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Abstract. Let M" be an n-dimensional closed hypersurface with constant mean
curvature H satisfying |H| < &(n) in a unit sphere $"*!(1), n < 8 and S the square of
the length of the second fundamental form of M. There exists a constant §(n, H) > 0,
which depends only on #» and H such that if Sy < S < Sy + 8(n, H), then S = Sy and
M 1is isometric to a Clifford hypersurface where (n) is a sufficiently small constant
depending on nand So = n + 57— H2 (” =2 \/n2H4 +4(n— 1)H>.

2010 Mathematics Subject Classzﬁcatlon. Primary 53C42, 53B25.

1. Introduction. Let M” be an n-dimensional closed hypersurface with constant
mean curvature H in a unit sphere $"*!(1) of dimension 7+ 1, denoted by S the
squared norm of the second fundamental form of M".

When H = 0, Lawson [16], Simons [10] and Chern et al. [8] obtained independently
the famous rigidity theorem, which says, if S < n, then S =0, or S = n, i.e. M" is the
great sphere S"(1), or the Clifford torus. Further discussions in this direction have
been carried out by many other authors [2, 5, 7, 12, 18, 19-21]. In [14], Peng and
Terng proved that if the scalar curvature of M is constant, then there exists a positive
constant «(n) depending only on #n such that if # < S < n+ a(n), then S = n. Later,
Cheng and Yang [6] improved the pinching constant «(n) to 5. Without the assumption
of constant scalar curvature, Peng and Terng [15] proved that if M"(n < 5) is a closed
minimal hypersurface in S"*!, then there exists a positive constant «(n) depending
only on n such that if » < S < n+ «(n), then S = n. So they proposed the following
attractive problem:

Let M"(n > 6) be a closed minimal hypersurface in S"*'. Does there exist a positive
constant a(n) depending only on n such that if n < S <n—+ «a(n), then S =n and M is

isometric to a Clifford torus Sk(\/é) x S"k( \/@) ?

In [3], Cheng gave a positive answer under the additional condition that M has
only two distinct principal curvatures. Later, Hasanis and Vlachos [9] proved that if
M" is a compact minimal hypersurface in $"*! with two distinct principal curvatures
and the squared norm S of the second fundamental form of M" satisfies S > n, then
M" is a minimal Clifford torus. In [5], Cheng and Ishikawa improved the result of Peng
and Terng [15] when n < 5. Later, Wei and Xu [17] solved the problem proposed by
Peng and Terng [15] for » = 6 and 7. Recently, we [22] obtained a sharper pinching
constant of S for n < 7 and solved this problem for n = 8.
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When M is a hypersurface with constant mean curvature, Alencar and do Carmo
[1] proved the first rigidity result under the assumption that the traceless second
fundamental form is sufficiently bounded. Later, Li [11] extended the result of Peng
and Terng [15] for minimal hypersurfaces to the case of hypersurfaces with constant
mean curvature. That is, Li [11] proved the following theorem:

Let M be an n-dimensional closed hypersurface with constant mean curvature H
satisfying |H| < e(n) in a unit sphere S™', n <5, and S the square of the length
of the second fundamental form of M. Then there exists a constant §(n, H) > 0,
which depends only on n and H, such that if Sy <S <Syp+38(n, H), then S= 9
and M is isometric to a Clifford torus Sk(\/g) X S”_k(‘/%) if H=0; M is
isometric to a Clifford hypersurface C ,—1 = Sl(ﬁ) x SN (—2=) if H # 0, where

N
A = M HAe]) ‘nzszM("_l) and e(n) is a sufficiently small constant depending on n, Sy =
3 —
n+ s H? + 53/ H + 4(n — DH?.

In [4], Cheng, He and Li proved the above theorem is valid for the case of n = 6, 7.
In this paper, we study the case of n = 8. We prove the following theorem.

THEOREM 1.1. Let M be an n-dimensional closed hypersurface with constant mean
curvature H satisfying |H| < e(n) in a unit sphere S"*', n < 8, and S the square of the
length of the second fundamental form of M. Then there exists a constant §(n, H) > 0,
which depends only on n and H, such that if So < S < So+ 8(n, H), then S = Sy and

M is isometric to a Clifford torus Sk(\/g) x S"k(,/ ’%k) if H=0, M is isometric to a
Clifford hypersurface

1 A
bt VT2 JIt22
. nH++/n*H2+4(n—1)
if H # 0, where ) = —Y——5——

onn,

and e(n) is a sufficiently small constant depending

n’ , nn—2)
2(n—1) 2(n—1)

So=n+ n2H* + 4(n — ) H2. (1.1)

