
J. Fluid Mech. (2024), vol. 1000, A73, doi:10.1017/jfm.2024.1076

Delayed gravitational collapse of attractive
colloidal suspensions

K.W. Torre1,† and J. de Graaf1

1Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht
University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

(Received 27 June 2024; revised 16 September 2024; accepted 31 October 2024)

Colloidal gels have strong industrial relevance as they can behave as liquids or solids. The
latter allows them to support a buoyant weight against gravity. However, the system is
intrinsically out of equilibrium, which means that the colloids must eventually settle out
of the suspension. The process of settling has been captured theoretically, but the presence
of a delay time during which the gel appears relatively unaffected by gravity has not. Here,
we modify existing frameworks to capture this delay, by treating the gel as a continuum
with viscous response that is based on the local bond density. We can solve our model
numerically to obtain the evolution of the colloid density profile and recover qualitatively
the accumulation of a dense layer on top of the settling gel, as is observed experimentally
in depletion gels. This numerical study is complemented by a theoretical analysis that
allows us to identify an emergent time and length scale that set the dynamics of the gel.
Our model provides a solid foundation for future studies that incorporate hydrodynamic
erosion and tackle industrially relevant geometries.
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1. Introduction

Colloidal gels, formed through the aggregation of micron-sized particles within a solvent
medium (Lekkerkerker et al. 1992; Poon 2002; Bergenholtz, Poon & Fuchs 2003; Chen
& Schweizer 2004), represent a class of soft materials with diverse applications ranging
from food and care products (Larson 1999; Mezzenga et al. 2005) to crop protection
formulations (Faers et al. 2006), and bio-fluids (Darras et al. 2022). In any real-world
system, a density mismatch between the solvent and colloidal particles is unavoidable
(Buscall & White 1987). This leads to buoyancy forces and subsequent sedimentation (or
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creaming) of the colloids, ultimately giving rise to a separation of the suspension into
colloid-rich and colloid-poor regions. One of the appealing aspects of using colloidal gels
is that they possess the ability to support the particles’ buoyant weight against gravity for
a finite, often extended, duration (Allain, Cloitre & Wafra 1995; Senis, Gorre-Talini &
Allain 2001; Starrs et al. 2002; Derec et al. 2003; Manley et al. 2005; Bartlett, Teece &
Faers 2012; Harich et al. 2016; Padmanabhan & Zia 2018). This time is typically referred
to as a delay time and sets the typical shelf life of a gel-based product in many applied
contexts (Harich et al. 2016; Zhou 2018).

The gel’s ability to support its own weight can be attributed to its network-like structure
(Whitaker et al. 2019) and the internal dynamics (Zaccarelli & Poon 2009). A colloidal gel
forms due to the interplay between thermal/Brownian diffusion and strong, short-ranged
attractions between the colloids. The latter cause the colloids to aggregate into a network
structure, when the system is quenched into the spinodal region of the phase diagram
(Carpineti & Giglio 1992). For attractions that are several times the thermal energy –
kBT , with kB Boltzmann’s constant and T the temperature – rearrangement of the formed
network is slowed down (Foffi et al. 2002). This significantly extends the time it takes
the system to relax to thermodynamic equilibrium (Zaccarelli 2007; Royall et al. 2021).
The arrested dynamics also halts (Harich et al. 2016; Darras et al. 2022) or at the very
least strongly slows down (Derec et al. 2003; Manley et al. 2005) buoyancy-mediated
separation. The amount by which this separation is suppressed depends sensitively on
the way the gel is prepared and the interactions between the colloids. Consequently, the
time scales reported for complete collapse can vary significantly, ranging from minutes to
months (Harich et al. 2016).

Accurately characterizing a gel’s resistance to gravity in a physical model presents
a considerable challenge. This is because experiments reveal that colloidal gels can
exhibit several settling behaviours: fast sedimentation, delayed rapid collapse, and slow
sedimentation (Harich et al. 2016). Which of these is present in a given suspension is
dependent primarily on the initial volume fraction φ0 of the sample, the strength of
attraction between colloids ε0, and the size of the particles (Senis et al. 2001; Derec et al.
2003; Manley et al. 2005; Buzzaccaro et al. 2012; Harich et al. 2016; Darras et al. 2022).
The importance of size can be understood by considering the gravitational Péclet number,
which gives the dimensionless ratio between sedimentation and diffusion. For a sphere of
radius a, the number is given by

Peg = 4πg �ρ a4

3kBT
, (1.1)

where g is the acceleration of gravity, and �ρ is the density difference between the colloid
and the suspending fluid. The strong dependence on size follows from Peg ∝ a4.

Harich et al. (2016) experimentally investigated the settling dynamics of depletion gels
comprising ∼0.65 μm colloids. They established a φ0–ε0 state diagram for the types of
behaviour that were observed. The most striking of these is delayed gravitational collapse
(Harich et al. 2016; Zhou 2018) that occurs for 0.15 � φ0 � 0.35. In these situations, the
interface between the gel and supernatant phase – a region (nearly) devoid of particles
– initially resists sedimentation. However, at a certain point, the system abruptly loses
structural integrity and enters a regime of rapid settling, which is characterized by a
constant velocity of the interface. This regime concludes when the interface reaches the
densified bottom part of the sample, after which the velocity of the interface exponentially
decays to zero as the colloid-rich phase compacts. It was suggested in Harich et al. (2016)
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and later shown in Zhou (2018) that the accumulation of dense debris on top of the
gel triggers the catastrophic failure. This debris originates from the curved parts of the
meniscus between air and the sample.

Several attempts have been made to theoretically explain the response of colloidal gels to
gravitational forces. In 2003, Derec et al. (2003) studied experimentally the rapid collapse
of gels formed from strongly aggregating colloidal suspensions, for low values of the
initial volume fraction (φ0 < 1 %). They showed that in the first resistant regime, the
gel–supernatant interface slowly settles at a constant velocity. It was later argued that this
follows a power law φ

(1−D)/(3−D)

0 , with D the fractal dimension of the gel network (Allain
et al. 1995). In addition, Derec et al. (2003) connect the transition into the second, linear
regime to the appearance of fractures within the bulk of the gel. This provides an easy route
for the solvent to move up into the supernatant phase, which explains the abrupt increase in
the interface’s settling velocity. The authors also proposed a simple hydrodynamic model
by which the increase in velocity can be estimated, which takes as input the height and
radius of a typical crack in the gel.

