SCALAR CURVATURE OF HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN SPHERES

QIN ZHANG

Institute of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China e-mail: zhangdiligence@126.com

(Received 9 October 2010; revised 13 April 2011; accepted 28 April 2011; first published online 2 August 2011)

Abstract. Let M^n be an n-dimensional closed hypersurface with constant mean curvature H satisfying $|H| \le \varepsilon(n)$ in a unit sphere $S^{n+1}(1)$, $n \le 8$ and S the square of the length of the second fundamental form of M. There exists a constant $\delta(n,H) > 0$, which depends only on n and H such that if $S_0 \le S \le S_0 + \delta(n,H)$, then $S \equiv S_0$ and M is isometric to a Clifford hypersurface, where $\varepsilon(n)$ is a sufficiently small constant depending on n and $S_0 = n + \frac{n^3}{2(n-1)}H^2 + \frac{n(n-2)}{2(n-1)}\sqrt{n^2H^4 + 4(n-1)H^2}$.

2010 Mathematics Subject Classification. Primary 53C42, 53B25.

1. Introduction. Let M^n be an n-dimensional closed hypersurface with constant mean curvature H in a unit sphere $S^{n+1}(1)$ of dimension n+1, denoted by S the squared norm of the second fundamental form of M^n .

When $H \equiv 0$, Lawson [16], Simons [10] and Chern et al. [8] obtained independently the famous rigidity theorem, which says, if $S \le n$, then $S \equiv 0$, or $S \equiv n$, i.e. M^n is the great sphere $S^n(1)$, or the Clifford torus. Further discussions in this direction have been carried out by many other authors [2, 5, 7, 12, 18, 19–21]. In [14], Peng and Terng proved that if the scalar curvature of M is constant, then there exists a positive constant $\alpha(n)$ depending only on n such that if $n \le S \le n + \alpha(n)$, then $S \equiv n$. Later, Cheng and Yang [6] improved the pinching constant $\alpha(n)$ to $\frac{n}{3}$. Without the assumption of constant scalar curvature, Peng and Terng [15] proved that if $M^n(n \le 5)$ is a closed minimal hypersurface in S^{n+1} , then there exists a positive constant $\alpha(n)$ depending only on n such that if $n \le S \le n + \alpha(n)$, then $S \equiv n$. So they proposed the following attractive problem:

Let $M^n(n \ge 6)$ be a closed minimal hypersurface in S^{n+1} . Does there exist a positive constant $\alpha(n)$ depending only on n such that if $n \le S \le n + \alpha(n)$, then $S \equiv n$ and M is isometric to a Clifford torus $S^k(\sqrt{\frac{k}{n}}) \times S^{n-k}(\sqrt{\frac{n-k}{n}})$?

In [3], Cheng gave a positive answer under the additional condition that M has only two distinct principal curvatures. Later, Hasanis and Vlachos [9] proved that if M^n is a compact minimal hypersurface in S^{n+1} with two distinct principal curvatures and the squared norm S of the second fundamental form of M^n satisfies $S \ge n$, then M^n is a minimal Clifford torus. In [5], Cheng and Ishikawa improved the result of Peng and Terng [15] when $n \le 5$. Later, Wei and Xu [17] solved the problem proposed by Peng and Terng [15] for n = 6 and 7. Recently, we [22] obtained a sharper pinching constant of S for $n \le 7$ and solved this problem for n = 8.

When *M* is a hypersurface with constant mean curvature, Alencar and do Carmo [1] proved the first rigidity result under the assumption that the traceless second fundamental form is sufficiently bounded. Later, Li [11] extended the result of Peng and Terng [15] for minimal hypersurfaces to the case of hypersurfaces with constant mean curvature. That is, Li [11] proved the following theorem:

