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Abstract

The advent of next-generation radio telescopes is set to transform radio astronomy by producing massive data volumes that challenge
traditional processing methods. Deep learning techniques have shown strong potential in automating radio analysis tasks, yet are often
constrained by the limited availability of large annotated datasets. Recent progress in self-supervised learning has led to foundational radio
vision models, but adapting them for new tasks typically requires coding expertise, limiting their accessibility to a broader astronomical
community. Text-based Al interfaces offer a promising alternative by enabling task-specific queries and example-driven learning. In this
context, large language models (LLMs), with their remarkable zero-shot capabilities, are increasingly used in scientific domains. However,
deploying large-scale models remains resource-intensive, and there is a growing demand for Al systems that can reason over both visual and
textual data in astronomical analysis. This study explores small-scale vision-language models (VLMs) as Al assistants for radio astronomy,
combining LLM capabilities with vision transformers. We fine-tuned the LLaVA VLM on a dataset of 59k radio images from multiple
surveys, enriched with 38k image-caption pairs from the literature. The fine-tuned models show clear improvements over base models
in radio-specific tasks, achieving ~30% F1-score gains in extended source detection, but they underperform vision-only classifiers and
exhibit ~20% drop on general multimodal tasks. Inclusion of caption data and LoRA fine-tuning enhances instruction following and helps
recover ~10% accuracy on multimodal benchmarks (e.g., ChartQA/DocVQA). This work lays the foundation for future advancements in
radio VLMs, highlighting their potential and limitations, such as the need for better multimodal alignment, higher-quality datasets, and
mitigation of catastrophic forgetting.
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1. Introduction or radio+optical maps (Lou et al. 2023), source detection in HI
cubes (Liang et al. 2023; Hakansson et al. 2023; Barkai et al. 2023),
source classification (Aniyan & Thorat 2017; Tang etal. 2019;
Ma etal. 2019; Maslej-Kresnakova et al. 2021; Tang et al. 2022;
Nair et al. 2022; Riggi et al. 2024a), search for objects with pecu-
liar morphology (Ralph etal. 2019; Galvin et al. 2020; Mostert
etal. 2021; Gupta et al. 2022; Mesarcik et al. 2023; Lochner et al.
2023; Riggi et al. 2024b), fast radio burst detection (Connor & van
Leeuwen 2018; Agarwal 2020), radio imaging (Schmidt et al. 2022;
Geyer et al. 2023; Chiche etal. 2023), synthetic data generation
(Rustige et al. 2023; Sortino et al. 2024; Martinez et al. 2024), and
many others. The full potential of developed models, especially
those using supervised learning techniques, is often hampered
by the scarcity of large and balanced annotated radio datasets.
Additionally, existing radio models typically employ data labelling
schemes that vary widely across different analysis cases, hindering
the integration of individual datasets into larger collections and
restricting model usability beyond their initial applications.
Corresponding author: Simone Riggi; Email: simone.riggi@inaf.it Recent studies (Slijepcevic et al. 2024; Riggi et al. 2024b;
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by limited annotated training datasets by applying self-supervised
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1-19. https://doi.org/10.1017/pasa.2025.10082 learning (SSL) techniques, which utilise the extensive collections

The upcoming Square Kilometer Array (SKA) (Dewdney et al.
2016) and its precursor telescopes (e.g. MeerKAT, ASKAP,
LOFAR) are revolutionising radio astronomy, enabling to probe
the radio sky at unprecedented sensitivities and angular reso-
lutions. SKA, once operational, is expected to produce exabytes
of data annually. The immense volume and complexity of the
generated data will challenge traditional data-processing meth-
ods, necessitating advanced computational and Al techniques to
automate repetitive, resource-intensive tasks.

In this context, deep-learning methodologies have already
shown promising results in various analysis tasks including: source
detection in 2D radio maps (Mostert etal. 2022; Zhang et al.
2022; Yu etal. 2022; Riggi etal. 2023; Lao etal. 2023; Cornu
etal. 2024; Stuardi etal. 2024), source and host galaxy detec-
tion from 2D radio+IR maps (Wu et al. 2019; Gupta et al. 2023)
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of unlabelled radio images available in current and past surveys.
Several foundational radio models have been developed to effec-
tively enable feature extraction from radio maps for a variety of
tasks, such as data inspection, source extraction and classification,
anomaly detection, and image retrieval. Pretrained SSL models
have also been fine-tuned on smaller annotated datasets and spe-
cialised for these applications. Ongoing research is focusing on
various areas: comparing alternative SSL methods on radio data
(Cecconello et al. 2024), assessing the performance of SSL models
pretrained on non-radio data (such as natural or optical images)
for radio-specific tasks and vice versa (Riggi et al. 2024c; Lastufka
et al. 2024b), exploring optimised dataset curation strategies, scal-
ing up model training to larger architectures and millions of radio
images, and defining more constraining downstream datasets and
tasks.

While existing SSL models can be adapted or expanded for
new use cases, their accessibility is often limited by the need for
astronomers to write code for adaptation to similar or entirely
new tasks. This requirement could hinder widespread adoption, as
many astronomers may prefer more intuitive, user-friendly inter-
faces. An Al assistant with a more accessible, text-based interface
would allow researchers to interact with the model by providing
examples, querying specific tasks, and customising output formats
to suit their needs.

Large language models (LLMs) like GPT-4 (OpenAl 2023),
Claude3 (Anthropic 2024), and open-source alternatives such as
LLaMA (Touvron et al. 2023) or InternLM (Cai et al. 2024) have
proven effective as Al assistants, showing remarkable zero-shot
learning capabilities when prompted unseen data or tasks across a
wide array of fields, including astronomy (Tanoglidis & Jain 2024).
Specialising and deploying very large open-source models is, how-
ever, currently prohibitive in terms of the required computing
resources (high GPU requirements, memory demands, and power
consumption). Furthermore, in addition to textual interaction,
there is an increasing demand for models capable of process-
ing visual data, facilitating multimodal reasoning for tasks like
analysing complex astronomical images. Some initiatives, such
as AstroLLaMA (Nguyen et al. 2023; Perkowski et al. 2024), have
started to address this by developing astronomy-specific mid-size
LLMs, though these efforts are still limited to text-based inputs.
Commercial solutions add additional cost concerns, particularly in
inference and fine-tuning expenses, as demonstrated by Sun et al.
(2024) in the context of interpreting multi-band galaxy observa-
tions. Furthermore, while large models are well-suited for tasks
requiring extensive general knowledge, this scope may be more
than what is needed in astronomy, where specialised knowledge is
essential. Given these considerations, current research has increas-
ingly turned to adapting smaller LLMs (i.e. those with fewer than
10 billion parameters) for specific domains, as well as investigating
multi-modal models capable of processing combined data inputs,
such as text, images, and videos.

In this context, we aim to explore recent, state-of-the-art,
small-scale vision-language models (VLMs) to develop Al assis-
tants tailored to radio astronomy. These models combine both
visual and textual comprehension by integrating LLM capabilities
with vision transformers (Dosovitskiy et al. 2021) for image pro-
cessing. Typically, VLMs comprise two main components: a vision
encoder transformer that extracts features from input images, and
an LLM that generates textual responses from combined visual
and textual input representations. VLMs offer promising solutions
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to the outlined challenges in two ways. First, they can man-
age tasks through a text-based interface, allowing astronomers
to specify task details and expected response formats in natural
language. This flexibility enables the use of contextual image-
text examples, making VLMs more adaptable than traditional
vision models that are limited to predefined label outputs for spe-
cific tasks. Second, VLMs potentially support the integration of
specialised vision encoder models that have been trained on unla-
belled radio data through self-supervised learning (SSL) methods.
This approach bridges the gap with ongoing SSL research, facil-
itating the reuse of existing radio SSL models and enabling the
full utilization of extensive unlabelled image datasets from recent
and past radio surveys. These smaller models offer a promising
alternative, with lower computational costs and more manageable
deployment requirements. Moreover, their specialised capabili-
ties could be more than sufficient for the specific needs of radio
astronomy, without the added complexity and resource demands
of larger models. However, the suitability of these smaller models
for astronomical tasks remains largely unexplored, particularly in
radio source analysis.

