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Abstract

Background. Depression is one of the most prevalent mental health conditions in the world.
However, the heterogeneity of depression has presented obstacles for research concerning
disease mechanisms, treatment indication, and personalization. The current study used network
analysis to analyze and compare profiles of depressive symptoms present in community samples,
considering the relationship between symptoms.
Methods. Cross-sectional measures of depression using the Patient Health Questionnaire –
9 items (PHQ-9) were collected from community samples using data from participants
scoring above a clinical threshold of ≥10 points (N = 2,023; 73.9% female; mean age 49.87,
SD = 17.40). Data analysis followed three steps. First, a profiling algorithm was implemented
to identify all possible symptom profiles by dichotomizing each PHQ-9 item. Second, the
most prevalent symptom profiles were identified in the sample. Third, network analysis for
the most prevalent symptom profiles was carried out to identify the centrality and covariance
of symptoms.
Results. Of 382 theoretically possible depression profiles, only 167 were present in the sample.
Furthermore, 55.6% of the symptom profiles present in the sample were represented by only
eight profiles. Network analysis showed that the network and symptoms’ relationship varied
across the profiles.
Conclusions. Findings indicate that the vast number of theoretical possible ways to meet the
criteria for major depressive disorder (MDD) is significantly reduced in empirical samples and
that the most common profiles of symptoms have different networks and connectivity patterns.
Scientific and clinical consequences of these findings are discussed in the context of the
limitations of this study.

Introduction

Why is depression a public health problem?

Depression is the most prevalent mental health problem in the world affecting 4.7% of the
global population [1]. It has been classified as a public health problem due to its impact on
quality of life, work productivity, and mortality risk [2]. Despite global efforts to understand
and treat depression, its incidence has actually increased by 49% between 1990 and 2017
[3]. Currently, it is the third leading cause of disease burden and the single highest contrib-
uting factor to global disability [3, 4]. The impact of depression is not only felt by individuals,
but also by their families and communities, who suffer a direct cost related to treatment and
an indirect cost linked to an individual’s reduced functional capacity [5, 6]. Studies estimate
that, when diagnosed, depression could cost $6,200 per person per year [7], while undiag-
nosed and untreated depression contributes to an even more significant burden of illness,
increasing personal and societal costs [8]. Indeed, longer periods of undiagnosed and
untreated depression lead to negative outcomes including poorer treatment response and
lower remission rates [9], more severe cognitive impairment [10], and overall to poorer
illness trajectories [11].

What does heterogeneity of depression mean?

Ever since the publication of Diagnostic and StatisticalManual ofMental Disorders, third edition
(DSM-III) forty years ago, the field of health care has mainly conceived depression as a
homogeneous, distinct, and robust diagnostic category, outlined broadly in the polythetic system
of the DSM as major depressive disorder (MDD) [12]. The DSM’s polythetic system masks a
significant amount of syndromic heterogeneity, allowing formultiple combinations of symptoms
to exist under the same diagnostic label [13]. As a consequence, the diagnostic criteria of MDD
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have led to the classification of people with only some or even no
symptoms in common into the same broad category, ignoring the
specific presentation of their symptoms and the interactions
between specific symptoms [14–16].

Consequences of heterogeneity of depression on treatment
outcomes

Failure to consider the heterogeneity of depression has impacted
the understanding of etiologic mechanisms and their physiologic
correlates [17–20], and it has also limited the effectiveness of
treatments [21]. Thus, it is highly important that research should
consider the heterogeneity of MDD in order to better address
etiologic processes and to implement smarter and personalized
treatment strategies [16].

It is estimated that nearly 85% of people who recover fromMDD
suffer a second episode within 15 years and that each additional
MDD episode increases the risk of relapse by 18% [22]. In addition,
for 30% of patients diagnosed with MDD, symptoms do not remit
despite varied treatment attempts [2], with sleep problems and
fatigue being the most prevalent residual symptoms [23]. This
highlights that patients will not respond similarly to different
treatments for MDD [24, 25]. Even though clinicians typically
adjust treatments to their specific patients, often guidelines recom-
mend treatments’ packages that are delivered to the “average
depressed patient” and insufficient research has considered what
are the specific modifications that should be implemented to opti-
mize a treatment for a particular subtype of depression. Thus,
treatments may yield suboptimal effects, whereas parsing out het-
erogeneity of depression could enable the design of evidence-based
personalization strategies for treatments, thus leading to possible
improved patient outcomes.

