layers along the conic surfaces that emerge from the critical latitudes. The contribution
to the overall dissipation by the flow in the conic shear layers is expected to scale with
E6/5, which implies that this contribution vanishes faster than E1/2. This explains why,
in the limit E → 0 , the normalised dissipation converges to unity at the local maximum
in figure 9. Table 2 gives numerical values of the dissipation fraction evaluated at λ= 1
and λ= 1 + 0.718E0.23 for E = 10−4 − 10−8. These results indicate that the normalised
dissipation initially increases with decreasing E for large to moderate values of E , but then
begins to decrease as E is further reduced. For E = 10−4, 10−5 the shear layers spawned
from the critical latitude are geometrically thick compared with the radius of the sphere,
hence in this regime the shear layer structures can act similarly to the sphere-filling inertial
mode velocity fields in suppressing the boundary layer shear and reducing dissipation.

Figure 10(a) examines the distribution of time-averaged kinetic energy along the solid
white line perpendicular to the shear layer beam displayed in figure 7. The profile of the
time-averaged kinetic energy density of the shear layer is shown for the solution with λ=
1, and with λ= 1 + 0.789E0.23, the offset of the energy minimum found in figure 9. The
amplitude of the time-average kinetic energy density is rescaled by E2/5, while the width
of the cut is rescaled by E1/5 to show that the results agree with the O(E1/5) scaling for the
width and amplitude of the shear layer velocity field found by Lin & Noir (2021). In both
cases the distribution of kinetic energy density across the shear layer features two peaks
circumscribing the centre of layer. The peak on the side of the shear layer that is farthest
from the equator has a larger amplitude. For λ= 1 this larger peak is offset considerably
from the centre of the shear layer which is defined as the characteristic surface connected
to the critical latitude, while for λ= 1 + 0.789E0.23 the centre of the larger peaks tends
asymptotically toward the centre of the shear layer.

To consider dissipation in the shear layers it is useful to define the symbol

τ = ∇u : (∇u + ∇uT ), (3.4)

such that the expression Eτ gives the viscous dissipation per unit volume in the bulk of
the fluid. Figure 10(b) shows the profile of 〈τ 〉 along the solid white line perpendicular to
and centred on the shear layer beam in figure 7 for λ= 1 and with λ= 1 + 0.718E0.23, the
offset of the dissipation local maximum found in figure 9. Since the gradient across the
shear layer profile (in the direction perpendicular to the characteristic surface) scales with
E−1/5 and the amplitude of the velocity field with E1/5, τ is expected to be independent
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Figure 10. (a) The time-averaged kinetic energy density of the LN mode scaled by E2/5 along a segment
perpendicular to, and centred on, the critical latitude shear layer (indicated by the solid white line in figure 7).
The solid (dashed) curves correspond to a libration frequency of λ= 1 (λ= 1 + 0.789E0.23). (b) The time-
averaged dissipation density of the LN model scaled by E (i.e. 〈τ 〉) along a segment perpendicular to, and
centred on, the critical latitude shear layer (indicated by the solid white line in figure 7) the solid (dashed)
curves correspond to a libration frequency of λ= 1 (λ= 1 + 0.718E0.23). Negative values of xc correspond
to the ‘upper’ side of shear layer that is farthest from the equator. It is worth noting that the position and the
orientation of the centre line are slightly shifted in physical space with respect to λ= 1 to account for the
change in critical latitude and characteristic cone angle at the shifted frequency values. Results are shown for
several choices of the Ekman number, E (colour in legend).

of E . The results in figure 10(b) confirm this leading-order scaling, showing that 〈τ 〉 is
nearly independent of E across the shear layer profile. Similarly to the case of the kinetic
energy density profile across the shear layer, for the E0.23 offset forcing frequency the
dissipation profile becomes aligned with the characteristic surface that emerges directly
from the critical latitude (i.e. the centre of the shear layer).

