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In this paper, we study the quadratic perturbations of a one-parameter family of
reversible quadratic systems whose first integral contains the logarithmic function.
By the criterion function for determining the lowest upper bound of the number of
zeros of Abelian integrals, we obtain that the cyclicity of either period annulus is
two. To the best of our knowledge, this is the first result for the cyclicity of period
annulus of the one-parameter family of reversible quadratic systems whose first
integral contains the logarithmic function. Moreover, the simultaneous bifurcation
and distribution of limit cycles from two-period annuli are considered.
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1. Introduction and statement of the main result

As is well known, Żo�la̧dek [32] classified the integrable quadratic systems with at
least one centre into four families: Hamiltonian QH

3 , codimension four Q4, general-
ized Lotka–Volterra QLV

3 and reversible system QR
3 . By using the terminology from
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Cyclicity of period annulus for quadratic reversible systems 1707

[32], Iliev [15] classified them into the following five classes in the complex form:

(1) ż = −iz − z2 + 2|z|2 + (b + ic)z̄2, Hamiltonian (QH
3 ),

(2) ż = −iz + az2 + 2|z|2 + bz̄2, reversible (QR
3 ),

(3) ż = −iz + 4z2 + 2|z|2 + (b + ic)z̄2, |b + ic| = 2, codimension four (Q4),

(4) ż = −iz + z2 + (b + ic)z̄2, generalized Lotka–Volterra (QLV
3 ),

(5) ż = −iz + z̄2, Hamiltonian triangle,

where a, b, c ∈ R and z = x + iy. A classic problem is to give the cyclicity of the
period annulus of above five systems, here the cyclicity of a period annulus is the
maximal number of limit cycles bifurcating from any compact region of this period
annulus under quadratic perturbations, see [15]. For completeness, we will make
a brief introduction. If the quadratic centres belong to QH

3 , then the cyclicity of
period annulus is two, see for instance [9, 10, 13, 20, 29]. If the quadratic centres
belong to Q4, Gavrilov and Iliev [11] prove that the cyclicity of period annulus of
the systems is no more than eight. Later, Zhao [31] develops the method in [11]
and improves this number from eight to five. The cyclicity of period annulus of the
system QLV

3 , having two or three real invariant lines, has been studied by Żo�la̧dek
in [32]. For the case of Hamiltonian triangle, the cyclicity of period annulus has
been proved to be three in [14]. As for the case of QR

3 , owing to the rich dynamics
of the systems, the studies on the cyclicity of period annulus are difficult and the
results are limited [1–3, 15, 16, 18, 21, 23, 24, 27].

An integrable quadratic system is called generic, if it belongs to one of the first
four classes and does not belong to other classes of the classification given above.
Otherwise, it is degenerate. Obviously, a quadratic reversible system is generic if
and only if a �= −1, 4 or a = 4, b �= ±2.

In this paper, we will investigate the cyclicity of period annulus for a class
of generic quadratic reversible systems. When a �= b, taking z = x + iy and
doing the coordinate and time scaling changes (x̃ = −2(a − b)y + 1, ỹ = −2(a − b)
x, t̃ = −t/2, ã = −(a + b + 2)/(a − b), b̃ = (a + b − 2)/(a − b), and rewrite (x̃, ỹ, t̃,
ã, b̃) as (x, y, t, a, b)), we obtain from the class (2) for reversible system that

dx

dt
= 2xy,

dy

dt
= −a y2 − b x2 + 2(b − 1)x + 2 − b.

(1.1)

System (1.1) has an invariant straight line {x = 0}, and a centre at (1, 0). The
singularity at ((b − 2)/b, 0) is also a centre if 0 < b < 2, and is a saddle if b < 0
or b > 2. In addition, when a (2 − b) > 0, the system has two saddle points at
(0,
√

(2 − b)/a) and (0, −√(2 − b)/a).
When a = 0, −1 and −2, the first integral of system (1.1) is not a rational func-

tion, which brings much more difficulty to the study of the cyclicity of period
annulus. Hence there are few results in this regard. To our knowledge, only the case
of a = −2, b = 1 has been solved in [24].
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Figure 1. Phase portrait of system (1.2).

In this paper, we will discuss the generic case of a = 0, 0 < b < 2. Substituting
a = 0 into system (1.1), we have the following quadratic system

dx

dt
= 2xy,

dy

dt
= −bx2 + 2(b − 1)x + 2 − b,

(1.2)

where 0 < b < 2.
A first integral of system (1.2) is

H(x, y) = y2 +
bx2

2
− 2(b − 1)x + (b − 2) ln |x| +

3b

2
− 2,

and the integrating factor is 1/x. System (1.2) has two centres, one of which is at
(1, 0) and the other is at ((b − 2)/b, 0), see the phase portrait of system (1.2) in
figure 1. The continuous family of ovals surrounding the centre (1, 0) is

Γ1
h = {(x, y) | H(x, y) = h, h ∈ (0, +∞)},

and the continuous family of ovals surrounding the centre ((b − 2)/b, 0) is

Γ2
h = {(x, y) | H(x, y) = h, h ∈

(
2 − 2

b
+ (b − 2) ln

(
2
b
− 1
)

, +∞
)
}. (1.3)

Obviously, besides considering the cyclicity of either period annulus, another
interesting problem is to study the simultaneous bifurcation and distribution of
limit cycles.

Consider the quadratic perturbations of system (1.2)

dx

dt
= 2xy + εf(x, y),

dy

dt
= −bx2 + 2(b − 1)x + 2 − b + εg(x, y),

(1.4)

where f(x, y) =
∑

i+j�2 aijx
i yj , g(x, y) =

∑
i+j�2 bijx

i yj .
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As we know, for quadratic system (1.2), Iliev has given an essential perturbation
in theorem 1 of [15] which can realize the maximum number of limit cycles produced
by the whole class of quadratic systems (1.4) provided we consider bifurcations
of any order in ε. And he has also shown that the first Melnikov functions can
help us to obtain the cyclicity of period annulus of system (1.2) in theorem 2
of [15]. The following Melnikov functions can be obtained by the conclusions of
[15], but to be clear, we will compute them directly in subsequent subsections.
For the cyclicity on a period annulus of generic quadratic systems, the essential
perturbations problem has also been clarified and justified by Françoise et al., see
[8] in which the components of the Nash space of arcs associated to a blow-up of
Bautin ideal is used.

