Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T09:09:12.243Z Has data issue: false hasContentIssue false

Low-frequency unsteadiness in laminar separation bubbles

Published online by Cambridge University Press:  22 November 2024

Fatemeh Malmir
Affiliation:
Laboratoire de dynamique des fluides, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
Giuseppe Di Labbio
Affiliation:
Laboratoire de thermofluide pour le transport, École de technologie supérieure, Montréal, Québec H3C 1K3, Canada
Arnaud Le Floc'h
Affiliation:
Laboratoire de thermofluide pour le transport, École de technologie supérieure, Montréal, Québec H3C 1K3, Canada Institut für Aerodynamik und Strömungstechnik, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 38108 Braunschweig, Germany
Louis Dufresne
Affiliation:
Laboratoire de thermofluide pour le transport, École de technologie supérieure, Montréal, Québec H3C 1K3, Canada
Julien Weiss
Affiliation:
Laboratoire de thermofluide pour le transport, École de technologie supérieure, Montréal, Québec H3C 1K3, Canada Institut für Luft- und Raumfahrt, Technische Universität Berlin, 10587 Berlin, Germany
Jérôme Vétel*
Affiliation:
Laboratoire de dynamique des fluides, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
*
Email address for correspondence: jerome.vetel@polymtl.ca

Abstract

Low-frequency phenomena in an incompressible pressure-induced laminar separation bubble (LSB) on a flat plate is investigated using direct numerical simulation. The LSB configuration of Spalart and Strelets (J. Fluid Mech., vol. 403, 2000, pp. 329–349) is used. Wall pressure spectra indicate low-frequency-flapping $(St \sim 0.08)$ and high-frequency-shedding $(St \sim 1.52)$ regimes. Conditional velocity averages based on the fraction of reversed flow reveal the low frequency as an expansion/contraction of the LSB. While the high frequency only exhibits exponential growth within the LSB up to breakdown of the spanwise rollers, the low frequency and velocity fluctuations exhibit exponential growth upstream of separation. Instantaneous flow fields reveal large streamwise streaky structures forming within the LSB and extending past reattachment, much like high and low speed streaks in turbulent boundary layers. A predominance of sweep-like events ($Q4$) is observed during contraction and of ejection-like events ($Q2$) during expansion. These motions appear as dominant low-frequency modes in three-dimensional proper orthogonal and dynamic mode decompositions, exhibiting spatial amplification from separation to reattachment. The advection of a group of spanwise alternating streaky structures past the LSB results in an overall contraction after which the bubble expands to its ‘unforced’ state in the absence of the streaks. The low frequency then corresponds to the time it takes for streaks to form, amplify and advect past the LSB from separation to reattachment. This behaviour is linked to the mean flow deformation reported by Marxen and Rist (J. Fluid Mech., vol. 660, 2010, pp. 37–54), where the presence of streaks results in reduced mean bubble size. The formation of these streaky structures, in the absence of free stream turbulence, may be attributed to an absolute instability of the LSB due to the development of a secondary bubble within the primary.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H. 2017 Reynolds-number dependence of wall-pressure fluctuations in a pressure-induced turbulent separation bubble. J. Fluid Mech. 833, 563598.CrossRefGoogle Scholar
Abe, H. 2019 Direct numerical simulation of a turbulent boundary layer with separation and reattachment over a range of Reynolds numbers. Fluid Dyn. Res. 51 (1), 011409.CrossRefGoogle Scholar
Adrian, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.CrossRefGoogle Scholar