2. Fundamental formulas. Let M" be an n-dimensional hypersurface with
constant mean curvature H in an (n + 1)-dimensional unit sphere $"*!(1). We choose
a local orthonormal frame field ey, ..., e, in S"F1(1), restricted to M", so that e,
..., e, are tangent to M". Let wy, ..., w,4; denote the dual coframe field in S"*!(1).
Then in M", w,,1 = 0. It follows from Cartan’s Lemma that

onp1i = Y hjo. (2.1)
J

The second fundamental form « and the mean curvature H of M" are defined by

o = Zhy-w,-wjenﬂ, nH = Zhi,‘, (22)
i i
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respectively. The connection form wy is characterized by the structure equations

doj+ Y oy nwy =0, wj+a; =0, (2.3)
J
dwj + Y o A oy = Qj, (2.4
k
1
Qy‘ = 5 ;Ry‘k[a)k Ny, (25)

where € (resp. Rj;) denotes the curvature form (resp. the components of the curvature
tensor) of M". The Gauss equation is given by

Ry = (Bibjs — 8ubjic) + (hihj — hihyr.). (2.6)

Denote by A, ki, hjkim components of the first, second and third covariant derivatives
of the second fundamental form, respectively. Then

hie = higg = hjir, 2.7)
hjer — hijie = Z e Z Py Ronikt (2.8)
m m
hj/‘klm - hy‘kml = Z hrijrilm + Z hirerjlm + Z hy’rRrklm‘ (29)
For any fixed point p in M", we take a local orthonormal frame field ey, ..., ¢, such
that
) 1=

hy = {O, Iy (2.10)

We define the squared norm of the second fundamental form S of M, f3, f4 to be
S = Zh,z 3= Zhy‘hjkhkiv Ja= Z hihjchiahi;. (2.11)

ij ik ikl

Then at the point p, we have
S=D M. A=) M fi=) o (2.12)
i i i

Since the mean curvature H of M is a constant, using the above equations, we

easily get
1
A8 = > ki — S(S —n) — n’H* + nHf;, (2.13)
ijk
1
4 k= k4 Qn+3-5)) I +32B— A)
ik ikl ik
3
+ 3nHz/;A,»h§k - §|VS|2, (2.14)
LJs

272 2
where 4 =3, Aihy, B =3, hikihi.
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3. Proof of Theorem. At first, we give two lemmas which will play a crucial role
in the proof of our theorem. For convenience, we define

My = hy - H‘Sy, MHi = Wii, A Zuzhik’ E = Z:u/lujhik (31)
i)k ijk
Then
A-2B=A-2B+2HY Ay +H Y hy. (3.2)
ij.k ij,k

ZM,:O, Zu?:S—nHz.
i i

LEMMA 3.1. Let M be a closed hypersurface with constant mean curvature H in
S"1(1). Then

> >3 3 {(Sfa — f3 — 7 + nHf) — [S(S — n) + n* H* — nHf]}
ijk,0
3[S(S — n) + n*H?> — nHf:)?
2(n+ 4)(S — nH?)

Proof. From formulae (2.6) and (2.8), we have
hig = hyi = hyy — higi = Z him R + ) Hjm Roni (3.3)

= JiRjj + A RJ,, = (i — A)Rjij
= ()\l - )\j)(l + )w)xj)

We define
1
Ujkg = Z(hy‘kl + ik + i + hageo). (3.4

Since Ay, is symmetric in the indices i, j, k, from equation (3.3) we obtain

3
D= upa+ 3 > hjwa — hiu)*

ijk,l i)kl i,j,k,l
= Zufk/—'— Z(hn _hjjii)2
ijk,d
= Zujk,Jr (Sfa —f7 —28* +nS —n*H* + 2nHf3]}.  (3.5)
ijk,l

Since ), iy = 0, we have

1
> wiki = 5 = S? — n?H? + nHf3). (3.6)
ij
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Since for any « € R,

Z[uyk/ + oS + i + wadp + wiedu + widu + s> = 0, (3.7
ikl

it follows from equations (3.2) and (3.6) that

> gy = 6(S? — nS — nHfs + n* H?) — 6a*(n + 4)(S — n’ H?). (3.8)
ik,
Letting
_ S(S —n)+n*H* — nHf; (3.9)
2n+4)(S —n2H?) '
we have
3[S(S — n) + n?H? — nHf)?
5](1 > 5 s (3.10)
bt 2(n +4)(S — nH?)
Thus we have finished the proof of Lemma 3.1. ]

LEMMA 3.2. Let M be an n-dimensional closed hypersurface with constant mean
curvature H in S"*'(1), for n < 8. Then

3(A - 2B) < 2.34(S — nH?) Y I3,

ijik
Proof. Since Y_, j1; = 0and Y, u? = S — nH? = S, the following equation can be
proved in the same method as in our early paper (Lemma 3.4 in [22]):
> (uf — Al — wihy; < 2.34?9(2/12 + h2> vj. (3.11)
i(#)) i(#))