This paper seeks to evaluate the current state of small mul-
timodal language models as Al assistants for radio astronomy.
By investigating their strengths, limitations, and applicability to
radio astronomical source analysis tasks, we hope to familiarise
the community with this emerging technology and its potential,
as well as to highlight the challenges that need to be addressed
in future developments. A tailored VLM for radio astronomy
could eventually assist astronomers in efficiently analysing radio
images without requiring extensive technical expertise in Al mod-
els. By leveraging a text-based interface, astronomers can per-
form complex and diverse image analysis tasks, even guiding the
model using image-based examples. Key applications include the
automated identification and retrieval of specific classes of radio
sources in survey image data, as well as data quality assessment —
enhancing the efficiency and accessibility of radio survey analysis.
Additionally, a VLM-based assistant could be deployed to support
less experienced users (e.g. students, citizens) in ongoing crowd-
sourcing projects like the EMU Radio Galaxy Zoo.* By providing
real-time guidance and explanations, the model could help users
classify radio sources, identify peculiar objects, and improve the
reliability of crowdsourced annotations.

Multi-modal models have only very recently begun to gain trac-
tion in astronomy - with most developments emerging within the
past year — as a means to bridge heterogeneous data modalities
such as images, spectra, and natural language. These efforts have
primarily focused on adapting the CLIP (Contrastive Language-
Image Pretraining) model (Radford et al. 2021) and its derivatives
to astronomical tasks, leveraging their ability to align visual and
textual representations in a shared latent space. For instance,
Gupta et al (2025) introduced EMUSE, a tool built on a fine-tuned
OpenCLIP® model that enables users to search EMU survey data
using either textual queries or template image similarity. A sim-
ilar application is PAPERCLIP (Mishra-Sharma, Song, & Thaler
2024), a CLIP-based model fine-tuned on Hubble Space Telescope
(HST) proposal data — including image observations and proposal
abstracts — which enables cross-modal retrieval based on image
content or textual queries such as object names or scientific use

*https://www.zooniverse.org/projects/hongming-tang/radio-galaxy-zoo-emu.
Yhttps://github.com/mlfoundations/open_clip.
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cases. AstroCLIP (Parker et al. 2024) presents a powerful CLIP-
style foundation model for galaxies in the optical domain, where
the textual modality in the original CLIP framework is replaced
by galaxy spectra. The model aligns image and spectrum modali-
ties in a shared embedding space after self-supervised pre-training
of each modality independently, and demonstrates impressive
performance on tasks such as morphology classification, redshift
estimation, and property inference.

Unlike these studies, our approach focuses on instruction-
following vision-language models like LLaVA (Large Language
and Vision Assistant) (Liu et al. 2023) to enable open-ended cap-
tioning, visual question answering, and multi-turn scientific dia-
logue grounded in domain-specific radio astronomy data. These
tasks go beyond the static alignment capabilities of CLIP mod-
els, which lack generative, reasoning, and conversational abilities.
Our model is thus particularly suited for exploratory analysis,
educational interfaces, and assistant-style tools that can explain,
summarise, or discuss diagnostic plots and observational data.
Meanwhile, CLIP-based models remain better suited for scalable
retrieval, zero-shot classification, and semantic similarity search
over large datasets.

The paper is organised as follows. Section 2 provides an
overview of vision-language models, with a focus on the architec-
ture of a prominent model, LLaVA, which we aim to adapt for
radio-astronomical data. In Section 3, we describe our adapted
model, termed radio-llava, including the training datasets and
methodology. Section 4 presents the evaluation of the spe-
cialised model across several radio-astronomy tasks. Finally,
Section 5 summarises the results and discusses directions for
future research.

2. Vision-language models

Multi-modal large language models (MLLMs) are designed to pro-
cess and integrate data from multiple modalities, such as text,
audio, images, and video. Vision-language models (VLMs) are
a specific type of multi-modal system that focuses on combin-
ing visual and textual information. These models leverage large
language models and vision transformers to align visual and tex-
tual representations, enabling them to perform complex tasks like
image captioning, visual question answering (VQA), and object
recognition in a descriptive context. A comprehensive review of
MLLMs and VLMs is provided by Li et al. (2023b), Bordes et al.
(2024), Yin et al. (2024). In this section, we focus on describing the
current state, architecture, and training strategy of the VLM model
LLaVA, which we have adapted for use with radio astronomical
data in this work.

2.1 The LLaVA model
2.1.1 Model overview

LLaVA (Large Language and Vision Assistant) (Liu et al. 2023) is
a state-of-the-art multimodal model that integrates both visual
and textual understanding, combining the capabilities of large
language models (LLMs) with vision processing abilities. Its pri-
mary function is to interpret and generate responses to input that
includes both images and text, making it ideal for tasks like visual
question answering (VQA), image captioning, and other vision-
language tasks. Since the first release, the model demonstrated
exceptional multimodal conversational skills, often displaying
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Figure 1. A schematic representation of the LLaVA model architecture.

behaviour comparable to GPT-4V when tasked with interpreting
novel images and following new instructions for the first time.

Following releases (LLaVA 1.5, Liu etal. 2024a) greatly
enhanced model capabilities by integrating a larger set of
academic-focused instructional data, achieving state-of-the-art
results on numerous benchmarks while utilising a highly data-
efficient strategy. Recent advancements in the LLaVA series,
including models like LLaVA-NeXT (Liu et al. 2024b) and LLaVA-
OneVision (Li et al. 2024), have significantly broadened the scope
of input modalities they can handle, supporting both single or
multiple images as well as video content. These improvements
were driven by three key innovations: the AnyRes technique for
processing high-resolution images, the expansion of high-quality
instruction datasets, and the integration of the most advanced
open-source LLMs available at the time, further enhancing model
capabilities across diverse tasks. Various variants or specialization
of the first LLaVA models have been produced so far. For exam-
ple, TinyLLaVA (Zhou et al. 2024; Jia etal. 2024) is a compact
refactored variant of the original LLaVA 1.5 model, designed to
enable easier inclusion of alternative light vision and LLM mod-
els, thus significantly reducing overall model size and resource
requirements. LLaVA-Med (Li et al. 2023a) is a specialised variant
of the LLaVA model designed to assist in medical image analysis
and diagnostics by fine-tuning its multimodal capabilities on med-
ical datasets such as X-rays, MRIs, and other healthcare-related
visual data.

2.1.2 Model architecture

The LLaVA model, schematically represented in Figure 1, consists
of these components:

e Vision Encoder: Processes image data using a pre-trained
Vision Transformer (ViT) model with multiple trans-
former layers, such as CLIP (Radford et al. 2021) or SigLIP
(Zhai et al. 2023b). It extracts visual features from input
images;
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e Language Model: Handles text processing, typically an
LLM such as Qwen (Bai etal. 2023), capable of under-
standing, generating, and reasoning with natural language;

e Projector: Since the vision encoder and language model
operate in different feature spaces, the projector trans-
forms visual embeddings into a format compatible with
the language model input space. This enables effective
integration of visual and textual information. LLaVA
employs a two-layer multi-layer perceptron (MLP) trained
to align the modalities, ensuring that the visual embed-
dings can be seamlessly used by the language model;

e Multimodal Fusion Layer: It aligns and fuses the visual fea-
tures from the vision encoder with the text embeddings
from the language model, enabling the model to pro-
cess both modalities jointly through self-attention mech-

anisms.

The model processes multimodal image-text inputs as follows:

1. The input text (instruction or query) is tokenised into

numerical tokens using a predefined vocabulary.

2. The input image is divided into patches and passed
through the vision encoder, which extracts key features
such as objects, colours, textures, and spatial relationships.
The projector then converts these visual representations

into language-compatible embeddings;

3. The multimodal fusion layer integrates the visual embed-
dings into the input sequence of the language model,
allowing it to process both visual and textual data jointly.
The model then generates an output response based on
the given task, such as answering questions about the
image (VQA) or generating a descriptive caption (image

captioning).

2.1.3 Model training

The LLaVA model series is trained from pre-existing language
and vision encoders through instruction fine-tuning on large-
scale datasets. These datasets consist of image (or video) and text
pairs, including captions, descriptions, and questions, enabling the
model to learn associations between visual elements and natural
language. The training process typically involves multiple stages,
each potentially using different datasets, including pretraining on
unimodal visual and textual data, aligning vision and language fea-
tures, and fine-tuning with instructional data to address diverse
visual tasks. Further details on training datasets and methodology

can be found in the original model publications.

During instruction tuning, the model is optimised by min-
imising a cross-entropy loss, which quantifies how closely the
predicted text output matches the ground truth. The model gener-
ates text auto-regressively, predicting one token at a time based on
previously generated tokens. At each step, it outputs a probability
distribution over possible next tokens and is trained to minimise
the difference between its prediction and the actual token. The
cross-entropy loss is computed for each token while condition-
ing on prior tokens, accumulating over the entire sequence and
penalising incorrect predictions at each step. This iterative process
ensures the model learns to generate coherent text in a structured

manner.
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3. The radio-llava model

The radio-llava model is a small multi-modal model fine-tuned
from a base LLaVA model using radio astronomical image-text
data. This section describes the training dataset, and the model
fine-tuning procedure.