Alam, M. & Sandham, N.D. 2000 Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 128.CrossRefGoogle Scholar
Alizard, F., Cherubini, S. & Robinet, J.-C. 2009 Sensitivity and optimal forcing response in separated boundary layer flows. Phys. Fluids 21 (6), 064108.CrossRefGoogle Scholar
Avanci, M.P., Rodríguez, D. & Alves, S. de B. 2019 A geometrical criterion for absolute instability in separated boundary layers. Phys. Fluids 31 (1), 014103.CrossRefGoogle Scholar
Bragg, M.B., Heinrich, D.C. & Khodadoust, A. 1993 Low-frequency flow oscillation over airfoils near stall. AIAA J. 31 (7), 13411343.CrossRefGoogle Scholar
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids) 47, 8096.CrossRefGoogle Scholar
Burgmann, S. & Schröder, W. 2008 Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements. Exp. Fluids 45 (4), 675691.CrossRefGoogle Scholar
Camussi, R., Felli, M., Pereira, F., Aloisio, G. & Di Marco, A. 2008 Statistical properties of wall pressure fluctuations over a forward-facing step. Phys. Fluids 20 (7), 075113.CrossRefGoogle Scholar
Castro, I.P. & Haque, A. 1987 The structure of a turbulent shear layer bounding a separation region. J. Fluid Mech. 179, 439468.CrossRefGoogle Scholar
Cherry, N.J., Hillier, R. & Latour, M.E.M.P. 1983 The unsteady structure of two-dimensional separated-and-reattaching flows. J. Wind Engng Ind. Aerodyn. 11 (1–3), 95105.CrossRefGoogle Scholar
Cherry, N.J., Hillier, R. & Latour, M.E.M.P. 1984 Unsteady measurements in a separated and reattaching flow. J. Fluid Mech. 144, 1346.CrossRefGoogle Scholar
Cherubini, S., Robinet, J.-Ch. & De Palma, P. 2010 The effects of non-normality and nonlinearity of the Navier–Stokes operator on the dynamics of a large laminar separation bubble. Phys. Fluids 22 (1), 014102.CrossRefGoogle Scholar
Cossu, C. & Hwang, Y. 2017 Self-sustaining processes at all scales in wall-bounded turbulent shear flows. Phil. Trans. R. Soc. Lond. A 375, 20160088.Google ScholarPubMed
Djilali, N. & Gartshore, I.S. 1991 Turbulent flow around a bluff rectangular plate. Part I: experimental investigation. Trans. ASME J. Fluids Engng 113 (1), 5159.CrossRefGoogle Scholar
Dovgal, A.V., Kozlov, V.V. & Michalke, A. 1994 Laminar boundary layer separation: instability and associated phenomena. Prog. Aerosp. Sci. 30 (1), 6194.CrossRefGoogle Scholar
Driver, D.M., Seegmiller, H.L. & Marvin, J.G. 1987 Time-dependent behavior of a reattaching shear layer. AIAA J. 25 (7), 914919.CrossRefGoogle Scholar
Eaton, J.K. & Johnston, J.P. 1982 Low frequency unsteadyness of a reattaching turbulent shear layer. In Turbulent Shear Flows (ed. L.J.S. Bradbury, F. Durst, B.E. Launder, F.W. Schmidt & J.H. Whitelaw), vol. 3, pp. 162–170. Springer.CrossRefGoogle Scholar
Elyasi, M. & Ghaemi, S. 2019 Experimental investigation of coherent structures of a three-dimensional separated turbulent boundary layer. J. Fluid Mech. 859, 132.CrossRefGoogle Scholar
Embacher, M. & Fasel, H.F. 2014 Direct numerical simulations of laminar separation bubbles: investigation of absolute instability and active flow control of transition to turbulence. J. Fluid Mech. 747, 141185.CrossRefGoogle Scholar
Fang, X. & Tachie, M.F. 2019 On the unsteady characteristics of turbulent separations over a forward–backward-facing step. J. Fluid Mech. 863, 9941030.CrossRefGoogle Scholar
Fang, X. & Tachie, M.F. 2020 Spatio-temporal dynamics of flow separation induced by a forward-facing step submerged in a thick turbulent boundary layer. J. Fluid Mech. 892, A40.CrossRefGoogle Scholar
Graziani, A., Kherhervé, F., Martinuzzi, R.J. & Keirsbulck, L. 2018 Dynamics of the recirculating areas of a forward-facing step. Exp. Fluids 59, 154.CrossRefGoogle Scholar
Hack, M.J.P. & Schmidt, O.T. 2021 Extreme events in wall turbulence. J. Fluid Mech. 907, A9.CrossRefGoogle Scholar
Hammond, D.A. & Redekopp, L.G. 1998 Local and global instability properties of separation bubbles. Eur. J. Mech. (B/Fluids) 17 (2), 145164.CrossRefGoogle Scholar