Lemma 1.1. The exact upper bound for the number of limit cycles produced
by the compact region of the period annulus around the centre (1, 0) (resp.
((b − 2)/b, 0)) of system (1.2) under quadratic perturbations is equal to the maximal
number of zeros in (0, +∞) (resp. (2 − 2/b + (b − 2) ln(2/b − 1), +∞)) counting
multiplicities, of the Melnikov integral (Abelian integral)

I(h) = α

∮
Γ1

h

y

x2
dx + β

∮
Γ1

h

y

x
dx + γ

∮
Γ1

h

y dx, (1.5)

(
resp. I(h) = α

∮
Γ2

h

y

x2
dx + β

∮
Γ2

h

y

x
dx + γ

∮
Γ2

h

y dx

)
, (1.6)

where α, β and γ are linear combinations of aij and bij .

In general, the study of the number of zeros of Melnikov functions depending
on the parameters is very difficult. Using the Chebyshev criterion [24] and some
computational skills, our main results are obtained as follows.

Theorem 1.2. If a = 0 and 0 < b < 2, then the integral I(h) given in (1.5) has
at most two zeros in (0, +∞) counted with multiplicities, that is the cyclicity of
period annulus of the generic quadratic reversible system (1.2) around the centre
(1, 0) is equal to two. Similarly, the cyclicity of period annulus around the centre
((b − 2)/b, 0) is also two.

Theorem 1.3. Under quadratic polynomial perturbations, all configurations (u, v)
of limit cycles bifurcated from the two period annuli of system (1.2) can be realized,
where 0 � u, v � 2, u + v � 2. That is, for ε small enough, exactly u (resp. v)
limit cycles bifurcate from the periodic orbits surrounding the centre (1, 0) (resp.
((b − 2)/b, 0)) simultaneously.

The paper is organized as follows. In § 2, we give some preliminary definitions and
known results about the Chebyshev criterion for Abelian integrals. We emphasize
the advantage of the Chebyshev criterion we use in proposition 2.8 and give an
example for application (see theorem 2.9). In § 3, we state the proof of lemma 1.1
and theorem 1.2. Finally, we prove theorem 1.3 in § 4, which shows the simultaneous
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bifurcation and distribution of limit cycles bifurcated from the two-period annuli
around the centres (1, 0) and ((b − 2)/b, 0).

2. Preliminary results

In this section, we introduce some definitions and compare two interesting criteria
to estimate the lowest upper bound of the number of isolated zeros of Abelian
integrals.

Definition 2.1. Let f0, f1, . . . , fn−1 be analytic functions on an open interval J
of R.

(a) {f0, f1, . . . , fn−1} is a Chebyshev system (for short, a T-system) on J if any
nontrivial linear combination

α0f0(x) + α1f1(x) + · · · + αn−1fn−1(x)

has at most n − 1 isolated zeros on J.

(b) {f0, f1, . . . , fn−1} is a complete Chebyshev system (for short, a CT-system)
on J if {f0, f1, . . . , fk−1} is a T-system for all k = 1, 2, . . . , n.

(c) {f0, f1, . . . , fn−1} is an extended complete Chebyshev system (for short,
an ECT-system) on J , if for all k = 1, 2, . . . , n, any nontrivial linear
combination

α0f0(x) + α1f1(x) + · · · + αk−1fk−1(x)

has at most k − 1 isolated zeros on J counted with multiplicities.

Note that if {f0, f1, . . . , fn−1} is an ECT-system on J , then {f0, f1, . . . , fn−1}
is a CT-system on J . However, the reverse implication is not true.

Definition 2.2. Let f0, f1, . . . , fn−1 be analytic functions on an open interval J
of R. The continuous Wronskian of {f0, f1, . . . , fk−1} at x ∈ J is

W [fk](x) = W [f0, f1, . . . , fk−1](x) =

∣∣∣∣∣∣∣∣∣

f0(x) . . . fk−1(x)
f ′
0(x) . . . f ′

k−1(x)
...

. . .
...

f
(k−1)
k−1 (x) . . . f

(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣∣
.

A well-known result is as follows (see [17, 25] for instance).

Lemma 2.3. {f0, f1, . . . , fn−1} is an ECT-system on J if and only if for all
k = 1, 2, . . . , n,

W [fk](x) �= 0, x ∈ J.
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Figure 2. Phase portrait of system (2.1).

Consider the Newtonian mechanical system

ẋ = 2y, ẏ = −Ψ′(x), (2.1)

which has the first integral

H(x, y) = y2 + Ψ(x),

with Ψ(x) being analytic on the open interval (μ, ν). Assume that there exists
ā ∈ (μ, ν), such that the following hypothesis is satisfied:

(H1) : Ψ′(x)(x − ā) > 0, x ∈ (μ, ν) \ {ā}.
It is easy to verify that, under above hypothesis (H1), (ā, 0) is a centre. Denote
hc = H(ā, 0). Without loss of generality, we assume that Ψ(μ) = Ψ(ν) = hs and
Ψ(ā) = 0. Thus using (H1) we get hs > hc = 0. For each h ∈ (hc, hs), let μ(h), ν(h)
be the abscissas of intersections of the closed orbit Γh = {(x, y) | H(x, y) = h} with
the x-axis, then μ < μ(h) < ā < ν(h) < ν (see figure 2).

It is easy to see from hypothesis (H1) that for x ∈ (ā, ν(h)), there exists a one
to one mapping x �−→ σ(x) ∈ (μ(h), ā), such that Ψ(x) = Ψ(σ(x)). For simplicity,
we denote z = σ(x).

By using lemma 2.3, Grau et al. [12] prove the following theorem.

Theorem 2.4. Consider the Abelian integrals

Ji(h) =
∮

Γh

gi(x)y2s−1dx, i = 1, 2, . . . , n. (2.2)

Assume that gi(x) is analytic on the interval (μ, ν). For x ∈ (ā, ν), define the
functions as follows

Gi(x) =
gi(x)
Ψ′(x)

− gi(z)
Ψ′(z)

. (2.3)

If {G1, G2, . . . , Gn} is a CT-system on (ā, ν) and s > n − 2, then {J1(h),
J2(h), . . . , Jn(h)} is an ECT-system on (hc, hs).
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It is difficult to verify CT-system, so the verification of ECT-system is often
considered in the application.

For the integral I(h) in (1.5) or (1.6), using the notations in theorem 2.4, we
have n = 3, s = 1. Obviously, theorem 2.4 cannot be used directly. In order to apply
theorem 2.4, we need to promote the power of y in the integrand of Abelian integrals∮
Γk

h
(y/xi−1)dx (i = 1, 2, 3, k = 1, 2) from 1 to 3. To deal with this difficulty, we

need the following lemma (see [12]).