To examine the scaling of the velocity field within the critical latitude bulge, it is useful
to introduce the following auxiliary velocity field

q̃ = qL N −Ψ 0{sin θ êϕ}, (3.5a)

ũ = 1
2

q̃eiλt + c.c.. (3.5b)

That is, the velocity field computed by the LN model that remains after the boundary
layer flow, Ψ 0{sin θ êϕ}, is removed (see equation 2.34a). Figure 11 shows profiles of the
time-averaged kinetic energy of the auxiliary velocity field, ()1/2)〈|ũ|2〉, in the vicinity of
the critical latitude for λ= 1 and for several choices of the Ekman number, E . Panel (a)
displays the radial profile of the auxiliary kinetic energy at the critical latitude, the radial
coordinate renormalised to reflect the expected length scale, E2/5, of the critical latitude
bulge. The distribution of kinetic energy is peaked near r = 1 − 2E2/5, with the position
of the peak in terms of the renormalised radial coordinate is nearly independent of E ,
aligning with the expected radial length scaling of the bulge. Furthermore, the height of
the kinetic energy peak depends very weakly on E (there is slight decrease with E), it
does not follow any significant power law and hence it appears that this quantity is roughly
O(1). Figure 11(b) shows the angular profile of the auxiliary kinetic energy as a function of
colatitude about the critical latitude and at the depth of the peak in the radial distribution.
The angular variable is renormalised by E1/5, causing the curves at varying E to overlap
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Figure 11. Profiles of the time-averaged auxiliary kinetic energy (see equation 3.5) at the critical latitude for the
forcing frequency λ= 1 as a function of radius renormalised by E2/5 (left panel), and colatitude renormalised
by E1/5 (right panel). Results are shown for several choices of the Ekman number (colour in legend).
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Figure 12. The sub-boundary layer time-averaged kinetic energy, 〈K〉L N − 〈K〉BL , (a) and dissipation,
〈D〉L N − 〈D〉BL , (b) as a function of the Ekman number E , for several choices of forcing frequency, λ,
corresponding to periodic characteristic orbits (colour in legend).

which reveals good agreement with the expected angular length scale. Overall, figure 11
confirms the expected length scalings of the critical latitude bulge, at least for λ= 1, and
suggests that |q|C L ∼O(1). Recalling the discussion in § 2.4, this implies that we can
expect the contribution of the critical latitude bulge to dissipation and kinetic energy to
be O(E4/5) and O(E3/5), respectively, at least for λ= 1. In particular this means that
the contribution to dissipation by the critical latitude bulge flow will be greater than the
contribution of the internal shear layers in the asymptotic limit.

Figure 12 shows the scaling of the time-averaged dissipation and kinetic energy
computed by the LN model after removing the boundary layer approximations 〈D〉BL
and 〈K〉BL , respectively. The four periodic orbit frequencies labelled in figure 5 that
correspond to the critical latitudes α= π/4, π/6, π/8, π/10 and forcing frequencies
λ= √

2, 1,
√

2 − √
2, (

√
5 − 2)/2 are chosen to evaluate these quantities. The purpose

of this computation is to isolate the weaker scaling of the kinetic energy of the internal
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Figure 13. The time-averaged dissipation per unit volume in a quarter meridional plane computed numerically
at frequencies λ= λ4,1,0 (upper row) and λ= 1 (lower row), at E = 10−6 (left column), E = 10−7 (centre
column) and E = 10−8 (right column).

shear layers alone. At these frequencies there is no significant excitation of inertial modes
so that the flow is limited to the boundary layer flow and the flow in the shear layers. The
kinetic energy of the boundary layer solution scales with E1/2 (equation 2.68). The shear
layer have a kinetic energy density that scales with E2/5. Because the thickness of the
shear layers scales as E1/5, and because the shear layers only form on those characteristic
surfaces that emerge from the critical latitudes, the volumetric weighting of the shear
layers is E1/5. Overall this implies an expected E3/5 contribution of the shear layers to
the kinetic energy integral, smaller than the total kinetic energy of the boundary layer.
Similarly, the critical latitude bulge is expected to contribute kinetic energy that scales the
same way. Hence, by subtracting out the kinetic energy of the boundary layer response
(2.68), we expect to observe the E3/5 scaling of the kinetic energy of the bulk shear layers
and critical latitude bulge in these cases. Panel (a) of figure 12 shows the sub-boundary
layer kinetic energy. For λ= 1,