Let M be an n-dimensional closed hypersurface with constant mean curvature H satisfying $|H| \le \varepsilon(n)$ in a unit sphere S^{n+1} , $n \le 5$, and S the square of the length of the second fundamental form of M. Then there exists a constant $\delta(n,H) > 0$, which depends only on n and H, such that if $S_0 \le S \le S_0 + \delta(n,H)$, then $S \equiv S_0$ and M is isometric to a Clifford torus $S^k(\sqrt{\frac{k}{n}}) \times S^{n-k}(\sqrt{\frac{n-k}{n}})$ if H = 0; M is isometric to a Clifford hypersurface $C_{1,n-1} = S^1(\frac{1}{\sqrt{1+\lambda^2}}) \times S^{n-1}(\frac{\lambda}{\sqrt{1+\lambda^2}})$ if $H \ne 0$, where $\lambda = \frac{nH + \sqrt{n^2H^2 + 4(n-1)}}{2}$ and $\varepsilon(n)$ is a sufficiently small constant depending on n, $S_0 = n + \frac{n^3}{2(n-1)}H^2 + \frac{n(n-2)}{2(n-1)}\sqrt{n^2H^4 + 4(n-1)H^2}$.

In [4], Cheng, He and Li proved the above theorem is valid for the case of n = 6, 7. In this paper, we study the case of n = 8. We prove the following theorem.

THEOREM 1.1. Let M be an n-dimensional closed hypersurface with constant mean curvature H satisfying $|H| \le \varepsilon(n)$ in a unit sphere S^{n+1} , $n \le 8$, and S the square of the length of the second fundamental form of M. Then there exists a constant $\delta(n,H) > 0$, which depends only on n and H, such that if $S_0 \le S \le S_0 + \delta(n,H)$, then $S \equiv S_0$ and M is isometric to a Clifford torus $S^k(\sqrt{\frac{k}{n}}) \times S^{n-k}(\sqrt{\frac{n-k}{n}})$ if H = 0; M is isometric to a Clifford hypersurface

$$C_{1,n-1} = S^1 \left(\frac{1}{\sqrt{1+\lambda^2}} \right) \times S^{n-1} \left(\frac{\lambda}{\sqrt{1+\lambda^2}} \right)$$

if $H \neq 0$, where $\lambda = \frac{nH + \sqrt{n^2H^2 + 4(n-1)}}{2}$ and $\varepsilon(n)$ is a sufficiently small constant depending on n,

$$S_0 = n + \frac{n^3}{2(n-1)}H^2 + \frac{n(n-2)}{2(n-1)}\sqrt{n^2H^4 + 4(n-1)H^2}.$$
 (1.1)

2. Fundamental formulas. Let M^n be an n-dimensional hypersurface with constant mean curvature H in an (n+1)-dimensional unit sphere $S^{n+1}(1)$. We choose a local orthonormal frame field e_1, \ldots, e_{n+1} in $S^{n+1}(1)$, restricted to M^n , so that e_1, \ldots, e_n are tangent to M^n . Let $\omega_1, \ldots, \omega_{n+1}$ denote the dual coframe field in $S^{n+1}(1)$. Then in $M^n, \omega_{n+1} = 0$. It follows from Cartan's Lemma that

$$\omega_{n+1i} = \sum_{j} h_{ij}\omega_{j}. \tag{2.1}$$

The second fundamental form α and the mean curvature H of M^n are defined by

$$\alpha = \sum_{ii} h_{ij} \omega_i \omega_j e_{n+1}, \quad nH = \sum_{i} h_{ii}, \tag{2.2}$$

respectively. The connection form ω_{ij} is characterized by the structure equations

$$d\omega_i + \sum_j \omega_{ij} \wedge \omega_j = 0, \quad \omega_{ij} + \omega_{ji} = 0, \tag{2.3}$$

$$d\omega_{ij} + \sum_{i} \omega_{ik} \wedge \omega_{kj} = \Omega_{ij}, \qquad (2.4)$$

$$\Omega_{ij} = \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_k \wedge \omega_l, \qquad (2.5)$$

where Ω_{ij} (resp. R_{ijkl}) denotes the curvature form (resp. the components of the curvature tensor) of M^n . The Gauss equation is given by

$$R_{ijkl} = (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + (h_{ik}h_{jl} - h_{il}h_{jk}). \tag{2.6}$$