Lemma 2.5. Let Γh be a closed orbit contained in the level curve {(x, y) | H(x, y) =
h, h ∈ (hc, hs)}, the following statements hold:

(1) Assume that g(x)/Ψ′(x) is analytic at x = ā, then for any s ∈ N,∮
Γh

g(x)y2s−1dx =
∮

Γh

f(x)y2s+1dx,

where f(x) = 2
2s+1 ( g(x)

Ψ′(x) )′.

(2) Assume that f(x) is analytic at x = ā, then for any s ∈ N,∮
Γh

f(x)y2s+1dx =
∮

Γh

g(x)y2s−1dx,

where g(x) = 2s+1
2 Ψ′(x)

∫ x

ā
f(t)dt.

By lemma 2.5, after some calculations, we get

h

∮
Γk

h

y

xi−1
dx =

∮
Γk

h

(
1

xi−1
+
(

2Ψ(x)
3xi−1Ψ′(x)

)′)
y3 dx, i = 1, 2, 3, k = 1, 2,

where Ψ(x) = bx2/2 − 2(b − 1)x + (b − 2) ln |x| + 3b/2 − 2. Since both of the inte-
grands and the first integral contain the logarithmic function ln |x|, it is very difficult
to estimate the number of isolated zeros of I(h). Thus we need to find other ways.

Consider the following Abelian integral

I(h) = α

∮
Γh

f1(x)y dx + β

∮
Γh

f2(x)y dx + γ

∮
Γh

f3(x)y dx, (2.4)

where fi(x) (i = 1, 2, 3) are analytic in (μ, ν) and α, β, γ ∈ R, and Γh is a con-
tinuous family of level curves surrounding the centre (ā, 0) as h ∈ (hc, hs). For
convenience, we denote

Ii(h) =
∮

Γh

fi(x)y dx, i = 1, 2, 3. (2.5)

Define three functions

Fi(x) =
fi(x)
Ψ′(x)

− fi(z)
Ψ′(z)

, x ∈ (ā, ν), i = 1, 2, 3. (2.6)
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Assume that

(H2) : F1(x) > 0 for all x ∈ (ā, ν),

and let

ξ(x) =
F2(x)
F1(x)

, η(x) =
F3(x)
F1(x)

. (2.7)

Then Liu and Xiao prove the following theorem [24].

Theorem 2.6. Assume that (H1) and (H2) are satisfied. Furthermore, if the
following hypotheses also hold:

(H3): F ′
1(x) > 0, for x ∈ (ā, ν);

(H4): ξ′(x) �= 0 and (η′(x)/ξ′(x))′ �= 0, for x ∈ (ā, ν),

then for any real parameters α, β and γ, the Abelian integral I(h) in (2.4) has at
most two zeros in (hc, hs) counted with multiplicities.

Remark 2.7. In fact, theorem 2.6 and theorem 2.3 in [22] imply that {I1, I2, I3} is
an ECT-system on (hc, hs). In addition, the conditions (H2) and (H4) are equivalent
to that {F1(x), F2(x), F3(x)} is an ECT-system on (ā, ν) and F1(x) > 0. This is
easily obtained by the following formulas:

W [F1](x) = F1(x), W [F1, F2](x) = F 2
1 (x)ξ′(x),

W [F1, F2, F3](x) = F 3
1 (x)W [1, ξ, η](x) = F 3

1 (x)
(

η′(x)
ξ′(x)

)′
.

Now, let’s discuss the relationship between theorems 2.6 and 2.4 with the
same system (2.1) and the same integral αJ1(h) + βJ2(h) + γJ3(h), where Ji(h) =∮

Γh

gi(x)y2s−1dx, i = 1, 2, 3 and α, β, γ are arbitrary constants. Here we assume

that gi(x), i = 1, 2, 3 is analytic at x = ā.
The following proposition implies that for n = 3, the criterion of theorem 2.6 is

weaker than the criterion of theorem 2.4.

Proposition 2.8. If {G1, G2, G3} given in (2.3) is an ECT-system on (ā, ν), then
f1, f2, f3 defined in (2.4) satisfy (H2)–(H4).

Proof. Firstly, consider s = 2. Substituting s = 2 into Ji(h) (i = 1, 2, 3), we get
from lemma 2.4 that

Ji(h) =
3
2

∮
Γh

fi(x)y dx, i = 1, 2, 3, (2.8)

where fi(x) = Ψ′(x)
∫ x

ā
gi(s)ds. Since {G1, G2, G3} is an ECT-system, using

lemma 2.3 we deduce that W [G1], W [G1, G2] and W [G1, G2, G3] are non-vanishing
on (ā, ν). Now let’s verify the hypotheses (H2), (H3) and (H4).
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• Verify hypotheses (H2) and (H3): Without loss of generality, suppose that
W [G1] = G1(x) > 0 for x ∈ (ā, ν) (otherwise, we use −G1(x) instead of
G1(x)). Since fi(x) = Ψ′(x)

∫ x

ā
gi(s)ds, we get

Fi(x) =
fi(x)
Ψ′(x)

− fi(z)
Ψ′(z)

=
∫ x

z

gi(s)ds.

Notice that Fi(ā) = 0 and

F ′
i (x) = gi(x) − gi(z)

dz

dx
= Ψ′(x) Gi(x), i = 1, 2, 3.

Then we have F1(x) > 0 and F ′
1(x) > 0 for all x ∈ (ā, ν). Thus hypotheses

(H2) and (H3) hold.

• Verify hypothesis (H4): Firstly, we prove that α F1(x) + β F2(x) + γ F3(x) has
at most two zeros on (ā, ν). Since {G1, G2, G3} is an ECT-system on (ā, ν),
we deduce that α G1 + β G2 + γ G3 has at most two zeros on (ā, ν) counted
with multiplicities. Combining

α F1(x) + β F2(x) + γ F3(x) =
∫ x

ā

Ψ′(s) (α G1(s) + β G2(s) + γ G3(s)) ds

and Rolle’s theorem, we obtain that α F1(x) + β F2(x) + γ F3(x) has at most
three zeros on [ā, ν) counted with multiplicities. Since α F1(ā) + β F2(ā) +
γ F3(ā) = 0, it follows that α F1(x) + β F2(x) + γ F3(x) has at most two zeros
on (ā, ν) counted with multiplicities.

Similarly, we have that α F1(x) + β F2(x) has at most one zero on (ā, ν)
counted with multiplicities.

Summarizing the above analysis, it follows from the definition of ECT-system
and F1(x) > 0 that {F1, F2, F3} is an ECT-system on (ā, ν). By lemma 2.3 and
remark 2.7, we get that W [F1, F2] �= 0 and W [F1, F2, F3] �= 0. So we can see
that hypothesis (H4) also holds.