3.1 Training dataset

The training dataset consists of multiple conversations between
a virtual assistant and a user regarding a given radio image. The
dataset follows the standard JSON format required by multi-
modal models:
[
{
"id": "image id",
"image": "image path",
"conversations": [
{
"from": "human",
"value": "<image>\n Provide a brief description of the
given image."
To
{
"Erom": "gpt!,
"value": "The image is a radio astronomical cutout ..."

},

We constructed two training datasets. The first, referred to as
the Q&~A dataset, consists of a series of question-answer interac-
tions related to the content of radio images, all extracted from
radio continuum surveys. The second dataset, termed the cap-
tion dataset, contains a single user-assistant exchange per image,
in which the assistant provides a description of the image con-
tent. In this case, images and their corresponding captions were
sourced from a collection of scientific papers on radio astronomi-
cal topics available in the arXiv database. Details on both datasets
are provided in the following sections.

3.1.1 Q&A dataset

This dataset was assembled from multiple annotated radio
datasets, each designed for different radio source classification or
detection tasks:

e Fine-Grained Datasets: These datasets, typically used for
training radio object detection and segmentation models
like YOLO (Redmon et al. 2016) or Mask R-CNN (He et al
2017), contain wide-field images (a few arcminutes in size)
with region- or pixel-level annotations, including object
positions (centres, bounding boxes, segmentation masks),
classification labels, and confidence scores.

e Coarse-Grained Datasets: Commonly used for radio
source classification models, these datasets contain either
zoomed-in source images or wide-field images with one or
more assigned classification labels.

Details regarding the number of images and available classes
for each dataset are provided in Appendix A.

It is important to note that classification schemes vary across
datasets. Some provide astrophysical source-type labels (e.g. HIT,
SNR, GALAXY), while others focus on morphological classifications
(e.g. FR-I vs. FR-II, COMPACT vs. EXTENDED vs. DIFFUSE). Before
generating the conversational Q&A dataset, we aimed to stan-
dardise terminology whenever possible. In some cases (e.g. see
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Section A.2), we performed cross-matching and relabelling to aug-
ment the original datasets by adding additional labels to certain
images or objects. However, variations in labelling schemes remain
unavoidable due to the lack of annotation standards in the radio
astronomy community. In this respect, our goal is to fine-tune
an LLM model that is exposed to diverse classification schemes,

making it potentially adaptable to different user domains.

The Q&A dataset was constructed from annotated datasets

through the following steps:

1. Automated Template-Based Descriptions: For each image,
we programmatically generated a template description

based on the available annotations.©

Example: An image from the radioimg-dataset (see
Section A.1) with the assigned labels COMPACT, EXTENDED,

RADIO-GALAXY, ARTIFACT would be described as

The image is a radio astronmomical image cutout extracted from

a larger radio-continuum Stokes-I map produced by an

interferometer telescope. The image contains various point-

like or compact Tadio sources superimposed over the sky

background noise. It also contains one or more extended radio
sources. Some of them are likely exztended radio galazies. Some
radio sources present in the image are poorly imaged and

surrounded by imaging artefacts having a ring pattern.

Fine-grained datasets include richer descriptions, specify-

ing source positions and sizes.

2. Automated QA Generation Using a Pretrained VLM: We
generated multiple Q&A interactions per image using a
InternVL VLM model? (Chen etal. 2024). The model
was fed with the image, template caption, and struc-
tured prompts to ensure that the generated conversations
remained faithful to the original image and annotation
content, and included at least the following questions:

e Can you describe the image content?

e Can you provide the bounding box coordinates of all
radio sources with class X (e.g. compact, extended, etc.)

present in the image?

e Do you see any likely radio galaxy with an extended

morphology in the image?

e Which of these morphological classes of radio sources

do you see in the image?

e Do you see any imaging artefact around bright sources

in the presented image?

o Isthere any blank pixel region at the edges of the image?
o Is the image content ordinary or peculiar in terms of the

objects it contains?

To prevent excessive generalisation, we constrained the
VLM’s output by using an intermediate temperature

setting (0.5).

Overall, the final training dataset comprises 59 331 images and

1 590 202 user-assistant conversations.

Despite these efforts, the current annotated radio data —
which primarily provide classification labels or bounding boxes
— still limit the diversity and richness of generated image-based

“These descriptions are statically defined, meaning two images with identical annota-

tions will have the same description.
dWe wused InternVL2_5-8B-MPO model version, available here:

huggingface.co/OpenGVLab/InternVL2_5-8B-MPO,  https://github.com/OpenGVLab/

InternVL.
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conversations. This constraint directly impacts model perfor-
mance and its instruction-following capabilities, as discussed in
Section 4.

3.1.2 Caption dataset

This dataset was compiled by extracting figures and their cor-
responding captions from a broad collection of arXiv scientific
papers containing radio astronomy-related keywords, published
between 2000 and 2025. To classify the image format and assess
caption quality, we processed the extracted raw image-caption
data using the same InternVL VLM model employed for gen-
erating the Q&A dataset. Specifically, we computed the following
parameters for each image-caption pair:

e n_words: number of words in the caption;

e has_multiplot: binary flag set to true if the image con-
tains multiple plots/frames, either as insets, side by side,
stacked, or arranged in a grid layout;

e is_astromap: binary flag set to true if the image and
caption depict an astrophysical map with one or more
sources superimposed on the sky background;

e is_corrupted: binary flag set to true if the caption
contains incomplete sentences or corrupted text;

e caption_score: integer score assessing caption quality
on a scale from 0 (low) to 10 (high), based on coherence,
informativeness, completeness, clarity, and correctness of
English style.

Only highly rated single-plot images were included in the train-
ing sample, applying the following selection criteria: n_words>5,
has_multiplot=0, is_corrupted=0, and caption_score>7.
This resulted in a final training sample of 38 545 images. The
has_multiplot criterion had a significant impact, removing
approximately 62% of the images from the initial dataset. We
opted not to apply the is_astromap filter, as doing so would have
further reduced the dataset size to approximately 8 700 images.

3.2 Model fine-tuning

The radio-llava model was trained using instruction fine-
tuning on the Q&A radio dataset alone, as well as on the
combined Q&A and caption datasets, starting from the pre-
trained LLaVA-OneVision 7B model.© Keeping the vision encoder
(siglip-so0400m-patch14-384) frozen, we fine-tuned both the
LLM (qwen2) and adapter (mlp2x_gelu) components using
either full fine-tuning or the Low-Rank Adaptation (LoRA) (Hu
et al 2021) fine-tuning strategy. We set the LoRA rank and alpha
scaling parameters to 64 and 128, respectively. The model was
trained for either 1 epoch (shallow fine-tuning) or 3 epochs (deep
fine-tuning). In all training runs, we used default hyperparame-
ters, with a batch size of 1, a gradient accumulation step of 2, and
a learning rate of 107°.

On single-GPU servers with medium GPU memory (e.g.
NVIDIA A30 24 GB or RTX6000 48 GB), we were only able to
train the model using LoRA fine-tuning on the Q&A dataset, while

¢Imms-lab/llava-onevision-qwen2-7b-ov.

fLoRA is a lightweight training method that updates only small, low-rank matrices
within the model instead of fine-tuning the entire model. This significantly reduces
computational overhead and storage requirements while maintaining high performance.
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full fine-tuning required more extensive computational resources.
Consequently, all fine-tuning runs were conducted on a single
node of the CINECA LEONARDO Booster infrastructure,® util-
ising 4 GPUs (NVIDIA A100 64 GB) and 8 CPUs (Intel Xeon
Platinum 8358, 2.60 GHz) with 32 GB of memory allocated per
CPU. Full fine-tuning required approximately 15 h per epoch on
the combined training dataset.

3.3 Implementation details

For training the LLaVA model, we utilised software and resources
available in the LLaVA-NeXT repository.” Only minor modifica-
tions were applied to the original software to load our dataset and
enable the loading of LoRA fine-tuned models using the Qwen
LLM.

Inference scripts developed for LLaVA and other VLM mod-
els tested in this study are provided in the following repository:
https://github.com/SKA-INAF/radio-llava. This repository also
includes a Streamlit' application (see Figure C1 in the Appendix),
allowing users to load a LLaVA model, upload an image, and
interact with the assistant via a web interface. Table C1 in the
Appendix provides an example of user-assistant conversations for
two sample radio images, comparing responses from the base and
fine-tuned LLaVA-OneVision 7B models.

The fine-tuned models are publicly available in the Hugging
Face repository: https://huggingface.co/inaf-oact-ai.

