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Penetrative convection: heat transport with
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This paper investigates heat transport in penetrative convection with a marginally stable
temporal-horizontal-averaged field or background field. Assuming that the background
field is steady and is stabilised by the nonlinear perturbation terms, we obtain an eigenvalue
problem with an unknown background temperature τ by truncating the nonlinear terms.
Using a piecewise profile for τ , we derived an analytical scaling law for heat transport
in penetrative convection as Ra → ∞: Nu = (1/8)(1 − TM)5/3Ra1/3 (Nu is the Nusselt
number; Ra is the Rayleigh number and TM corresponds to the temperature at which
the density is maximal). A conditional lower bound on Nu, under the marginal stability
assumption, is then derived from a variational problem. All the solutions to the full
system should deliver a higher heat flux than the lower bound if they satisfy the marginal
stability assumption. However, data from the present direct numerical simulations and
previous optimal steady solutions by Ding & Wu (J. Fluid Mech., vol. 920, 2021, A48)
exhibit smaller Nu than the lower bound at large Ra, indicating that these averaged fields
are over-stabilised by the nonlinear terms. To incorporate a more physically plausible
constraint to bound heat transport, an alternative approach, i.e. the quasilinear approach
is invoked which delivers the highest heat transport and agrees well with Veronis’s
assumption, i.e. Nu ∼ Ra1/3 (Astrophys. J., vol. 137, 1963, p. 641). Interestingly, the
background temperature τ yielded by the quasilinear approach can be non-unique when
instability is subcritical.

Key words: buoyancy-driven instability, variational methods, bifurcation

1. Introduction

Penetrative convection refers to the phenomenon of an unstably stratified fluid layer
advancing into a stably stratified fluid layer, which is ubiquitous in nature and industrial
applications. Well-known examples include the stellar convection (Dintrans et al. 2005),
water convection near 4 ◦C (Townsend 1964; Couston & Siegert 2021; Olsthoorn, Tedford
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& Lawrence 2021) and ice growth (Wang et al. 2021a; Wang, Calzavarini & Sun 2021b).
The penetrative convection can be either caused by a parabolic base temperature profile
due to internal heating (Goluskin & Spiegel 2012; Goluskin & van der Poel 2016) or a
nonlinear constitutive relationship between the liquid density and temperature (Veronis
1963; Musman 1968; Moore & Weiss 1973; Payne & Straughan 1987; Lecoanet et al. 2015;
Toppaladoddi & Wettlaufer 2018; Wang et al. 2019, 2021a,b). For instance, the density of
water exhibits a parabolic dependence on temperature near 4 ◦C (higher than the icing
point)

ρ = ρ0

(
1 − α(T∗ − T∗

M)2
)

, (1.1)

where T∗
M corresponds to the temperature at which the density is maximal. The thermal

expansion coefficient α > 0 is in units of K−2, which defines a different Rayleigh
number from that in the classical Rayleigh–Bénard convection. Unlike the classical
Rayleigh–Bénard convection in which the flow is unstably stratified (density decreases
with temperature linearly), the quadratic constitutive relation can result in a more
complicated flow configuration: a stably stratified flow coexisting with an unstably
stratified flow. However, the constitutive relation (1.1) deteriorates when the temperature
T becomes high and water’s density shows a linear dependence on the temperature.
Nevertheless, this paper will be constrained to the valid regime of the quadratic constitutive
relationship and aims to provide understanding of the heat transport below ice.

