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Abstract
In order to improve the positioning accuracy of industrial robots, this paper proposes a global calibration method
for planar parallel robot considering joint errors, which solves the problem that the existing calibration methods
only consider part of the error sources and the calibration accuracy is poor, and improves the calibration efficiency
and robot positioning accuracy. Consequently, it improves calibration efficiency and the overall precision of robot
positioning. Firstly, the error model of overdetermined equations combined with structural parameters is established,
and the global sensitivity of each error source is analyzed. Based on the measurement data of laser tracker, the
local error source is identified by the least square method, which improves the local error accuracy by 88.6%.
Then, a global error spatial interpolation method based on inverse distance weighting method is proposed, and the
global accuracy is improved by 59.16%. Finally, the radial basis function neural network error prediction model
with strong nonlinear approximation function is designed for global calibration, and the accuracy is improved by
63.05%. Experimental results verify the effectiveness of the proposed method. This study not only provides technical
support for the engineering application of this experimental platform but also provides theoretical guidance for the
improvement of the accuracy of related robot platforms.

1. Introduction
With the rapid development of smart manufacturing and robotics technology, robots have been widely
used in high-precision manufacturing fields such as drilling, milling, and assembly. Parallel robots
consist of a moving platform connected to a fixed base through multiple kinematic chains. Due to
the closed-loop structure formed by these kinematic chains, parallel robots inherently exhibit higher
stiffness, lower motion inertia, and increased load-bearing capacity compared to serial robots. Spatial
parallel robots, featuring multiple kinematic pairs, offer additional degrees of freedom but may compro-
mise overall speed and positional accuracy [1]. In contrast, planar parallel robot systems usually achieve
higher velocity and positioning accuracy, which is sufficient for a variety of manipulation tasks in the
plane. However, due to the existence of uncertain factors, such as the operating environment of the robot,
machining, assembly, and so on, the positioning accuracy of the robot is not satisfactory [2]. Therefore,
improving the positioning accuracy of robots has received more and more attention from scholars.

Currently, there are two main methods to enhance the accuracy of robots. One approach is to employ
error prevention techniques during the robot’s manufacturing phase. Ridha Kelaiaia et al. [3] have
proposed a novel multi-objective function-based Parallel Manipulators (PMs) dimension optimization
design method to enhance the accuracy of parallel robots. The other approach involves employing
precision compensation techniques after the robot assembly is completed. In practical engineering appli-
cations, the latter method is more widely utilized [4]. Kinematic calibration is typically an economical
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and effective method [5], which primarily involves the following four steps: error modeling, error mea-
surement, parameter identification, and error compensation [6]. Establishing an error model that satisfies
completeness, continuity, and minimization is a critical step in kinematic calibration. However, it’s
important to note that error sources encompass both geometric and non-geometric errors. The former
includes not only static errors (such as manufacturing and assembly errors) but also pitch errors of the
kinematic pair and straightness errors. The latter includes errors caused by backlash, friction, flexible
deformation, and thermal deformation [7]. It is found that joint errors of the robot have a great impact
on the positioning accuracy. It is found that the geometric parameter error accounts for about 80% of
the robot positioning error, nearly 20% of the robot positioning error is attributed to the deformation of
robot components, and the joint error of the robot has a great impact on the positioning accuracy [8].

In recent decades, researchers have done a lot of work on robot calibration. To enhance the accuracy
of parallel kinematic manipulator, Allaoua Brahmia et al. [9] proposed a novel dimensionless sensi-
tivity analysis method to identify crucial geometric errors in both parallel and serial manipulators. Ye
et al. [10] proposed an error forward propagation method and an error identification algorithm to sepa-
rately solve the nonlinear error propagation and ill-conditioned identification equations. Simulation and
experimental results of a 5-degree-of-freedom redundantly constrained hybrid robot indicate that the
proposed methods can predict the end-effector position and pose under geometric errors. Luo et al. [11]
introduced a novel forward kinematics solution based on dual quaternions and a modified error model
based on dimensionless error mapping matrix, and an iterative identification procedure is developed.
Experimental results indicate that the residual position and orientation errors are reduced by at least
97.67% and 86.85%, respectively, compared to the original values. Although the approach has a signif-
icant improvement in accuracy, its drawback lies in the complexity of the modeling and identification
processes, large amount of calculation, and low efficiency. The fundamental principle of the kinematic
model method is to obtain the kinematic parameter errors of the robot through a measurement and iden-
tification procedures, and then modify the kinematic model of the robot. Allaoua Brahmia et al. [12]
proposed a novel method for improving robot precision by optimizing geometric parameter tolerances
using an interior-point algorithm. Ye et al. [13] established a general error model using the product
of exponentials formula and derived the geometric error constraint conditions. Li et al. [14], through
internal force analysis, established a geometric error model incorporating deformations induced by gen-
eralized forces. The method was applied to the kinematic calibration of redundantly actuated parallel
robots. However, due to the randomness of the actual geometric error, the assumption of error constraint
cannot be satisfied, which directly leads to the inaccuracy of the error model.

In this case, non-kinematic model calibration methods have been proposed. Chen et al. [15] uti-
lized a rigid-flexible coupling error model and a comprehensive measurement approach to achieve
non-kinematic calibration for industrial robots; however, it can’t compensate for the non-geometric
error, and the compensation effect is poor. Zhu et al. [16] proposed a bilinear interpolation method
based on measuring boundary point errors to estimate target point errors. The most popular method for
compensating robot positioning accuracy is machine learning, which has the advantage of predicting
future behavior, which has the advantage of prediction and has been widely used in different fields to
improve the positioning accuracy of robots [17]. Liu [18] employed a position and pose error decompo-
sition strategy and established an error prediction model based on backpropagation neural network and
Denavit-Hartenberg method. The position and pose error of the entire workspace can be predicted by
measuring position and pose data. Nguyen et al. [19] proposed a kinematic parameter calibration method
based on an improved Manta Ray Foraging Optimization algorithm by combining a robot model-based
recognition method and an artificial neural network based on error compensation technique to reduce
the absolute positioning error of the manipulator. However, the method heavily relies on the structure of
the model and the data samples, usually requiring a substantial amount of data for training the prediction
model, which can reduce the efficiency of calibration.