When s > 2, the same result can be obtained by using lemma 2.5 repeatedly. �

Thus theoretically each problem which can be solved by theorem 2.4 can be solved
by theorem 2.6. More importantly, usually the Abelian integrals we meet have the
form

I(h) = α

∮
Γh

f1(x)y dx + β

∮
Γh

f2(x)y dx + γ

∮
Γh

f3(x)y dx,

which do not satisfy the conditions in theorem 2.4. So, we have to consider
hIi(h), i = 1, 2, 3, see (2.5) for the form of Ii(h). By (1) in lemma 2.5 with s = 1,
we have

hIi(h) =
∮

Γh

(
fi(x) +

2
3

(
fi(x)Ψ(x)

Ψ′(x)

)′)
y3dx, i = 1, 2, 3.

The integrand functions become much more complicated, thus the verification of
the conditions in theorem 2.4 will be more difficult.
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Now we will give a concrete example. In the progress of tackling the infinitesimal
Hilbert’s 16th problem, many scholars focus on the generalized Liénard system of
type (m, n)

dx

dt
= y,

dy

dt
= −p(x) + εq(x)y,

(2.9)

where p(x) and q(x) are polynomials of degree m and n, respectively. In this respect,
scholars have done a lot of work (see [4–7, 28]). Recently some scholars consider
the small perturbations of system (2.9) with some symmetric properties, that is
p(x) is an odd function and q(x) is an even function. In this setting the Liénard
system of type (5, 4) [26] are stated as follows:

dx

dt
= y,

dy

dt
= −x (a + bx2 + cx4) + ε(α + βx2 + γx4)y,

(2.10)

where 0 < |ε| � 1, (a, b, c) ∈ Ω ⊆ R
3 and c �= 0, Ω is a compact set. When a >

0 and c < 0, under a coordinate transformation and time scaling, system (2.10)
becomes

dx

dt
= y,

dy

dt
= −x (1 + bx2 − x4) + ε(α + βx2 + γx4)y,

(2.11)

where 0 < |ε| � 1.
Consider system (2.11). When ε = 0, a Hamiltonian first integral is

H(x, y) =
y2

2
+ Ψ(x), Ψ(x) =

x2

2
+

b x4

4
− x6

6
.

Denote the closed orbit enclosing the centre (0, 0) by Γh, which is given by

Γh = {(x, y) | H(x, y) = h, h ∈ (0, hs)}.
Here hs = Ψ(ν(b)) = (2

√
b2 + 4 − b)(

√
b2 + 4 + b)2/48 > 0 with ν(b) = (

√
2/2)√√

b2 + 4 + b.
According to Poincaré–Pontryagin theorem, to estimate the maximum number

of limit cycles of system (2.11), we only need to estimate the number of zeros of
the following integral

I(h) = α

∮
Γh

y dx + β

∮
Γh

x2y dy + γ

∮
Γh

x4y dx. (2.12)

In [30], Zhao and Li concluded that when b is a sufficiently small negative num-
ber, system (2.11) has at most two limit cycles, counted with multiplicities. Here,
applying theorem 2.6, we can reach the same conclusion for arbitrary b ∈ R easily.
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Theorem 2.9. For Liénard system (2.11), suppose that 0 < |ε| � 1, for any b ∈ R,
then system (2.11) has at most two limit cycles bifurcating from the compact period
annulus, counted with multiplicities.

Proof. Following the notations in theorem 2.6, let

f1(x) = x4, f2(x) = x2, f3(x) = 1.

Notice that Ψ(x) is an even function, thus the involution is z = σ(x) = −x. Then
by direct calculations, we have

(H1) : Ψ′(x)x = x2(1 + bx2 − x4) > 0, x ∈ (−ν(b), ν(b)) \ {0},

(H2) : F1(x) =
2 x3

1 + bx2 − x4
> 0, x ∈ (0, ν(b)),

(H3) : F ′
1(x) =

2x2(x4 + bx2 + 3)
(1 + bx2 − x4)2

=
4x6 + 4x2 + 2x2 (1 + bx2 − x4)

(1 + bx2 − x4)2
> 0,

x ∈ (0, ν(b)).

Furthermore, one has (H4):

ξ(x) =
1
x2

, ξ′(x) = − 2
x3

�= 0,

and

η(x) =
1
x4

, η′(x) = − 4
x5

.

Finally it follows that (
η′(x)
ξ′(x)

)′
= − 4

x3
�= 0.

Thus, according to theorem 2.6, we obtain that the integral I(h) in (2.12) has at
most two zeros in (0, hs) counted with multiplicities.

Theorem 2.9 follows. �

Now, let’s try using theorem 2.4 to solve this problem. Since the Abelian integrals
defined in (2.12) do not fulfil the hypothesis s > n − 2 in theorem 2.4, one needs to
promote the power of y in

∮
Γh

x2k−2 y dx (k = 1, 2, 3) using lemma 2.5.
To apply lemma 2.5, we consider h

∮
Γh

x2k−2 ydx (k = 1, 2, 3). Since h = y2/2 +
x2/2 + b x4/4 − x6/6, it follows from lemma 2.5 that

h

∮
Γh

x2k−2 y dx =
∮

Γh

gk(x) y3 dx,

where k = 1, 2, 3 and

gk(x) =
1

36 (1 + bx2 − x4)2
(
12(k + 1)x2k−2 + 3b(6k + 7)x2k

+
(
6b2k + 15b2 − 16k − 12

)
x2k+2 − b(10k + 29)x2k+4 + 4(k + 4)x2k+6

)
.
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Let

Gk(x) =
gk(x)
Ψ′(x)

− gk(−x)
Ψ′(−x)

=
2 gk(x)
Ψ′(x)

, k = 1, 2, 3.

By theorem 2.4, we need to show that W [G1](x), W [G1, G2](x) and
W [G1, G2, G3](x) all do not vanish on (0, ν(b)). Obviously, it is much more diffi-
cult to deal with this problem by theorem 2.4 than by theorem 2.6. Furthermore,
when b > 0, it can be judged that W [Gi, Gj ](x) (i �= j, i, j = 1, 2, 3) has at least
one zero on the interval (0, ν(b)). In other words, for b > 0, this problem can’t be
solved by theorem 2.4 directly.

3. Proof of theorem 1.2

This section is devoted to proving theorem 1.2 by using theorem 2.6. Before this,
we give a proof of lemma 1.1 first.