√
2 − √

2, and (
√

5 − 1)/2, the E3/5 scaling is roughly
observed in the LN results, however, when λ= √

2, the observed scaling is considerably
steeper, nearer to E0.7. Panel (b) of figure 12 shows the sub-boundary layer dissipation.
For this quantity, at all four values of λ, the scaling eventually approaches the expected
E4/5 scaling when the Ekman number is sufficiently low. This indicates the dominance of
the critical latitude bulge’s contribution to dissipation over that of the shear layers, which
are expected to have the much smaller O(E6/5) contribution.

Figure 13 shows the distribution of time-averaged dissipation per unit volume, E〈τ 〉, in a
meridional plane for two selected choices of λ and varying E . In the upper row, the system
is driven at the frequency λ= λ4,1,0 of one fundamental inertial mode. When E = 10−6,
the dissipation per unit volume in the interior is of order 10−6 while that of the boundary
layer is near unity. Furthermore, the distribution of dissipation in the plane is marked by
the structure of the inertial mode flow. When E = 10−8, the dissipation per unit volume in
the interior is generally below 10−8 while that of the boundary layer remains near unity,
although the layer is now much thinner than it is for E = 10−6, and invisible at the scale of
figure 13. In the lower row, results with the same range of E values is shown now for λ= 1
where periodic characteristic orbits dominate the interior flow. The dissipation scaling on
the shear layers is numerically similar to the results in the upper row. This agrees with
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our expectations, since τ in the shear layers is expected to be independent of E . However,
since the shear layers occupy only a fraction of the volume, the total dissipation in the
interior region is lower than in the inertial mode case by a factor E1/5.

Examining the dissipation on the shear layers in the lower panels of figure 13, it is
largest at the point where the shear layer touches the axis, in this case (λ= 1) occurring at
the pole of the sphere. The dissipation per unit volume in this region does scale slightly
differently than elsewhere on the shear layers due to a focusing effect somewhat similar to
that found by Le Dizès (2015); Le Dizès & Le Bars (2017) for the shear layers emitted from
the surface of a librating inner sphere. In this case where we have the shear layers emitted
from the outer boundary, in the focusing region near the axis, the amplitude of the velocity
field is O(E1/10), whereas it is O(E1/5) in the main part of the shear layers. This leads
the dissipation per unit volume to be O(E4/5) within the axis focusing region. However,
since the volume of the focusing region near the axis scales with E3/5, the contribution of
the focused region to the overall dissipation is O(E7/5), which is ultimately less than the
O(E6/5) contribution of the main part of the shear layers in the bulk which has already
been discussed.

4. Discussion and conclusions
Our results confirm that the dissipation in a rotating fluid sphere caused by weak
longitudinal libration dominantly scales as E1/2 in the limit E → 0. Furthermore, we
thoroughly investigated the resulting flow to show that the dominant contribution to the
viscous dissipation always occurs within the Ekman layer and documented the influence
on dissipation from other features of the flow including inertial modes and conic shear
layers. The Ekman pumping that results from this boundary layer can interact resonantly
with a given inviscid inertial mode of the sphere when the frequency of the longitudinal
libration is near to the natural frequency of the mode. The viscous damping of the mode at
the surface of the sphere also provides a contribution to the dissipation rate that scales as
E1/2. Moreover, the scaling of the damping rate of the modes cause the frequency widths
of the resonance windows to scale with E1/2; that is, the range of forcing frequencies
around a given inviscid eigenvalue for which the corresponding mode will be significantly
excited decreases with decreasing viscosity. We showed that when the forcing frequency is
within the resonance window of a given inertial mode, the dissipation is reduced since the
interior flow of the mode reduces the magnitude of the required radial gradient between the
solid boundary and the interior. Modes with the largest spatial scale are the least damped,
leading them to be excited to the largest amplitude, and therefore reduce the dissipation
the most. When the fundamental modes (4, 1, 0) and (6, 1, 0) are excited, dissipation is
reduced by as much as 9 %. The percentage-wise reduction is independent of E in the
limit E → 0. For the vast majority of the modes, however, the reduction is limited to less
than 1 %.