Hence we get

3A-2B)= Y [2(0F + 1+ 17) = i+ + 1) T

ikt
-3 Z uihi; +3 Z (M,2 - 4#:‘/&/)}%
i i#
S M RE) 3 D ol R |
i#j#kFE J i#]
<2345 3 a3y m+ > n)
i#FkF i#] J
=2.345> "Iy,
ij.k
This completes the proof of Lemma 3.2. U
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Proof of Theorem 1.1. Now, we assume
So <8 <80+ 6(n H), (3.12)

where S is defined by equation (1.1).
It is not difficult to prove the following elementary inequality (cf. [13]):

n—
HY | < —Z=—(5 — nHY)>.
Jn(n — 1)
Since S > S is equivalent to
N n3H? S 4+ n(n—2)|H| <0
—_— J— }/l —_— .
d(n—1) 2yn(n—1)

we have

S(S — n) + n* H* — nHf;
= —(S —nH»){n+nH?> — (S — nH*} — nH Z(» — H)

> —(S—nH?) {n+nH2 — (S —nH? + ”\(;’(L)'f'\/— }
nn —

(G n3H? T n(n—2)|H|
>~ nH){V (—1)+ 2,/}1(}1—1]

n3H? n(n 2)|H|
X{ dn—1 " 21/—n(n—1]

> 0. (3.13)

The following equation can be found in [22] or [11]:

/ (4 —2B)dM = f [5;’4 — 1% — §* 4 nHf; — 1|VS|2} M. (3.14)
M M 4

Integrating equation (2.13) and S x (2.13) gives

/thde / S(S — n) + n*H* — nHf| dM (3.15)
szk
/—|VS|2dM f Sz(S n) + i H2S — nHSf; — SZh] . (3.16)
M ijk

Noticing that

S(S — n) + n* H*> — nHf;
= (S — nH?)(S — So) + n’H?> — nHfs — nH*Sy + (So + nH* — n)S, (3.17)
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from equations (3.12) and (3.13), there exists some constant «; such that

3[S(S — n) +n*H? — an3]2 - { 3(S — Sp)
2(n + 4)(S — nH?) 2(n+4)

It follows from equations (3.14), (3.15), (3.18) and Lemma 3.1 that

3 3 3
f Zhl/kldM>/ [5(1‘1—23)— §;h§k+ gIVSIZ]dM

ijk,d

+ / [M — a1H] [S(S — n) + n*H* — nHf3)dM
M

2(n+4)

From equations (2.14) and (3.2), we have

/ WdM = / (S — 2n—3)Zh %|VS|2+§(A—2B)]dM

ijk,0

73

— qu} [S(S — n) + n* H* — nHf3].

(3.18)

(3.19)

+/ [ - 2B)+3(1—n)HZ,\h”k+§HZZh§.k]dM
M

ik ijk

Since Sy < S < Sy + 8(n, H), there exists some constant o, such that

/Zhyk,dM</ [(S 23+ arH) Y K +%(A—ZB)]dM

ij k0 ij.k

3~ .~ 3
+/ [—(A—2B)+—|VS|2] am
w2 2

From equations (3.13), (3.15), (3.16), (3.19), (3.20) and Lemma 3.2, we obtain

0</ [[s- 2n——+(<x1+a2)H]Zh”k+%(Z—2§)}dM

+f {—WSV—M[S(S—n)Jrnsz—anz]}dM
u |8

2(n+4)

3
< / [—0.08S —2n— 4 (ay +as — 1.17nH)H] > hydM
M 2 ijk ’

9. S-Sy
+ /M [5s- m][sw — n)+ 2 H? — nHf)dM

5/ [-0.085 - 2n—§+(a1+a2—117nH)H]Zh3de

ij.k
9n + 30
/ {— (R TRLC H)} [S(S —n)+n*H* — nHf3]dM
5/MGZh_%,de,

ijk

where G = 2.178) + 3338(n, H) = 2n — 3 + (a1 + o2 — 1.1TnH)H.
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Since 2.17n — 2n — % < 0 and |H| < &(n), if &(n) is small enough, we can choose
8(n, H) such that

91 + 30 3
217So+4(7“jr )a( VH) =203+ (e + ey~ LITiH)H < 0, (3.22)

According to equations (3.21) and (3.22), we infer 3, hzk = 0. Hence, all of the
above inequalities are equalities. From equation (3.13) and (3.15), we have S =S,

and M is isometric to a Clifford hypersurface. Thus we have finished the proof of

Theorem 1.1. O
REMARK 3.3. In the proof of Theorem 1.1, the constants «; and «, are chosen so
that
38(n, H
q > S H) 3% e
3(n+4H’ 2nH
and so
m+4)(2n+3/2—-2.17n) 2(n+ 4)H 2nH
H — .
S(n, H) := { L 10 , 3 My @ So
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