Denote by h_{ijk} , h_{ijkln} components of the first, second and third covariant derivatives of the second fundamental form, respectively. Then

$$h_{ijk} = h_{ikj} = h_{jik}, (2.7)$$

$$h_{ijkl} - h_{ijlk} = \sum_{m} h_{im} R_{mjkl} + \sum_{m} h_{mj} R_{mikl},$$
 (2.8)

$$h_{ijklm} - h_{ijkml} = \sum_{r} h_{rjk} R_{rilm} + \sum_{r} h_{irk} R_{rjlm} + \sum_{r} h_{ijr} R_{rklm}.$$
 (2.9)

For any fixed point p in M^n , we take a local orthonormal frame field e_1, \ldots, e_n such that

$$h_{ij} = \begin{cases} \lambda_i, & i = j, \\ 0, & i \neq j. \end{cases}$$
 (2.10)

We define the squared norm of the second fundamental form S of M, f_3 , f_4 to be

$$S = \sum_{i,j} h_{ij}^2, \quad f_3 = \sum_{i,j,k} h_{ij} h_{jk} h_{ki}, \quad f_4 = \sum_{i,j,k,l} h_{ij} h_{jk} h_{kl} h_{li}. \tag{2.11}$$

Then at the point p, we have

$$S = \sum_{i} \lambda_{i}^{2}, \quad f_{3} = \sum_{i} \lambda_{i}^{3}, \quad f_{4} = \sum_{i} \lambda_{i}^{4}.$$
 (2.12)

Since the mean curvature H of M is a constant, using the above equations, we easily get

$$\frac{1}{2}\Delta S = \sum_{i,j,k} h_{ijk}^2 - S(S-n) - n^2 H^2 + nHf_3,$$
(2.13)

$$\frac{1}{2} \triangle \sum_{i,j,k} h_{ijk}^2 = \sum_{i,j,k,l} h_{ijkl}^2 + (2n+3-S) \sum_{i,j,k} h_{ijk}^2 + 3(2B-A)
+ 3nH \sum_{i,j,k} \lambda_i h_{ijk}^2 - \frac{3}{2} |\nabla S|^2,$$
(2.14)

where $A = \sum_{i,i,k} \lambda_i^2 h_{iik}^2$, $B = \sum_{i,i,k} \lambda_i \lambda_i h_{iik}^2$.

3. Proof of Theorem. At first, we give two lemmas which will play a crucial role in the proof of our theorem. For convenience, we define

$$\mu_{ij} = h_{ij} - H\delta_{ij}, \quad \mu_i = \mu_{ii}, \quad \widetilde{A} = \sum_{i,j,k} \mu_i^2 h_{ijk}^2, \quad \widetilde{B} = \sum_{i,j,k} \mu_i \mu_j h_{ijk}^2.$$
 (3.1)

Then

$$A - 2B = \widetilde{A} - 2\widetilde{B} + 2H \sum_{i,j,k} \lambda_i h_{ijk}^2 + H^2 \sum_{i,j,k} h_{ijk}^2,$$
 (3.2)

$$\sum_{i} \mu_i = 0, \quad \sum_{i} \mu_i^2 = S - nH^2.$$

LEMMA 3.1. Let M be a closed hypersurface with constant mean curvature H in $S^{n+1}(1)$. Then

$$\sum_{i,j,k,l} h_{ijkl}^2 \ge \frac{3}{2} \left\{ \left(Sf_4 - f_3^2 - S^2 + nHf_3 \right) - \left[S(S - n) + n^2H^2 - nHf_3 \right] \right\} + \frac{3[S(S - n) + n^2H^2 - nHf_3]^2}{2(n+4)(S - nH^2)}.$$

Proof. From formulae (2.6) and (2.8), we have

$$h_{ijj} - h_{jjii} = h_{ijjj} - h_{ijji} = \sum_{m} h_{im} R_{mjij} + \sum_{m} h_{jm} R_{miij}$$

$$= \lambda_{i} R_{ijij} + \lambda_{j} R_{jiij} = (\lambda_{i} - \lambda_{j}) R_{ijij}$$

$$= (\lambda_{i} - \lambda_{i})(1 + \lambda_{i}\lambda_{i}).$$
(3.3)