Hemati, M.S., Williams, M.O. & Rowley, C.W. 2014 Dynamic mode decomposition for large and streaming datasets. Phys. Fluids 26 (11), 111701.CrossRefGoogle Scholar
Hosseinverdi, S. & Fasel, H.F. 2019 Numerical investigation of laminar-turbulent transition in laminar separation bubbles: the effect of free-stream turbulence. J. Fluid Mech. 858, 714759.CrossRefGoogle Scholar
Hudy, L.M., Naguib, A.M. & Humphreys, W.M. 2003 Wall-pressure-array measurements beneath a separating/reattaching flow region. Phys. Fluids 15 (3), 706717.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Jaroslawski, T., Forte, M., Vermeersch, O., Moschetta, J.-M. & Gowree, E.R. 2023 Disturbance growth in a laminar separation bubble subjected to free-stream turbulence. J. Fluid Mech. 956, A33.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kerswell, R.R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.CrossRefGoogle Scholar
Kiya, M. & Sasaki, K. 1983 Structure of a turbulent separation bubble. J. Fluid Mech. 137, 83113.CrossRefGoogle Scholar
Kiya, M. & Sasaki, K. 1985 Structure of large-scale vortices and unsteady reverse flow in the reattaching zone of a turbulent separation bubble. J. Fluid Mech. 154, 463491.CrossRefGoogle Scholar
Kurelek, J.W., Lambert, A.R. & Yarusevych, S. 2016 Coherent structures in the transition process of a laminar separation bubble. AIAA J. 54 (8), 22952309.CrossRefGoogle Scholar
Laizet, S. & Lamballais, E. 2009 High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J. Comput. Phys. 228 (16), 59896015.CrossRefGoogle Scholar
Laizet, S. & Li, N. 2011 Incompact3d: A powerful tool to tackle turbulence problems with up to $O(10^5)$ computational cores. Intl J. Numer. Meth. Fluids 67 (11), 17351757.CrossRefGoogle Scholar
Lamballais, E., Fortuné, V. & Laizet, S. 2011 Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation. J. Comput. Phys. 230 (9), 32703275.CrossRefGoogle Scholar
Lardeau, S., Leschziner, M. & Zaki, T. 2012 Large eddy simulation of transitional separated flow over a flat plate and a compressor blade. Flow Turbul. Combust. 88 (1–2), 1944.CrossRefGoogle Scholar
Largeau, J.F. & Moriniere, V. 2007 Wall pressure fluctuations and topology in separated flows over a forward-facing step. Exp. Fluids 42 (1), 2140.CrossRefGoogle Scholar
Le Floc'h, A. 2021 Experimental analysis in a family of turbulent separation bubbles. Doctoral dissertation, École de technologie supérieure, Montréal, QC, Canada.Google Scholar
Le Floc'h, A., Di Labbio, G. & Dufresne, L. 2023 Reconstruction of large-scale coherent structures in turbulent separation bubbles using phase-consistent DMD. AIAA Aviation 2023 Forum. AIAA.CrossRefGoogle Scholar
Le Floc'h, A., Weiss, J., Mohammed-Taifour, A. & Dufresne, L. 2020 Measurements of pressure and velocity fluctuations in a family of turbulent separation bubbles. J. Fluid Mech. 902, A13.CrossRefGoogle Scholar
Lee, I. & Sung, H.J. 2001 Characteristics of wall pressure fluctuations in separated and reattaching flows over a backward-facing step: part I. Time-mean statistics and cross-spectral analyses. Exp. Fluids 30 (3), 262272.CrossRefGoogle Scholar
Lowery, P.S. & Reynolds, W.C. 1986 Numerical simulation of a spatially-developing, forced, plane mixing layer. Rep. No. TF-26. PhD thesis, Department of Mechanical Engineering.Google Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432471.CrossRefGoogle Scholar
Ma, A., Gibeau, B. & Ghaemi, S. 2020 Time-resolved topology of turbulent boundary layer separation over the trailing edge of an airfoil. J. Fluid Mech. 891, A1.CrossRefGoogle Scholar
Ma, X. & Schröder, A. 2017 Analysis of flapping motion of reattaching shear layer behind a two-dimensional backward-facing step. Phys. Fluids 29 (11), 115104.CrossRefGoogle Scholar