What are we missing by not looking at symptom-level
heterogeneity?

Research has typically approached depression as a common cause for
diverse symptoms and assumed that these symptoms are independ-
ent and have equal importance [14, 26, 27]. However, such a strategy
has paid less attention to the interaction and mutual reinforcement
between symptoms [28]. This is a problem, considering that
researchers have been attempting to find associations between dif-
ferent symptoms of depression and distinct risk factors [29, 30],
different gene polymorphisms [31], and different responses to treat-
ment [32, 33]. Moreover, different symptoms have been associated
with varying impacts on disability, with depressed mood and con-
centration problems being themost disabling symptoms [34]. This is
consistent with research showing that patients who receive their
optimal treatment (considering their specific symptoms and per-
sonal characteristics) had clinically significant improvements in
depression [e.g., 21, 35, 36].

An examination of symptom-level heterogeneity of depression
may also be crucial in improving our understanding of differential
developmental pathways toward psychopathology from the per-
spective of equifinality and multifinality [37]. Indeed, by using a
homogeneous conceptualization of depression, different pathways
to illness may be masked, and thus, relevant opportunities for
prevention and personalization lost. Heterogeneity research in
depression can move the field toward a more person-centered
approach that recognizes the relevance of different developmental
pathways to illness that may be related to or represented by differ-
ent profiles of depression [38].

Until now, depression has been studied through theoretical
and empirical approaches that have supplied evidence to its
heterogeneity, identifying profiles of symptoms that may help
map out heterogeneity [2, 16]. However, although empirical
research has found profiles related to the composition as well as
severity of symptom profiles (e.g., [13, 39]), it does not consider
the relation between symptoms within emerging profiles. Further-
more, studies show that not all theoretically possible profiles of
symptoms are actually present in clinical samples [13, 39]. Still,
these studies have focused on the presence and prevalence of
different profiles, leaving aside how the symptoms are related to
each other as an interrelated system. There are also studies that are
focused on seeing the interaction between depressive symptoms
using network analysis and other analytic strategies, but they
usually analyze the depressive symptoms on total samples without
considering different profiles and interrelated networks between
profiles [40].

As a result, it is not known which symptoms are present in each
profile, how they are related, or what the structure of the network of
symptoms is like. In addition, we do not understand how the
empirical frequency of theoretical profiles differs when considering
community samples that include both help-seeking and non-help-
seeking individuals. The current study is the first, to our knowledge,
to examine the network structure and interactions between symp-
toms on different symptom profiles of depression.

Methods

Participants

The study used secondary data derived from three community
studies with nationally representative samples: (1) the Chilean
Longitudinal Social Survey (ELSOC), (2) the Longitudinal Study
of Intercultural Relations (ELRI), and (3) the Social Protection
Survey (EPS). These three studies were carried out between 2016
and 2020 and used multistage, stratified, and probabilistic sam-
pling. The inclusion criteria for the sampling of these studies
focused on female and male residents in urban areas, aged 18 to
99, and located in 13 different (blinded for review). All three studies
used the Patient Health Questionnaire – 9 items (PHQ-9) to
measure depression symptoms. Only participants with clinically
significant depressive symptoms (PHQ-9≥ 10)were included in the
present study. Of a total sample of 13,367 participants, 2,023
(15.13%) had a PHQ-9 score of 10 or above.