We define

$$u_{ijkl} = \frac{1}{4}(h_{ijkl} + h_{jkli} + h_{klij} + h_{lijk}). \tag{3.4}$$

Since h_{ijkl} is symmetric in the indices i, j, k, from equation (3.3) we obtain

$$\sum_{i,j,k,l} h_{ijkl}^{2} = \sum_{i,j,k,l} u_{ijkl}^{2} + \frac{3}{8} \sum_{i,j,k,l} (h_{ijkl} - h_{ijlk})^{2}$$

$$\geq \sum_{i,j,k,l} u_{ijkl}^{2} + \frac{3}{4} \sum_{i,j} (h_{iijj} - h_{ijii})^{2}$$

$$= \sum_{i,j,k,l} u_{ijkl}^{2} + \frac{3}{2} \{ (Sf_{4} - f_{3}^{2} - 2S^{2} + nS - n^{2}H^{2} + 2nHf_{3}) \}.$$
 (3.5)

Since $\sum_{i} h_{iikl} = 0$, we have

$$\sum_{i,j} \mu_i u_{iijj} = \frac{1}{2} (nS - S^2 - n^2 H^2 + nHf_3). \tag{3.6}$$

Since for any $\alpha \in R$,

$$\sum_{i,j,k,l} [u_{ijkl} + \alpha(\mu_{ij}\delta_{kl} + \mu_{ik}\delta_{jl} + \mu_{il}\delta_{jk} + \mu_{jk}\delta_{il} + \mu_{jl}\delta_{ik} + \mu_{kl}\delta_{ij})]^{2} \ge 0,$$
 (3.7)

it follows from equations (3.2) and (3.6) that

$$\sum_{i,i,k,l} u_{ijkl}^2 \ge 6\alpha (S^2 - nS - nHf_3 + n^2H^2) - 6\alpha^2(n+4)(S - n^2H^2). \tag{3.8}$$

Letting

$$\alpha = \frac{S(S-n) + n^2 H^2 - nHf_3}{2(n+4)(S-n^2 H^2)},$$
(3.9)

we have

$$\sum_{i,j,k,l} u_{ijkl}^2 \ge \frac{3[S(S-n) + n^2H^2 - nHf_3]^2}{2(n+4)(S-nH^2)}.$$
(3.10)

Thus we have finished the proof of Lemma 3.1.

LEMMA 3.2. Let M be an n-dimensional closed hypersurface with constant mean curvature H in $S^{n+1}(1)$, for $n \le 8$. Then

$$3(\widetilde{A} - 2\widetilde{B}) \le 2.34(S - nH^2) \sum_{i,i,k} h_{ijk}^2.$$

Proof. Since $\sum_i \mu_i = 0$ and $\sum_i \mu_i^2 = S - nH^2 = \widetilde{S}$, the following equation can be proved in the same method as in our early paper (Lemma 3.4 in [22]):

$$\sum_{i(\neq i)} \left(\mu_j^2 - 4\mu_j \mu_i \right) h_{iij}^2 - \mu_j^2 h_{jjj}^2 \le 2.34 \widetilde{S} \left(\sum_{i(\neq i)} h_{iij}^2 + \frac{1}{3} h_{jjj}^2 \right), \quad \forall j.$$
 (3.11)

Hence we get

$$\begin{split} 3(\widetilde{A} - 2\widetilde{B}) &= \sum_{i \neq j \neq k \neq i} \left[2(\mu_i^2 + \mu_j^2 + \mu_k^2) - (\mu_i + \mu_j + \mu_k)^2 \right] h_{ijk}^2 \\ &- 3 \sum_i \mu_i^2 h_{iii}^2 + 3 \sum_{i \neq j} \left(\mu_j^2 - 4\mu_i \mu_j \right) h_{iij}^2 \\ &\leq 2\widetilde{S} \sum_{i \neq j \neq k \neq i} h_{ijk}^2 + 3 \sum_j \left\{ \sum_{i \neq j} \left[(\mu_j^2 - 4\mu_i \mu_j) h_{iij}^2 - \mu_j^2 h_{jij}^2 \right] \right\} \\ &\leq 2.34\widetilde{S} \left\{ \sum_{i \neq j \neq k \neq i} h_{ijk}^2 + 3 \sum_{i \neq j} h_{iij}^2 + \sum_j h_{jij}^2 \right\} \\ &= 2.34\widetilde{S} \sum_{i,j,k} h_{ijk}^2. \end{split}$$

This completes the proof of Lemma 3.2.