Ma, X., Tang, Z. & Jiang, N. 2022 a Experimental study of self-sustained spanwise streaks and turbulent mixing in separated shear flow. Intl J. Heat Fluid Flow 96, 109012.CrossRefGoogle Scholar
Ma, X., Tang, Z. & Jiang, N. 2022 b Investigation of spanwise coherent structures in turbulent backward-facing step flow by time-resolved PIV. Exp. Therm. Fluid Sci. 132, 110569.CrossRefGoogle Scholar
Marxen, O. & Henningson, D.S. 2011 The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble. J. Fluid Mech. 671, 133.CrossRefGoogle Scholar
Marxen, O., Lang, M. & Rist, U. 2013 Vortex formation and vortex breakup in a laminar separation bubble. J. Fluid Mech. 728, 5890.CrossRefGoogle Scholar
Marxen, O. & Rist, U. 2010 Mean flow deformation in a laminar separation bubble: separation and stability characteristics. J. Fluid Mech. 660, 3754.CrossRefGoogle Scholar
McAuliffe, B.R. & Yaras, M.I. 2010 Transition mechanisms in separation bubbles under low- and elevated-freestream turbulence. Trans. ASME J. Turbomach. 132 (1), 011004.CrossRefGoogle Scholar
Michelis, T., Yarusevych, S. & Kotsonis, M. 2017 Response of a laminar separation bubble to impulsive forcing. J. Fluid Mech. 820, 633666.CrossRefGoogle Scholar
Michelis, T., Yarusevych, S. & Kotsonis, M. 2018 On the origin of spanwise vortex deformations in laminar separation bubbles. J. Fluid Mech. 841, 81108.CrossRefGoogle Scholar
Miozzi, M., Capone, A., Costantini, M., Fratto, L., Klein, C. & Di Felice, F. 2019 Skin friction and coherent structures within a laminar separation bubble. Exp. Fluids 60, 13.CrossRefGoogle Scholar
Mohammed-Taifour, A. & Weiss, J. 2016 Unsteadiness in a large turbulent separation bubble. J. Fluid Mech. 799, 383412.CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379405.CrossRefGoogle Scholar
Passagia, P.-Y., Leweke, T. & Ehrenstein, U. 2012 Transverse instability and low-frequency flapping in incompressible separated boundary layer flows: an experimental study. J. Fluid Mech. 703, 363373.CrossRefGoogle Scholar
Patrick, W.P. 1987 Flowfield measurements in a separated andreattached flat plate turbulent boundary layer. NASA Contractor Report 4052. United Technologies Research Center, East Hartford, CT.Google Scholar
Pauley, L.L. 1994 Structure of local pressure-driven three-dimensional transient boundary-layer separation. AIAA J. 32 (5), 9971005.CrossRefGoogle Scholar
Pauley, L.L., Moin, P. & Reynolds, W.C. 1988 A numerical study of unsteady laminar boundary layer separation. Rep. No. TF-34. PhD thesis, Department of Mechanical Engineering.Google Scholar
Pauley, L.L., Moin, P. & Reynolds, W.C. 1990 The structure of two-dimensional separation. J. Fluid Mech. 220, 397411.CrossRefGoogle Scholar
Pearson, D.S., Goulart, P.J. & Ganapathisubramani, B. 2013 Turbulent separation upstream of a forward-facing step. J. Fluid Mech. 724, 284304.CrossRefGoogle Scholar
Richardson, R., Zhang, Y. & Cattafesta, L.N. 2023 Low frequency characteristics of a pressure-gradient induced turbulent separation bubble. AIAA SciTech 2023 Forum. AIAA.CrossRefGoogle Scholar
Rist, U. & Maucher, U. 2002 Investigations of time-growing instabilities in laminar separation bubbles. Eur. J. Mech. (B/Fluids) 21, 495509.CrossRefGoogle Scholar
Rodríguez, D., Gennaro, E.M. & Souza, L.F. 2021 Self-excited primary and secondary instability of laminar separation bubbles. J. Fluid Mech. 906, A13.CrossRefGoogle Scholar
Sandham, N. 2011 Shock-wave/boundary-layer interactions. In NATO Research and Technology Organisation (RTO) – Educational Notes Paper, RTO-EN-AVT-195, vol. 5, pp. 1–18.Google Scholar
Sanmiguel Vila, C., Örlü, R., Vinuesa, R., Schlatter, P., Ianiro, A. & Discetti, S. 2017 Adverse-pressure-gradient effects on turbulent boundary layers: statistics and flow-field organization. Flow Turbul. Combust. 99 (3–4), 589612.CrossRefGoogle ScholarPubMed