Proof of lemma 1.1. By [15], we just need compute the Abelian integrals associated
to system (1.4). By Poincaré–Pontryagin theorem, one has

I(h) =
∮

Γk
h

1
x

(f(x, y) dy − g(x, y) dx) , k = 1, 2. (3.1)

Since f(x, y) and g(x, y) are quadratic polynomials, we calculate each item directly.
Obviously, ∮

Γk
h

xi

x
dx = 0, i = 0, 1, 2,

∮
Γk

h

xyj

x
dy = 0, j = 0, 1.

Note that both the ovals Γ1
h and Γ2

h are symmetry with respect to the x-axis, which
locate in the half plane x > 0 and x < 0, respectively. It follows that∮

Γk
h

y2

x
dx = (−1)k

∫∫
H�h

−2y

x
dxdy = 0,

∮
Γk

h

y

x
dy = (−1)k

∫∫
H�h

− y

x2
dxdy = 0.

Besides, we have∮
Γk

h

1
x

dy = −
∮

Γk
h

y d
1
x

=
∮

Γk
h

y

x2
dx,

∮
Γk

h

x2

x
dy = −

∮
Γk

h

y dx,

∮
Γk

h

y2

x
dy = −

∮
Γk

h

(
bx − 2(b − 1) +

b − 2
x

)
y

2x
dx

= − b

2

∮
Γk

h

y dx + (b − 1)
∮

Γk
h

y

x
dx − b − 2

2

∮
Γk

h

y

x2
dx.

Lemma 1.1 is completed by all the computations above and (3.1).
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Let Ψ(x) = bx2/2 − 2(b − 1)x + (b − 2) ln |x| + 3b/2 − 2, then Ψ′(x) = b(x − 1)
(1 + r/x), where r = (2 − b)/b > 0. �

Proof of theorem 1.2. Consider the centre (1, 0) first. There exists an involution
z = σ(x) satisfying that Ψ(x) = Ψ(z), where 0 < z < 1 < x < +∞.

We claim that x + z > 2, 0 < xz < 1 hold for all x ∈ (1, +∞). Because Ψ′(x) =
b(x − 1)(1 + r/x), we have that Ψ(x) − Ψ(1) > 0 for x ∈ (0, +∞) \ {1}. Write
Ψ(x) − Ψ(1) = Ψ(z) − Ψ(1) = λ2 (λ > 0). When 0 < x − 1 � 1, a straightforward
calculation yields to the inverse transformation

x − 1 = λ +
2 − b

6
λ2 + O(λ3),

z − 1 = −λ +
2 − b

6
λ2 + O(λ3).

(3.2)

According to (3.2), we have

x + z = 2 +
2 − b

3
λ2 + O(λ3),

xz = 1 − 1 + b

3
λ2 + O(λ3).

(3.3)

So, when 0 < x − 1 � 1, we obtain that x + z > 2 and 0 < xz < 1.
Next, we prove that x + z > 2 and 0 < xz < 1 hold for all x ∈ (1, +∞).
Since dz/dx = Ψ′(x)/Ψ′(z), some calculation shows that

d(x + z)
dx

=
2(r − 1) − (x + z)(r − xz)/(xz)

(z − 1) (1 + r/z)
(3.4)

and
d(xz)

dx
=

(x + z)(x + z + r − 1) − 2(xz + r)
(z − 1) (1 + r/z)

. (3.5)

Let A = {x : x + z � 2, x > 1} and B = {x : xz � 1, x > 1}.
(I) If A = B = ∅, then our claim is established.

(II) If A �= ∅, B = ∅, denote x1 = inf{x : x ∈ A}. It is easy to check that

d(x + z)
dx

∣∣∣
x=x1

� 0, x1z1 < 1, x1 + z1 = 2, (3.6)

where z1 = σ(x1). Substituting (3.6) into (3.4), we have 2(r − 1) −
2(r − x1z1)/(x1z1) � 0. A direct calculation shows that x1z1 � 1, which
contradicts with x1z1 < 1.

(III) If A = ∅, B �= ∅, denote x2 = inf{x : x ∈ B}. Using this and (3.3) we have

d(xz)
dx

∣∣∣
x=x2

� 0, x2z2 = 1, x2 + z2 > 2, (3.7)

where z2 = σ(x2). Substituting (3.7) into (3.5), we have (x2 + z2)(x2 +
z2 + r − 1) − 2(1 + r) � 0, further we obtain x2 + z2 � 2. This leads to a
contradiction.
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(IV) If A �= ∅, B �= ∅, denote x1 = inf{x : x ∈ A}, x2 = inf{x : x ∈ B}.
If x1 < x2, similar to the proof in (II), we will arrive at a contradiction.
If x2 < x1, similar to the proof in (III), we will obtain the contradiction.
If x1 = x2, then we have x1 + z1 = x2 + z2 = 2 and x1z1 = x2z2 = 1. Accord-
ing to mean value inequality, we obtain x1 = z1 = x2 = z2 = 1, which
contradicts with x > 1 > z > 0.

From all the discussions above, we get A = B = ∅. Hence x + z > 2, 0 < xz < 1
hold for all x ∈ (1, +∞).

After a linear combination, the integral I(h) given in (1.5) can be rewritten as

I(h)=−γ

b

∮
Γ1

h

b

(
1
x
−1
)

y dx − γ+β

b

∮
Γ1

h

b

x

(
1
x
−1
)

y dx +
α+β+γ

b

∮
Γ1

h

b

x2
y dx.

For the sake of shortness, we denote

f1(x) = b

(
1
x
− 1
)

, f2(x) =
b

x

(
1
x
− 1
)

, f3(x) =
b

x2
.

Now, we verify the hypotheses (H1)–(H4).

• Verify the hypothesis (H1)

Ψ′(x)(x − 1) = b(x − 1)2
(

1 +
r

x

)
> 0, x ∈ (0, +∞) \ {1}

.

• Verify the hypothesis (H2)
Since f1(x) = b(1/x − 1), it is easy to get that F1(x) = 1/(z + r) −

1/(x + r) > 0.

• Verify the hypothesis (H3)
After some calculation, we get

F ′
1(x) =

(x − z)
(
3 r2xz + 3 rx2z + 3 rxz2 + x3z + x2z2 + xz3 + r3 − 3 rxz − x2z − xz2

)
(z + r)3 (x + r)2 x (1 − z)

.

Let x + z = u, xz = v, then we have u > 2, 0 < v < 1, and

F ′
1(x) =

(x − z)
(
r3 + 3 r2v + (3 uv − 3 v) r + u2v − uv − v2

)
(z + r)3 (x + r)2 x (1 − z)

.