These insights were built upon in the work of Manley et al. (2005), wherein the collapse
dynamics is determined by the balance between gravitational stress and the yield stress of
the network (φ0 < 1 %). When the former is larger, a gel collapses poroelastically, with a
rate of compression that decays exponentially in time. Otherwise, the network eventually
yields, leading to rapid linear settling. The authors use a modified Carman–Kozeny
relation (Happel & Brenner 1991) to argue that the characteristic pore size in the gel
network is set by the largest length scale in the system, the cluster size. They also show
that their experimental data collapse onto a single curve that is well described by their
model. However, it is important to note that both studies (Derec et al. 2003; Manley et al.
2005) focus primarily on colloidal particles with small diameters, typically in the range of
tens of nanometres, which can explain some of the differences between the observations
in Harich et al. (2016) and Zhou (2018).

More recently, Darras et al. (2022) investigated the sedimentation behaviour of dense
soft colloidal gels, formed by the aggregation of red blood cells (φ0 � 0.25). Unlike
previous models that assumed low initial volume fractions to simplify hydrodynamic
descriptions, they developed a theoretical framework capable of accurately reproducing
the time evolution of the gel interface height. Their model operates on the assumption that
the gel network uniformly compresses as it sediments, resulting in a mostly homogeneous
colloid distribution over time. This is a reasonable approximation for the dense and weak
gels that they examined. However, while their model successfully captures many aspects
of the gel sedimentation process, the initial delay time observed in their gels does not arise
spontaneously from the theory and is instead introduced as an adjustable parameter.

The study of collapsing colloidal gels remains an active area of research, particularly
in understanding how gravity influences gel structure. Gallegos et al. (2023) explored
gravitational effects in patchy colloidal systems, identifying a threshold Peg above which
gravity enhances particle bonding, promoting clustering and altering the gel network’s
structure. This leads to the coexistence of dilute and dense phases, or even a crystalline
state, depending on Peg. Tateno, Wang & Tanaka (2024) used confocal microscopy to
study gravity-induced collapse at the single-particle level, showing that gel microstructure
is determined solely by local volume fraction, while compressive stress forms chain-like
structures that support external stress. These insights underscore the role of gravity in gel
collapse and help to inform the development of models addressing such phenomena.

Motivated by the absence of theoretical descriptions that capture a delay time, we
present here a comprehensive theoretical framework that overcomes this issue. We also
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account for spatial variation of the gel properties, which should allow us to shed light
on phenomena like debris formation. In our model, we describe the stress within the
gel as a dilatational viscous response to applied compression (Landau & Lifshitz 1959).
Following other analyses, Darcy’s law is used to model the dynamic coupling between the
solvent and colloidal phases (Carman 1939; Gray & Miller 2004; Carrillo & Bourg 2019).
The average network pore cross-section is determined by the average surface-to-surface
distance between particles in our approach. We show that these elements are sufficient to
qualitatively capture features observed in experiments, including the emergence of delay
times and the accumulation of debris at the top of the gel.

The remainder of this paper is organized as follows. In § 2, we present the theoretical
framework in generic dimensions and boundary conditions. In § 3, we first provide
the analytical solution for the instantaneous mean colloidal velocity in samples with
homogeneous volume fractions. Subsequently, numerical results depicting the time
evolution of the gel–supernatant interface, as well as colloidal density profiles, are
presented. We conclude the section by demonstrating how the delay time can be predicted
accurately from the characteristics of colloidal flow at the beginning of the collapse. In
§ 4, we delve into a detailed discussion of the obtained results, addressing the limitations
of the models and establishing connections with experimental observations. Finally, in
§ 5, we draw conclusions and explore potential future directions, including the study of
meniscus curvature on the behaviour of a gel.

2. Theoretical model

In this section, we provide a step-by-step derivation of our model. As the primary focus
of this paper is the theoretical result, we have included details on the numerical solving of
the model in Appendix A.

2.1. Mass conservation equation
Consider a binary mixture of a solid colloidal phase, with volume fraction φc ≡ φ, and
a liquid phase with volume fraction φl. This composition can vary throughout space and
time, but we will leave the dependence on position r and time t of our fields implicit
throughout to ease the notation. Volume conservation implies that φl = 1 − φ. The phases
have densities ρc and ρl, respectively. Imposing mass conservation for each phase, we
obtain the integral expressions∫

V
dV ∂t [ρl(1 − φ)] = −

∫
∂V

dA · [ρl(1 − φ)vl] , (2.1)∫
V

dV ∂t (ρcφ) = −
∫

∂V
dA · (ρcφvc) . (2.2)

Here, vc and vl are the colloid and solvent velocities, respectively, ‘·’ indicates the inner
product, and ∂t is the partial derivative with respect to time. Integrals on the left-hand side
are over the volume of a stationary control volume V , while the right-hand sides integrate
the fluxes through that volume’s surface ∂V . Since the control volume is in principle
arbitrary, (2.1) and (2.2) give rise to the differential form

∂tφ = −∇ · (φvc) , (2.3)

∇ · [φvc + (1 − φ)vl] = 0. (2.4)
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Equation (2.3) implies that φ changes only via flow-mediated flux through the boundary,
and we will use it to integrate φ in time. Equation (2.4) defines a compressibility criterion
on a volume-fraction-weighted flow.

