POLYNOMIALS WITH REAL ROOTS
J.D. Dixon

{received April 25, 1962)

In a recent issue of this Bulletin a problem equivalent to
the following is proposed by Moser and Pounder [1]:

2
If ax +bxtc is a polynomial with real coefficients and
real roots then atb+c < 9/4 max (a, b, c).

The object of this note is to prove the following theorems
which generalise this result.
THEOREM 1. Let a be the smallest constant such that

for all polynomials

(1) p(x)=a +a x+...+a v
0 1 n

of degree n, with real coefficients and only real roots:

(2) a0+a1+. . .+an < @ maxa,.
Then

(3) a = (1) ~

()n-8)""(st1)°

T
- W

> here s = [—;—1-] .

THEOREM 2. Let |3n be the largest constant such that
for all polynomials (1)
(4) min ak_<_ ‘Sn max a, -
Then
-1 -
(5) ﬁn =(Isl) ~ 2" 7 where s =[§] .
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It is interesting to note how the condition that p have
real roots results in a dispersion of the values of the
coefficients. In the case where no restriction is made on the
reality of the roots, the constants corresponding to « and
[3n are nt1 and 1 respectively. n

The proofs of the theorems will proceed from a series of
lemmas. We first confine attention to theorem 1 and note at
once that if Za < 0 then condition (2) is satisfied for the given

=

value of a . Therefore we consider the class & of poly-
n

nomials (1) with real coefficients and real roots such that
Za. > 0. For each pe¥ we define
i

n
-1
M(p) = {maxa ) X a,
k =0 ©

and then a = sup M(p) taken over all pe F.

Lemma 1. If pe F has a positive root u then M(p) < M(q)
where q(x) =¢ xp(x)/(x-u) and ¢ = sgn(1-u) is inserted to ensure
that q e F.

Proof. We first note that u# 1 because of the definition

5 -1
of J°. Let p(x)=(x-u)(b. +b xt...+b < )=a +a xt...+a x .
0 1 n-1 0 1 n
2
Then q(x) =eb xteb x +...+eb x'. Hence max a =
0 1 n-1 k
max(bk_1 - ubk) > (max e bk) l 1-u| and so (max ak) DI bi >

(max ¢ bk)li—ul ZTeb, =(maxe bk) > a, and the lemma is
i i
proved.

. -k-1_k-1 -1
Since DI; DY (aoyn+a1yn X+, .. +anxn) has its roots
real whenever (1) has, we have the following well known result

(see [2] theorem 51).

Lemma 2. If p(x) = a0+a1x+. . .+anxn has all its roots

2
1 th >
rea en hkak >

___ kin-k)
k  (k+1)(n-k+1)

ak_1ak+1 (k=1,2,...,n-1) where

< 1. There is equality for each k if and
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only if all the roots of p are equal.

Lemma 3. If pe P and all the roots of p are negative
then M(p) < M(q) where qe¢ X is a certain polynomial whose
roots are all equal.

Proof. Since the roots are all negative the coefficients
a, of p are all positive. From lemma 2 it then follows
inductively that

r
r-41 r-2 a r r-1
6 <h . 14 = 1
(6) a4 <hyy) by hkt(r-'l)-—lz:-i- HikZr)ay,, /ay
%k
say.
Suppose that akzmax a, and that
1
(7) a4 = Yaoa, = oza (0<y,z<1),
then, using (6), we obtain
k r n-k r
e =z -
(8) a0+a1+ +an5_ak{1+ H(k,-r)y + Z H(k,r)z }

r=1 &1

The inequality (8) remains true if y and z are increased and,
in particular, if they are changed to y',z' where y'z' = hk <1

and y<y' <1, z<z' <1. These new values for y and z,
the giv;n value of Zk’ the relations (7) and equality through
the relations (6) define the coefficients of a polynomial g with
equal roots (lemma 2), and the sum of the coefficients of q will
be the right hand side of (8). Since H(k,Ir)< 1, the largest
coefficient of q will still be ak and so (8) shows that
M(p) < M(q). ,

The last lemma has reduced our search for a polynomial
p e P for which M(p) is maximal to the case where p has
equal roots and this final case is disposed of in the final lemma.

-k
Lemma 4. Let c{a,k) = (Ilz)ak(i-a)n be the (kt1)st

coefficient of qg(x) = (alx-!-(i---a))n with 0<a<4. Then
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min max c(a,k) = c(ao,ko)

a k
k0+1 n
where ay =7 and k0 = [—2-] .

Proof. From symmetry we may suppose a > 1/2 and
hence k< n/2.

n-ktl 2 1 accordin
k 1-a < g

For given a, c{(a,k)/c(a,k-1) =

> k
to whether a <?. Therefore c(a,k) is maximal when k
n

Ry k k+1
satisfies <ac< .
nt1 — — nt+1

k k+1 . ..
For given k and ——<a<——, c(a,k) is minimal
ntl1 — —nt1

k n-k
when a (1-a) is minimal and this occurs at one of the

k k+1 m+t1
boundary points a =1 °F o1 Using the fact that (—-r—n-)
is a monotonically increasing function it follows that c(a, k) is

k+1
minimal (for k< n/2) at a=—.
- n+1
kt+1 k k+1 .k, n-k+i1 n-k >
Finall » k —, k-1) = (— —_—
inally c(——K)/c(—7 k1) =(5) /(=) 1

>
according to whether k n-k. Therefore for k_<_ n/2, the

kt+1

maximum of c(-n—+—1-, k) occurs at k= [%] and the lemma is

proved.

Proof of theorem 1. From lemmas 3 and 4 it follows at
once that c(ao,ko)"1 = sup M(p) taken over all pe £ all of
whose roots are negative. However, from lemma 1 it follows
that if pe¢ F has a positive or zero root then M(p) < @y
Since our values (3) of @ increase monotonically with n we

-1
can conclude, by induction on n, that « =c(a0,k0) as given.
n

The asymptotic estimate comes from an application of Stirling's
formula.
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Proof of theorem 2. If p has any non-positive coefficient,
(4) is satisfied for the given value of ﬁn. Therefore we need

consider only the case where all the coefficients of p are
positive. Let a, =maxa.. Then, as in the proof of lemma 3,

min ai
the ratio ———— is maximal when equality holds in all the
max a,
. 2 .
relations (6) and hkak =2 2" By lemma 2 this occurs

only when p has all its roots equal. Suppose that p(x) =

(x+u.)n (u> 0), where from symmetry we may suppose that
u> 1. Since in this case min a, = 1 and max a, > (Isl)uS > (‘;‘)

where s = [-121], we have

min a,

i n -1
— < ()
maxa,6 — 'S

1

n
where the limit is attained for p(x) =(xt1) . This proves
theorem 2.
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