4. Model evaluation

Using independently annotated datasets, we defined six evaluation
benchmarks (B1—B6) to assess the model’s reasoning capabili-
ties on radio image data. The benchmark datasets and inference
prompts are detailed in Section 4.1.1. Additionally, we evaluated
our models on various standard non-astronomical benchmarks,
listed in Section 4.1.2, to quantify the impact of fine-tuning on
tasks previously learned by the base model.

Section 4.2 presents the zero-shot performance of the LLaVA
base model, comparing it with alternative VLMs. The evalua-
tion results for the fine-tuned radio-llava models are reported in
Section 4.3.

We will consistently use these widely adopted metrics in classi-
fication problems:

e Recall (R): The fraction of sources (images) from a given
class that are correctly identified by the model, out of all
sources (images) that truly belong to that class:

TP
R=——
TP+ FN
e Precision (P): The fraction of sources (images) correctly

predicted to belong to a given class, out of all sources
(images) the model assigned to that class:

P TP
" TP+ FP

Shttps://www.hpc.cineca.it/systems/hardware/leonardo/.
"https://github.com/LLaVA-VL/LLaVA-NeXT.
"https://streamlit.io/.
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e Fl-score: The harmonic mean of precision and recall,
offering a balanced measure of a model’s performance:

P xR
P+R

Fl-score =2 x

0

e Accuracy (A): The overall fraction of correctly classified
sources (images), regardless of class, over the total number
of instances:

B TP+ TN
" TP+ TN + FP+FN

Here, TP, FP, TN, and FN represent the number of true
positives, false positives, true negatives, and false negatives, respec-
tively.

4.1 Evaluation benchmarks
4.1.1 Radio benchmarks

Bl - Extended/Diffuse Source Detection We used the
radioimg-multilabel test dataset (5 718 images) to eval-
uate the models’ ability to detect extended or diffuse radio sources
in input images.

For this task, we applied the following prompt:

### Context: Consider these morphological classes of radio
astronomical sources, defined as follows:
EXTENDED: This class comprises either single-island compact
objects with sharp edges, having a morphology and size dissimilar
to that of the image synthesised beam (e.g. 10 times larger than
the beam size or with elongated shape), or disjoint multi-island
objects, where each island can have either a compact or extended
morphology and can host single or multiple emission components.
Typical examples are extended radio galaxies formed by a single
elongated island or by multiple islands, hosting the galaxy core
and lobe structures
DIFFUSE: a particular class of single-island extended objects with
small angular size (e.g. smaller than few arcminutes), having
diffuse edges and a roundish morphology;

B2 - Source Morphology Classification We considered the
rgz-smorph test dataset, containing ~3 835 images from the VLA
FIRST survey, each zoomed and centred around radio sources
belonging to six distinct morphological classes: 1C-1P, 1C-2P,
1C-3P, 2C-2P, 2C-3P, 3C-3P.

The model was evaluated using a single-label multi-class classi-
fication task with the following prompt:

DIFFUSE-LARGE: large-scale (e.g. larger than few arcminutes and
covering a large portion of the image) diffuse object with
irregular shape.

An island is a group of 4-connected pixels in an image under
analysis with intensity above a detection threshold with respect
to the sky background level.

### Question: Which of these morphological classes of radio
sources do you see in the image?

EXTENDED

DIFFUSE

DIFFUSE-LARGE

Answer the question using the provided context (and examples).
Report the identified class labels separated by commas, without
any additional explanation text. Report just NONE if you cannot
recognise any of the above classes in the image.

B3 - Extended Radio Galaxy Detection We used the
radioimg-multilabel test dataset (5 718 images) to assess the
models’ ability to identify radio sources with morphologies char-
acteristic of extended radio galaxies.


https://github.com/SKA-INAF/radio-llava
https://huggingface.co/inaf-oact-ai
https://www.hpc.cineca.it/systems/hardware/leonardo/
https://github.com/LLaVA-VL/LLaVA-NeXT
https://streamlit.io/
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For this task, we applied the following prompt:

### Context: Consider these morphological classes of radio

astronomical sources:

1C-1P: single-island sources having only one flux intensity peak;
1C-2C: single-island sources having two flux intensity peaks;
1C-3P: single-island sources having three flux intensity peaks;

2C-2P: sources consisting of two separated islands, each hosting a
single flux intensity peak;

2C-3P: sources consisting of two separated islands, one containing
a single peak of flux intensity and the other exhibiting two

distinct intensity peaks;

3C-3P: sources consisting of three separated islands, each hosting
a single flux intensity peak.

An island is a group of 4-connected pixels in an image under

analysis with intensity above a detection threshold with respect

to the sky background level.

### Question: Which of these morphological classes of radio
sources do you see in the image?

1C-1P

1C-2C

1C-3P

2C-2P

2C-3P

3C-3P

Answer the question using the provided context (and examples).
Report only the identified class label, without any additional
explanation text.

B4 - Imaging Artefact Detection We wused the
radioimg-multilabel test dataset (5 718 images) to eval-
uate the models’ ability to detect imaging artefacts in input
images.

For this task, we considered the following prompt:

Do you see any likely radio galaxy with an extended morphology in
the image?
Answer concisely: Yes or No.

B5 - Source Peculiar Morphology Classification We used the
radioimg-multilabel test dataset (5718 images) to evaluate the
models’ ability to detect radio sources with complex or anoma-
lous morphologies in input images. These sources were previously
classified into three categories: PECULIAR (150 images), COMPLEX
(1 978 images), and ORDINARY (3 590 images).

For this task, we applied the following prompt:

### Context: Consider these radio image peculiarity classes,
defined as follows:

ORDINARY: image containing only point-like or slightly-resolved
compact radio sources superimposed over the sky background or
imaging artefact patterns;

COMPLEX: image containing one or more radio sources with extended
or diffuse morphology;

PECULIAR: image containing one or more radio sources with
anomalous or peculiar extended morphology, often having diffuse
edges, complex irregular shapes, covering a large portion of the
image.

### Question: Can you identify which peculiarity class the
presented image belongs to?

ORDINARY

COMPLEX

PECULIAR

Answer the question using the provided context (and examples).
Report only the identified class label, without any additional
explanation text.

B6 - Radio Galaxy Morphology Classification We used the
Mirabest (Porter & Scaife 2023) confident sample dataset, which
contains 833 images from the VLA FIRST survey, each zoomed
and centred around radio galaxies belonging to two distinct mor-
phological classes: FR-I (397 images) and FR-II (436 images).
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For this task, we applied the following prompt:

### Context: Consider these morphological classes of radio
galaxies:

FR-I: radio-loud galaxies characterised by a jet-dominated
structure where the radio emissions are strongest close to the
galaxy’s centre and diminish with distance from the core;

FR-II: radio-loud galaxies characterised by an edge-brightened
radio structure, where the radio emissions are more prominent in
lobes located far from the galaxy’s core, with hotspots at the
ends of powerful, well-collimated jets.

### Question: Which of these morphological classes of radio galaxy
do you see in the image?

FR-I

FR-II

Answer the question using the provided context (and examples).

Report only the identified class label, without any additional
explanation text.

4.1.2 Image standard benchmarks

We evaluated all radio-llava fine-tuned models on 11 image bench-
marks (AI2, ChartQA, DocVQA, InfoVQA, MME, MMMU, MMStar,
OCRBench, SEED-Bench, ScienceQA-IMG, RealWorldQA),
which are widely used to assess multimodal model perfor-
mance across various tasks, ranging from diagram, chart, and
scene understanding to text extraction. Further details on each
benchmark are provided in Appendix B.

4.2 Zero-shot performance

We evaluated the zero-shot performance of LLaVA models of
varying sizes on radio benchmarks, comparing with alterna-
tive open-weight VLMs and a representative commercial model
(OpenAI GPT 4.1). Results are reported in Figure 2 and discussed
in the following paragraphs. For each benchmark, we report the
classification F1-score for individual classes, as well as the average
F1-score across all classes (labelled as ‘AVG’ in the plots).

4.2.1 Open-weight models

In Figure 2, we present the benchmark evaluation results for
the base LLaVA-OneVision models (0.5B, 7B, 72B), shown in
blue histograms, compared against alternative open-weight VLM
models: TinyLLaVA 3.1B (green histogram), Qwen2VL models
(2B, 7B, 72B) (red histograms), and InternVL models (2B, 8B)
(orange histograms).