Proof of Theorem 1.1. Now, we assume

$$S_0 \le S \le S_0 + \delta(n, H),$$
 (3.12)

where S_0 is defined by equation (1.1).

It is not difficult to prove the following elementary inequality (cf. [13]):

$$\left| \sum_{i} (\lambda_{i} - H)^{3} \right| \leq \frac{n-2}{\sqrt{n(n-1)}} (S - nH^{2})^{\frac{3}{2}}.$$

Since $S \ge S_0$ is equivalent to

$$\sqrt{n + \frac{n^3 H^2}{4(n-1)}} - \sqrt{S - nH^2} + \frac{n(n-2)|H|}{2\sqrt{n(n-1)}} \le 0,$$

we have

$$S(S-n) + n^{2}H^{2} - nHf_{3}$$

$$= -(S - nH^{2})\{n + nH^{2} - (S - nH^{2})\} - nH\sum_{i}(\lambda_{i} - H)^{3}$$

$$\geq -(S - nH^{2})\left\{n + nH^{2} - (S - nH^{2}) + \frac{n(n-2)|H|}{\sqrt{n(n-1)}}\sqrt{S - nH^{2}}\right\}$$

$$\geq -(S - nH^{2})\left\{\sqrt{n + \frac{n^{3}H^{2}}{4(n-1)}} + \sqrt{S - nH^{2}} - \frac{n(n-2)|H|}{2\sqrt{n(n-1)}}\right\}$$

$$\times \left\{\sqrt{n + \frac{n^{3}H^{2}}{4(n-1)}} - \sqrt{S - nH^{2}} + \frac{n(n-2)|H|}{2\sqrt{n(n-1)}}\right\}$$

$$\geq 0. \tag{3.13}$$

The following equation can be found in [22] or [11]:

$$\int_{M} (A - 2B)dM = \int_{M} \left[Sf_4 - f_3^2 - S^2 + nHf_3 - \frac{1}{4} |\nabla S|^2 \right] dM. \tag{3.14}$$

Integrating equation (2.13) and $S \times$ (2.13) gives

$$\int_{M} \sum_{i,i,k} h_{ijk}^{2} dM = \int_{M} \left[S(S-n) + n^{2}H^{2} - nHf_{3} \right] dM.$$
 (3.15)

$$\int_{M} \frac{1}{2} |\nabla S|^{2} dM = \int_{M} \left[S^{2}(S - n) + n^{2} H^{2} S - n H S f_{3} - S \sum_{i,j,k} h_{ijk}^{2} \right] dM. \quad (3.16)$$

Noticing that

$$S(S-n) + n^2H^2 - nHf_3$$

= $(S-nH^2)(S-S_0) + n^2H^2 - nHf_3 - nH^2S_0 + (S_0 + nH^2 - n)S,$ (3.17)

from equations (3.12) and (3.13), there exists some constant α_1 such that

$$\frac{3[S(S-n)+n^2H^2-nHf_3]^2}{2(n+4)(S-nH^2)} \ge \left\{\frac{3(S-S_0)}{2(n+4)} - \alpha_1 H\right\} [S(S-n)+n^2H^2-nHf_3]. \tag{3.18}$$

It follows from equations (3.14), (3.15), (3.18) and Lemma 3.1 that

$$\int_{M} \sum_{i,j,k,l} h_{ijkl}^{2} dM \ge \int_{M} \left[\frac{3}{2} (A - 2B) - \frac{3}{2} \sum_{i,j,k} h_{ijk}^{2} + \frac{3}{8} |\nabla S|^{2} \right] dM$$

$$+ \int_{M} \left[\frac{3(S - S_{0})}{2(n+4)} - \alpha_{1} H \right] [S(S - n) + n^{2} H^{2} - n H f_{3}] dM.$$
(3.19)