The areas of the inertial wave band of the frequency spectrum where inviscid inertial
modes do not occur correspond to periodic orbits of the conical characteristic surfaces
of the inviscid system (Rieutord et al. 2001). When the longitudinal libration forcing is
applied at these frequencies, the interior flow is dominated by shear layers that form on the
characteristic surfaces that emerge from the critical latitudes. Viscous dissipation within
the shear layers is relatively intense and can contribute to an enhancement of the total
dissipation. However, in the limit E → 0, the contribution of the conical shear layers to
the total dissipation is negligible in comparison with the contribution of the boundary
layer flow. The shear layers are associated with the critical latitude of the Ekman layer,
where the length scale of the boundary layer increases from E1/2 to E2/5. The boundary
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layer exhibits a thickened ‘bulge’ around the critical latitude that has an angular length
scale of E1/5. Our results demonstrate that the contribution to the overall dissipation
due to the flow in this bulge exceeds the contribution of the internal shear layers when
E → 0. The bulge contributes a term scaling with E4/5 to the overall dissipation, while
the contribution of the internal shear layers is merely E6/5. However, neither of these
contributions are significant in comparison with the dissipation in the main boundary layer
that scales with E1/2.

In most planetary applications, E < 10−10, so the forcing frequency would need to
coincide to order 10−5 with the inviscid eigenfrequency of a given fundamental inertial
mode for any significant dissipation reduction to be realised. Therefore, the dissipation rate
that ignores the influence of the modes, 〈D〉BL , remains a very good approximation. For a
synchonised orbit, which is the most common case, the forcing frequency is λ= 1 which
corresponds to periodic characteristic orbits in the full sphere. The dissipation contribution
of the critical latitude bulge and in the shear layers along these orbits does slightly enhance
the overall dissipation rate but the enhancement is negligible for small E .

Our results (restricted to λ= 1) suggest that the contribution of the critical latitude shear
layers and bulge is maximised for a forcing frequency that is offset from the exact inviscid
periodic orbit frequency by an amount that scales with E0.23. This effect is undoubtedly
correlated with the kinetic energy trough regions that Lin et al. (2023) generally observed
to scale with the same peculiar factor, although we have not been able to identify the
underlying cause of this scaling. We may not have accessed sufficiently small values of E
to reach the actual asymptotic scaling of the offset so the true scaling can be E1/4 as was
observed by Lin et al. (2023) when using E = 10−9 − 10−10. It is therefore worth noting
that this scaling appears in the asymptotic theory of forced shear layers although it is not
clear if this scaling is present in the full sphere (e.g. He et al. 2022).

Rieutord & Valdettaro (2010) found that there was an ‘anti-resonant’ response to tidal
forcing in a spherical shell when the frequency corresponded to periodic orbits. This
effect is explained in Rieutord & Valdettaro (2018), who show numerically that there is
an accumulation of ‘quasi-regular’ viscous eigenmodes near a periodic orbit frequency.
Since the path is converging to a closed orbit, the distance between two adjacent and
parallel characteristics on the same path vanishes as the frequency approaches a periodic
orbit frequency. The characteristics can be interpreted as the equiphase lines of a given
quasi-regular mode, so the wavenumber of the quasi-regular modes grows to infinity
which leads to a lack of response at the periodic frequency (Rieutord & Valdettaro 2018).
A similar effect is likely responsible for the kinetic energy trough regions observed by
Lin et al. (2023) and the associated dissipation peaks found in this work for periodic orbit
frequencies.