In summary, many researchers have carried out research on improving positioning accuracy of
robots, but there are still two prominent shortcomings. Firstly, existing calibration methods are inef-
ficient and calibration methods based on numerical analysis heavily rely on error models; however, the
high computational complexity of the kinematic error model method makes the calibration technique of
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Figure 1. Flow chart of the calibration method.

this method more difficult. Moreover, many error models only consider partial geometric error sources,
neglecting joint errors, which results in insufficient positioning accuracy in the overall workspace of
robots for high-precision tasks. Secondly, some model-free calibration methods exhibit complex network
structures and overreliance on extensive training data, making them challenging to apply in practical
engineering scenarios. Therefore, in this paper, a data-driven global calibration method considering
joint errors is proposed. This approach directly establishes a mapping relationship between robot pose
errors and drive joints using spatial interpolation and radial basis function neural network (RBFNN),
which can deal with the impact of both geometric and non-geometric errors. With a small amount of
data, it can accurately and efficiently predict the position and pose error of the entire workspace of the
robot. The contradiction between the measurement efficiency and the calibration accuracy of the tradi-
tional numerical method is solved, and the global error compensation of the robot is realized to meet
the requirements of high-precision positioning.

This paper makes the following contributions: (1) The proposed global calibration method based
on the distance-inverse law and radial basis function neural network makes up for the shortcom-
ings of previous research methods, which suffered from low accuracy and high application difficulty.
(2) The proposed calibration strategy has been successfully applied to a planar parallel robot, effectively
improving the robot’s global positioning accuracy.

The overall process of this paper is illustrated in Fig. 1. The first section is background introduction
and literature review. In the second section, the kinematic forward and inverse models for a self-designed
3-PRR (P is Prismatic joint, R is Rotating joint) parallel robot were derived using the closed-loop vector
method. In the third section, an error model was established, followed by a global sensitivity analysis for
each error source was carried out. Local calibration was then performed using the least-squares method.
The study revealed that calibration based on error models using least squares methods can only enhance
local accuracy of the robot, failing to achieve comprehensive improvement across the entire workspace.
Therefore, in order to enhance the overall precision of the robot, in the fourth section, the inverse distance
weighting (IDW) method was employed for error spatial interpolation, and RBFNN was used for error
prediction. The experiment was conducted to verify effectiveness of the proposed algorithm. Finally, the
fifth section provides the conclusion and future work.

2. Kinematic modeling and analysis
2.1. Inverse kinematic solution
Kinematics modeling of parallel robot is divided into forward and inverse kinematics modeling. The
forward kinematics refer to obtaining pose of the moving platform of the robot through the kinematic
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Figure 2. Planar 3-PRR parallel robot mechanism sketch.

variable of input joint (position, velocity, and acceleration). On the contrary, the inverse kinematics need
to obtain the value of each drive joint under the known motion state of the moving platform [20]. By
employing the kinematic model, we can perform error analysis and reveal the transmission relationship
between the joint space and the workspace. For the parallel mechanism, the inverse kinematics is sim-
pler than the forward kinematics, making it easier to obtain the analytical solution, whereas the forward
kinematics is more complex. Additionally, the inverse kinematics serves as the foundation for trajec-
tory planning and real-time control. Therefore, establishing the inverse kinematic solution model is the
primary task.

As shown in Fig. 2, the sketch of the planar 3-PRR parallel robot mechanism was constructed by the
regular triangle moving platform C1C2C3, the fixed platform, and three symmetrical kinematic chains
A1B1C1A2B2C2A3B3C3. Each of the kinematic chains has one active prismatic pair (p) followed by two
consecutive passive revolute (R) joint. A1, A2, A3 are the regular triangle’s three vertices. The vertices
OA and OC are center of the regular triangles A1A2A3 and C1C2C3, respectively. The OA − XY is the fixed
frame and the OC − XY is the local moving frame. OAX and OCX are parallel to lines A2A3 and C2C1,
respectively. Parameters αi, θi(i = 1, 2, 3) are the angles at Ai, Bi(i = 1, 2, 3) between the X − axis of the
fixed frame and AiBi, BiCi(i = 1, 2, 3), respectively. li(i = 1, 2, 3) is the input displacement of the driving
joints, Si is the length of the passive linkage BiCi(i = 1, 2, 3), r denotes the radius of the outer circle
of moving platform, and R represents the radius of the outer circle of fixed platform. Additionally, βi

refers to the angle between the x − axis of the local moving frame and OCCi(i = 1, 2, 3). α1 = 2700, α2 =
300, α3 = 1500, β1 = 300, β2 = 1500, β3 = 2700, R = 733 mm, Si = 430 mm and r = 100 mm.

In this paper, kinematic constraint equations are used to model the planar 3-PRR parallel robot mech-
anism [21]. The pose of the moving platform center OC is denoted as (x, y, ϕ), and from this information,
we can determine the input values li(i = 1, 2, 3) for the driving joints. For the ith chain, the kinematic
equations established by closed-loop vector method in fixed coordinate system OA-XY are as follows:

{
xAi + li cos αi + Si cos θi = xCi

yAi + li sin αi + Si sin θi = yCi

(1)

where xAi = −R cos αi, yAi = −R sin αi, xCi = x − r cos (βi + ϕ), yCi = y − r sin (βi + ϕ)
By rewriting Eq. (1), we can get:

{
li cos αi + Si cos θi = Qxi

li sin αi + Si sin θi = Qyi

(2)

where Qxi = xCi − xAi = x − r cos (βi + ϕ) + R cos αi, Qyi = yCi − yAi = y − r sin (βi + ϕ) + R sin αi
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According to trigonometric function theorem, the angle θi of the Eq. (2) can be eliminated, so, we
can get a one-variable quadratic equation as follows:

l2
i − 2

(
Qxi cos αi + Qyi sin αi

)
li +

(
Q2

xi
+ Q2

yi
− S2

i

)= 0 (3)

By examining the discriminant b2 − 4ac > 0, we determine that the equation has two solutions.
However, considering the actual circumstances of the mechanism, only one of these solutions conforms
to the motion equation constraints. The formula for the solvable driving input li is as follows:

li =
(
Qxi cos αi + Qyi sin αi

)−
√(

Qxi cos αi + Qyi sin αi

)2 − (
Q2

xi
+ Q2

yi
− S2

i

)
(4)

The relationship between the moving platform pose and the driving input can be obtained by Eq. (4),
and the driving input li can be solved from the target pose coordinate of the moving platform.