2.2. Momentum balance equation
Next, we derive an expression for the velocity of the colloidal phase, relative to the
liquid phase velocity. First, consider the momentum balance equation for the entire binary
mixture:

d
dt

∫
V

dV [ρmix vmix] =
∫

V
dV
[
ρmix g + ∇ · σmix

]
. (2.5)

On the left-hand side, we take the total time derivative of the momentum density, which
follows from integrating the total density ρmix(φ) = ρcφ + ρl(1 − φ) together with the
velocity of the mixture vmix. By adding equations (2.1) and (2.2), we can define a mixture
flux J mix = ρmix(φ) vmix, and subsequently write the mixture velocity as

vmix = ρcφvc + ρl(1 − φ)vl

ρmix(φ)
, (2.6)

which represents a weighted average by the densities of the two phases. On the right-hand
side of (2.5), momentum is introduced into the system by the gravitational acceleration g =
(0, 0, −g), and internally redistributed via (the divergence of) the mixture stress tensor
σmix. We define the latter as a sum over a Newtonian term from the liquid solvent, and a
non-Newtonian stress σ c that is related to the presence of the solid phase in the mixture:

∇ · σmix = −∇p + μ ∇ · e + ∇ · σ c. (2.7)

Here, p and μ are the liquid hydrostatic pressure and dynamic viscosity, respectively, and
e = 1/2[∇vl + (∇vl)

T] represents the rate-of-strain tensor.
To make progress, we now consider the momentum balance equation for each phase

separately. Introducing the momentum exchange terms Σ ij between phases i, j ∈ {l, c}, we
arrive at

d
dt

∫
V

dV (ρcφvc) =
∫

V
dV (ρcφg + Σcc + Σcl) , (2.8a)

d
dt

∫
V

dV [ρl(1 − φ)vl] =
∫

V
dV
[
ρl(1 − φ)g + Σ ll + Σ lc

]
. (2.8b)

Clearly, Newton’s third law implies Σcl = −Σ lc. Summing the two individual
contributions above and subtracting (2.5), we obtain

∇ ·
[
−Ip + μe + σ c + ρcρl

φ(1 − φ)

ρm(φ)
δv δv

]
= Σ ll + Σcc, (2.9)

with I the identity operator, and δv ≡ vc − vl the net velocity of the colloids with respect
to the background liquid flow. Evaluating the above equation in the absence of a colloidal
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phase, we can split the momentum exchange terms as

Σcc = ∇ · σ̃ c, (2.10a)

Σ ll = ∇ · (−Ip + μe), (2.10b)

where we have redefined the non-Newtonian stress

σ̃ c = σ c + ρcρlφ(1 − φ)

ρmix
δv δv, (2.11)

to ease the notation.
Finally, we choose to break up the cross-terms into a hydrostatic contribution and a

dynamical (friction) term,
Σcl = −φ ∇p + F Darcy, (2.12)

the latter of which we choose to model using (a variant of) Darcy’s law (Carman 1939;
Gray & Miller 2004; Carrillo & Bourg 2019). This law states that F Darcy is proportional
to the relative velocities between the two phases, and it represents a coarse-grained
contribution of all the microscale dissipative dynamics between the colloids and the
solvent. Here, we write

F Darcy = μ

σ 2
(1 − φ)(vl − vc)

K(φ)
. (2.13)

The dimension-free scalar function K(φ) represents the porosity of the mixture, σ = 2a
the (mean) particle diameter, and μ the viscosity of the suspending fluid, which ensures the
correct dimensionality. Note that we must have that K diverges in the absence of colloids,
such that the Darcy-like term disappears from the equation of motion. Conversely, K must
go to zero as φ approaches the maximum value allowed, φm – depending on the context,
this could be random loose packing, random close packing, or another dense arrested state.
We will provide an explicit form for K(φ) in § 2.4.

By defining a phase-related convective derivative Di
t = ∂t + vi · ∇, and combining (2.8)

with (2.10) and (2.12), we can eliminate the pressure p from the system. This allows us to
arrive at our final relation:

Dc
t [ρcvc] − Dl

t[ρlvl] + μ δv

σ 2φK
= �ρ g + ∇ · σ̃ c

φ
− μ ∇ · e

1 − φ
. (2.14)

2.3. Quasi-hydrostatic limit
We perform a dimensional analysis on (2.14), and conclude that there it is useful to
introduce a characteristic velocity vg and length lR. The former represents the bulk settling
velocity of a single colloid due to buoyant forces, vg = �ρ gσ 2/μ. The latter is the length
scale associated with smallest distance that the coarse-grained theory can resolve. That is,
l3R is the representative elementary volume (REV) (Carrillo & Bourg 2019), which is the
smallest volume containing sufficient particles to define a local field φ. This parameter is
system-dependent and can be used to demarcate the scale transition from microscale to
macroscale descriptions in porous materials (Gray & Miller 2004).

From our dimensional analysis, we conclude that (2.14) can be rewritten as

lim
Re→0

δv∗

K(φ)
= −φẑ + α2

[
∇∗ · σ ∗

c − φ ∇∗ · e∗

1 − φ

]
. (2.15)

Here, we have introduced the dimension-free constants α = σ/lR – the ratio of the particle
diameter to the REV size – and Re = �ρ vglR/μ – the Reynolds number. Quantities
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denoted with an ∗ superscript are expressed in natural units. The limit Re → 0 emerges
naturally, since in real systems this limit holds for the small particles suspended in a
viscous medium.

We can further simplify the expression by considering the limit as α → 0. This
represents highly correlated systems, where the amount of particles needed to be described
at a coarse-grained level is extremely large. However, caution is advised in following this
approach. For finite-size systems of typical length L, α is naturally bounded from below
by the ratio σ/L. Lower values would make the coarse-grained description meaningless.
Moreover, the non-Newtonian contribution to the stress σc may be singular (divergent),
particularly at the maximum packing fraction φm. This, for example, prevents the
non-physical overlap of hard colloids. This makes taking the limit α → 0 poorly defined
in some cases.

The limit wherein α and Re both tend to zero is commonly referred to as the
quasi-hydrostatic regime. Assuming small values of α and Re, we can express

δv ≈ K(φ) (−vgφẑ + σ 2μ−1 ∇ · σ c). (2.16)

At this point, we need to specify the forms of K(φ) and σ c in order to solve the problem.
This also requires us to combine (2.16) with (2.4) to eliminate the dependence on the liquid
velocity, as we will show in § 3.