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Simoni, D., Ubaldi, M. & Zunino, P. 2012 Loss production mechanisms in a laminar separation bubble. Flow Turbul. Combust. 89 (4), 547562.CrossRefGoogle Scholar
Simoni, D., Ubaldi, M. & Zunino, P. 2014 Experimental investigation of flow instabilities in a laminar separation bubble. J. Therm. Sci. 23 (3), 203214.CrossRefGoogle Scholar
Simpson, R.L., Chew, Y.-T. & Shivaprasad, B.G. 1981 a The structure of a separating turbulent boundary layer. Part 1. Mean flow and Reynolds stresses. J. Fluid Mech. 113, 2351.CrossRefGoogle Scholar
Simpson, R.L., Chew, Y.-T. & Shivaprasad, B.G. 1981 b The structure of a separating turbulent boundary layer. Part 2. Higher-order turbulence results. J. Fluid Mech. 113, 5373.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths 45 (3), 561571.CrossRefGoogle Scholar
Spalart, P.R. & Strelets, M.Kh. 2000 Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329349.CrossRefGoogle Scholar
Spazzini, P.G., Iuso, G., Onorato, M., Zurlo, N. & Di Cicca, G.M. 2001 Unsteady behavior of back-facing step flow. Exp. Fluids 30 (5), 551561.CrossRefGoogle Scholar
Statnikov, V., Bolgar, I., Scharnowski, S., Meinke, M., Kähler, C.J. & Schröder, W. 2016 Analysis of characteristic wake flow modes on a generic transonic backward-facing step configuration. Eur. J. Mech. (B/Fluids) 59, 124134.CrossRefGoogle Scholar
Stüer, H., Gyr, A. & Kinzelbach, W. 1999 Laminar separation on a forward facing step. Eur. J. Mech. (B/Fluids) 18 (4), 675692.CrossRefGoogle Scholar
Tafti, D.K. & Vanka, S.P. 1991 a A numerical study of flow separation and reattachment on a blunt plate. Phys. Fluids 3 (7), 17491759.CrossRefGoogle Scholar
Tafti, D.K. & Vanka, S.P. 1991 b A three-dimensional numerical study of flow separation and reattachment on a blunt plate. Phys. Fluids 3 (12), 28872909.CrossRefGoogle Scholar
Thacker, A., Aubrun, S., Leroy, A. & Devinant, P. 2013 Experimental characterization of flow unsteadiness in the centerline plane of an Ahmed body rear slant. Exp. Fluids 54 (3), 1479.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Troutt, T.R., Scheelke, B. & Norman, T.R. 1984 Organized structures in a reattaching separated flow field. J. Fluid Mech. 143, 413427.CrossRefGoogle Scholar
Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L. & Kutz, J.N. 2014 On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1 (2), 413427.Google Scholar
Wang, S. & Ghaemi, S. 2022 Unsteady motions in the turbulent separation bubble of a two-dimensional wing. J. Fluid Mech. 948, A3.CrossRefGoogle Scholar
Wee, D., Yi, T., Annaswamy, A. & Ghoniem, A.F. 2004 Self-sustained oscillations and vortex shedding in backward-facing step flows: simulation and linear instability analysis. Phys. Fluids 16 (9), 33613373.CrossRefGoogle Scholar
Weiss, J., Little, J., Threadgill, J. & Gross, A. 2021 Low-frequency unsteadiness in pressure-induced separation bubbles. AIAA SciTech 2021 Forum. AIAA.CrossRefGoogle Scholar
Wilhelm, D., Hrtel, C. & Kleiser, L. 2003 Computational analysis of the two-dimensional–three-dimensional transition in forward-facing step flow. J. Fluid Mech. 489, 127.CrossRefGoogle Scholar
Wilkins, S.J., Hosseinali, M. & Hall, J.W. 2020 Low-frequency dynamics of flow over a forward–backward-facing step. AIAA J. 58 (9), 37353747.CrossRefGoogle Scholar
Wu, W., Meneveau, C. & Mittal, R. 2020 Spatio-temporal dynamics of turbulent separation bubbles. J. Fluid Mech. 883, A45.CrossRefGoogle Scholar
Yang, Z. & Abdalla, I.E. 2005 Effects of free-stream turbulence on large-scale coherent structures of separated boundary layer transition. Intl J. Numer. Meth. Fluids 49 (3), 331348.CrossRefGoogle Scholar
Zaman, K.B.M.Q., McKinzie, D.J. & Rumsey, C.J. 1989 A natural low-frequency oscillation of the flow over an airfoil near stalling conditions. J. Fluid Mech. 202, 403442.CrossRefGoogle Scholar