From equations (2.14) and (3.2), we have

$$\int_{M} \sum_{i,j,k,l} h_{ijkl}^{2} dM = \int_{M} \left[(S - 2n - 3) \sum_{i,j,k} h_{ijk}^{2} + \frac{3}{2} |\nabla S|^{2} + \frac{3}{2} (A - 2B) \right] dM$$

$$+ \int_{M} \left[\frac{3}{2} (\widetilde{A} - 2\widetilde{B}) + 3(1 - n)H \sum_{i,j,k} \lambda_{i} h_{ijk}^{2} + \frac{3}{2} H^{2} \sum_{i,j,k} h_{ijk}^{2} \right] dM.$$

Since $S_0 \leq S \leq S_0 + \delta(n, H)$, there exists some constant α_2 such that

$$\int_{M} \sum_{i,j,k,l} h_{ijkl}^{2} dM \le \int_{M} \left[(S - 2n - 3 + \alpha_{2}H) \sum_{i,j,k} h_{ijk}^{2} + \frac{3}{2} (A - 2B) \right] dM
+ \int_{M} \left[\frac{3}{2} (\widetilde{A} - 2\widetilde{B}) + \frac{3}{2} |\nabla S|^{2} \right] dM.$$
(3.20)

From equations (3.13), (3.15), (3.16), (3.19), (3.20) and Lemma 3.2, we obtain

$$0 \leq \int_{M} \left\{ \left[S - 2n - \frac{3}{2} + (\alpha_{1} + \alpha_{2})H \right] \sum_{i,j,k} h_{ijk}^{2} + \frac{3}{2} (\widetilde{A} - 2\widetilde{B}) \right\} dM$$

$$+ \int_{M} \left\{ \frac{9}{8} |\nabla S|^{2} - \frac{3(S - S_{0})}{2(n+4)} \left[S(S - n) + n^{2}H^{2} - nHf_{3} \right] \right\} dM$$

$$\leq \int_{M} \left[-0.08S - 2n - \frac{3}{2} + (\alpha_{1} + \alpha_{2} - 1.17nH)H \right] \sum_{i,j,k} h_{ijk}^{2} dM$$

$$+ \int_{M} \left[\frac{9}{4}S - \frac{3(S - S_{0})}{2(n+4)} \right] \left[S(S - n) + n^{2}H^{2} - nHf_{3} \right] dM$$

$$\leq \int_{M} \left[-0.08S - 2n - \frac{3}{2} + (\alpha_{1} + \alpha_{2} - 1.17nH)H \right] \sum_{i,j,k} h_{ijk}^{2} dM$$

$$+ \int_{M} \left\{ \frac{9}{4}S_{0} + \frac{9n + 30}{4(n+4)} \delta(n, H) \right\} \left[S(S - n) + n^{2}H^{2} - nHf_{3} \right] dM$$

$$\leq \int_{M} G \sum_{i,i,k} h_{ijk}^{2} dM, \tag{3.21}$$

where $G = 2.17S_0 + \frac{9n+30}{4(n+4)}\delta(n, H) - 2n - \frac{3}{2} + (\alpha_1 + \alpha_2 - 1.17nH)H$.

Since $2.17n - 2n - \frac{3}{2} < 0$ and $|H| \le \varepsilon(n)$, if $\varepsilon(n)$ is small enough, we can choose $\delta(n, H)$ such that

$$2.17S_0 + \frac{9n+30}{4(n+4)}\delta(n,H) - 2n - \frac{3}{2} + (\alpha_1 + \alpha_2 - 1.17nH)H < 0.$$
 (3.22)

According to equations (3.21) and (3.22), we infer $\sum_{i,j,k} h_{ijk}^2 \equiv 0$. Hence, all of the above inequalities are equalities. From equation (3.13) and (3.15), we have $S \equiv S_0$ and M is isometric to a Clifford hypersurface. Thus we have finished the proof of Theorem 1.1.