2.4. Mean porosity
The distribution of pore cross-sections within the colloidal phase is intricately linked
to the distribution of particle surface-to-surface distances. This relationship is typically
hard to predict (Carman 1939; Heijs & Lowe 1995; Xu & Yu 2008; Ozgumus, Mobedi
& Ozkol 2014), as it is influenced by factors such as system temperature, details
of interparticle interactions (Ruiz-Franco et al. 2020), and potentially, the system’s
preparation/rheological history (Koumakis et al. 2015; Gibaud et al. 2020; Saint-Michel,
Petekidis & Garbin 2022; Torre & de Graaf 2023). For simplicity, and as a first-order
approximation, we opt to characterize the mean pore cross-section using the ansatz

K(φ) = (1 − φ/φm)3

k2
0φ

(2.17)

in this work. This expression adequately reproduces the findings reported in Torquato
(1995), where the author estimates the nearest-neighbour distance in a homogeneous
configuration of hard spheres as a function of the volume fraction φ. Thus we model the
mean pore cross-section simply as the mean surface-to-surface distance between spherical
particles. The constant parameter k0 = 3

√
2 is determined by computing the sedimentation

velocity of a single sphere in a viscous unbounded fluid. To achieve this, we evaluate (2.16)
for φ = 0, assuming that [K(φ)∇ · σ c]|φ=0 = 0. Note that although vc is non-zero, where
the volume fraction vanishes, the colloid flux Jc = φvc is zero, as required.

2.5. Dilatational viscosity
We choose to represent the non-Newtonian stress as a simple diagonal operator, which
depends on the local φ and the amount of compression in the colloid field:

σ c = λ(φ) I (∇ · vc) . (2.18)

Here, λ denotes the dilatational viscosity, which physically represents the irreversible
resistance to compression or expansion within a fluid. At the microscopic level, it arises
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from the finite time needed for energy injected into the system to disperse among the
various degrees of freedom of colloidal motion (Landau & Lifshitz 1959). Note that (2.18)
does not account for shear stress response of the colloidal phase. However, in the present
study we limit our focus to one-dimensional (1-D) systems, where the shear component of
the stress is not resolved.

We model the dilatational viscosity as the product of a local energy density and
relaxation time, λ(φ) = ε(φ) Tr(φ). The first can be expressed as the product of particle
density nc = Nc/V and the average number of bonds per particle nb(φ). To estimate the
latter, we compute the ratio of incoming jin = D0/δr2(φ) and outgoing jout = D0/Γ

2

fluxes of particles for a single central colloid. Here, D0 = (kBT)/(3πμσ) represents the
diffusion coefficient of an isolated colloid in an unbounded fluid, and Γ � σ denotes the
range of the attractive interactions, as measured from the colloid centres. We retain only
the fraction of particles that do not escape from the potential well of the central colloid,
resulting in

ε(φ) = ε0nc nb(φ) = ε0
3zmax

πσ 3
φΓ 2

δr2(φ)
(1 − e−ε0/kBT). (2.19)

Here, zmax represents the maximum number of bonds that a particle can form due to
geometric constraints, and ε0 is the energy of a single bond. Additionally, and similarly to
what we assumed for the mean porosity, δr = σ [1 + (1 − φ/φm)3/2φ−1/2/10] denotes the
mean distance to the closest neighbouring particle in a spatially homogeneous distribution
of colloids, approximately reproducing Torquato’s original result (Torquato 1995).

Next, we calculate the relaxation time of the colloidal phase. To obtain an estimate, we
use an effective diffusion coefficient D(φ) = D0 f (φ) and expand it to first order around
φ = φm where diffusion is suppressed by crowding, thus yielding D|φ=φm = 0:

Tr(φ) = l2R
D0(1 − φ/φm)

. (2.20)

Now we are in a position to combine (2.19) and (2.20) to obtain the dilatational viscosity

λ(φ) = μ
9α−2zmax U(1 − e−U)[

φ1/2 + 1
10(1 − φ/φm)3/2

]2
φ2

(1 − φ/φm)
, (2.21)

where we introduce the dimension-free potential strength U = ε0/kBT , and assume
short-range interactions (Γ ≈ σ ). As expected, the stress exhibits a singularity at the
maximum packing fraction φm. This implies that it can serve as a means to dissipate kinetic
energy at a rate large enough to suppress applied stresses. In turn, this would enable the
(dense) gel to support its own weight.

2.6. Helmholtz decomposition
The above framework is limited to 1-D systems. When extending our analysis to higher
dimensions, an additional relationship involving the spatial derivative of the colloid
velocity becomes necessary to close the system. One possible approach is to perform a
Helmholtz decomposition (Ribeiro, de Campos Velho & Lopes 2016; Klaseboer, Sun &
Chan 2019; Glötzl & Richters 2023) on the mixture velocity field. That is, we can express
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it as
vmix = ω + ζ , (2.22)

where the vector field is divided into a divergence-free component ω, and a curl-free
component ζ . A natural choice for the former is derived from (2.4), namely ω =
φvc + (1 − φ)vl. Consequently, we can explicitly compute ζ = vmix − ω, and obtain the
constraint

∇ ×
[

�ρ

ρmix
φ(1 − φ) δv

]
= 0. (2.23)

It is worth noting that this decomposition is not always unique and may not be applicable
in all scenarios (Glötzl & Richters 2023). This is because the smoothness of the mixture
velocity field vmix is a prerequisite for employing this technique.

3. Results

In this section, we explore solutions of our model specifically tailored to 1-D systems.
We start our analysis by deriving the exact solution for the initial (t = 0) colloid velocity
field vc, when there is a homogeneous density profile. This already provides key insights
into the origin of the gel’s strength, and how it is able to support its own weight (for a
finite time). Subsequently, we consider the full time evolution numerically. This clearly
demonstrates the gel’s resistance to gravitational collapse, and reproduces gel settling
regimes qualitatively.

3.1. Homogeneous colloid distribution
Consider a homogeneous isolated system with net volume HL2 and height H 
 L, as
well as initial colloid volume fraction φ(z)|t=0 = φ0. Due to the underlying symmetry,
the velocity field can be expressed as a function of the z-coordinate and time only,
vc = vc(z, t) ẑ. Combining (2.4) with (2.16), and defining a characteristic length

ζ = σ
√

K(φ0) λ(φ0) (1 − φ0)/μ, (3.1)

we obtain the following equation for the initial colloid velocity field:

∂zvc|t=0 = ζ 2 ∂3
z vc|t=0. (3.2)

Equation (3.2), when extended to arbitrary dimensions, reveals its nature as a Poisson
equation describing the stress σ c, with a source term linked directly to the gel’s
compression, expressed as φ ∇ · vc.