It is easy to check that 3 uv − 3 v > 0 and u2v − uv − v2 > 0 for all u > 2, 0 <
v < 1. Thus, we get that F ′

1(x) > 0 for all x ∈ (0, +∞).

• Verify the hypothesis (H4)
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Since F2(x) = 1/(z(z + r)) − 1/(x(x + r)), after some calculation, we obtain

ξ′(x)=
(

F2(x)
F1(x)

)′

=
r2x+r2z+2rx2+2rz2+x3+z3−2r2−2xr−2zr−x2−z2

z x2 (1 − z) (z + r)
.

Taking x + z = u, xz = v into ξ′(x), we get

ξ′(x) =
(u − 2) r2 +

(
2 u2 − 2 u − 4 v

)
r + u3 − u2 − 3 uv + 2 v

z x2 (1 − z) (z + r)
.

It is easy to check that all the coefficients of ri are positive for u > 2 and
0 < v < 1, thus ξ′(x) > 0.

Furthermore, by (2.7)
(

η′(x)

ξ′(x)

)′
=

A5(u, v)r5 + A4(u, v)r4 + A3(u, v)r3 + A2(u, v)r2 + vA1(u, v)r + vA0(u, v)

ξ′2(x)(x − 1)3x4(z − 1)6z(r + z)3
,

where

A5(u, v) =2 u4v + u4 − 15 u3v − 4 u2v2 − 3 u3 + 34 u2v + 30 uv2 − 4 v3

+ 6 u2 − 48 uv − 32 v2 − 6 u + 36 v,

A4(u, v) = 10 u5v + 3 u5 − 65 u4v − 38 u3v2 − 6 u4 + 135 u3v

+ 208 u2v2 + 22 uv3 + 9 u3 − 174 u2v − 288 uv2 − 92 v3 − 6 u2

+ 114 uv + 192 v2 − 36 v,

A3(u, v) = 20 u6v + 3 u6 − 115 u5v − 108 u4v2 − 6 u5 + 242 u4v + 491 u3v2

+ 162 u2v3 + 6 u4 − 276 u3v − 808 u2v2 − 424 uv3 − 80 v4 − 3 u3

+ 174 u2v + 600 uv2 + 368 v3 − 48 uv − 192 v2,

A2(u, v) = 20 u7v + u7 − 105 u6v − 136 u5v2 − 3 u6 + 226 u5v + 567 u4v2

+ 293 u3v3 + 3 u5 − 242 u4v − 992 u3v2 − 798 u2v3

− 216 uv4 − u4 + 135 u3v + 808 u2v2

+ 888 uv3 + 240 v4 − 34 u2v − 288 uv2 − 368 v3 + 32 v2,

A1(u, v) = 10 u8 − 50 u7 − 80 u6v + 105 u6 + 334 u5v + 211 u4v2 − 115 u5

− 567 u4v − 686 u3v2 − 186 u2v3 + 65 u4 + 491 u3v + 798 u2v2

+ 450 uv3 − 12 v4 − 15 u3 − 208 u2v − 424 uv2 − 240 v3

+ 30 uv + 92 v2,

A0(u, v) = 2 u9 − 10 u8 − 18 u7v + 20 u7 + 80 u6v + 54 u5v2 − 20 u6

− 136 u5v − 211 u4v2 − 53 u3v3 + 10 u5 + 108 u4v + 293 u3v2

+ 186 u2v3 − 6 uv4 − 2 u4 − 38 u3v

− 162 u2v2 − 216 uv3 + 12 v4 + 4 u2v + 22 uv2 + 80 v3 + 4 v2.
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In order to verify that Ai(u, v) > 0 (i = 0, 1, 2, 3, 4, 5) for all (u, v) ∈ {(u, v) |
u > 2, 0 < v < 1}, we will consider Ai(u, v) in two regions {(u, v) | u �
200, 0 < v < 1} and {(u, v) | 2 < u < 200, 0 < v < 1}. Firstly, choose some
functions Bi(u) such that

Ai(u, v) > Bi(u) (i = 0, 1, 2, 3, 4, 5),

for u > 2 and 0 < v < 1, where

B0(u) = 2 u9− 10 u8− 18 u7− 20 u6− 136 u5 − 213 u4 − 91 u3 − 162 u2 − 222 u,

B1(u) = 10 u8− 50 u7− 80 u6− 115 u5− 567 u4− 701 u3− 394 u2 − 424 u − 252,

B2(u) = u7 − 108 u6 − 136 u5 − 243 u4 − 992 u3 − 832 u2 − 504 u − 368,

B3(u) = 3 u6 − 121 u5 − 108 u4 − 279 u3 − 808 u2 − 472 u − 272,

B4(u) = 3 u5 − 71 u4 − 38 u3 − 180 u2 − 288 u − 128,

B5(u) = u4 − 18 u3 − 4 u2 − 54 u − 36.

Then, it is easy to verify that Bi(u) > 0 (i = 0, 1, 2, 3, 4, 5) for all u � 200 by
the estimate step by step. For example,

B5(u) � 200 u3 − 18 u3 − 4 u2 − 54 u − 36

� 182 × 200 u2 − 4 u2 − 54 u − 36

� 36 396 × 200 u − 54u − 36 > 0, u � 200.

Hence, Ai(u, v) > 0 (i = 0, 1, 2, 3, 4, 5) for u � 200, 0 < v < 1.
On the other hand, according to the polynomial-ring method in alge-

braic geometry in Maple, it is concluded that Ai(u, v) (0 � i � 5) has no
extreme points in {(u, v) | 2 < u < 200, 0 < v < 1}. And it is easy to check that
Ai(2, v) � 0, Ai(u, 1) � 0, Ai(u, 0) � 0 and Ai(200, v) > 0. This implies that
all the coefficients of ri are positive for 2 < u < 200 and 0 < v < 1. Therefore,
we deduce that Ai(u, v) > 0 (i = 0, 1, 2, 3, 4, 5) for all

(u, v) ∈ {(u, v) | u > 2, 0 < v < 1}.

Summarizing the above analysis, we get (η′(x)/ξ′(x))′ �= 0.

To sum up, by theorem 2.6, the integral I(h) in (1.5) has at most two zeros in
(0, +∞) counted with multiplicities.

Finally, we consider the number of limit cycles bifurcated from the cen-
tre ((b − 2)/b, 0). Use the transformation x̃ = b/(b − 2)x, ỹ =

√
b/(2 − b)y, t̃ =√

(2 − b)/bt, c = 2 − b, and rewrite (x̃, ỹ, t̃) as (x, y, t), then system (1.2) has the
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following form

dx

dt
= 2xy,

dy

dt
= −cx2 + 2(c − 1)x + 2 − c.