An intriguing problem in turbulent penetrative convection is to estimate the global heat
transfer between two parallel plates, which remains challenging. Over the past decades,
however, there has been a relatively larger amount of research on the scaling law of
heat transport in Rayleigh–Bénard convection (Ahlers, Grossmann & Lohse 2009). In
the Rayleigh–Bénard convection, a classical scaling Nu ∼ Ra1/3 (Nu being the Nusselt
number and Ra being the Rayleigh number) proposed by Malkus (1954) and an ultimate
scaling Nu ∼ Ra1/2 (possibly with logarithmic corrections) proposed by Kraichnan (1962)
are competing. It seems that experiments and direct numerical simulations (DNS) of
turbulent convection support the classical scaling (Urban, Musilová & Skrbek 2011;
Bouillaut et al. 2019; Iyer et al. 2020), but there are some competing claims of the
ultimate scaling (He et al. 2012; Zhu et al. 2018). Indeed, when the internal heating
effect is limited within the boundary layers, the classical scaling is dominant (Bouillaut
et al. 2019). Either internal heating in the bulk or breakdown of the boundary layers can
cause the transition to the ultimate scaling (Zhu et al. 2018; Bouillaut et al. 2019). Recent
computations of steady solutions of the Boussinesq equations (no internal heating and
the bounded walls are smooth) exhibit higher heat flux than all the existing numerical
simulations or experimental observations, which are more consistent with the classical
scaling (Sondak, Smith & Waleffe 2015; Waleffe, Boonkasame & Smith 2015; Wen et al.
2020a). In penetrative convection, Ding & Wu (2021) found that heat transfer by exact
steady solutions is higher than in turbulent flows and it roughly follows the classical scaling
Ra1/3. They also derived an upper bound on heat transport in penetrative convection:
Nu � cRa1/2 (the best value of c remains unknown). Yet, it is unknown if the 1/2 scaling
law can be achieved as Ra → ∞ both in Rayleigh–Bénard convection and penetrative
convection. It is worth mentioning that only quadratic constraints are incorporated in
the upper bound problem, which yields bounds unrelated to that of the real physical
system (Olson et al. 2021). Although Wen et al. (2022) found that the 1/2 bound on
heat transport in Rayleigh–Bénard convection can be lowered by adding the marginal
stability assumption as a further constraint, their solution is not physically meaningful
either. Very recently, Wen, Goluskin & Doering (2020b) computed exact steady solutions
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Penetrative convection

in Rayleigh–Bénard convection up to Ra = 1014 and found that the scaling approaches 1/3
asymptotically. Thus, they raised the intriguing possibility that optimal steady rolls may
transport more heat than turbulent convection as Ra → ∞.

The 1/3 scaling of heat transfer in Rayleigh–Bénard convection can be derived by an
assumption of marginally stable boundary layers (Howard 1963). Therefore, it was thought
that the horizontal-averaged field of the exact steady solutions is close to a marginally
stable state (Sondak et al. 2015; Waleffe et al. 2015; Wen et al. 2020a,b; Ding & Wu 2021).
In Waleffe et al. (2015) and Sondak et al. (2015), heat transport is actually slightly lower
than Ra1/3, which was thought to be attributed to small departures from the marginally
stable configuration. For instance, unstably stratified layers were observed in the optimal
steady solution. In fact, those exact steady solutions are dynamically unstable. For
turbulent flows, an assumption of a ‘statistically’ marginally stable boundary layer might
be more appropriate for the derivation of the 1/3 scaling law. Malkus (1956) conceived
the idea of ‘statistical’ stability of turbulent flows and he suggested that the turbulent mean
field should be marginally stable and nonlinear momentum transport only play a stabilising
role. Following Malkus’s idea, a recent work by O’Connor, Lecoanet & Anders (2021)
showed that a quasilinear approximation of the Boussinesq equation can exhibit a clear
1/3 scaling, in which the nonlinear terms in the momentum equation were dropped and the
mean temperature field was assumed to be driven by fluctuations. A temporal-horizontal
averaged field was assumed to be marginally stable. A more interesting observation is
that the quasilinear problem transports more heat than in turbulent flows. This implies
that the truncated nonlinear terms are ‘stabilising’ turbulent flows and are ‘suppressing’
heat transport. However, there is a ‘dip’ in the mean temperature profile (the temperature
gradient reverses) which contradicts the hypothesis of Malkus (1956).