As expected, smaller models (0.5B-3.1 B) perform consistently
worse across most benchmarks, while larger models (Qwen2VL
72B, InternVL 8B, and LLaVA 72B) tend to achieve the best
performance, particularly in B3 (radio galaxy detection), B4 (arti-
fact detection), and B6 (FR-I vs. FR-II classification). In Bl
(extended/diffuse source detection) and B2 (morphology classi-
fication), performance remains generally low across all models,
with no significant advantage for any specific one. The best results
are observed in B3 and B4, where LLaVA 7B/72B models achieve
competitive or slightly better performance compared to recently
released VLMs. For instance, in artifact detection (B4), they attain
a respectable 50-60% F1-score in a zero-shot setting. B5 (pecu-
liar/complex morphology classification) and B6 (FR-I vs. FR-II
classification) present significant challenges for all models, includ-
ing the largest ones. Overall, the results indicate poor performance
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Figure 2. Classification F1-scores obtained with VLMs of different sizes (0.5B, 2B, 3.1B, 7B, 8B, 72B) in zero-shot mode over B1-B6 evaluation benchmarks. We report the F1-score
for individual classes, as well as the class-averaged F1-score (labelled as ‘AVG’). LLaVA, TinyLLaVA, Qwen2VL, and InternVL models are respectively shown with blue, green, red,

and orange histograms. OpenAl GPT4.1 model is shown with black histograms.

across all benchmarks, underscoring the need for models spe-
cialised in astronomical data.

4.2.2 Commercial closed-weight models

Performing a comprehensive end-to-end benchmark evaluation
across major proprietary solutions (e.g. OpenAI GPT, Google
Gemini, Anthropic Claude) is not straightforward, as it would
require academic institution to enter into contractual agreements
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with private providers to cover the cost of executing benchmarks
via their APIs. Unlike public user interfaces, these APIs typically
operate under separate pricing and access tiers. Nonetheless, we
recognise the value of such an analysis for understanding the
feasibility and cost-effectiveness of commercial LLM APIs in sci-
entific benchmarking. Therefore, we made an effort to evaluate
at least one commercial model - GPT-4.1 via the OpenAI API
platform.
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Benchmarks were split into multiple sub-tasks of approxi-
mately 500 images each to stay within the maximum batch file
size limit (200 MB), with each mini-batch consisting of 80—230
K input tokens, costing around 0.23$ - implying a total of ~2.5%
per benchmark and under 20$ for the full suite. As Tier 1 users,
we were able to run one or two mini-batches per day without
exceeding the token-per-day (TPD) limit of 900 000 tokens.

The GPT-4.1 benchmark results, shown in Figure 2 as black
histograms, indicate superior performance in tasks B1-B3 and
Bé6. In tasks Bl and B6, GPT-4.1 outperforms all open-weight
models by a substantial margin — approximately 20% in aver-
age classification score. For tasks B2 and B3, the improvement is
more modest, generally below 10%. Interestingly, GPT-4.1 under-
performs in tasks B4 and B5, where its classification metrics
fall below those of several open-weight models. These results
may reflect both the advantage conferred by GPT-4’s significantly
larger parameter count! and broader pretraining corpus, as well as
limitations in its exposure to domain-specific astronomical con-
cepts or visual patterns. While GPT-4.1 currently achieves the best
overall performance in our benchmarks, the relatively small gap
in several tasks — combined with the flexibility, transparency, and
lower deployment costs of open-weight models — suggests there
remains meaningful room for their development and application
in specialised astronomical workflows.

4.3 Fine-tuning performance
4.3.1 Radio benchmarks

In Figure 3 we report the classification Fl-score of radio-llava
fine-tuned models obtained on radio benchmarks for each class
and overall (labelled as ‘AVG’), compared to the base LLaVA-
OneVision 7B model (solid red histograms). Blue histograms
represent models fine-tuned on the Q&A dataset, using either
deep/shallow full fine-tuning or LoRA fine-tuning. Orange his-
tograms correspond to models fine-tuned on the combined Q&A
and caption datasets. For comparison, we also report baseline met-
rics (shown as black histograms) obtained using a vision-only
classifier that shares the same vision encoder as the LLaVA model
(siglip-so0400m-patch14-384). This classifier was fine-tuned
and evaluated on the same training and test datasets.

With the exception of B6, we observe a general improvement
in performance when fully fine-tuning the base model. The per-
formance boost is particularly notable for Bl (extended/diffuse
source detection) and B3 (radio galaxy classification), where aver-
age classification scores improve by more than 20-30%. For the
remaining tasks, the improvement is more moderate (~10%). In
contrast, LoRA fine-tuning leads to a clear improvement only in
B3 and B5 tasks, with limited gains elsewhere. Deeper fine-tuning
results in a modest improvement of only a few percentage points
across all tasks, for both full and LoRA fine-tuning strategies. Fine-
tuning on caption data (orange histograms) is observed to slightly
decrease performance on radio benchmarks. This is somewhat
expected, as all radio benchmarks are based on Q&A tasks rather
than descriptive tasks. Caption data, on the other hand, have a pos-
itive impact on non-radio benchmarks, as discussed in the next
section.

/Notably, GPT-4 models are estimated to have approximately 25 times more parameters
(around 1.8 trillion parameters from various sources) than the largest open-weight models
evaluated in this work
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Overall, the achieved metrics remain well below those obtained
using a vision-only model specialised for each task, which con-
sistently reaches over 80—85% accuracy across all benchmarks
- even after just 10 training epochs. The performance gap is
especially notable in task B1, where the vision-only model attains
an F1-score of approximately 60% for diffuse sources — class that
multimodal models tend to struggle with, likely due to their under-
representation in the training set (only 534 images). Similarly, in
task B2, the model achieves over 80% accuracy across all mor-
phological classes. These results also surpass our previous baseline
of 74% average F1-score (Riggi et al. 2024c), which was obtained
by training a LightGBM classifier on features extracted solely
from the SigLIP vision encoder. At present, a fair comparison
between the vision-only and LLaVA models cannot be provided
for benchmark B6 due to the lack of a shared training dataset.
Specifically, the FR-I/FR-II labels used in the LLaVA training
were derived from object detection conversations on wide-field
images, whereas training a vision-only classifier would require
centred cutouts around FR-I/FR-II sources. Previous FR-I/FR-II
classification studies (Cecconello et al. 2024; Slijepcevic et al. 2024)
have achieved over 90% classification accuracy using smaller fine-
tuned encoders (ResNet18/ResNet50). However, those models
were trained on an independent subset of the same survey data
(MiraBest dataset, VLA survey) used for testing. In contrast, our
work trained on different survey data with varying source/image
size ratios — specifically, using ASKAP EMU pilot data for train-
ing and VLA zoomed-in source images for testing. This difference
likely contributes to the poor results observed on B6. We plan
to update the dataset accordingly in future work to enable a
consistent evaluation across both models.

These findings suggest that the visual encoder provides a
strong data representation, even for radio data, justifying our
decision to keep it frozen during radio-llava fine-tuning. This
also indicates that the suboptimal performance of our multi-
modal models is likely due to visual-language misalignment and
the limited size and quality of the training dataset. Indeed, when
we attempted to fully fine-tune radio-llava, including the vision
encoder, we observed only a minor performance improvement
(~2%). However, it is important to note that, unlike specialised
vision encoder models, radio-llava was trained to learn multiple
radio tasks simultaneously.

4.3.2 Standard benchmarks

For comparison, Figure 4 reports performance on non-radio
benchmarks, using the same colour labelling scheme of Figure 3.
Consistent with previous studies (Pan etal. 2024) specialising
LLMs for astronomy, we observed a notable decline in model per-
formance on previously learned tasks compared to the base model
(solid red histograms). This task forgetting effect is particularly
pronounced in full fine-tuning, becoming significant (more than
a20% accuracy drop) in deeper training runs. In line with findings
by Biderman et al. (2024), LoRA fine-tuned models achieve lower
performance on radio benchmarks but are more robust against
task forgetting.