The kinematic Eq. (2) is differentiated with respect to time to obtain the velocity equation:{
cos αi l̇i − Si sin θiθ̇i = ẋ − r sin(βi + ϕ) ϕ̇

sin αi l̇i + Si cos θiθ̇i = ẏ + r cos(βi + ϕ) ϕ̇
(5)

For Eq. (5), the corresponding joint velocity can be solved in the form of a matrix:[
l̇i

θ̇i

]
=
[

cos αi −Si sin θi

sin αi Si cos θi

]−1 [
ẋ − r sin(βi + ϕ) ϕ̇

ẏ + r cos(βi + ϕ) ϕ̇

]
(6)

Differentiating the velocity Eq. (5) with respect to time yields the acceleration equation:{
cos αi l̈i − Si sin θiθ̈i = ẍ − r cos(βi + ϕ) ϕ̇2 − r sin(βi + ϕ) ϕ̈ − Si cos θiθ̇

2
i

sin αi l̈i + Si cos θiθ̈i = ÿ − r sin(βi + ϕ) ϕ̇2 + r cos(βi + ϕ) ϕ̈ − Si sin θiθ̇
2
i

(7)

Eq. (7) allows us to determine the joint acceleration corresponding to the movement of the moving
platform in matrix form:[

l̈i

θ̈i

]
=
[

cos αi −Si sin θi

sin αi Si cos θi

]−1 [
ẍ − r cos(βi + ϕ) ϕ̇2 − r sin(βi + ϕ) ϕ̈ − Si cos θiθ̇

2
i

ÿ − r sin(βi + ϕ) ϕ̇2 + r cos(βi + ϕ) ϕ̈ − Si sin θiθ̇
2
i

]
(8)

2.2. Velocity Jacobian matrix
The velocity Jacobian matrix of the robot represents the mapping relationship between the input velocity
vector and the output velocity vector. This matrix can be obtained using either the forward or the inverse
kinematics model. The velocity Jacobian matrix plays a vital role in both mechanism singularity analysis
and error analysis [22]. Consequently, to analyze the analysis of motion characteristics in parallel robots,
the mechanism’s inverse kinematics model is derived through the closed-loop vector method, and the
velocity Jacobian matrix of the 3-PRR parallel robot mechanism is subsequently derived based on the
inverse kinematics model.

When the velocity Eq. (5) is multiplied by cos θi and sin θi, we obtain the following formula:{
cos αi cos θi l̇i − Si sin θi cos θiθ̇i = ẋ cos θi − r sin(βi + ϕ) cos θiϕ̇

sin αi sin θi l̇i + Si cos θi sin θiθ̇i = ẏ sin θi + r cos(βi + ϕ) sin θiϕ̇
(9)

θ̇i can be eliminated after summing, and the relationship between the mechanism input and output is
as follows:

l̇i cos(αi − θi) = ẋ cos θi + ẏ sin θi − r sin(βi + ϕ − θi) ϕ̇ (10)
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Figure 3. Flow chart of velocity Jacobian matrix iteration.

Rewriting for the matrix form is:

⎡
⎢⎣

cos(α1 − θ1) 0 0

0 cos(α2 − θ2) 0

0 0 cos(α3 − θ3)

⎤
⎥⎦
⎡
⎢⎣

l̇1

l̇2

l̇3

⎤
⎥⎦=

⎡
⎢⎣

cos θ1 sin θ1 −rsin(β1 + ϕ − θ1)

cos θ2 sin θ2 −rsin(β2 + ϕ − θ2)

cos θ3 sin θ3 −rsin(β3 + ϕ − θ3)

⎤
⎥⎦
⎡
⎢⎣

ẋ

ẏ

ϕ̇

⎤
⎥⎦

(11)
The Eq. (11) can be expressed in brief description:

JF1L̇ = JF2Ẋ (12)

In which JF1 and JF2 are referred to as the input and output Jacobian matrices, respectively, we can
get velocity Ẋ of the moving platform by Eq. (12) as follows:

Ẋ = J−1
F2 JF1L̇ = JV L̇ (13)

where JV is velocity Jacobian matrix.

2.3. Forward kinematic solution
The forward kinematics, in contrast to the inverse kinematics, focus on determining the position and
orientation of the moving platform based on given driving inputs. In the case of parallel robots, their
kinematic equations are typically nonlinear due to the interplay and coupling effects between individ-
ual components. Given the position and orientation of an end effector, there can exist multiple sets
of joint angles that lead to the same end position. This introduces complexity to the mathematical
derivation and computational aspects of solving kinematic equations. Structural and kinematic equa-
tions often involve numerous three-dimensional geometric and vector operations, making the solving
process laborious and resource-intensive [23]. There is no universally applicable closed-form solution
for the forward kinematic solution of parallel robots. It must be tailored to the specific robot structure
and tasks. Consequently, determining the positive solution of parallel mechanisms is challenging, and
numerical methods are generally employed for this purpose. In this paper, for the planar 3-PRR parallel
robot mechanism, the speed Jacobian iterative method is adopted to find the forward kinematic solu-
tion. This method gradually approaches the position and orientation of the robot’s end effector to solve
the positive kinematics of the robot. It offers advantages such as speed and high accuracy, making it a
suitable real-time approach [24]. The core idea of the velocity Jacobian matrix iterative method is as
follows: using the given input vector, L0 = [l10 , l20 , l30 ], and the known initial pose vector X = [x, y, ϕ]T,
along with the corresponding initial input vector, L1 = [l11 , l21 , l31 ], the velocity Jacobian matrix JV is
derived from input to output, given the calculation accuracy K [25]. The solving process of the speed
Jacobian matrix iterative method is described in Fig. 3. Initially, the end-effector platform is moved to
the initial position vector X through drive input. Using inverse kinematics, the drive input vector L0

is solved, and the velocity Jacobian matrix is determined. Utilizing the Jacobian matrix, the theoreti-
cally updated pose vector is calculated, along with the corresponding new drive input vector L1. The
completion of the loop is determined by a discerning condition.
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3. Kinematic calibration
Kinematic calibration is an inverse problem in robotics used to determine the robot’s kinematic param-
eters for precise control and motion planning purposes. By measuring the position and orientation of
the robot’s end-effector, joint angles and kinematic parameters can be deduced, thus improving the
model to enhance the robot’s motion accuracy, safety, and efficiency [26]. A primary task in improv-
ing the positioning accuracy of parallel robot mechanisms is parameter identification and calibration.
For a planar parallel mechanism, the end-effector typically has three degrees of freedom, resulting in
three positioning errors. These errors primarily stem from input errors and kinematic parameter errors.
These errors propagate through the closed-loop motion chain to influence end-effector positioning accu-
racy. However, kinematic calibration faces challenges such as sensor noise, coupling effects between
joints, and the complexity of the calibration process. This study simplifies the error model using small-
perturbation approximations and decouples the mechanism through angle transformations to reduce
complexity. This yields a linear error model for a planar 3-PRR parallel robot mechanism. The error
model can be transformed into a parameter identification model through the generalized inverse trans-
formation, resulting in an overdetermined system of equations. These equations can be solved using the
least-squares method to obtain error parameters [27].