Using mass conservation, we integrate (2.3) in space to obtain the boundary conditions

vc|z=0,H
t=0 = 0, (3.3)

∂2
z vc|z=0,H

t=0 = vgφ0

λ(φ0)
. (3.4)

We can also define a characteristic colloid velocity Vg = vgφ0(1 − φ0) K(φ0),
representing the colloidal flow in absence of non-Newtonian stress. The presence of a
characteristic length scale ζ and velocity Vg allows us to define a characteristic time
τd = ζ/Vg. In the next subsection, we will show that the latter can be used to obtain an
accurate estimation of the gel collapse delay time.
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Finally, combining the above results, the initial colloid velocity can be written as

vc(z)|t=0 = Vg

⎡
⎢⎢⎣

cosh
H/2 − z

ζ

cosh
H
2ζ

− 1

⎤
⎥⎥⎦ . (3.5)

Here, we recognize ζ as a stress screening length for the gel. In the limit ζ/H � 1, a
strong resistance to compression and expansion is extended to the entire sample, halting
the sedimentation process. This can be seen readily by Taylor expanding (3.5) with respect
to the small parameter H/(2ζ ), and noting that vc(z)|t=0 scales quadratically with it. Note
that a similar concept of stress screening length was already introduced in Evans & Starrs
(2002).

3.2. Time evolution
For our numerical analysis, we set the height of our sample as H = 5 × 10−2 m, and
the bulk settling velocity of a single colloid as vg = 10−5 m s−1, reproducing commonly
used experimental set-ups (Senis et al. 2001; Derec et al. 2003; Manley et al. 2005;
Harich et al. 2016). We also set lR ≈ 1.3 × 10−4 m, and incrementally discretize height
using a spacing δz ∈ {10−3, 5 × 10−4, 2.5 × 10−4} H, where the smaller values are used
for more numerically challenging systems. For the initial volume fraction, we choose
φ0 ∈ [0.01, 0.55], which spans the range of experimentally considered densities (Harich
et al. 2016; Darras et al. 2022), and set φm = 0.7. Finally, we take the (reduced by
kBT) potential strength in the range U ∈ [5, 50]. Here, U ≈ 5 is a typical lower bound
for colloidal gelation (Harich et al. 2016), while U ≈ 50 represents a very strong gel at
intermediate to high φ0. With these choices, a single colloid would sediment the entire
sample height in a time ts = 5 × 103 s.

We numerically solve (2.4) and (2.3) for a 1-D system with these choices, to obtain the
colloidal density profile as a function of time; see Appendix A for more information. For
these solutions, we define the height of the gel interface h(t) – between the colloid-rich
and colloid-poor parts of the sample – as the tallest point in the system where the local
colloid volume fraction φ(z) exceeds φ0/2.

Figure 1 shows h(t) for several choices of φ0 and U. We observe three regimes: an
initial delay, a linear ‘collapse’, and an exponential compaction. The former is hard to
distinguish for low φ0, while the latter cannot be observed for high φ0, due to the slow
settling dynamics for such φ0. Examining the delay more closely, we find that it is
significantly influenced by both φ0 and U, which reflects the monotonic increase of the
dilatational viscosity λ with these parameters. An analytical expression for the delay time
will be provided later in this section, in (3.6). In the linear regime, the interface settles
at a constant velocity (1 − φ0/φm)−1Vg, determined by the porous structure of the gel
medium rather than its resistance to deformations. The onset of the third regime occurs
when the interface reaches the dense region formed at the bottom of the sample, with the
settling of the (largest part of the) gel bulk. In this regime, sedimentation speed is governed
predominantly by colloid-solvent hydrodynamic drag, with minimal deviations observed
among systems with different potential strengths U.

Next, we connect the (early time) behaviour of the interface to the gel’s internal
structure. Figure 2(a) shows the time evolution of density profiles for a sedimenting gel
with φ0 = 0.25 and U = 30. In the linear settling regime, the bulk of the gel sediments
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Figure 1. Time evolution of the interface height between the settling gel and supernatant region. Lighter
colours denote less dense configurations, while darker colours represent denser ones, as labelled, with the
symbols indicating various bond strengths; see the legend. The interface height is adjusted by its long-term
limit h∞ = Hφ0/φm (complete separation) and scaled to fit within the range [0, 1]. Dashed black lines are
guides to the eye to indicate a linear trend with slope (1 − φ0/φm)−1 Vg(φ0). Time is expressed in units of
ts = H/vg, representing the time required for a single colloid to sediment the height of the sample volume H.
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Figure 2. Density profiles depicting the time evolution of a sedimenting gel with an initial volume fraction
φ0 = 0.25 and dimension-free potential strength U = 30. Local volume fractions φ(z) are normalized by
the maximum volume fraction φm (left) or their initial value φ0 (right), with colours indicating temporal
evolution from light to dark. The evolution direction is indicated by the black arrow. (a) Colloid density
sampled uniformly in time as a function of the reduced height z/H, with the time interval between each curve
given by 0.3ts. The initial configuration is represented by a solid line, the linear regime by dashed lines, and
the exponential compaction by dotted lines. (b) The flux of colloids Jc = vcφ (red), normalized by the bare
gravitational flux Jg = Vgφ0, is shown alongside normalized local volume fraction (green), plotted against
height shifted by the system size H, and expressed in units of the gel stress screening length ζ . Thick lines and
symbols denote the system at three representative times: the initial configuration (circles), the creation of debris
at the top of the sample (triangles), and during linear collapse (squares). The thin lines give an impression of
the behaviour at intermediate times {0.02, 0.04, 0.07, 0.09, 0.13, 0.15, 0.5, 0.75} ts, and the characteristic time
for this initial volume fraction is τd ≈ 0.09ts.

is almost unperturbed. That is, there is a large section of the gel that remains at φ0. We
also see a small (physical) peak at the upper end of this flat range, which represents the
accumulation of ‘debris’ on top of the gel. We will see that this originates from the early
stages of settling when we turn to figure 2(b).
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Turning our attention to the bottom of the sample, we see that here, the gel begins to
compact immediately. That is, for our parameter choices, the gel cannot fully support its
own weight; we will return to this in § 4, when we discuss the connection to experiment.
The transition from linear collapse to exponential settling occurs at t ≈ 2.1ts, and can be
seen to coincide with the dense region at the bottom meeting with the interface between
the gel and supernatant.