Measures and data sources

The Spanish-language version of the PHQ-9 was used to measure
depressive symptoms [PHQ-9, 41]. It is a nine-item scale in
which each item represents a DSM symptom criterion. Partici-
pants are asked to report whether they have experienced the
symptom in the last 2 weeks on a Likert scale ranging from 0 to
3, where 0 is “not at all” and 3 is “almost every day,” resulting in a
total score ranging from 0 to 27 points [42]. The PHQ-9 was
designed to screen for depression and has shown that scores ≥10
have a sensitivity of 88% and specificity of 88% for MDD com-
pared to semi-structured interviews [43]. A diagnostic cutoff of
≥10 is recommended for the detection of MDD; the criteria for
classifying severity levels of depression according the PHQ-9 are
“moderate” for scores of 14 or below, “moderately severe” for
scores ranging between 15 and 19, and “severe depression” for
scores of 20 or above. [43].
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Statistical analysis

Descriptive statistics were generated for the total sample. To test for
sex differences in total PHQ-9 means, a t-test for independent
samples was used.

All possible symptom profiles were identified for PHQ-9 scores
equal or higher than 10 points (i.e., clinical sample) using an
algorithm of combinatorial optimization. This was calculated using
the formula nCr = n!

r! n�rð Þ! (for formula estimation, see
Supplementary Material), which allows calculation of the number
of ways of selecting r objects out of n different objects [44]. The
estimation resulted in 382 possible symptom combinations.

Theoretical symptom profile analysis
All possible symptom combinations were analyzed for the PHQ-9
using a profiling algorithm developed by Banyard et al. [45]. In
this algorithm, individual item responses to the PHQ-9 were
dichotomized and coded as either “1” if a symptom was present
(a score of 1–3) or “0” if a symptom was absent (a score of 0).
Using conditionals, each individual response was matched to
their corresponding profile (for details, see Supplementary Mater
ial). Different theoretical profiles of depressive symptomatology
could thus be constructed yielding a score of 10 or above 382 pos-
sible theoretical profiles (for details, see Supplementary Mater
ial). Each theoretical profile was assigned a number, and its
relative frequency was determined using patient-level data, using
a syntax that matches each participant’s PHQ-9 responses to each
of the possible 382 theoretical symptom profile combinations.
This is a method that prioritizes the identification of qualitatively
distinctive symptom profiles by emphasizing the absence–pres-
ence of symptoms rather than emphasizing quantitative differ-
ences in their relative scores across each Likert scale. This method
was selected to maximize the probability of identifying qualita-
tively different profiles, since prior research using continuous
Likert scale scores to identify latent classes consistently shows
that such a method mainly parses cases into quantitatively dis-
tinctive subgroups of cases with low-moderate–severe depression
[e.g., see 27, 46].

Network analysis
Network analysis was used to examine the most prevalent profiles
within the relationship between symptoms, so that within a par-
ticular network, each node represents a PHQ-9 item (i.e., a depres-
sion symptom) and each edge represents the partial correlation
between two symptoms. Network estimation was conducted using
pairwise Markov random fields to calculate a nondirected weighted
network structure and a Gaussian graphical model to estimate
networks with continuous data variables. By using the continuous
item scores as inputs into the network model, we were able to
comprehensively identify qualitatively distinctive profiles
(through the prior step of analysis) while examining their quanti-
tative distinctive network structures using the full range of Likert
scale responses.

The Fruchterman–Reingold algorithm was used to calculate
the optimal layout of the networks and to visualize more strongly
connected nodes [47]. False-positive relations were excluded by
using the “graphical least absolute shrinkage and selection
operator” (GLASSO) method, a statistical regularization tech-
nique, to increase the specificity of the network [48]. Due to
recent developments in network analysis discussing the use of
regularized versus non-regularized techniques for the estimation
of psychopathology networks [49–51], both types of analysis were

conducted, and results are presented in SupplementaryMaterials.
Finally, the extended Bayesian information criterion (EBIC) was
used to select the best-fitting model (hyperparameters γ= 0.5 and
λ = 0.01).