Our results pertain to a full sphere, although we may possibly anticipate similar results
for the flow driven in a spherical shell by the longitudinal libration of its outer boundary.
In the spherical shell the only pure inertial modes that remain are entirely toroidal (e.g.
Rieutord et al. 2000) yet the global modes hidden beneath localised wave beams that
are observed by Lin & Ogilvie (2021) may behave similarly to pure inertial modes in
the sphere, reducing the dissipation when resonance occurs. Furthermore, the natural
frequencies of the global modes are modified by the inner core (see Lin & Ogilvie 2021).
Because of this, it is possible that for some particular size of inner core there is a global
mode with natural frequency near λ= 1 in which case a dissipation reduction of a few per
cent is possible, assuming effects of the localised wave beams from the inner core do not
fundamentally alter the behaviour of the fluid. In the spherical shell, unlike the full sphere,
only a finite number frequencies corresponding to periodic characteristic orbits exist and
they are progressively eliminated as the size of the inner core is increased (e.g. Rieutord

1007 A1-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

97
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.97


Journal of Fluid Mechanics

et al. 2000, 2001). The shear layers emitted from the critical latitude on the inner sphere
are much stronger than those associated with the outer sphere (e.g. Kerswell 1995; He et al.
2023). These differences and the presence of attractors and focusing in the spherical shell
(Rieutord et al. 2000) will undoubtedly give rise to dissipation scalings and effects that are
not observed in the full sphere. The behaviour of the quasi-regular modes near periodic
orbit frequencies is changed fundamentally by the presence of the inner core (Rieutord
& Valdettaro 2018). When E is taken small enough the inertial waves propagating from
the outer surface are able to reach the inner core without being completely damped. The
convex shape of the inner core modifies the scale of the inertial wave, giving it small scale
structure resulting in the collapse of the regular nature of the mode (Rieutord et al. 2000;
Rieutord & Valdettaro 2018).

For a planet to enter synchronised rotation, or more generally a spin-orbit resonance,
one possible scenario involves its spin rate being damped by internal friction from an
initial rate that is larger than its orbital mean motion. Over the course of this migration,
the frequency of forced longitudinal librations experienced by the planet will scan down
through a range of frequencies within the band 1< λ< 2 where it will pass through every
inertial mode resonance in that range. According to our results, this implies that there
may be periods of reduced dissipation. Overall, the influence of inertial modes would then
increase the time required to reach the synchronised state, although likely not significantly.

Aside from the lack of an inner core, the present approach using linearised equations
with an unflattened spherical outer boundary neglects the influences of topographic
coupling and of course all nonlinear effects. Longitudinal libration of an equatorially
flattened container causes a degree two order-two topographic forcing that scales linearly
with the equatorial flattening (e.g. Rekier et al. 2019). Computationally, this forcing is
similar to the degree two order-two tidal forcing studied by Ogilvie (2005, 2009), Rieutord
& Valdettaro (2010) and Lin & Ogilvie (2021). In particular, Lin & Ogilvie (2021) have
found that the degree two order-two tidal forcing in a spherical shell can excite large
scale flows similar to the inertial eigenmodes of a sphere at certain forcing frequencies.
Furthermore, when these structures are excited by the tidal forcing, Lin & Ogilvie (2021)
showed that the overall dissipation of the flow scales as E−1/2. This effect can be
anticipated by an argument based on the results we have presented here for dissipation
in a flow driven by viscous coupling alone. The key difference in the topographic coupling
case is that the radial forcing that excites the inertial modes in the interior region is now
O(1), whereas in our viscous coupling case this role is played by the O(E1/2) Ekman
pumping. In the case of topographic coupling where the radial forcing is independent of
E , the inertial modes will still only be damped by an amount that scales with E1/2, which
leads to a resonant amplitude scaling with E−1/2. Furthermore, this implies that the radial
gradient between the flow at the solid outer boundary and in the interior region scales
as E−1 in the case of inertial mode resonance with topographic forcing. This gradient
implies that the dissipation within the boundary layer shear contributes to a dissipation
that scales with E−1/2. On the other hand, when no mode is excited by the topographic
forcing then the flow driven in the interior region is dominantly a result of the O(1)
forcing, leading to the formation of an Ekman layer more reminiscent of those in this paper
such that the total dissipation scales as E1/2, but that is neglecting any shear layer effects
resulting from the convex shape of the inner core, so this estimate may only be applicable
to the full sphere. In the spherical shell an example of this situation is the anti-resonance
phenomenon observed by Rieutord & Valdettaro (2010) for tidal forcing at periodic orbit
frequencies, the dissipation scales as E2/5 due to the dominance of contribution of the
critical latitude bulge. It is difficult to judge whether an E1/2 or E2/5 scaling is present
in the anti-resonant parts of the dissipation spectra presented by Rekier et al. (2019) and
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Lin & Ogilvie (2021) and the situation is complicated compared with the full sphere by
the influence of attractors and focusing.