In figure 2(b), early-time colloidal flux Jc(z) = φ vc(z) and φ(z) are depicted. As the
bulk of the system sediments, it stretches the top part and compresses the bottom part of
the gel – referencing (3.5), the top and bottom can be identified to be within ζ of either
boundary. The top of the gel tries to resist this stretch until the thinnest part connecting it
with the bulk breaks. Unsurprisingly, this is approximately when the bulk has settled at a
distance ζ . This leaves the top part detached from the rest of the gel. Note that here we did
not explicitly put in an attraction between the top of the sample and the gel; the apparent
attachment to the top of the gel is caused by the no-flux boundary conditions imposed on
the colloid velocity field vc. These are necessary to ensure that the system is isolated.

Throughout the evolution of the system, the part that remains at the top decreases in
density and creates debris. This will sediment at a faster rate than the denser bulk gel due
to the weaker hydrodynamic dissipation that this debris experiences. Ultimately, the debris
deposits itself on top of the bulk as it continues to sediment, and causes a local density
peak. As this denser material resists settling more, a local density minimum eventually
forms in front of it. Revisiting figure 1, we understand that the delayed collapse can
be attributed to the top part of the gel resisting collapse for a finite amount of time.
Considering Jc(z) in figure 2(b), the top layer detaches from the gel bulk, the flux of
colloids transforming from a monotonically increasing function to a function with local
minima and maxima. The former indicates that the gel is swelling everywhere near the top
boundary in a cohesive way. The latter signals that a part of the gel has detached from the
bulk and is accumulating on top of the homogeneously collapsing bulk.

Finally, in figure 3 we plot the delay time Td obtained from numerical solutions – defined
as the earliest time for which h(t) < H – as a function of initial volume fraction φ0. The
delay time is scaled by c(U) =

√
U(1 − e−U) to ensure data collapse. This scaling implies

that the main contribution of stronger interactions is an increase in the delay time, while
the underlying physics is not modified, as confirmed by the data collapse in figure 1. We
compare the numerical results with our theoretical prediction

Td = a0

(
1 − φ0

φm

)
τd, (3.6)

where a0 ≈ 5/2 is a fit parameter likely resulting from the way in which we define the gel
interface in our system. We obtained this by computing the time required for an interface
moving at a constant velocity Vg(1 − φ0/φm)−1 to cover a distance ζ . This result matches
our numerical data extremely well across the range of U and φ0 considered. Turning to
our simple description of the early-stage settling, we conclude that the bulk of the gel
must settle at a distance at least ζ to free itself from the non-Newtonian responses of the
boundary. Once it does, it is able to settle at a constant velocity Vg. We will provide further
elaboration on this point when we provide additional context to our research in the next
section.

4. Discussion

We have put forward a theoretical description of a colloidal gel, where we have moved
away from previous modelling (Buscall & White 1987; Evans & Starrs 2002; Manley et al.
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Figure 3. Delay time for gravitational gel collapse T∗
d (scaled by c(U) =

√
U(1 − e−U)), in units of ts, and as

a function of initial volume fraction φ0. Numerical results for different values of the potential strength U are
indicated using symbols; see legend. The dashed line represents the theoretical prediction (3.6), scaled in the
same way as the data points.

2005; Buzzaccaro et al. 2012; Darras et al. 2022) by introducing a dilatational viscosity
for the solid phase. This imparts resistance to compression and expansion, which strongly
affects the gel’s settling behaviour under gravity. In this section, we discuss our results
in the context of experimental studies (Derec et al. 2003; Manley et al. 2005; Harich
et al. 2016; Zhou 2018; Darras et al. 2022; John et al. 2024) and other computational
(Padmanabhan & Zia 2018; Varga, Hofmann & Swan 2018; de Graaf et al. 2023), and
theoretical (Evans & Starrs 2002; Derec et al. 2003; Manley et al. 2005; Darras et al. 2022)
work.

4.1. Layering and length scales
Our t = 0 analytic expression, (3.5), provides insight into our numerical observations,
which we consider valid on the basis of the correspondence in figure 3. A homogeneous
initial sample can be approximately divided into three regions: a top and bottom layer, both
with a thickness of ζ – the gel stress screening length – and a bulk containing the rest of
the sample. As this homogeneous gel begins to sediment, the top and bottom layers resist
stretching and compression, respectively, while the bulk settles with a uniform velocity Vg.

In our calculations, the bottom part typically lacks the strength to withstand
compression, leading to the immediate creation of a bottom dense layer that grows without
delay (see figure 2a). This indicates that the gel stress screening length ζ is typically too
small to propagate the stress response from the bottom of the sample to a height sufficient
for forming a resistant layer thick enough to prevent the gel bulk from collapsing. A bottom
layer that can be clearly distinguished from the bulk gel for an extended period of time
is also observed in certain experimental configurations (Harich et al. 2016). These are
usually associated with gels having strong interparticle interactions, suggesting that their
size depends on the strength of the attractions, which aligns with our findings for ζ .

Notably, a similar characteristic stress screening length is also reported in the work
of Evans & Starrs (2002), where a comparable theoretical framework is applied. Their
study demonstrated that the characteristic velocity of the collapse could be influenced
by the size of this screening length, particularly when the sample size is comparable
to it. This suggests that gels with extremely long delay times (Harich et al. 2016; Zhou
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2018; Darras et al. 2022) may fall into this category. In such cases, the velocity of the
colloids is exponentially suppressed throughout the entire sample, resulting in minimal or
no dynamics, and consequently, a significant delay in the onset of collapse.