3.1. Error modeling
The geometric error model serves as the foundation for error analysis and kinematic calibration of pla-
nar 3-PRR parallel robot mechanism, involving the mapping between the motion platform pose error
and geometric source errors. Based on the closed-loop vector relationship, the equation for the moving
platform pose (x, y, ϕ) is obtained as follows:{

x = li cos αi + Si cos θi − r cos(βi + ϕ) − R cos αi

y = li sin αi + Si sin θi − r sin(βi + ϕ) − R sin αi

(14)

In Eq. (14), except for θi being an indirect error source, all others are direct error sources. Introducing
a minor error δ for each direct error source and setting γi = βi + ϕ yields Eq. (15).{

x + δx = (li + δl) cos(αi + δαi) + (S + δSi) cos θi − (r + δri) cos(γi + δγi) − (R + δRi) cos(αi + δαi)

y + δy = (li + δl) sin(αi + δαi) + (S + δSi) sin θi − (r + δri) sin(γi + δγi) − (R + δRi) sin(αi + δαi)

(15)
Eq. (15) is simplified by applying a small-perturbation equivalence formula:{

sin ε ≈ ε

cos ε ≈ 1
(ε << 1) (16)

The model of Eq. (15) reduces the higher-order terms through Eq. (16) and then finds the difference
solution with Eq. (14) as follows:{

δx = (R − li) sin (αi) δαi + r sin(γi) δγi − cos(γi) δγi + δSi cos θi + (δli − δRi) cos(αi)

δy = (R − li) cos(αi) δαi − r cos(γi) δγi − sin(γi) δγi + δSi sin θi + (δli − δRi) sin(αi)
(17)

Due to the coupling between the position and orientation errors of parallel robot mechanisms, it is
necessary to decouple position and orientation. The equations for δx and δy are multiplied by cos θi

and sin θi, respectively. After rearranging and calculations, the input and output forms are obtained as
follows:

cos θiδx + sin θiδy − r sin(γi − θi) δϕ =
[

(R − li) sin(αi − θi) δαi + r sin(γi − θi) δβi − cos(γi − θi) δr

+δSi + δli cos(αi − θi) − δRi cos(αi − θi)

]
(18)
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Table I. Description of the error sources in the planar 3-PRR parallel robot mechanism.

Error source (i = 1,2,3) Meaning
δαi Static platform angle error
δβi moving platform angle error
δri Error of the outer radius of the moving platform OCCi

δsi Length error of the passive rod BiCi

δli Joint input error AiBi

δRi Error of the outer radius of the static platform OAAi

In matrix form, this can be represented as follows:

δX = Jeδd (19)

where the formula includes:

δX = [
δx δy δϕ

]T
, δdi =

[
δαi δβi δri δSi δli δRi

]T
, δd = [

δd1 δd2 δd3

]T

Je = J−1
1 J2, J1 =

⎡
⎢⎣

cos θ1 sin θ1 −r sin(γ1 − θ1)

cos θ2 sin θ2 −r sin(γ2 − θ2)

cos θ3 sin θ3 −r sin(γ3 − θ3)

⎤
⎥⎦

,

J2 =
⎡
⎢⎣

A11 01∗6 01∗6

01∗6 A22 01∗6

01∗6 01∗6 A33

⎤
⎥⎦

Aii =
[
(R − li) sin(αi − θi) r sin(γi − θi) − cos(γi − θi) 1 cos(αi − θi) − cos(αi − θi)

]
From Eq. (19), the kinematic error model of the planar 3-PRR parallel robot mechanism can be

derived. Using the known error parameters, the corresponding end-effector pose error can be solved. This
error model encompasses all geometric error sources in the mechanism, providing important guidance
for subsequent calibration and optimization in the system.

3.2. Analysis of error source sensitivity
In order to evaluate the effects of geometric source errors on the pose accuracy of the moving platform,
the sensitivity analysis is carried out generally after formulating the geometric error model. Error source
sensitivity analysis is crucial in robotics and is used to assess the impact of various error sources on the
calculation results of the robot’s end-effector position and pose [28]. Through error source sensitivity
analysis, we can determine which error sources have the most significant influence on the robot’s kine-
matic performance. This, in turn, helps guide error correction and optimization measures to enhance the
robot’s motion accuracy and positioning precision. In the constructed error model of the planar 3-PRR
parallel robot mechanism, there are 18 error sources that can affect the accuracy of end positioning.
Some error sources have a considerable impact on the end positioning accuracy, while others have less
sensitivity to the end positioning accuracy. Eighteen error sources are shown in Table I.

Consider the error transfer matrix Je. The elements in the first row correspond to the end error δx,
those in the second row correspond to δy, and those in the third row correspond to δϕ. For example,
the first element of the error transfer matrix Je determines the error source δα1 weight factor affecting
the end error δx. In other words, the percentage of elements in the row of the error transfer matrix Je

reflects the sensitivity of error propagation [29]. The greater the weight of the error source is, the larger
the introduced error, and the more it contributes to the terminal localization error. Consequently, the
sensitivity of error propagation is higher. Since there are different error matrix values at different points
on the platform, assume that all angle errors are 0.001◦ and all length errors are 0.05 mm. To calculate
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Figure 4. Sensitivity distribution of the 18 error sources.

the Global Error Sensitivity Index of error sources, select positioning error information from the four
quadrants of the workspace, and utilize formula (20) as follows:

GESI =
∫∫

s

[(
Jeij ∗ δdj

)
/δXi

]
ds/

∫∫
s

ds, (i = 1, 2, 3; j = 1 ∼ 18) (20)

where Jeij represents the weighting coefficient of the error source, δdj is the error source, δXi denotes the
pose error vector, and ‘s’ represents the workspace area.

Figure 4 is sensitivity distribution plot of the overall error sources. From Fig. 4, it is evident that in
the planar 3-PRR parallel robot mechanism, the δx error is primarily influenced by joints 2 and 3, while
δy is affected by all three joints simultaneously. The error δϕ, related to rotational freedom, is caused
by the symmetry of the three joints. This characteristic is inherent to the platform’s structure, where the
rotation of the platform axis must involve all three joints, resulting in δϕ being influenced by all three
joints simultaneously. Table II is comparison of the effects of the three branched errors on the terminal
errors.

Since the platform mounting angle error is multiplied by the radius, it magnifies the arc length error.
Theoretically, angle bias leads to a significant bias in the end alignment. The installation angle error
of the guide rail remains constant, while the driving distance varies. Therefore, the error is not a fixed
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Table II. Comparison of the effects of the three branched errors on the terminal errors.