Strength centrality indexes were calculated for each network.
This measure takes the sum of all absolute edge weights to which
a node is directly connected [52]. To estimate the network
stability, and considering the sample size for each depression
symptom profile, a nonparametric bootstrapping procedure was
used with 1,000 sample simulations providing results related to
the edge-weight accuracy on each network [53, 54]. A case-
dropping subset bootstrap was performed for the estimation of
the centrality stability, which estimates a correlation stability
coefficient (CS coefficient) representing the maximum propor-
tion of the sample that can be dropped and maintaining a 95%
probability of a correlation between the original centrality indi-
ces and the centrality metric equal or higher to 0.7. Thus, the
centrality metric is considered interpretable when the CS coeffi-
cient is above 0.25 [53]. All the analyses were performed using
“qgraph” [55, 56] and “bootnet” packages [53, 54] on R studio
version 4.0.0 [57].

Results

Sample characteristics

The total sample included PHQ-9 data from N = 2,023 partici-
pants that had clinically significant depression symptoms
(PHQ-9 ≥ 10). Overall, 73.9% (n = 1,495) of participants were
female, the mean age of the total sample was 49.87 (SD = 17.40)
years, and the mean PHQ-9 score was 14.7 (SD = 4.36). Approxi-
mately 57.7% of participants would be considered moderately
depressed (n = 1,168), 26.2% (n = 531) had moderately severe
scores, and 16.0% (n = 324) had severe depression. Supplementary
Table S1 provides further sample characteristics and details on
item-level means and frequencies.

There were no statistically significant differences between
female and male participants regarding their mean depression
severity scores (t(2021) = �1.51, p = .13). In total, 35.5% of partici-
pants reported having received a depression diagnosis, and 84.4% of
participants who received a diagnosis were women. Approximately
32% (649) reported having previously received or currently were
receiving treatment for depression at the time of the assessment.
Among participants with a past or current history of treatment,
83.6% (551) were female.

Symptom profiles

Of the 382 theoretically possible profiles of depressive symptoms
operationalized by the profiling algorithm for scores of 10 and
above on the PHQ-9, 167 were actually present in the sample.
However, more than half of all cases present in the sample
(55.6%) were accounted by only eight symptom profiles. Of all
167 profiles present in the sample, the most frequent was profile
1 (n = 510), a “typical” depression profile that includes all nine
symptoms of depression measured by the PHQ-9 (all 9 items are
positive) and had a frequency of 25.2% of the sample. Themean age
for profile 1 was 49.87 (SD = 17.40), and the mean PHQ-9 score
within this profile was 18.6 (SD = 4.85).

The second most frequent profile was profile 2 (n = 205), a
profile that includes all symptoms, except for suicidal ideation (item
9), which accounted for 10.1% of cases present in the sample. The
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mean age for profile 2 was 45.68 (SD= 17.41), and themean PHQ-9
score was 14.88 (SD = 4.09).

The thirdmost frequent depressive profile was profile 3 (n = 81),
a profile that includes all symptoms except for suicidal ideation
(item 9) and psychomotor functioning (item 8, psychomotor
retardation or agitation) which accounted for 4% of cases in the
sample. The mean age for profile 3 was 44.47 (SD = 15.65), and the
mean in the PHQ-9 was 13.74 (SD = 3.00). Tables 1 and 2 provide
further details of the symptom composition and descriptive statis-
tics for the most prevalent profiles. To understand the interaction
between symptoms within the three most prevalent profiles, we
applied within-profile network analysis.

Network analysis

Profile 1: Typical depression
This profile comprises participants that present all of the
typical symptoms of depression, which means the presence of
anhedonia, low mood, sleep problems, low energy, appetite
changes, worthlessness, concentration problems, psychomotor
functioning (psychomotor retardation or agitation), and suicidal
ideation.

The network of profile 1 is visualized in Figure 1 and
shows a strong positive connection between low mood and
anhedonia (pr = 0.30) and also between sleep problems and
low energy (pr = 0.26). Also, there is a community of tightly
interrelated symptoms including suicidal ideation–concentra-
tion problems (pr = 0.24), suicidal ideation–changes in psycho-
motor functioning (agitation or retardation) (pr = 0.20), and
concentration problems–changes in psychomotor functioning
(pr = 0.20).