Catastrophic forgetting remains a critical challenge when fine-
tuning LLMs. Recent studies (Zhai et al. 2023a; Zhang et al. 2024)
have analysed this effect in multimodal models and proposed vari-
ous strategies to mitigate it. One promising approach, successfully
explored for language models by de Haan et al. (2024), involves
expanding and curating the instruction-tuning dataset, followed


https://doi.org/10.1017/pasa.2025.10082

10 S. Riggietal.

W base . ﬁne-h;an ’gol;&A)) fine-n;n,/}n ’gQI;&A + caption) mm base fine-thmI;n 'ng;&A)) fine-ttflnl;n ngl;g‘A )+ caption)
vision fine-tuning M full (shallow, ull (shallow) isi ine-tunil mm full (shallow ull (shallow)
(a) - 9 B il (deop) full (deep 4 (b) W vision fine-tuning TR - ) (Goop) full (deep)
[ lora (shallow) lora (shallow) [ lora (shallow) lora (shallow)
[ lora (deep) lora (deep) ) [ lora (deep) lora (deep)
= I~
o T o T
o Qo -
3 !
1 1 H
G < 0.8 _
w w
] |
i 0.6H |
i H E
i H i
+ H | I
i 0.4
] H I i i
1l i 1 !
ih i | | i i
0.2 | | [ i ] |
| | i ! I
4 [ 1t § i T
. . i i | i | |
| | 0 H | i i : k
EXTENDED DIFFUSE DIFFUSE-LARGE AVG 1C-1P 1C-2P 1C-3P 2C-2P 2C-3P 3C-3P
B1 B2
W base ﬁne-tl;n,l)n(g ’gC)”&A)) ﬁne—t#rﬁn{g ISQI;&A )+ caption) N base ﬁne-lL;nll}n ngI;gA)) ﬁne-lL;nll}n ’gQI;ﬂA )+ caption)
ision fine-tuning MM full (shallow) ull (shallow, ision fine-tuning MM full (shallow) ull (shallow)
(c) - vision fine-tuning  ER Fl (deep) full (deep) (d) W vision fine-tuning £ f) (deep) ull (deep)
(1 lora (shallow) lora (shallow) [ lora (shallow) lora (shallow)
([ lora (deep) lora (deep) ] lora (deep) lora (deep)
= 1=
o T o T
(o] - o]
8 3
[ — V
0.8 So08
w I w
0.6— 0.6
0.4 0.4
0.2— 0.2
B [
0 Zf g O i %
AVG RADIO-GALAXY AVG ARTEFACT
[ base fine-tuning (Q&A)  fine-tuning (Q&A + caption) W base  fine-tuning (Q&A) fine-tuning (Q&A + caption)
W vision fine-tuning W full (shallow) full (shallow) f mm full (shallow) full (shallow)
(e) [ full (deep) full (deep) ( ) (23 full (deep) full (deep)
[ lora (shallow) lora (shallow) (2 lora (shallow) lora (shallow)
[ lora (deep) lora (deep) [ lora (deep) lora (deep)
= I~
. o T
o F o -
3 8
[ T I
~ ~ 0 . 8 |
w w
0.6~
0.4
0.2
| 0
PECULIAR AVG FR-II

B5

Figure 3. Classification F1-scores obtained with the radio-llava model on B1-B6 radio benchmarks, comparing fine-tuning on the Q&A training dataset (blue histograms) and the
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Figure 4. Classification accuracy obtained with the radio-llava model on standard non-radio benchmarks (Section 4.1.2), comparing fine-tuning on the Q&A training dataset (blue
histograms) and the combined Q&A and caption datasets (orange histograms). For each training set, results are reported for different training strategies (full vs. LoRA fine-tuning)
and training depths (shallow vs. deep). Results from the base model are shown as filled red histograms.

by merging fine-tuned models with base models, using customiz-
able balancing weights.* In this work, we nearly doubled the size
of our initial Q&A dataset, enriching it with more diverse image
captions extracted from a large collection of scientific papers.
As shown in Figure 4, incorporating caption data (orange his-
tograms) helped recover approximately 10 accuracy points across
all standard benchmarks. This confirms trends observed in pre-
vious studies and underscores the importance of further curating

our training dataset to enable future improvements.

4.3.3 Diagnostic analysis

To assess the impact of the default training configuration on
model performance, we fine-tuned the model on the Q&A dataset
with alternative choices of selected hyperparameters, resulting in
various model variants, which are labelled and summarised in

Table 1.

kThe merging tool used in de Haan etal. (2024) -

https://github.com/arcee-ai/mergekit — currently supports merging only the LLM
components and requires extension to also include the LLaVA adapter and vision

components.
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e Model v1 and v2 were trained with alternative learning
rates (5x 107>, 5x107°%) compared to the default 10~>;

e Model v3 and v4 explored alternative learning
schedulers: v3 used a ‘faster’ warmup phase with
warmup_ratio=0.01 (compared to the 0.03 default),
while v4 employed a cosine_with_min_lr scheduler
with a minimum learning rate of 5x107°, instead of the
unconstrained cosine scheduler;

e Model v5 was trained on 32 4 GPU nodes
(batch_size=1, gradient_accumulation_step=2)
to obtain a larger effective batch size of 256 (compared to
the default 8);

e Model v6 used LoRA fine-tuning with larger ranks
(r=128, alpha=256) instead of the previously tested r=64,
alpha=128.

Additionally, we examined the impact of the user prompt
by repeating the benchmark evaluation with a more structured
prompt version.

Figure C2 in the Appendix compares average metrics across all
radio tasks for the original and variant models: the black solid his-
togram represents the original model, the black dashed histogram
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Table 1.Summary of fine-tuned models with alternative
hyperparameter configurations.

Model variant Parameters

vi lr=5x10°

v2 lr=5x10""°

v3 warmup_ratio=0.01

véd cosine_with_min_1r (Ir=5x10"%)
v5 effective_batch_size=256

v6 LORA rank=128, alpha=256

represents the original model with the alternative prompt, and the
coloured histograms correspond to the model variants. From the
results, we conclude that the alternative configurations tested do
not lead to performance improvements. Thus, the suboptimal per-
formance is unlikely due to non-optimal hyperparameter selection
but rather to dataset quality limitations. Furthermore, the reported

metrics show minimal variation with the adopted prompt.

To assess the impact of using automated data curation via
InternVL, we initially conducted experiments using a fully tem-
plated, uncurated dataset without InternVL-generated variation.
While benchmark performance metrics remained broadly sim-
ilar, we observed a marked degradation in the model outputs,
with responses frequently mirroring the rigid structure of the tem-
plates. This motivated us to setup an automated data curation to
enhance linguistic diversity and model conversational ability.

5. Summary

In this work, we investigated the feasibility of using small-scale
vision-language models (VLMs) as Al assistants for analysing
radio images, enabling tasks such as source classification, identi-
fication of specific object classes, and data exploration for quality
assessment. Unlike conventional deep learning approaches, VLMs
offer a more flexible, natural-language-driven interaction, reduc-
ing the need for complex coding or task-specific model adapta-
tion. To this end, we fine-tuned LLaVA, a state-of-the-art VLM,
on a custom dataset of over 59 000 radio images paired with
instruction-based queries, along with an additional 38 000 image-
caption pairs extracted from a large corpus of radio astronomical
papers. The fine-tuning process leveraged both Q&A interactions
and descriptive captions, enabling the model to handle a variety
of radio analysis tasks, including source morphology classifica-
tion, extended source detection, and artifact identification. The
resulting radio-llava model was evaluated across six radio-specific
benchmarks (B1—B6) and compared against baseline VLMs on
non-astronomical multimodal tasks. Fine-tuned models and the

developed software have been publicly released.
Our key findings can be summarised as follows:

o Fine-tuning improves performance: Compared to the base
model, radio-llava exhibits significant performance gains
on radio benchmarks, particularly in extended source
detection (B1) and radio galaxy classification (B3), with

F1-score improvements exceeding 20-30%;

o Challenges in multimodal alignment: Despite fine-tuning,
pure vision models still outperform VLMs, suggesting
that visual-language alignment remains a limiting factor.

https://doi.org/10.1017/pasa.2025.10082 Published online by Cambridge University Press
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Full fine-tuning of both vision and language components
resulted in only marginal improvements (~2%);

o Task forgetting effect: While fine-tuned models improve in
radio-specific tasks, they suffer from catastrophic forget-
ting when evaluated on general multimodal benchmarks.
This effect is more severe for full fine-tuning (~20% accu-
racy drop), while LoRA fine-tuned models exhibit better
retention of prior knowledge. Fine-tuned models were also
observed to exhibit degraded conversational capabilities;

e Impact of caption data: Incorporating descriptive cap-
tions from scientific literature into the training set
enhances model generalization, helping recover ~10 accu-
racy points on standard multimodal benchmarks while
also improving instruction-following abilities.