Main error source δx δy δϕ

Angle errors δαi and δβi Branch Chains 2 and 3
take the lead.

Collective influence,
with Branch Chain 1

being more prominent.

Impacted by all three
branch chains.

Laser tracker

Laser reflective 
sphere

Control 
console

Moving 
platform

Fixed 
platform

Planar 3-PRR 
parallel platform

Flexible 
coupling

Ball screw

Figure 5. Experimental equipment and environment.

value but is related to the input distance. The larger the input distance is, the greater the end stroke, and
consequently, the greater the error.

3.3. Error measurement
Error measurement is a critical step in kinematic calibration, as experimental measurement data directly
influence parameter identification and compensation outcomes. The experimental system is built as
seen in Fig. 5 The experimental platform is driven by a Yaskawa servo drive motor and controlled
using a DMC-4183 PCI bus motion control card developed by the GALIL Company. The measurement
instrument employed is a Leica AT960-MR laser tracker manufactured by Leica in Germany. It offers a
resolution of 0.1 μm and a measurement accuracy of 10 μm.

The specific process of the experiment is outlined as follows:

(1) Point selection: Initially, 40 positioning points are chosen within the working space of the
moving platform, following a 10 ∗ 10 mm distribution pattern, in each of the four quadrants.
Simultaneously, 40 positioning points are selected at 10 mm intervals along the coordinate axes,
resulting in a total of 80 theoretical positioning points for subsequent measurement experiments
as shown in Fig. 6.

(2) Zeroing: The laser retroreflector is placed at the center point OC of the moving platform. The
fixed coordinate system OA − XY is used to a world coordinate system of the laser tracker. The
center OC of the moving platform is adjusted to coincide with the fixed coordinate original point
OA, thereby completing the zeroing process.
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Figure 6. The theoretical positioning point distribution.

(3) Execution: The control interface is developed in Visual Studio manages planar 3-PRR the
parallel robot mechanism. After connecting the control card, it receives input for the speed
and acceleration of the drive joint. Using the inverse kinematic model, it calculates the drive
input li, corresponding to the target positioning point (x0, y0, ϕ0). It then initiates the operation of
the servo drive motor based on the provided drive input displacement.

(4) Recording: After the moving platform has completely stopped, the real position (x0, y0, ϕ0) is
measured by the laser tracker. This process is repeated for 80 positioning points, and the recorded
data samples are compiled. The center poses error of the moving platform δX is then solved for
parameter identification.

3.4. Parameter identification
Matrix Je represents the error transfer matrix of the planar 3-PRR parallel robot mechanism. By mea-
suring the positioning error of the moving platform δX and performing calculations, δd is identified.
The error model is then reformulated as the parameter identification formula as follows:

δd = J−1
e δX (21)

where J−1
e is generalized inverse matrix that can be obtained from the default square array mentioned

earlier, where the number of equations is less than the number of unknowns (3 < 18). There are three
moving platform errors and 18 error sources, making Eq. (21) an indefinite system [30]. To identify the
parameters (δαi, δβi, δli, δri, δSi, δRi)(i = 1, 2, 3), redundant pose data are needed. This involves mea-
suring the error at multiple points (more than 6 points) within the working space of the end platform
experimentally, which allows for the calculation of δd.

The calibration method based on the error model can be transformed into the problem of solving
overdetermined equations. By calculating the least-squares solution of δd, it becomes possible to identify
the error source for each clade. Based on the data measured in section 3.1 and parameter identification
according to Eq. (21), the solution results are presented in the following Table III.

3.5. Forward kinematics simulation
The values of the error sources are either close to 0 or equal to 0. Upon analyzing the results, it becomes
evident that the least-squares solution of the overdetermined equation is not the exact solution. The
accuracy of the identified parameters decreases as the model becomes more complex. It is noted that the
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Table III. Parameter identification results for three branches of error.

Branch chain 1 Branch chain 2 Branch chain 3
δαi (◦) 0.0094 0.0050 0.0030
δβi (◦) 0.0073 −0.0018 0
δli (mm) −0.2635 0.3707 −0.2933
δri (mm) 0 0 0.0054
δsi (mm) 0.0041 0 0.0187
δRi (mm) 0 0 0

(x0,y0,φ0)
Drive 
input li

Measurement

li+

Effective

Inverse 
kinematics

(x2,y2,φ2)

(x1,y1,φ1)

Forward 
kinematic 

D2-D1 <K

Ineffective

Figure 7. Simulation of the forward kinematic solution.

accuracy of the platform has not been effectively improved. Based on the measured localization error,
it is observed that the further the localization error is from the origin, the larger the error becomes.
When considering the mechanism and sensitivity analysis, it is apparent that the identified constant
error parameter is relatively small compared to the variable error parameter. Moreover, the influence of
coupling and the ball wire rod on the drive input is taken into account. The flexible deformation of the
coupling and the wire rod drive leads to an increase in drive input error with greater drive distance.

Based on the aforementioned overdetermined equations, repeat parameter identification after remov-
ing error sources with smaller error values. The analysis indicates that the drive input error is
significantly larger than the angle error; the identified error parameters are applied to compensate the
theoretical kinematic model. To verify the effectiveness of error parameters, a simulation process was
employed to emulate the actual operation of the parallel platform by solving the kinematic forward
solution. As illustrated in Fig. 7, the process begins by using kinematic inverse solutions to calculate
the drive inputs. Subsequently, the identified error parameters are incorporated into the kinematic for-
ward solution model. Finally, a numerical iterative method is applied to determine the end-effector pose.
Comparing the computed results with the actual moving platform pose error allows for an assessment
of the effectiveness of the error parameters [31].

As observed in Fig. 8, most of the simulated motion errors align closely with the measured motion
errors, confirming the validity of the results from the repeated parameter identification.

4. Experimental results and analysis
4.1. Identification parameter compensation of overdetermined equations
After compensating for the identified error parameters in the kinematic inverse model for the 80 points,
the positioning error is remeasured using the aforementioned error measurement method. The mea-
surement results demonstrate a significant improvement in positioning accuracy. Figure 9(a) depicts a
3D distribution map of the positioning error measured using the kinematic theoretical parameters. As
depicted in Fig. 9(a), the positioning error tends to increase with the distance from the central origin, with
smaller errors closer to the center. Figure 9(b) illustrates a 3D distribution map of positioning error mea-
sured after compensating for the identified errors in the forward kinematic model. Figure 9(c) provides
a comparison of the positioning error distribution before and after calibration. In the uncompensated
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Figure 8. Simulation positioning error comparison chart.

state, the error tends to spread and expand around the origin. After calibration, the positioning error
distribution exhibits more flatter. Considering nongeometric error sources and artificial measurement
factors, the positioning errors do not disappear completely.