Although the E−1/2 scaling associated with mode excitations due to topographic forcing
appears to imply the possibility of extreme amplification of dissipation in the planetary
limit, the effect is tempered by two factors. First, the driven flow is proportional to the
product of the libration velocity amplitude with the equatorial flattening (see equation 18 of
Rekier et al. (2019)) both of which are small quantities. Second the resonant amplification
only occurs when the forcing frequency matches the natural frequency of an inertial mode.
Ultimately this is what led Rekier et al. (2019) to conclude that the magnitude of the
contributions to dissipation of the topographic coupling component of the flow, and that
from viscous coupling alone are likely to be similar in the limit of small E .

Our study focused on longitudinal libration forcing, but many of our results also apply
to the case of latitudinal libration forcing. As computed by Lin et al. (2023) for a full
sphere, the linear flow induced by viscous coupling from latitudinal libration of the outer
boundary is exactly analogous to the flow driven by longitudinal libration with respect to
dissipation. The dissipation associated with latitudinal libration should occur dominantly
in the Ekman layer and scale with E1/2. We expect a similar reduction of the dissipation
rate near inertial mode resonances, although the inertial mode frequencies are different
since the azimuthal symmetry order of the flow is different (m = 1). Without carrying
out the actual calculation, we cannot, however, quantitatively predict the magnitude of the
reductions in this case, and they may exceed 9 %, particularly for the spin-over mode since
it is excited to the largest amplitude of all modes (see Lin et al. 2023). Notably, the spin-
over mode is an example of the purely toroidal modes that survive the introduction of an
inner core (see Rieutord & Valdettaro 1997), this fact may allow the matched asymptotic
results derived here to be applied to this mode, and other such purely toroidal modes
in the spherical shell. For instance, the boundary layer corrections associated with the
toroidal modes in a spherical shell have been derived by Rieutord (2001). Since the spin-
over mode has the natural frequency λ= 1, the consequence of this reduced dissipation
can be physically significant for synchronised bodies as it could potentially increase the
time scale of obliquity damping. Note also that topographic coupling with the spin-over
mode in an oblate spheroid (e.g. Zhang et al. 2011) could intensify dissipation as E−1/2

leading to an amplification of the dissipation proportional to the polar flattening.
The numerical method presented in this paper can be readily extended to examine the