REMARK 3.3. In the proof of Theorem 1.1, the constants α_1 and α_2 are chosen so that

$$\alpha_1 \ge \frac{3\delta(n, H)}{3(n+4)H}, \quad \alpha_2 > \frac{3S_0}{2nH} \quad \text{if } H > 0$$

and so

$$\delta(n, H) := \min \left\{ \frac{(n+4)(2n+3/2-2.17n)}{3n+10}, \frac{2(n+4)H}{3}\alpha_1, \frac{2nH}{3}\alpha_2 - S_0 \right\}.$$

ACKNOWLEDGEMENTS. The author would like to express his gratitude to the referee for his valuable suggestions that have really improved the paper.

REFERENCES

- 1. H. Alencar and M. do Carmo, Hypersurfaces with constant mean curvature in spheres, *Proc. Amer. Math. Soc.* **120**(1994), 1223–1229.
- **2.** Q. M. Cheng, The classification of complete hypersurfaces with constant mean curvature of space form of dimension 4, *Mem. Fac. Sci. Kyushu Univ.* **47** (1993), 79–102.
- **3.** Q. M. Cheng, The rigidity of Clifford torus $S^1(\sqrt{\frac{1}{n}}) \times S^{n-1}(\sqrt{\frac{n-1}{n}})$, Comment. Math. Helvetici **71** (1996), 60–69.
- **4.** Q. M. Cheng, Y. He and H. Li, Scalar curvature of hypersurfaces with constant mean curvature in a sphere, *Glasgow Math. J.* **51** (2009), 413–423.
- 5. Q. M. Cheng and S. Ishikawa, A characterization of the Clifford torus, *Proc. Amer. Math. Soc.* 127(3) (1999), 819–828.
- **6.** Q. M. Cheng and H. C. Yang, Chern's conjecture on minimal hypersurfaces, *Math. Z.* **227**(3) (1998), 377–390.
- 7. S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, *Math. Ann.* 225(3) (1977), 195–204.
- **8.** S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, in *Functional analysis and related fields* (Springer, New York, 1970), pp. 59–75.
- **9.** T. Hasanis, T. Vlachos, A pinching theorem for minimal hypersurfaces in a sphere, *Arch. Math.* **75** (2000), 469–471.
- 10. H. B. Lawson, Local rigidity theorems for minimal hypersurfaces, *Ann. Math.* 89 (1969), 179–185.
- 11. H. Li, Scalar curvature of hypersurfaces with constant mean curvature in spheres, *Tsinghua Sci. Technol.* 1 (1996), 266–269.
- 12. A. M. Li and J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, *Arch. Math.* (Basel) 58(6) (1992), 582–594.

- **13.** M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, *Amer. J. Math.* **96** (1974), 207–213.
- 14. C. K. Peng and C. L. Terng, Minimal hypersurfaces of sphere with constant scalar curvature, *Ann. Math. Stud.* 103 (1983), 179–198.
- 15. C. K. Peng and C. L. Terng, The scalar curvature of minimal hypersurfaces in spheres, *Math. Ann.* 266 (1983), 105–113.
 - 16. J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math. 88 (1968), 62–105.
- 17. S. M. Wei and H. W. Xu, Scalar curvature of minimal hypersurfaces in spheres, *Math. Res. Lett.* 14 (2007), 423–432.
- **18.** H. W. Xu, A rigidity theorem for submanifolds with parallel mean curvature in a sphere, *Arch. Math. (Basel)* **61**(5) (1993), 489–496.
- 19. H. W. Xu, On closed minimal submanifolds in pinched Riemannian manifolds, *Trans. Amer. Math. Soc.* 347(5) (1995), 1743–1751.
- 20. H. W. Xu, W. Fang and F. Xiang, A generalization of Gauchman's rigidity theorem, *Pac. J. Math.* 228(1) (2006), 185–199.
- **21.** S. T. Yau, Submanifolds with constant mean curvature, I, II, *Amer. J. Math.* **96** (1974), 346–366; **96** (1975), 76–100.
- 22. Qin Zhang, The pinching constant of minimal hypersurfaces in the unit spheres, *Proc. Amer. Math. Soc.* 138(5) (2010), 1833–1841.