4.2. Settling and rupture
The initial settling causes an upward solvent flow (backflow), with the velocity dictated
primarily by the porous structure of the networked colloids. We believe this to be realistic
for unruptured gels in experimental settings (Darras et al. 2022), as well as for colloids
with small sizes (Derec et al. 2003; Manley et al. 2005). In these systems, the interface
velocity follows a power law that is different from the one in our model, due to the specific
choice for porosity K. The scaling predicted by our theory follows from the assumption
that pores are locally homogeneously distributed within an REV, thus recovering the
expression for a single isolated sphere sedimenting in an unbounded Newtonian solvent.
A more accurate porosity for fractal-like aggregates should also depend on the fractal
dimensions of these aggregates (Allain et al. 1995; Derec et al. 2003; Manley et al. 2005).
However, estimating such a quantity is far from trivial, as it generally depends on the
volume fraction, the strength of the interactions, and the shape of the particles (Derec
et al. 2003), making it space-dependent in our description. Therefore, we choose to use
a simpler and well-defined expression as defined in (2.17), which effectively covers the
entire range of volume fractions and connects different regimes with a unified qualitative
description.

When the centre of mass of the bulk displaces by a height ζ , the top part of the gel is
maximally extended. This triggers a detachment of the bulk gel, after which the remaining
top part effectively becomes debris. This debris subsequently deposits on the gel interface
at the top of the bulk area as it continues to settle. This accumulation of debris at the top
of the gel interface has been observed in experiments (Harich et al. 2016; Zhou 2018).
In most experiments, there is a curved meniscus to the sample, and the mechanisms by
which the debris forms are presumably not identical. However, the inverted-cuvette set-up
of Zhou (2018) comes closest to our 1-D theoretical analysis. Here, a denser layer on top
of a uniformly settling gel was observed, though the formation of a thinner region before
rupture could not be discerned. It may be that ζ is very different in these experiments, or
that the boundary conditions that we considered are not commensurate with those of Zhou
(2018).

Once the interface has detached from the top of the sample, it continues to sediment with
constant velocity until it reaches the dense bottom layer. The interface subsequently slows
down exponentially as the sample compacts and h approaches its asymptotic limit h∞. The
presence of such a compaction regime is also consistent with experimental observations
and previous modelling (Derec et al. 2003; Manley et al. 2005; Harich et al. 2016; Razali
et al. 2017; Darras et al. 2022; de Graaf et al. 2023). However, we do not believe that
the constant velocity regime is representative of the ruptured regime that is encountered
in experiments (Derec et al. 2003; Harich et al. 2016; Zhou 2018). That is, the transition
from delayed to linear collapse is widely accepted to occur when cracks (Derec et al. 2003)
or streamers (Harich et al. 2016; Zhou 2018) emerge in a previously homogeneous bulk
gel. They could either give preferential pathways for fluid flow or yield the gel network
in its entirety (Harich et al. 2016), due to erosion by fluid backflow (Varga et al. 2018;
Zhou 2018; John et al. 2024). Our model gel remains homogeneous, and its bulk stress is
relatively unaffected before compaction occurs.
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4.3. Extending the delay time
As we do not have cracks or rupture, we might expect our delay times to be longer than in
experiment, as also suggested by the inverted-cuvette experiment in Zhou (2018). However,
Td is consistently shorter than reported in real systems (Harich et al. 2016; Zhou 2018;
Darras et al. 2022). Crucial to understanding the origin of this difference is the form of
our dilatational viscosity λ(φ, U). Scaling this viscosity by the function c(U), as shown
in figure 3, preserves its dependency on φ0. This is evidenced by the data collapse in
this figure. If we had a different form of c(U), then we would expect the collapsed curve
to still hold, but the real delay time to change significantly. In proposing a form of λ,
we ignored the influence of attractive interactions on the system’s relaxation time. These
should strongly suppress colloidal diffusion, thereby increasing drastically c(U) and Td.
Incorporating a more detailed expression for λ capable of capturing these effects should
yield delay times more closely aligned with experimental values, and could be considered
in follow-up studies.

Finally, we note that the computational study by Padmanabhan & Zia (2018) predicted
both a delay and a collapse without accounting for hydrodynamic interactions. They
attribute their observed delay to gravity-enhanced coarsening driven by negative osmotic
compressibility. This mechanism is not captured directly in our modelling, which does
partially consider colloids diffusion and local rearrangement only in constructing the
dilatational viscosity of (2.21). However, their predicted delay times are significantly
shorter than those observed in experiments, and the range of gravitational Péclet numbers
Peg that they investigated is limited to small values, whereas not all experimental systems
fall within this range (Harich et al. 2016; Zhou 2018). In contrast, our model assumes that
in the absence of gravity, there would be no osmotic contribution to the stress affecting
local density. We consider the dynamics to be dominated by gravity and the viscous
response of the gel network, mediated by hydrodynamics, making the Péclet number
effectively infinitely large, as reflected by the missing diffusive term in (2.3).

4.4. Going beyond one dimension
The experiments carried out in the Poon lab (Meeker 1998; Starrs et al. 2002; Harich et al.
2016; Zhou 2018) suggest that a 1-D description may lack necessary features to accurately
replicate real gel behaviour. Missing features include the curvature of the suspension–air
meniscus, which represents the top boundary of the system, and the interaction between the
gel and the meniscus, as well as between the gel and the other solid-confining boundaries
(Senis et al. 2001; Evans & Starrs 2002). That is, tangential slip of colloids along a curved
meniscus could lead to local weakening of the structure at the top of the sample, and debris
accumulation at specific points, which subsequently yields the gel and triggers the onset
of rapid collapse (Zhou 2018).

Additionally, the influence of shear stress response in the gel does not play a role in
our 1-D calculations. This response is expected to be relevant for the same reasons that we
mentioned, when we introduced the dilatational stress. We expect that shear stress response
could potentially produce more resistant gels, as any variation in the flow of colloids in the
plane normal to its direction would generate a response. These variations can be caused
by microscale factors such as density fluctuations coming from trapped solvent droplets.
They can also stem from the applied boundary conditions, e.g. the presence of a liquid–air
meniscus (Harich et al. 2016; Zhou 2018) or an overall incline of the cuvette (Senis et al.
2001).
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Finally, our model assumes an instantaneous stress response for the gel network.
However, in reality, the gel network undergoes erosion, which changes the morphology
of the network and weakens its stress response over time (Varga et al. 2018; de Graaf et al.
2023). This erosion also alters the pore distribution, affecting the porosity K. That is, a gel
that is initially much stronger than what we considered in this work will weaken over time,
leading to a more pronounced and violent transition from delay to linear collapse. Future
work will focus on the implementation of these ‘weakening’ features.