viscous dissipation in the linear regime for general harmonic forcing including topographic
coupling in the limit of small flattenings. Furthermore, dissipation in spherical shells
can also be addressed using the present numerical method. Extending the asymptotic
analysis to assess inertial mode excitations by weak topographic forcing in spheres will
be the subject of future work. However, it is important to bear in mind that although
the nonlinear term associated with the forced flow scales with the second power of the
libration amplitude, it may still become non-negligible in the presence of attractors and
focusing for very small values of E even while the forced flow remains stable at a weak
forcing amplitude. Localised contributions to dissipation due to nonlinearities (e.g. Le
Dizès 2020; Boury et al. 2021) associated with inertial wave attractors or focusing could
come to dominate in the limit of small E , even for very small-amplitude libration forcing.
The linear estimate of dissipation therefore may not remain valid, even for weak forcing, in
the limit of small E especially in the spherical shell with attractors and focusing associated
with the inner sphere. Nonetheless, more detailed theoretical understanding of the linear
response of rotating fluid spheres and spherical shells will inform future studies of the
perturbatively nonlinear, and eventually the fully nonlinear regimes by allowing deviations
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from the linearised solutions in the simultaneous limit of ε, E → 0 to be more easily
detected and isolated.
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Appendix A.
Together, the leading-order interior region solution b0, φb0 and the first-order correction
b1, φb1 satisfy the following equation:

iλ(b0 + E1/2b1)+ 2êz × (b0 + E1/2b1)+ ∇(φ0 + E1/2φ1)= O(E). (A1)

The inertial mode expansion of b0, φb0 ( 2.37) is substituted into A1, which leads to

E1/2(iλb1 + 2êz × b1 + ∇φb1)+
∑

,k,m

A
,k,m(iλq
,k,m+2êz × q
,k,m+∇φ
,k,m)= O(E).

(A2)

Using the fact that the eigenfunctions q
,k,m , φ
,k,m each individually satisfy 2.24 with
λ= λ
,k,m , this becomes

E1/2(iλb1 + 2êz × b1 + ∇φb1)+
∑

,k,m

i(λ− λ
,k,m)A
,k,m q
,k,m = O(E). (A3)

Projecting this equation on an arbitrary mode, q
,k,m , and making use of the orthogonality
( 2.41) of the modes we get

i(λ− λ
,k,m)A
,k,m

∫
V

|q
,k,m |2 = −E1/2
∫

V
(iλb1 + 2êz × b1 + ∇φb1) · q†


,k,m . (A4)

The steps to reduce the volume integral on the right hand side to its form shown in 2.49
are now given

2(êz × b1) · q†

,k,m = −2(êz × q†


,k,m) · b1, (A5)

and by 2.38a

−2êz × q†

,k,m = −iλ
,k,m q†


,k,m + ∇φ†

,k,m, (A6)

this implies that∫
V
(2êz × b1 + ∇φb1) · q†


,k,m =
∫

V

[
b1 · (−iλ
,k,m q†


,k,m + ∇φ†

,k,m)+ q†


,k,m · ∇φb1

]
.

(A7)
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Substituting this result to A4, we obtain

i(λ− λ
,k,m)
[
A
,k,m

∫
V

|q
,k,m |2 + E1/2
∫

V
b1 · q†


,k,m

]

= −E1/2
∫

V

[
b1 · ∇φ†


,k,m + ∇φb1 · q†

,k,m

]
.

(A8)

Finally, since ∇ · b1 = ∇ · q†

,k,m = 0, it follows that

b1 · ∇φ†

,k,m + q†


,k,m · ∇φb1 = ∇ ·
(

b1φ
†

,k,m + q†


,k,mφb1

)
. (A9)

Then using the divergence theorem, the right hand side of A8 can be transformed to∫
V

[
b1 · ∇φ†


,k,m + q†

,k,m · ∇φb1

]
=

∫
S

(
b1φ

†

,k,m + q†


,k,mφb1

)
· êr , (A10)

and since q†

,k,m · êr = 0, then∫

S

(
b1φ

†

,k,m + q†


,k,mφb1

)
· êr =

∫
S
φ

†

,k,m(b1 · êr ). (A11)

From this series of steps, A4 can now be written as

i(λ− λ
,k,m)
[
A
,k,m

∫
V

|q
,k,m |2 + E1/2
∫

V
b1 · q†


,k,m

]
= −E1/2

∫
S
φ

†

,k,m(b1 · êr ).

(A12)
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