The nodes with the highest strength centrality in profile 1 were
low mood, low energy, and concentration problems. The least
central nodes in terms of strength centrality were anhedonia and
sleep problems. Node strength centrality demonstrated an inter-
pretable level of stability (CS (cor = 0.7) = 0.36). Details of the
centrality stability test are shown in Supplementary Figures S1
and S2.

Profile 2: Typical depression without suicidal ideation
This profile included all typical depression symptoms except for
suicidal ideation.

The network of profile 2 is visualized in Figure 2 and shows a
strong positive connection between low mood and anhedonia

Table 1. Frequency and composition of symptom profiles’ sample (n = 2,023)

Symptom
profile Anhedonia

Low
mood

Difficulty with
sleep

Energy
levels Appetite Worthlessness

Ability to
concentrate

Psychomotor
functioning

Suicidal
ideation % CF% N

1 25.2 25.2% 510

2 10.1 35.3% 205

3 4.0 39.3% 81

4 3.9 43.2% 79

5 3.6 46.8% 74

6 3.2 50% 65

7 2.9 52.9% 60

8 2.7 55.6% 55

Table 2. Descriptive statistics of the eight most frequent theoretical symptom profiles

Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7 Profile 8

(N = 510) (N = 205) (N = 81) (N = 79) (N = 74) (N = 65) (N = 60) (N = 55)

Demographics

Mean age (SD) 49.87 (17.40) 45.68 (17.41) 44.47 (15.65) 46.35 (17.37) 50.36 (17.49) 51.23 (16.18) 48.23 (18.02) 44.60 (15.24)

Female (%) 75% 74% 81% 76% 72% 77% 72% 76%

Mean PHQ–9 (SD) 18.60 (4.85) 14.88 (4.09) 13.74 (3.00) 15.18 (3.96) 13.22 (2.58) 15.37 (3.88) 13.17 (2.64) 13.67 (3.12)

Moderate depression
rating

23% 57% 69% 51% 70% 42% 67% 71%

Moderately severe
depression rating

34% 26% 25% 32% 27% 40% 33% 20%

Severe depression rating 42% 18% 6% 18% 3% 18% 0% 9%

Diagnostic 40% 40% 27% 43% 30% 43% 35% 24%

Treatment 37% 32% 31% 44% 34% 42% 22% 27%

Note: “Diagnostic” is used to identify participants who self-reported having received a diagnosis of depression. On the other hand, “treatment” is assigned to participants currently undergoing
depression treatment.
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(pr = 0.27), low mood and low energy (pr = 0.26), and low mood
and worthlessness (pr = 0.18). The nodes with the highest
strength centrality were low mood, low energy, and worthless-
ness. The least central nodes in terms of strength centrality were

psychomotor functioning and anhedonia. These data must be
interpreted with caution because node strength centrality dem-
onstrated low stability (CS (cor = 0.7) = 0.12). See details of the
centrality stability test in Supplementary Figures S4 and S5.

Strength

−1 0 1

Anhedonia

Sleep

Psychomotor functioning

Appetite

Suicidal ideation

Worthlessness

Concentration

Low energy

Low mood

1

2

3

4

5

6

7

8

9
1: Anhedonia
2: Low mood
3: Sleep problems
4: Low Energy
5: Appetite changes
6: Worthlessness or guilt
7: Concentration problems
8: Psychomotor functioning 
9: Suicidal ideation

Figure 1. Network of symptoms and centrality plot for profile 1 with all of the depressive symptoms.
Note: The centrality plot shows standardized strength indices.

Strength

−1 0 1 2

Psychomotor functioning

Anhedonia

Appetite

Sleep

Concentration

Worthlessness

Low energy

Low mood

1

2

3

4

5

6

7

8

1: Anhedonia
2: Low mood
3: Sleep problems
4: Low Energy
5: Appetite changes
6: Worthlessness or guilt
7: Concentration problems
8: Psychomotor functioning

Figure 2. Network of symptoms and centrality plot for profile 2.
Note: The centrality plot shows standardized strength indices.
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Profile 3: All depressive symptoms except for psychomotor
functioning and suicidal ideation
This profile includes all PHQ-9 symptoms except for suicidal
ideation and changes related to psychomotor functioning.