The data in Table IV show that the average positioning error is 0.2115 mm, with a maximum error of
0.6103 mm and a minimum error of 0.0141 mm. Moreover, the average positioning error is reduced to
0.0241 mm, with the maximum error being only 0.0583 mm and the minimum being 0 mm. The average
positioning accuracy has effectively improved by 88.60%.

Figure 10 is a 3D distribution map of the attitude angle error measured by the kinematic theoretical
parameters. As shown in Fig. 10(a), the attitude angle error is closer to the central origin and smaller, and
the attitude angle error increases with the distance from the origin. Figure 10(b) is a 3D distribution map
of the attitude angle error measured after the identification error is compensated in the kinematic model.
As shown in Fig. 10(b), the attitude angle error decreases. Figure 10(c) shows a comparison of the error
distribution of the attitude angle before and after calibration. The trend of the attitude angle before and
after calibration changes less, but the overall error of the attitude angle is significantly reduced after
calibration.

Table V provides statistical data for the experimental results of orientation angles, comparing errors
before and after calibration. From Table 5, it can be observed that the average error of orientation angles
decreased from 0.0859◦ to 0.0501◦. The maximum orientation angle error decreased from 0.1892◦ to
0.0877◦, and the minimum orientation angle error decreased from 0.0145◦ to 0.0002◦. The local average
accuracy of orientation angles improved by 41.64%.

4.2. Distance inversion method of space interpolation compensation
The distance inversion method (inverse distance weighting, IDW) is a spatial interpolation technique
used to estimate the values of unknown points based on the values of known points [32]. This method
relies on distance weighting, where known points closer to the unknown point have a greater influence
on the estimation. In the context of error identification in the workspace, the distance inversion method
is employed to interpolate unmeasured points within the workspace, predicting their error distribution
across the entire workspace [33]. It assumes that the error value at an unknown position is inversely
related to the error values at surrounding known positions, with closer known points having a more
significant impact on the estimated value. The error vector at the unknown position can be calculated
using the Eq. (22). This compensation approach can enhance the global positioning accuracy of the
moving platform [34].

P0 =
n∑

i=1

wiPi (22)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724000973
Downloaded from https://www.cambridge.org/core. IP address: 18.222.96.199, on 28 Dec 2024 at 20:50:02, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724000973
https://www.cambridge.org/core


2602 Qinghua Zhang et al.

Figure 9. Positioning error distribution of the moving platform.
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Figure 10. Attitude angle error distribution of the moving platform.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724000973
Downloaded from https://www.cambridge.org/core. IP address: 18.222.96.199, on 28 Dec 2024 at 20:50:02, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724000973
https://www.cambridge.org/core


2604 Qinghua Zhang et al.

Table IV. Results of positioning error calibration.

For the 80 positioning points Before calibration After calibration
Average error/mm 0.2115 0.0241
Maximum error/mm 0.6103 0.0583
Minimum error/mm 0.0141 0.0000

Table V. Attitude angle calibration results.

Attitude angle Before calibration After calibration
Average error/◦ 0.0859 0.0501
Maximum error /◦ 0.1892 0.0877
Minimum error/◦ 0.0145 0.0002

Figure 11. Positioning points interpolation.

where wi = f(di)∑n
i=1 f(di)

, f (di) = 1
d2

i
, P0 represents the error vector at the interpolation point, Pi represents

the error vector at an unknown sample point (xi, yi), wi represents the weight associated with the sample
point, and di represents the distance from the sample point (xi, yi), to the interpolation point (x0, y0).

Figure 11 depicts the distribution of sample points, comprising a total of 128 localization points. As
shown in Fig. 11, the real measurement of 80 positioning points (red points) is selected as sample in
the above and used Eq. (22) to calculate the positioning error vectors for 48 interpolated points (blue
points).

Figure 12 illustrates a partial display of the distance interpolation in the workspace. The red points
represent sample points, and distance calculations are performed on the blue interpolation points to
obtain corresponding weights. The process of interpolating the distance-inverse space is as follows:

(1) As shown in Fig. 12, selecting 48 unknown positioning points (blue points) based on their dis-
tances from the known positioning points (red points), starting with the farthest and moving
toward the nearest.

(2) Assign the values of the known anchor driver input errors to the interpolation point.
(3) Calculate the distances between the unknown sites and the known sites.
(4) Calculate the weights of the unknown sites based on their distances.
(5) Solve the attribute values of the unknown locations using the calculated weights.
(6) Compensate the platform using the error parameters of the unknown sites.
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Table VI. The results of positioning error after interpolation.

48 points interpolated for localization Before calibration After calibration
average error/mm 0.3607 0.1473
maximum change/mm 0.8022 0.4373
least error/mm 0.0922 0.0000

Figure 12. Schematic diagram of inverse distance method.

Table VI illustrates that by employing the distance-inverse method for spatially interpolating
error parameters, the average positioning error decreased from 0.3607 mm before compensation to
0.1473 mm. Furthermore, the maximum error decreased from 0.80 mm to 0.44 mm, and the mini-
mum error decreased from 0.92 mm to 0 mm. This resulted in an overall average positioning accuracy
improvement of 59.16%.

Figure 13(a) presents a 3D distribution of the positioning error before interpolation, with errors gen-
erally increasing outward. This aligns with the observation that the primary error in the planar 3-PRR
parallel robot mechanism tends to increase with greater distances. Figure 13(b) displays a 3D distribu-
tion map of positioning error after interpolation compensation. Although one end of the graph is more
extreme, the overall error distribution appears to become more uniform. By examining the comparison
map of the positioning error before and after calibration in Fig. 13(c), it becomes evident that the overall
error is significantly reduced after calibration.

Figure 14 depicts the three-dimensional distribution of attitude angle errors resulting from the IDW
calibration experiment. As shown in Fig. 14(a), before calibration, the attitude angle errors in the
workspace are smaller near the center origin and increase as the distance from the origin increases.
Figure 14(b) presents the three-dimensional distribution of attitude angle errors measured after calibra-
tion, where the overall error decreases. Figure 14(c) compares the distribution of attitude angle errors
before and after calibration. The trend in attitude angle errors before and after calibration shows a minor
change, with an overall significant reduction in absolute error values.

Table VII provides statistical data for the experimental results of attitude angles using IDW calibra-
tion, comparing errors before and after calibration. From Table VII, it can be observed that the average
error of attitude angles decreased from 0.0727◦ before calibration to 0.0429◦ after calibration. The max-
imum attitude angle error decreased from 0.1607◦ to 0.1435◦, and the minimum attitude angle error
decreased from 0.0114◦ to 0◦. The global accuracy of attitude angles improved by 40.99%.

