POLYNOMIALS WITH REAL ROOTS

J.D. Dixon

(received April 25, 1962)

In a recent issue of this Bulletin a problem equivalent to the following is proposed by Moser and Pounder [1]:

If ax^2+bx+c is a polynomial with real coefficients and real roots then $a+b+c \le 9/4$ max (a,b,c).

The object of this note is to prove the following theorems which generalise this result.

THEOREM 1. Let α be the smallest constant such that for all polynomials

(1)
$$p(x) = a_0 + a_1 x + ... + a_n x^n$$

of degree n, with real coefficients and only real roots:

(2)
$$a_0 + a_1 + \ldots + a_n \leq \alpha_n \max a_k$$

Then

(3)
$$\alpha_{n} = \frac{(n+1)^{n}}{\binom{n}{s}(n-s)^{n-s}(s+1)^{s}} \sim \sqrt{\frac{\pi n}{2}} \text{ where } s = [\frac{n}{2}].$$

THEOREM 2. Let β_n be the largest constant such that for all polynomials (1)

(4) min
$$a_k \leq \beta_n \max a_k$$
.

Then

(5)
$$\beta_n = {n \choose s}^{-1} \sim 2^{-n} \sqrt{\pi n} \text{ where } s = [\frac{n}{2}]$$
.

Canad. Math. Bull. vol. 5, no. 3, September 1962.

It is interesting to note how the condition that $\,p\,$ have real roots results in a dispersion of the values of the coefficients. In the case where no restriction is made on the reality of the roots, the constants corresponding to $\,\alpha\,$ and $\,\beta\,$ are n+1 and 1 respectively.

The proofs of the theorems will proceed from a series of lemmas. We first confine attention to theorem 1 and note at once that if $\Sigma a_i \leq 0$ then condition (2) is satisfied for the given value of α . Therefore we consider the class $\mathcal P$ of polynomials (1) with real coefficients and real roots such that $\Sigma a_i > 0$. For each $p \in \mathcal P$ we define

$$M(p) = (\max_{k} a_{k})^{-1} \sum_{i=0}^{n} a_{i}$$

and then $\alpha_n = \sup M(p)$ taken over all $p \in \mathcal{P}$.

Lemma 1. If $p \in \mathcal{F}$ has a positive root u then $M(p) \leq M(q)$ where $q(x) = \epsilon \; xp(x)/(x-u)$ and $\epsilon = sgn(1-u)$ is inserted to ensure that $q \in \mathcal{F}$.

Proof. We first note that $u \neq 1$ because of the definition of \mathcal{P} . Let $p(x) = (x-u)(b_0 + b_1 x + \ldots + b_{n-1} x^{n-1}) = a_0 + a_1 x + \ldots + a_n x^n$. Then $q(x) = \epsilon b_0 x + \epsilon b_1 x^2 + \ldots + \epsilon b_{n-1} x^n$. Hence $\max a_k = \max(b_{k-1} - ub_k) \geq (\max \epsilon b_k) |1-u|$ and so $(\max a_k) \sum \epsilon b_i \geq (\max \epsilon b_k) |1-u| \sum \epsilon b_i = (\max \epsilon b_k) \sum a_i$ and the lemma is proved.

Since $D_x^{n-k-1}D_y^{k-1}$ ($a_0y^n+a_1y^{n-1}x+...+a_nx^n$) has its roots real whenever (1) has, we have the following well known result (see [2] theorem 51).

Lemma 2. If $p(x) = a_0 + a_1 x + \dots + a_n x^n$ has all its roots real then $h_k a_k^2 \ge a_{k-1} a_{k+1}$ $(k = 1, 2, \dots, n-1)$ where $h_k = \frac{k(n-k)}{(k+1)(n-k+1)} < 1$. There is equality for each k if and

only if all the roots of p are equal.

Lemma 3. If $p \in \mathcal{P}$ and all the roots of p are negative then $M(p) \leq M(q)$ where $q \in \mathcal{P}$ is a certain polynomial whose roots are all equal.

Proof. Since the roots are all negative the coefficients a_k of p are all positive. From lemma 2 it then follows inductively that

(6)
$$a_{k-r} \le h_{k-1}^{r-1} h_{k-2}^{r-2} \cdots h_{k-(r-1)} \frac{a_{k-1}^r}{a_k^{r-1}} = H(k, \frac{1}{r}) a_{k-1}^r / a_k^{r-1}$$

Suppose that $a_k = \max_i a_i$ and that

(7)
$$a_{k-1} = ya_k, a_{k+1} = za_k (0 < y, z \le 1)$$
,

then, using (6), we obtain

say.