These findings highlight the potential of compact multimodal
models for radio astronomy while also revealing key limitations
that require further research to fully match the performance of
specialised vision models. Future efforts should focus on improv-
ing vision-language alignment, curating larger, high-quality train-
ing datasets, and exploring hybrid fine-tuning strategies also for
larger models (~70B) to mitigate task forgetting while maximising
domain-specific performance. Additionally, we plan to leverage
the multi-image processing capabilities of the LLaVA-OneVision
model for in-context learning of analysed tasks. Future investi-
gations will also explore its performance on new tasks requir-
ing comparative analysis across multiple images, such as image
retrieval of known source classes.
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A. Training Datasets

A.1 Coarse-grained radio datasets

We describe below the annotated datasets used to create the
conversational train dataset.

radioimg-multilabel dataset

The dataset currently includes a collection of 19 060 annotated
radio images taken from multiple radio surveys, carried out both
in the Galactic Plane and outside:

e SARAO MeerKAT Galactic Plane Survey (SMGPS)
(Goedhart et al. 2024): 2 704 images (14.2%)

e ASKAP EMU main survey (Hopkins etal. 2025): 4 456
images (23.4%)

e ASKAP EMU pilot survey (Norris etal. 2021): 5 860
images (30.7%)

e ASKAP EMU pilot Galactic Plane surveys (Umana et al.
2021): 6 040 images (31.7%)

We manually assigned the following labels to each image:

e BACKGROUND: If the image is purely background noise, e.g.
no sources are visible. Typically, this label is set for frames
located at the map borders;

e COMPACT: if point sources or compact sources compara-
ble with the synthesised beam size (say <10 times the
beam) are present. Double or triple sources with point-like
components also fall into this category;

e EXTENDED: if any extended source is visible, e.g. a compact
source with extension >10 x beam;

e RADIO-GALAXY: if any extended source is visible with a
single- or multi-island morphology, suggesting that of a
radio galaxy (e.g. core + lobes);
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Table Al.The number of images
in the radioimg-multilabel dataset
that have been assigned each spe-
cific label. Multiple labels can be
assigned to a single image, as they
are not mutually exclusive.

Label #images
BACKGROUND 116
COMPACT 18671
EXTENDED 3279
RADIO-GALAXY 3269
DIFFUSE 757
DIFFUSE-LARGE 1438
FILAMENT 50
ARTIFACT 1283
PECULIAR 439
MOSAICKING 260
BORDER 453

e DIFFUSE: if any diffuse source is visible, typically having
small-scale (e.g. <few arcmin) and roundish morphology;

e DIFFUSE-LARGE: if any large-scale (e.g. covering half of
the image) diffuse object with irregular shape is visible;

e FILAMENT: if any extended filamentary structures is visi-
ble;

e ARTIFACT: if any ring-shaped or ray-like artefact is visible,
e.g. typically around bright resolved sources;

e PECULIAR: if any object is found with peculiar/anomalous
morphology;

e MOSAICKING: if any residual pattern of the mosaicking
process used to produce the image is present;

e BORDER: if the image contains blank/NaN regions along its
borders.

More than one label can be assigned to each image, depending
on the object/features the user recognises in the image. The num-
ber of images that have been assigned each specific label is reported
in Table A1.

The dataset was split into two samples. The first sample, con-
taining 13 342 images, was used to generate the user-assistant
conversations for the training Q&A dataset starting from the
template image description created from assigned class labels, as
described in Section 3.1.1. The rest of the dataset, consisting of
5 718 images, was used to evaluate the performance of trained
models.

rgz-smorph dataset

The dataset currently includes a collection of 9 570 radio images
extracted from the VLA FIRST survey (Becker etal. 1995) and
annotated in the Radio Galaxy Zoo (RGZ) crowdsourced project
(Banfield et al. 2015). Each image is centred and zoomed on radio
sources of 6 different morphological classes, defined on the basis of
the observed number of components (C) and peaks (P) as follows:
1C-1P, 1C-2P, 1C-3P, 2C-2P, 2C-3P, 3C-3P. The entire dataset
was split into two samples. The first one, containing 5 735 images
(~1 000 per class), was used to create the conversational dataset,
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while the remaining sample (3 835 images, ~600 per class) was

reserved for model evaluation scopes.

smgps-extcat dataset

The dataset currently includes a collection of 17 062 radio images
extracted from the SMGPS survey (Goedhart etal. 2024), each
centred and zoomed™ on radio sources listed in the SMGPS
extended source catalogue (Bordiu etal. 2025). This includes
single- or multi-island sources with morphologies classified as:
EXTENDED or DIFFUSE. Furthermore, a fraction of the cata-
logued sources also have an astronomical class label obtained
either through morphological considerations or cross-matching
with various Galactic source catalogues (see Bordiu et al. 2025 for
details). Available class labels are: GALAXY (radio galaxy), HIT (HiI
region), PN (planetary nebula), SNR (supernova remnant), PULSAR
(pulsar), STAR (generic radio star), YSO (young stellar objects),
LBV (luminous blue variable star), WR (Wolf-Rayet star), HMXB
(high-mass X-ray binary), LMXB (low-mass X-ray binary). Sources
cross-matching to multiple catalogues have more than one label
assigned. All the above source annotations are taken into account

to generate the conversational dataset.

A.2 Fine-grained radio datasets

We describe below the annotated datasets used to create con-
versational train datasets that contain precise object localization

information.

caesar-mrcnn dataset

The dataset currently contains 12 774 annotated radio images
taken from different surveys, such as the VLA FIRST (Becker
etal. 1995), ATCA Scorpio (Umana etal. 2015), and ASKAP-
EMU Scorpio (Umana et al. 2021) surveys. The annotation data
include bounding boxes, segmentation masks and classification
labels for all radio object identified in the images (38 342 objects,
including both real and spurious sources). Objects are classi-
fied into five possible classes: SPURIOUS, COMPACT, EXTENDED,
EXTENDED-MULTISLAND, FLAGGED. A detailed explanation of the
labelling scheme is provided in the reference publication (Riggi
etal. 2023). The entire dataset was used to produce the Q&A

training dataset.

emu-pilot-rgcat dataset

The dataset currently contains 10 414 annotated radio images
taken from the ASKAP EMU pilot survey (Norris et al. 2021), each
containing at least one extended radio source. Annotation data
have been extracted from EMU pilot RG-CAT catalogue (Gupta
et al. 2024), including bounding boxes and classification labels for
radio objects present in the images. Objects in the original cat-
alogue are classified into six possible radio galaxy morphology

classes:

e C: compact radio galaxies;
e FR-I:radio galaxies of Fanaroff-Riley type I;
e FR-II:radio galaxies of Fanaroff-Riley type II;

™The original image crop size is set to 1.5 times the size of the source bounding box.
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e FR-x: radio galaxies with mixed or hybrid morphology,
showing characteristics of both FR-I and FR-II galaxy
classes;

e R:radio galaxies with single-peak resolved morphology;

e Pec: radio galaxies with a peculiar morphology;

A total of 185 294 objects were annotated according to RG-CAT
catalogue.

From a visual inspection of the data, we note that various
objects classified as compact (C) should be rather considered
as belonging to the EXTENDED class in the classification scheme
adopted in the caesar-mrcnn dataset (see previous paragraph).
To make the two fine-grained datasets more comparable, we
applied the following processing steps. We first extracted objects
from EMU pilot images using caesar-mrcnn trained model (Riggi
etal. 2023). As a result, we obtained a list of detected objects
classified with the caesar-mrcnn classification scheme, that was
cross-matched with the original RG-CAT object collection. This
was extended and complemented according to the match results.
Objects with a match (~78%) were also given a caesar-mrcnn label.
Objects detected by the caesar-mrcnn model but missed in the RG-
CAT were added to the final collection, including a total of 231 439
objects. The obtained source annotations were taken into account
to generate the conversational dataset.

B. Image multi-modal benchmarks

Al2

This benchmark" consists of 3,088 image-based Q&A pairs on
annotated grade school science diagrams from the AI2 Diagrams
(AI2D) dataset (Kembhavi et al. 2016).

ChartQA

This benchmark® contains 2 500 image-based Q&A pairs on real-
world charts in various formats (pie, bar) from the ChartQA
dataset (Masry et al. 2022).

DocVQA

This benchmark? contains 16 626 image-based Q&A pairs on doc-
ument of various types and content, sourced from the DocVQA
dataset (Mathew et al. 2021).

InfoVQA

This benchmark? contains 2 801 image-based Q&A pairs on docu-
ment infographics of various types and content, sourced from the
InfographicVQA dataset (Mathew et al. 2022).

"https://huggingface.co/datasets/Imms-lab/ai2d.

°https://huggingface.co/datasets/Imms-lab/ChartQA.

Phttps://huggingface.co/datasets/Imms-lab/DocVQA.

9https://huggingface.co/datasets/Imms-lab/DocVQA, see InfographicVQA validation
data split.
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MME

This benchmark" consists of 2 374 image-based Q&A pairs from
the MME dataset (Fu etal. 2024), designed to evaluate multi-
modal models’ perception and cognition abilities. Perception tasks
include OCR, recognition of coarse-grained objects (e.g., object
presence, count, position, and colour) and fine-grained objects
(e.g., identification of movie posters, celebrities, scenes, landmarks
and artworks). Cognition tasks cover common sense reasoning,
numerical calculation, text translation, and code reasoning.