4.3. RBF neural network prediction error compensation experiment
The topology structure of the radial basis function (RBF) network is straightforward, providing the capa-
bility to store system information within neurons and their connection weights. This network exhibits
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Figure 13. Positioning error distribution.
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Figure 14. Attitude angle error distribution of the moving platform.

global approximation abilities, adheres to continuous incentive conditions, and boasts strong fault tol-
erance and robustness. Consequently, RBF networks have found extensive application in areas such as
signal processing, pattern recognition, and modeling and control of nonlinear systems. Its topology is
illustrated in Fig. 15. The RBF network is typically regarded as a three-layer network comprising an
input layer, a hidden layer, and an output layer [35].
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Table VII. Attitude angle calibration results.

Attitude angle Before calibration After calibration
Average error/◦ 0.0727 0.0429
Maximum error/◦ 0.1607 0.1435
Minimum error/◦ 0.0114 0

Output
layer

Hidden
layer

Gaussian
function

Lincar
function

cj bjInput 
layer

w

x1

x2

xn -1

xn

y2

ym

y1

Figure 15. Topology diagram of the radial basis function network.

Figure 16. Sample point distribution of the radial basis function network.

The RBF neural network can calculate the output yi for any input vector X through Eq. (23). In this
paper, 80 positioning point (red points) errors serve as input vector, while 48 unknown positioning points
(blue points) are the output vector as shown in Fig. 16 depicts the distribution of sample points for the par-
allel robot, where the red points represent sample points obtained through experimental measurements,
and the blue points indicate unknown points used for prediction.
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The output of the RBF neural network [36] is computed for an arbitrary input vector X

yi =
L∑

j=1

wijφj

(
X − cj

)
(23)

where wij represents the weight connected between the hidden layer and the output, L is the number of
neurons in the hidden layer, cj is the prototype center of the hidden-layer neurons, and φj is a Gaussian
function.

The hidden layer is a critical component of the RBF neural network, often referred to as the radial
basis function layer [37]. The responses of the hidden neurons are determined using a similarity function,
which relies on a distance-based measure for calculating the distance between two points. The similarity
function employed in this paper is a Gaussian function [38]. The calculation formula is shown in Eq.
(24).

φj

(
X − cj

)= exp

(
−
∥∥X − cj

∥∥2

σ 2
j

)
(24)

Where σj is the spread parameter. At the beginning of the RBF training, cj centers are randomly
selected and their optimal values are found during the training phase using one of the clustering methods.

As depicted in Fig. 16, the study utilized positioning data from 128 specified points as training sam-
ples through the experimental platform. Among these, 80 sets of data were allocated to the training set,
while 48 sets were designated for the validation set. The coordinates of the positioning points serve as
inputs to the neural network model, with the error vectors being the outputs of the network model.

Once the neural network is trained, it can be used to predict the error vector at target points. After
training the RBF neural network in MATLAB, various performance metrics are employed to assess the
prediction model’s effectiveness. These metrics include the mean absolute error (MAE), mean squared
error (MSE), and determination coefficient (R2) [39]. The R2 is commonly used in regression analysis
to measure the fit of the neural network model to the predicted data. The R2 value ranges from 0 to 1,
with a higher value indicating a better fit of the model to the data.

The formula MAE is calculated as follows:

MAE = 1

n

n∑
i=1

∣∣ye − yp

∣∣ (25)

The formula MSE is calculated as follows:

MSE = 1

n

n∑
i=1

(
ye − yp

)2 (26)

where ye represents the expected value and yp represents the predicted value.
The R2 formula is calculated as follows:

R2 =
(
n
∑n

i=1 yeiypi −∑n
i=1 yei

∑n
i=1 ypi

)2[
n
∑n

i=1 yei
2 − (∑n

i=1 yei

)2
] [

n
∑n

i=1 ypi
2 − (∑n

i=1 ypi

)2
] (27)

As shown in Fig. 17(a), the comparison between the neural network’s post-training predictions and
the expected values reveals a close alignment, with the curves demonstrating concordance. Additionally,
as depicted in Fig. 17(b), the overall prediction errors are less than 0.1 mm. Simultaneously, Fig. 17(c)
illustrates the fitting performance of the three branch predictions. It can be concluded that the fitting
effect meets the platform’s accuracy requirements.

After training, the neural network has 50 hidden-layer neurons. Table VIII displays the trained RBF
neural network parameters, where the MAE is 0.0391, the MSE is 0.0018, and the coefficients of deter-
mination R2 for different error vectors are 0.8854, 0.9656, and 0.9655. Additionally, when considering
the error vector comparison graphs and distribution maps, it is evident that the trained RBF network
exhibits a high degree of fitting and excellent predictive data performance.
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The regression performance plot of the RBF network

RBF error vector distribution map

RBF prediction error vector comparison

(a)

(b)

(c)

Figure 17. Performance evaluation plots of the radial basis function neural network.
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Table VIII. RBF training performance parameter.

MAE/mm MSE/mm R2
1 R2

2 R2
3

RBF parameter 0.0391 0.0018 0.8854 0.9656 0.9655

Table IX. Results of radial basis function prediction error compensation.

48 predicted compensation points Before compensation After compensation
Average error/mm 0.1677 0.0619
Maximum error/mm 0.3701 0.13
Minimum error/mm 0.0583 0.02

Table X. Attitude angle calibration results.

Attitude angle Before calibration After calibration
Average error/◦ 0.0727 0.0389
Maximum error/◦ 0.1607 0.0850
Minimum error/◦ 0.0114 0

As depicted in Fig. 18(a), it is evident that the compensation effect extends from the center to the
surrounding areas. In particular, there is a noticeable improvement in the first and third quadrants within
the workspace. It is worth considering that differences in measurement equipment calibration or setup
may contribute to variations in the positioning error distribution between the first two measurements.
Despite these differences, as depicted in Fig. 18(b), the error distribution pattern after compensation
generally follows the same trend as before compensation, but with a significant reduction in overall
error values. Taking all factors into account, as Fig. 18(c) shows, it can be concluded that the error
vector prediction compensation carried out by the RBF neural network has a substantial positive impact.
This approach greatly enhances the compensation efficiency, positioning accuracy, and overall motion
performance of the planar 3-PRR parallel robot mechanism.