(3.8)

A first integral of system (3.8) is

H̃(x, y) = y2 +
cx2

2
− 2(c − 1)x + (c − 2) ln |x| +

3c

2
− 2. (3.9)

It is easy to verify that the centre ((b − 2)/b, 0) of system (1.2) becomes the centre
(1, 0) of system (3.8) and the continuous family of ovals Γ2

h surrounding the centre
((b − 2)/b, 0) defined in (1.3) becomes Γh = {(x, y) | H̃(x, y) = h, h ∈ (0, +∞)} if
we take h̃ = ((2 − c)/c)h + (2 − c) ln(c/(2 − c)) + 2 − 2/c in (1.3) and rewrite h̃ as
h. Similarly, the cyclicity of period annulus around the centre ((b − 2)/b, 0) is equal
to the number of zeros of the following Abelian integrals in (0, +∞) by lemma 1.1

I(h) = −α

√
2 − c

c

∮
Γh

y

x2
dx + β

√
c

2 − c

∮
Γh

y

x
dx − γ

(
c

2 − c

)3/2 ∮
Γh

y dx,

where Γh is the periodic orbit surrounding the centre (1, 0) of system (3.8) defined
by H̃(x, y) = h with H̃(x, y) given in (3.9). Using the conclusion on the centre
(1, 0), thus we can see that at most two limit cycles generate from the period
annulus around the centre ((b − 2)/b, 0) counted with multiplicities.

The proof is finished. �

4. Proof of theorem 1.3

In this section, we mainly consider all the possible configurations of limit
cycles from two period annuli for system (1.4). For convenience, denote Ii(h) =∮
Γ1

h
(y/xi−1)dx (i = 1, 2, 3) and define the centroid curve

∑
= {(P, Q) | P (h) =

I3(h)/I2(h), Q(h) = I1(h)/I2(h), h ∈ (0, +∞)}, where Γ1
h = {(x, y) | H(x, y) =

h, x > 0} is the closed curve around the centre (1, 0). Let li(x) = 1/xi−1 and
Li(x) = li(x)/Ψ′(x) − li(z)/Ψ′(z) (i = 1, 2, 3), where z = σ(x) is the involution
satisfying that Ψ(x) = Ψ(z).

First, we will study some geometric properties of the centroid curve
∑

.

Proposition 4.1. For h ∈ (0, +∞), P (h) > 0, Q(h) > 0, P ′(h) > 0 and Q′(h) < 0.

Proof. It is easy to check that P (h) > 0, Q(h) > 0 and we only prove that P ′(h) > 0
and Q′(h) < 0.
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Since l1(x) = 1, l2(x) = 1/x and l3(x) = 1/x2, it is easy to obtain that

L1(x) =
(1 + r) (z − x) (xz + r)

2 (x − 1) (x + r) (z − 1) (z + r)
,

L2(x) =
(1 + r) (z − x) (x + r − 1 + z)
2 (x − 1) (x + r) (z − 1) (z + r)

and

L3(x) =
(1 + r) (z − x)

(
xr + zr + x2 + xz + z2 − r − x − z

)
2x (x − 1) (x + r) z (z − 1) (z + r)

.

After some calculation, we get

(
L1(x)
L2(x)

)′
=

1
(x+r − 1+z)2 x (z − 1) (z+r)

(
r2x2z+r2xz2+2 rx3z + 2 rxz3 + x4z

+xz4 − 4 r2xz − 4 rx2z − 4 rxz2 − 2 x3z − 2 xz3 + r2x + r2z + 4 rxz

+x2z + xz2
)
.

Let x + z = u, xz = v, then

(
L1(x)
L2(x)

)′
=

(uv+u − 4v) r2+2
(
u2 − 2u − 2v+2

)
vr+

(
u3 − 2u2 − 3uv+u+4v

)
v

(x+r − 1+z)2 x (z−1) (z+r)
.

Similar to the proof of (η′(x)/ξ′(x))′ �= 0 in theorem 1.2, we obtain
(L1(x)/L2(x))′ < 0. Using theorem 1 in [19], we know Q′(h) = (I1(h)/I2(h))′ < 0.

As for L3(x)/L2(x), some computations show that

(
L3(x)
L2(x)

)′
=

M(x, z, r)
zx2 (x + r − 1 + z)2 (1 − z) (z + r)

,

where

M(x, z, r) =
(
u2 − 2 u − 2 v + 2

)
r3 +

(
3 u3 − 7 u2 − 7 uv + 7 u + 6 v − 2

)
r2

+
(
3 u4 − 8 u3 − 8 u2v + 7 u2 + 16 uv − 2 v2 − 2 u − 6 v

)
r

+ u5 − 3 u4 − 3 u3v + 3 u3 + 8 u2v − uv2 − u2 − 7 uv + 2 v2 + 2 v.

Similarly, we have M(x, z, r) > 0. This implies that (L3(x)/L2(x))′ > 0. Therefore,
by theorem 1 in [19], we get P ′(h) = (I3(h)/I2(h))′ > 0. The proof is finished. �

Proposition 4.2. When h → 0+, P (h) → 1, Q(h) → 1. When h → +∞, P (h) →
+∞, Q(h) → 0.
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Proof. By Green formula and mean value theorem, there exist ρ1, ρ2 such that

Q(h) =

∫∫
{(x,y)|H(x,y)�h,x>0} 1 dxdy∫∫

{(x,y)|H(x,y)�h,x>0}(1/x) dxdy
= ρ1

and

P (h) =

∫∫
{(x,y)|H(x,y)�h,x>0}(1/x2) dxdy∫∫
{(x,y)|H(x,y)�h,x>0}(1/x) dxdy

= ρ2.

When h → 0+, {(x, y) | H(x, y) � h, x > 0} tends to the point (1, 0), then

ρ1, ρ2 → 1, P (h), Q(h) → 1.

When h 
 1, from Ψ(ν(h)) = h, we obtain

√
b

2
ν(h)

[
1 − 2(b − 1)

ν(h)
2
b

+ O

(
ln ν(h)
ν2(h)

)]1/2

=
√

h,

which implies that

ν(h) =

√
2
b
h1/2 +

2(b − 1)
b

+ o(1), h 
 1. (4.1)

On the other hand, by Ψ(μ(h)) = h, we get 0 < μ(h) � 1 and

exp
{

bμ2(h)
2

− 2(b − 1)μ(h) + (b − 2) ln μ(h) +
3b

2
− 2
}

= exp(h).