(8)
$$a_0 + a_1 + ... + a_n \le a_k \{ 1 + \sum_{r=1}^k H(k, -r) y^r + \sum_{z=1}^{n-k} H(k, r) z^r \}$$

The inequality (8) remains true if y and z are increased and, in particular, if they are changed to y', z' where y'z' = $h_k < 1$ and $y \le y' \le 1$, $z \le z' \le 1$. These new values for y and z, the given value of a_k , the relations (7) and equality through the relations (6) define the coefficients of a polynomial q with

the relations (6) define the coefficients of a polynomial q with equal roots (lemma 2), and the sum of the coefficients of q will be the right hand side of (8). Since $H(k, \pm r) \le 1$, the largest coefficient of q will still be a and so (8) shows that $M(p) \le M(q)$.

The last lemma has reduced our search for a polynomial $p \in \mathcal{P}$ for which M(p) is maximal to the case where p has equal roots and this final case is disposed of in the final lemma.

Lemma 4. Let $c(a,k) = {n \choose k} a^k (1-a)^{n-k}$ be the (k+1)st coefficient of $q(x) = (ax+(1-a))^n$ with $0 \le a \le 1$. Then

$$\min \max_{a} c(a, k) = c(a_0, k_0)$$

$$a k$$
where $a_0 = \frac{k_0 + 1}{n + 1}$ and $k_0 = \left[\frac{n}{2}\right]$.

Proof. From symmetry we may suppose $a \ge 1/2$ and hence k < n/2.

For given a, $c(a,k)/c(a,k-1) = \frac{n-k+1}{k} \cdot \frac{a}{1-a} < 1$ according to whether $a > \frac{k}{n+1}$. Therefore c(a,k) is maximal when k satisfies $\frac{k}{n+1} \le a \le \frac{k+1}{n+1}$.

For given k and $\frac{k}{n+1} \le a \le \frac{k+1}{n+1}$, c(a,k) is minimal when $a^k(1-a)^{n-k}$ is minimal and this occurs at one of the boundary points $a = \frac{k}{n+1}$ or $\frac{k+1}{n+1}$. Using the fact that $(\frac{m+1}{m})^m$ is a monotonically increasing function it follows that c(a,k) is minimal (for $k \le n/2$) at $a = \frac{k+1}{n+1}$.

Finally $c(\frac{k+1}{n+1},k)/c(\frac{k}{n+1},k-1)=(\frac{k+1}{k})^k/(\frac{n-k+1}{n-k})^{n-k} \stackrel{>}{<} 1$ according to whether $k \stackrel{>}{<} n-k$. Therefore for $k \leq n/2$, the maximum of $c(\frac{k+1}{n+1},k)$ occurs at $k=[\frac{n}{2}]$ and the lemma is proved.

Proof of theorem 1. From lemmas 3 and 4 it follows at once that $c(a_0,k_0)^{-1}=\sup M(p)$ taken over all $p\in P$ all of whose roots are negative. However, from lemma 1 it follows that if $p\in P$ has a positive or zero root then $M(p)\leq \alpha_{n-1}$. Since our values (3) of α_n increase monotonically with n we can conclude, by induction on n, that $\alpha_n=c(a_0,k_0)^{-1}$ as given. The asymptotic estimate comes from an application of Stirling's formula.

Proof of theorem 2. If p has any non-positive coefficient, (4) is satisfied for the given value of β_n . Therefore we need consider only the case where all the coefficients of p are positive. Let $a_k = \max a_n$. Then, as in the proof of lemma 3,

the ratio $\frac{\min a_i}{\max a_i}$ is maximal when equality holds in all the relations (6) and $h_k a_k = a_{k+1} a_{k-1}$. By lemma 2 this occurs only when p has all its roots equal. Suppose that $p(x) = (x+u)^n (u>0)$, where from symmetry we may suppose that $u \ge 1$. Since in this case min $a_i = 1$ and $\max a_i \ge \binom{n}{s} u^s \ge \binom{n}{s}$ where $s = [\frac{n}{2}]$, we have

$$\frac{\min a_{i}}{\max a_{i}} \leq {n \choose s}^{-1}$$

where the limit is attained for $p(x) = (x+1)^n$. This proves theorem 2.

REFERENCES

- 1. <u>L. Moser and J. R. Pounder</u>, Problem 53, Canadian Mathematical Bulletin, vol. 5 (1962) 70.
- 2. Hardy, Littlewood and Polya, Inequalities, Cambridge University Press (1952).

California Institute of Technology