Based on the data presented in Table IX, it can be observed that after implementing RBF prediction
error compensation for 48 prediction points in the planar 3-PRR parallel robot mechanism, the aver-
age positioning error decreased from 0.1677 mm before compensation to 0.0619 mm. Additionally, the
maximum positioning error decreased from 0.3701 mm to 0.1300 mm, and the minimum positioning
error decreased from 0.0583 mm to 0.0200 mm. This compensation process resulted in an increase in
accuracy of approximately 63.05%.

Figure 19 illustrates the three-dimensional distribution of attitude angle errors resulting from the
RBF calibration experiment. As shown in Fig. 19(a), before calibration, attitude angle errors in the
workspace are smaller near the center origin and increase as the distance from the origin increases.
Figure 19(b) depicts the three-dimensional distribution of attitude angle errors measured after calibra-
tion, with an overall reduction in error and minimal trend change, indicating the effectiveness of the
proposed calibration method. Figure 19(c) compares the distribution of attitude angle errors before and
after calibration, demonstrating a significant overall reduction in absolute attitude angle errors.

Table X provides statistical data for the experimental results of attitude angles using the RBF model
calibration, comparing errors before and after calibration. From Table 10, it can be observed that the
average error of attitude angles decreased from 0.0727◦ to 0.0389◦. The maximum attitude angle error
decreased from 0.1607◦ to 0.085◦, and the minimum attitude angle error decreased from 0.0114◦ to 0◦.
The global average accuracy of attitude angles improved by 46.46%.
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Figure 18. Positioning error distribution.
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Figure 19. Attitude angle error distribution of the moving platform.
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Table XI. Circular tracking results.

Target Actual center Center Target Real Radius
Order center/ of the circle/ deviation/ radius/ radius/ deviation/
number mm mm mm mm mm mm
Coordinate X Y X Y X Y
Round 1 50 0 49.9927 0.037 0.0073 −0.037 50 49.9836 0.0164
Round 2 0 50 −0.0693 50.0415 0.0693 −0.0415 50 50.128 −0.128
Round 3 −50 0 −50.0479 −0.058 0.0479 0.058 50 50.1541 −0.1541
Round 4 0 −50 0.0223 −50.0364 −0.0223 0.0364 50 50.0987 −0.0987
average 0.0367 0.0432 0.0993

4.4. Circular tracking experiment
To evaluate the performance of the calibrated platform within its working space, a trajectory tracking
experiment was conducted on the planar 3-PRR parallel robot platform. As depicted in the Fig. 20(a),
four circular trajectories with a radius of 50 mm were chosen in the working space of the moving plat-
form. The experiment utilized consistent velocity and acceleration settings, which were subsequently
measured and analyzed.

As depicted in the Fig. 20(b) and Fig. 20 (c), the circular trajectory tracking error graph clearly indi-
cates that the tracking performance after calibration is significantly improved compared to that before
calibration. The errors near the center of the working space are minimal, while the errors near the
boundaries of the working space are more pronounced, consistent with the previously observed error
distribution pattern of the mechanism. As per the statistics presented in the following Table XI, the
average coordinate deviation for the circular track is 0.0566 mm, and the average radius deviation is
0.0993 mm.

5. Summary and future work
In this study, a global calibration method for a planar parallel platform considering joint errors is pro-
posed. Initially, the experimental subject is a self-designed planar 3-PRR parallel robot mechanism.
Calibration is conducted by employing the least squares method to solve for error parameters. The
experimental results indicate that the local average positioning accuracy of the end moving platform has
improved by 88.6% after calibration, and the attitude angle average accuracy has increased by 41.64%.
However, research analysis reveals that methods based on mathematical error models cannot account
for all joint errors. Additionally, the lack of high discernibility for some error sources limits this method
to improving only the local accuracy of the robot’s workspace. To achieve global calibration, two meth-
ods based on the distance-inverse law and RBFNN models are introduced, predicting global errors of
the robot using a data-driven approach. Experimental results demonstrate enhancements in the average
positioning accuracy of the parallel robot mechanism by 59.16% and 63.05%, and the attitude angle
average accuracy by 40.99% and 46.46%, respectively. Finally, circular trajectory tracking experiments
further validate the effectiveness of the calibration.

In this paper, the proposed algorithms effectively improve the positioning accuracy of the 3-PRR
parallel robot from the perspective of kinematics, but don’t consider the influence of factors such as the
load of the moving platform, the collision, and friction between the joints. In the future, we will improve
the positioning accuracy of the parallel robot from the perspective of dynamics.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724000973
Downloaded from https://www.cambridge.org/core. IP address: 18.222.96.199, on 28 Dec 2024 at 20:50:02, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724000973
https://www.cambridge.org/core


Robotica 2615

Ideal circle plot

2D map of circular trajectory tracking error

3D map of circular trajectory tracking error

(a)

(b)

(c)

Figure 20. Circular trajectory tracking error.
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Appendix

Table XII. The meaning of the given symbols.

Symbol Meaning
xAi , yAi The coordinates of Point A on Link i in a fixed coordinate system.
xCi , yCi The coordinates of Point C on Link i in a fixed coordinate system.
x, y, ϕ The pose coordinates of the robot’s moving platform.
δx, δy, δϕ The pose coordinate error of the moving platform.
α1, α2, α3 The installation angle of the fixed platform’s guide rails.
δα1, δα2, δα3 The installation angle error of the fixed platform’s guide rails.
β1, β2, β3 The angle between OCCi and the positive direction of the X-axis of the moving

coordinate system.
δβ1, δβ2, δβ3 The installation angle error of the moving platform.
r1, r2, r3 The distance of the coordinate system OcCi of the moving platform.
δr1, δr2, δr3 The distance error of the coordinate system OcCi of the moving platform.
S1, S2, S3 The length of the driven rods.
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Table XII. Continued.

Symbol Meaning
δS1, δS2, δS3 The length error of the driven rod.
l1, l2, l3 The driving inputs.
δl1, δl2, δl3 The driving input error.
R1, R2, R3 The distance of the fixed coordinate system OAAi.
δR1, δR2, δR3 The distance error of the fixed coordinate system OAAi.
θ1, θ2, θ3 The angle between the driven rod BiCi and the line segment AiBi.
δX Pose error vector of the moving platform.
Jv The velocity Jacobian matrix.
Je Error propagation matrix
P0 Error vector at the interpolation point.

Table XIII. The meaning of the given symbols(continued).

Symbol Meaning
Pi The error vector at an unknown point.
cj Prototype centers of the neurons in the hidden layer.
φj Gaussian function
δj Spread parameter
R2 Determination coefficients
ye Expected values
yp Predicted values

Cite this article: Q. Zhang, H. Yu, L. Xie, Q. Lu and W. Chen (2024). “Study of a global calibration method for a planar parallel
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