After some calculation

μ(h) exp
{

bμ2(h)
2b − 4

− 2(b − 1)μ(h)
b − 2

}
= exp

{
3b − 4
4 − 2b

}
exp

{
h

b − 2

}
. (4.2)

Combining (4.2) and exp(z) = 1 + z + o(z) for |z| � 1, we have

μ(h)
(

1 − 2(b − 1)μ(h)
b − 2

+ o(μ(h))
)

= exp
{

3b − 4
4 − 2b

}
exp

{
h

b − 2

}
.

Further, we get that

μ(h) = exp
{

3b − 4
4 − 2b

}
exp

{
h

b − 2

}
+ o

(
exp

{
h

b − 2

})
, h 
 1. (4.3)

In the following we estimate the order of I1(h), I2(h) and I3(h) for h → +∞.
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Let us consider the integral I1(h) firstly. Since y2 + Ψ(x) = h, we get

I1(h) =
∮

Γ1
h

y dx = 2
∫ ν(h)

μ(h)

√
h − Ψ(x) dx.

Then

I1(h) � 2
∫ ν(h)

μ(h)

√
h dx = 2

√
2
b
h + o(h). (4.4)

Secondly, consider the integral I2(h). Because

I2(h) = 2
∫ ν(h)

μ(h)

√
h − Ψ(x)

x
dx = 2

∫ 1

μ(h)

√
h − Ψ(x)

x
dx + 2

∫ ν(h)

1

√
h − Ψ(x)

x
dx,

we have

I2(h) > 2
∫ 1

μ(h)

√
h − Ψ(x)

x
dx = 2

∫ μ̄(h)

0

√
h − Ψ(exp{−w}) dw,

where

μ̄(h) = − ln(μ(h)) =
h

2 − b
+ o(h)

follows from (4.3). Let w = − ln x, one has

Φ(w) := Ψ(exp{−w}) =
b

2
exp{−2w} − 2(b − 1) exp{−w} + (2 − b)w +

3b

2
− 2.

Then for 0 < w < μ̄(h)/2,

Φ(w) <
b

2
+ 2 + (2 − b)w +

3b

2
− 2 = (2 − b)w + 2b < (2 − b)

μ̄(h)
2

+2b =
h

2
+o(h).

Consequently

I2(h) > 2
∫ μ̄(h)

0

√
h − Φ(w) dw

> 2
∫ μ̄(h)/2

0

√
h − Φ(w) dw

> 2
∫ μ̄(h)/2

0

(√
h

2
+ o

(√
h
))

dw

=
√

2h3/2

2(2 − b)
+ o

(
h3/2

)
.

(4.5)
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On the other hand, we have

I2(h) = 2
∫ μ̄(h)

0

√
h − Φ(w) dw + 2

∫ ν(h)

1

√
h − Ψ(x)

x
dx

� 2
∫ μ̄(h)

0

√
h dw + 2

∫ ν(h)

1

√
h dx

=
2h3/2

2 − b
+ o

(
h3/2

)
.

To sum up, we obtain

I2(h) ∼ h3/2, h → +∞. (4.6)

Thereby, by (4.4) and (4.6),

Q(h) =
I1(h)
I2(h)

→ 0, when h → +∞.

Similar as the estimate in (4.5), we have

I3(h) > 2
∫ μ̄(h)

0

exp{w}
√

h − Φ(w) dw

> 2
∫ μ̄(h)/2

0

exp{w}
(√

h

2
+ o

(√
h
))

dw

=
√

2h exp
{

h

2

}
+ o

(√
h exp

{
h

2

})
.

Thus,

lim
h→+∞

P (h) = lim
h→+∞

I3(h)
I2(h)

= +∞.

The proof is finished. �

Now we consider the simultaneous bifurcation and distribution of limit cycles
from the period annuli around (1, 0) and ((b − 2)/b, 0). Let Σ̄ = {(P̄ , Q̄) | P̄ (h) =
I3(h)/I2(h), Q̄(h) = I1(h)/I2(h), h ∈ (2 − 2/b + (b − 2) ln(2/b − 1), +∞)}, where
Ii(h) =

∮
Γ2

h
(y/xi−1)dx (i = 1, 2, 3) with Γ2

h given in (1.3) being the ovals around the
centre ((b − 2)/b, 0). Similar to the proof of theorem 1.2, we use the transformation
x̃ = b/(b − 2)x, ỹ =

√
b/(2 − b)y, t̃ =

√
(2 − b)/bt, c = 2 − b, and rewrite (x̃, ỹ, t̃)

as (x, y, t), then the system (1.2) is changed to system (3.8), which has the same
form as system (1.2) with the parameter c instead of b. Taking h̃ = ((2 − c)/c)h +
(2 − c) ln(c/(2 − c)) + 2 − 2/c, the closed curve Γ2

h around the centre ((b − 2)/b, 0)
becomes {(x, y) | H̃(x, y) = h̃, x > 0, h̃ ∈ (0, +∞)} with H̃ given in (3.9). Notice
that c ∈ (0, 2), too, thus by proposition 4.1, we have

P̄ (h) < 0, Q̄(h) < 0, P̄ ′(h) < 0, Q̄′(h) > 0. (4.7)

Notice that the number of limit cycles bifurcating from the period annulus around
(1, 0) (resp. ((b − 2)/b, 0)) is equal to the number of intersection points of the curve
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Figure 3. Number of intersection points of the curve Σ (Σ̄) with the line Lαβγ (L̄αβγ).

Σ (resp. Σ̄) with the line Lαβγ (resp. L̄αβγ), taking into account their multiplicities,
where

Lαβγ : β + αP + γQ = 0 (resp. L̄αβγ : β + αP̄ + γQ̄ = 0).

Proof of theorem 1.3. Put two centroid curves Σ and Σ̄ in the same plane, thus the
lines Lαβγ and L̄αβγ are the same. The graphs of Σ and Σ̄ are shown in figure 3
by propositions 4.1 and 4.2 and (4.7). Obviously, the configurations of limit cycles
(0, 0), (1, 0), (0, 1) and (1, 1) are trivial (see figure 3), where (u, v) represents
that exactly u and v limit cycles simultaneously bifurcate from the periodic orbits
surrounding the centres (1, 0) and ((b − 2)/b, 0) respectively. Without loss of gen-
erality, suppose that Lαβγ has two intersections with the centroid curve Σ. As is
shown in figure 3, the slope of Lαβγ must be negative, thus L̄αβγ has no inter-
section with Σ̄, and the configuration of limit cycles must be (2, 0). Similarly, the
configuration of limit cycles (0, 2) can be achieved.

�
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