5. Conclusions and outlook

Summarizing, we have developed a theoretical model by which we can study the response
of colloidal gels to gravitational stress. Our approach treats the gel as a viscous medium,
incorporating a dilatational viscosity for the colloidal phase that varies with local density.
Herein, we depart from previous modelling (Buscall & White 1987; Evans & Starrs
2002; Manley et al. 2005; Buzzaccaro et al. 2012; Darras et al. 2022), which allows
us to qualitatively capture several experimentally observed features of colloidal gel
sedimentation. The gel viscosity is complemented by Darcy’s law, by which we represent
flow as a local drag force acting on the solid phase. That is, we work at a level that coarse
grains out the complex microscale hydrodynamic flows and interactions.

We computed the full dynamics of the system numerically in an effective 1-D geometry,
i.e. only the sample height is relevant. This reveals that our model predicts three distinct
regimes: a delay, followed by linear settling, and a final exponential compacting. All of
these elements have been reported in experimental systems (Harich et al. 2016; Zhou 2018;
Darras et al. 2022). Surprising, solving analytically for the initial (t = 0) behaviour is
sufficient to understand the origin of the salient features of the full collapse dynamics
in our model. This analysis reveals that there is a natural length scale ζ in the system,
representing a gel stress screening length. Thus a sample can be divided into three regions
when ζ < H: top and bottom layers, and a middle ‘bulk’ part of the gel. The latter remains
relatively unaffected during the initial part of the settling, again mirroring experiments
(Harich et al. 2016; Zhou 2018). However, when the former is fully stretched, it triggers
the onset of the linear settling regime and the subsequent formation of a dense layer of
debris on top of the settling gel. This is reminiscent of some experimental observations
that were made on depletion-based colloidal gels (Zhou 2018).

However, the present modelling does not capture all settling behaviours observed
in experiment. In part, this can be attributed to the approximations that we made in
determining the resistance of the gel to flow. This makes the delay time much shorter
than is typically observed in experiment. However, we provide a means to amend this
discrepancy through suitable modification of the dissipative term. In part, the choice of
modelling the dynamics in 1-D proved useful to gain basic insight, but it fails to capture
some of the more essential features of the experiments. For example, we do not account
for the the curvature of a liquid–air meniscus, which appears to control much of the onset
of rapid collapse (Harich et al. 2016; Zhou 2018).

Addressing these gaps in our present modelling could bring our results in closer
agreement with the experiments. Future work will therefore extend the analysis to higher
dimensions and incorporate erosion mechanisms. The present study provides a solid
foundation for this and may be readily built upon in other directions.
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Appendix A. Numerical scheme

In this appendix, we provide the details of the numerical scheme used to solve our model
in one dimension. For non-homogeneous density profiles, by combining (2.4) with (2.16),
we obtain a non-homogeneous linear differential equation for the gel stress σc(z),

σc = λ(φ) ∂z

[
(1 − φ) K(φ)

(
−vgφ + σ 2

μ
∂zσc

)]
(A1)

= A(φ) + B(φ) ∂zσc + C(φ) ∂2
z σc, (A2)

where the non-constant coefficients are defined as

A(φ) = −∂zφ λ(φ) ∂φ [φ(1 − φ) K(φ)] vg, (A3)

B(φ) = ∂zφ λ(φ) ∂φ [(1 − φ) K(φ)] μ−1σ 2, (A4)

C(φ) = λ(φ) (1 − φ) K(φ)μ−1σ 2, (A5)

and the boundary conditions are given by

∂zσc|z=0,H = �ρ g φ|z=0,H. (A6)

The system height H is subdivided in N + 1 intervals of size δz, and all fields are
represented on this grid using a superscript indicating their evaluation positions. We
employ central second-order and first-order finite-difference schemes in the bulk and at
the boundaries, respectively, to derive the following finite-difference equations for σc:

σ i
c

∣∣∣
0<i<N

=
Ai + Bi

2 δz
(σ i+1

c − σ i−1
c ) + Ci

δz2 (σ i+1
c + σ i−1

c )

1 + 2Ci

δz2

, (A7)

σ i
c

∣∣∣
i=0

= −�ρ gφ0 + σ 1
c , (A8)

σ i
c

∣∣∣
i=N

= �ρ gφN − σN−1
c . (A9)

These equations are solved iteratively to update the stress values until convergence is
reached, with the tolerance set to 0.001 %.
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Once the numerical solution for the stress is computed, it is divided by the dilatational
viscosity λ, which is computed using the volume fraction of the current time step, to obtain
∂zvc(z, t). Next, we integrate this result to find the colloid velocity field,∫ z

0
dz′ ∂z′vc(z′, t) = vc(z, t), (A10)

where the boundary velocity term vc(0, t) is simplified using mass conservation and the
fact that the system is isolated. An approximation of the above integral is computed using
the trapezoidal rule, resulting in the discretized colloid velocity:

vi
c

∣∣∣
0<i<N

= δz
2

i∑
j=1

(
σ

j+1
c

λj+1 + σ
j−1
c

λj−1

)
, (A11)

vi
c

∣∣∣
i=0

= vi
c

∣∣∣
i=N

= 0. (A12)

Now that the colloid velocity field is known, we can advance the colloid volume
fraction one time step forwards using (2.3). This is solved numerically using an upwind
finite-volume method Versteeg & Malalasekera (1995). Standard finite-difference schemes
would fail to converge due to the strong convective nature of (2.3), given the absence of
explicit diffusive terms. Thus the change in volume fraction is computed approximately at
the centre of each of the N + 1 space intervals using the biased fluxes

Jk
up =

{
φkvi+1

c , vi+1
c > 0,

φk+1vi+1
c , vi+1

c < 0,
(A13)

Jk
down =

{
φk−1vi

c, vi
c > 0,

φkvi
c, vi

c < 0,
(A14)

where we have introduced the indices k = i + 1/2 to relate the velocity field, computed at
the N + 1 nodes, with the volume fraction field, computed at the N centres of the intervals
formed by consecutive nodes. The instantaneous change in volume fraction at a given time
step can then be computed using

∂tφ
k(t) = −Jk

up + Jk
down, (A15)

and the updated values of φ are obtained using a first-order forward Euler scheme:

φk(t + δt) = δt ∂tφ
k(t). (A16)
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