MMMU

This benchmark® consists of 900 image-based Q&A pairs from the
MMMU dataset (Yue et al. 2024), designed to assess multimodal
perception and reasoning abilities across various image formats,
including charts, diagrams, maps, tables, music sheets, and chemi-
cal structures. The images are sourced from college exams, quizzes,
and textbooks spanning six disciplines: Art & Design, Business,
Science, Health & Medicine, Humanities & Social Science, and
Tech & Engineering.

MMStar

This benchmark' contains 1 500 image-based Q&A pairs from
the MMStar dataset (Chen et al. 2024), designed to evaluate mul-
timodal models across six core capabilities: Coarse Perception,
Fine-grained Perception, Instance Reasoning, Logical Reasoning,
Science & Technology, Mathematics.

“https://huggingface.co/datasets/Imms-lab/MME.
*https://huggingface.co/datasets/Imms-lab/MMMU, see validation data split.
‘https://huggingface.co/datasets/Lin-Chen/MMStar.
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OCRBench

This benchmark" consists of 1 000 image-based Q&A pairs from
the OCRBench dataset (Liu et al. 2024c), designed to assess Optical
Character Recognition (OCR) capabilities across various domains,
including multilingual text, handwritten text, non-semantic text,
and mathematical expression recognition.

SEED-Bench

This benchmark” contains 17 990 image-based Q&A pairs
from the SEED-Bench dataset (Li etal. 2023c), designed
to evaluate multimodal model capabilities across various

domains, including scene understanding, instance iden-
tity/attribute/location/counting,  spatial relations, instance
interaction, visual reasoning, text recognition, action

recognition/prediction, procedure understanding.

ScienceQA-IMG

This benchmark" consists of 2 017 image-based Q&A pairs from
the ScienceQA dataset (Lu et al. 2022), featuring multiple-choice
questions spanning diverse topics across three subjects: natural
science, social science, and language science.

RealWorldQA

This benchmark® contains 765 image-based Q&A pairs from the
RealWorldQA dataset, featuring real-world scenarios, including
images captured from vehicles.

https://huggingface.co/datasets/echo840/OCRBench.

Vhttps://huggingface.co/datasets/Imms-lab/SEED-Bench.

“https://huggingface.co/datasets/Imms-lab/ScienceQA, see ScienceQA-IMG test data
split.

*https://huggingface.co/datasets/Imms-lab/Real WorldQA.
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C. Supplementary plots/tables

Table C1.User-assistant conversations on sample radio images for base and fine-tuned LLaVA-OneVision models.

User

llava-ov

radio-1lava (Q&A)

radio-1llava (Q&A
+ capt.)

User

1llava-ov

radio-1lava (Q&A)

radio-1llava (Q&A
+ capt.)

You are given a radio astronomical image as input. Answer to the question below, strictly following the provided instructions.

## Question: Can you provide a brief description of the image?

## Instructions:

— Base your description solely on the objects and patterns visible in the image

— Do not include details that are not present in the image
— Use a scientific and astronomical writing style
— Limit your response to a maximum of four sentences

The image depicts a section of the sky with several bright,
white spots against a dark background. These spots are
likely to be celestial objects such as stars or galaxies. The
distribution and brightness of these objects suggest they
could be part of a larger astronomical structure, possibly
a galaxy cluster or a group of stars within a constellation

The image is a radio astronomical image cutout extracted
from a larger radio-continuum Stokes-I map produced by
an interferometer telescope, centred and zoomed on a
multi-island extended radio source, consisting of 3
islands

The image shows a radio astronomical cutout of an
extended radio galaxy candidate, characterised by its
elongated structure and multiple bright spots

The image depicts a radio astronomical observation,
likely of a celestial object such as a galaxy or a star
system. It shows two bright, circular regions that could
represent the centers of these objects, surrounded by
fainter, ring-like structures that might be indicative of
surrounding material or disk-like formations. The central
bright spots are possibly the cores of the objects,
emitting intense radio signals. The faint lines and
patterns suggest variations in intensity or different
emission mechanisms within the observed region

The image is a radio astronomical cutout featuring
various point-like and compact radio sources, as well as
extended radio sources, with some sources exhibiting
poor imaging and ring-patterned artefacts

The image shows a radio astronomical cutout with two
prominent sources. One source appears as a bright,
compact object near the center of the image, while the
other is a more extended source located towards the
right side. The background exhibits a complex pattern of
concentric rings, likely resulting from the imaging process

## Question: Do you see any likely radio galaxy with an extended morphology in the image?

## Context:

— RADIO GALAXY: a type of active galaxy that emits an exceptionally large amount of radio waves, often extending beyond its
visible structure. These galaxies host an active galactic nucleus (AGN), powered by a supermassive black hole (SMBH) at their

center, which fuels the production of powerful radio jets and lobes

## Instructions:

— Answer the question taking into account the provided context

Yes, there is a likely radio galaxy with an extended
morphology in the image

Yes, the image suggests the presence of an extended
radio galaxy candidate due to its elongated and extended
morphology

Yes, the image shows characteristics of a radio galaxy
with an extended morphology

Yes, there is a likely radio galaxy with an extended
morphology in the image

Yes, the image contains candidate radio galaxies with
extended morphology

No, the image does not show characteristics of a radio
galaxy with an extended morphology
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Table C1.Continued.
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User

llava-ov
radio-llava (Q&A)

radio-llava (Q&A
+ capt.)

## Question: Do you see any imaging artifact in the provided image?

## Context:

— ARTEFACT: noise pattern with a ring-like or elongated morphology, typically found around bright compact sources in radio
images. They are often mistaken for real radio sources but are actually spurious. These patterns arise from imperfections in the
imaging processing stage of radio data

## Instructions:

— Answer the question taking into account the provided context

No

No, the image does not show any imaging artefacts

No, there are no imaging artefacts present in the image

No

Yes, the image contains imaging artefacts

Yes, there are imaging artefacts present in the image

« =2 C @® localhost:8501

Model Configuration
Enter model name e path

imms-labyllava-oneviskon-gwenl-Tb-ov

LORA model
For LORA maded, enter modet base

Imms-laby/llava-onevision-qwenl-Th-ov

Image Processing
Parameters

apply rscale transform?
rscale contrast

—_—
8.18 1.00

Model Parameters
do sample?

temperature

—
8.00 1.00

radio-llava Demo

Upload an image and enter a query to interact with the pre-trained radio-ilava model
Load Model

~,. Dragand drop file here

Browse files
GOO2.5+0.00Fx_Mosakc_MomD_cutout0001T97 pag x

Prompt

Entier your query (o2, What i in the imageT” or “Describe the image content P

Prowide a brief description of the input image

Conversations

Clear

User: Provide a brief description of the input image

Assistant: The image appears to be a grayscale photograph of a celestial scene, possibly taken by a
tebescope. It shows various objects that could be stars or other astronomical features against a dark
background. The image Is somewhat blurry and lacks clear detalls, making it difficult to identify
specific objects with certainty.

Figure C1. A screenshot displaying the Streamlit web application developed for radio-llava demo purposes.
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1 fine-tuning (Q&A), full (shallow)
- default
| @ default (alt prompt)
. vt

F1-score

5 B6

Figure C2. Class-averaged classification F1-scores obtained with the radio-llava model
on B1-B6 radio benchmarks, comparing fine-tuning on the Q&A training dataset
(black solid histograms, labelled as ‘default) with model variants (v1-v6, coloured
histograms), fine-tuned on the same dataset using alternative parameters (see text).
The dashed black histogram represents the standard model evaluated on B1-B6
benchmarks using an alternative prompt.

B4 B!

https://doi.org/10.1017/pasa.2025.10082 Published online by Cambridge University Press

19


https://doi.org/10.1017/pasa.2025.10082

	
	Introduction
	Vision-language models
	The LLaVA model
	Model overview
	Model architecture
	Model training
	The radio-llava model

	Training dataset
	Q&A dataset
	Caption dataset
	Model fine-tuning
	Implementation details
	Model evaluation
	Evaluation benchmarks
	Radio benchmarks
	Image standard benchmarks
	Zero-shot performance
	Open-weight models
	Commercial closed-weight models
	Fine-tuning performance
	Radio benchmarks
	Standard benchmarks
	Diagnostic analysis
	Summary
	Coarse-grained radio datasets
	radioimg-multilabel dataset
	rgz-smorph dataset
	smgps-extcat dataset
	Fine-grained radio datasets
	caesar-mrcnn dataset
	emu-pilot-rgcat dataset
	AI2
	ChartQA
	DocVQA
	InfoVQA
	MME
	MMMU
	MMStar
	OCRBench
	SEED-Bench
	ScienceQA-IMG
	RealWorldQA