The network of profile 3 is visualized in Figure 3. Profile 3 was
the third most frequent in the sample. Due to the small sample size
(n = 81), this network was estimated using a threshold of null 0.05
instead of applying the GLASSO method (which did not converge
in this subgroup). The network shows a strong positive connection
between low mood and low energy (pr = 0.37), low mood and
anhedonia (pr = 0.32), sleep problems and anhedonia (pr = 0.23),
sleep problems and low energy (pr = 0.22), and appetite and
worthlessness (pr = 0.23).

The nodes with the highest strength centrality were low
energy, lowmood, and worthlessness. In contrast, the nodes with
the least strength centrality were sleep problems and appetite
changes. However, these data must be interpreted with caution
because node strength centrality demonstrated low stability
related to the sample size (CS (cor = 0.7) = 0.21; for details on
the centrality stability test and accuracy, see Supplementary
Figures S7 and S8).

Results indicated that node centrality varied across the most
frequent profiles of depression (see Figure 4 for a comparison).
Consistently, the most central symptoms were low mood and low
energy, and the less central symptoms were anhedonia, change in
the psychomotor functioning, and appetite changes.

Strength

−1 0 1

Appetite

Sleep

Concentration

Anhedonia

Worthlessness

Low mood

Low energy

1

2

3

4

5

6

7

1: Anhedonia
2: Low mood
3: Sleep problems
4: Low Energy
5: Appetite changes
6: Worthlessness or guilt
7: Concentration problems

Figure 3. Network of symptoms and centrality plot for profile 3.
Note: The centrality plot shows standardized strength indices.

Anhedonia Low mood Sleep
problems Low Energy Appetite

changes
Worthlessness

or guilt
Concentration

problems
Psychomotor
functioning

Suicidal
ideation

Profile 1
9 1 8 2 6 4 3 7 5

Profile 2
7 1 5 2 6 3 4 8 -

Profile 3
4 2 6 1 7 3 5 - -

Strength 
Centrality

Higher Lower

Figure 4. Strength centrality rankings’ indices for the three most prevalent profiles.
Note: Numbers indicate strength centrality rankings. Profile 1: all of the typical symptoms of depression; profile 2: typical depression without suicidal ideation; profile 3: all
depressive symptoms except for psychomotor functioning and suicidal ideation. Figure adapted with permission from Malgaroli et al. [40] and license provided by Elsevier.
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Conclusions

The present study identified different depressive symptom profiles
and examined their network structure using PHQ-9 data from
participants with clinically relevant depressive symptoms drawn
from three community samples. Results show that 167 of the
382 theoretically possible symptom combinations were present in
the sample, and 55.6% of all profiles were accounted for by only
eight profiles. The most frequent symptom profile included all
typical symptoms of depression measured by the PHQ-9 (25.2%).
These results are consistent with studies that applied a similar
approach using patient-level data, which show that many cases
display similar symptom profiles. For example, Zimmerman et al.
[13] similarly found in a community sample that out of the
227 symptom combinations calculated using semi-structured inter-
views (Structured Clinical Interview for DSM-IV, SCID-I), just
170 were empirically observed and concluded that nine combin-
ation profiles accounted for the depression symptoms of 40% of
patients. These findings align with those of Park et al. [39], who
identified, in a clinical sample, 119 symptom combinations within
their sample. Both studies, using a different approach from the one
used in the present study, concluded that combinatorial patterns
with all nine symptoms of depression were the most prevalent in
samples from theUSA and South Korea [13, 39]. Overall, the extent
of diagnostic heterogeneity observed empirically within clinical and
community-based samples is lower than that has been previously
suggested based on theoretical arguments [e.g., 16].

The three most prevalent profiles showed similar mean levels of
overall symptom severity on the PHQ-9 total score. However, there
were evident differences in their centrality indices and in the
interrelations between symptoms. This is clinically relevant, con-
sidering that one of these profiles shows suicidal ideation and is
rated with the same severity as the other profiles, supporting the
idea that looking at total scores in scales omits important qualitative
differences between symptoms concerning their hierarchy and
clinical relevance [28, 58].

Regarding the relationship between symptoms, there are several
differences between the profiles related to the centrality indices and
the connection between them. The most common profile, namely
profile 1, showed a strong relationship between concentration
problems, suicidal ideation, and psychomotor functioning, with
concentration problems constituting a rather strong node within
this profile. This is different to those profiles that do not include
suicidal ideation. These results are in line with those reported in two
meta-analyses that found an association between the attentional
process and suicidal spectrum behaviors [59, 60]. Thus, this profile
could be relevant in identify vulnerable people in the population
because it has been highlighted that sad mood and concentration
problems, the two most central symptoms for this profile, are the
most disabling symptoms of depression [34].

Another difference between the profiles is present in profile
2, which shows a strong connection between lowmood, low energy,
and self-perception. In this profile, with all of the symptoms except
for suicidal ideation, worthlessness takes a key role in comparison
to profile 1 which includes all of the symptoms. On the other hand,
in profile 3, worthlessness is strongly related to changes in appetite,
which is unique to this profile. Profile 3 is characterized by the
centrality of low energy which is different from profiles 1 and
2, where low mood is the most central symptom.

In the most frequent profiles of depressive symptoms, results
show that low mood and low energy are consistently among the
three most central symptoms; this is similar to the results reported

in a systematic review that considered the results of 58 cross-
sectional depression networks. Interestingly, anhedonia does not
appear as a central node on these profile networks, even though it
has a strong positive connection with low mood (pr = 0.30, 0.27,
0.21), showing a consistent relationship on the three profiles ana-
lyzed. This is also consistent with previous studies that found the
connection between low mood and anhedonia was the networks’
most frequent and robust edge [40]. This is theoretically interesting,
considering that anhedonia has been conceived as a main symptom
according to the DSM diagnostic criteria for MDD.

In terms of methodology, there are limitations related to the
sample sizes for each profile subsample that must be considered
when interpreting these results. The estimation method could
impact the visualization of the networks for small sample sizes,
generating networks that overfit to the data and impacting the
stability of the centrality indexes [53]. Another limitation of this
study is the use of cross-sectional data, which provide only a static
vision of the profile symptoms that could change over time. Future
studies should consider these limitations and explore the relation-
ship between symptoms over time using longitudinal designs with
repeated measures. Also, it could be relevant to understand the
possible directional influence between the symptoms considering
time series data. An additional limitation of this study, as well as
depression heterogeneity research, that has been shown in previ-
ous studies [61] is that different instruments can assess different
symptoms of depression. Therefore, this study captures the het-
erogeneity of the specific screening instrument that was used, and
other instruments that capture additional symptoms or phrase the
same symptoms differently may yield different heterogeneity
profiles. Consequently, no claims can be made about substantive
heterogeneity as it occurs in nature (i.e., carving nature at its
joints) but rather as it emerges from the use of the PHQ-9, a
widely used screening measure and recommended as a preferred
measure for the screening of depression [62, 63]. It is important to
acknowledge that finding common ground for the screening of
depression by utilizing one instrument also may have a negative
impact on the efforts to map out heterogeneity; it is easier to
aggregate findings from different studies but all researchers are
looking through the same lens that could narrow the comprehen-
sion of depression [64, 65].

Even with these limitations, this study is the first to our know-
ledge that combined the identification of qualitatively distinctive
symptom profiles and examined the network structure of such
profiles using network analyses. Previous network analysis research
has shown the relevance of investigating the interrelations between
symptoms of depression [40].While the present results support this
approach, they also expand previous research about network ana-
lysis and depression and provide empirical support regarding the
relevance of looking at the different profiles and the different
relations between symptoms for each one. Also, these results could
be relevant considering treatment personalization.
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