In penetrative convection, the 1/3 scaling can also be derived by assuming the boundary
layers are marginally stable (Veronis 1963). However, current existing numerical studies of
turbulent penetrative convection (Lecoanet et al. 2015; Toppaladoddi & Wettlaufer 2018;
Wang et al. 2019) showed that the heat transport is below the 1/3 scaling. Although Ding
& Wu (2021) claimed that their exact steady solutions can achieve the 1/3 scaling, an
examination of the averaged field showed that it is not marginally stable. In fact, the
shape of the marginally stable field remains an unknown question, e.g. is there also a
‘dip’ structure in the mean temperature field? In addition, how the scaling depends on the
thickness of the stably stratified layer is not clear. In his paper, Malkus (1956) conjectured
that the turbulent flow can be highly degenerate if the mean field is marginally stable,
i.e. different turbulent flows. A recent study of two-dimensional plane Poiseuille flow
confirmed Malkus’s conjecture (Markeviciute & Kerswell 2021), which demonstrates that
symmetries play important roles in turbulence: turbulence with a different symmetry
can be different (the mean field is different consequently) (Xie, Ding & Xia 2018).
Inspired by Markeviciute & Kerswell (2021), it is therefore natural to ask if the marginally
stable mean field is unique in penetrative convection, i.e. for a given parameter, are
there different marginally stable mean fields? A relevant study is Wen et al. (2022), in
Rayleigh–Bénard convection, which demonstrated that the marginally stable mean field
can be non-unique: the mean field derived from a variational problem is different from
the quasilinear problem. However, it is questionable as to whether non-unique fields can
be derived from the same approach or not, e.g. the variational problem or the quasilinear
approach. Another motivation of this study is to move beyond quadratic functionals and
incorporate more physically plausible constraint to bound heat transport in penetrative
convection, e.g. deriving a conditional lower bound under the marginal stability constraint.
Moreover, it will also be interesting to examine if the nonlinear terms are ‘stabilising’
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turbulent penetrative convection and ‘suppressing’ heat transport in penetrative convection
as in the Rayleigh–Bénard convection (O’Connor et al. 2021). We hope to provide insights
into the above questions in this paper.

The rest of the paper is organised as follows. Section 2 formulates the problem
mathematically and the linearised problem of a two-dimensional flow is obtained.
A piecewise background field is used to test the stability problem and derive an
analytical scaling law for penetrative convection under the marginal stability assumption.
Furthermore, a variational problem which delivers a conditional lower bound on the
heat flux is constructed in § 3. Section 4 presents the study of a quasilinear approach to
penetrative convection, which demonstrates that the marginally stable background field
can be non-unique. Direct numerical simulations are performed to assess the effect of
truncated nonlinear terms in § 5. A conclusion is given in § 6.

2. Mathematical formulation

2.1. Governing equations
By introducing the liquid depth d as the length scale, �T = T∗

bottom − T∗
top (T∗

top and
T∗

bottom are temperatures of the top wall and bottom walls) as the temperature scale, the
free-fall velocity

√
αg(�T)2d as the velocity scale, d/

√
αg(�T)2d as the time scale and

ρ0αg(�T)2d as the pressure scale, we start with the following dimensionless equations for
penetrative convection:

∇ · u = 0, (2.1)

∂tu + u · ∇u = −∇p +
√

Pr
Ra

∇2u + (T − TM)2ez, (2.2)

∂tT + u · ∇T = 1√
PrRa

∇2T, (2.3)

where u is the velocity of the fluid, ez is unit vector in z-direction, T = (T∗ − Ttop)/�T is
the dimensionless temperature (T∗ is the dimensional temperature), Ra := βg(�T)2d3/νκ

(β being the thermal expansion coefficient and g being gravitational acceleration) is
the Rayleigh number and Pr := ν/κ is the Prandtl number (ν being the kinematic
viscosity and κ being the thermal diffusivity); TM = (T∗

M − T∗
top)/�T describes the

density maximal effect and TM = 0, 1 indicates that the maximal density locates at the
top/bottom boundary respectively. When TM = 1, the flow is stable for all Ra.

We assume that there is no slip on the walls. Therefore, boundary conditions for u and
T are

u|z=0,1 = 0, T|z=0 = 1, T|z=1 = 0. (2.4a–c)
We decompose the flow into a ‘steady’ background state and a perturbation state

u = ū + u′, T = τ + θ ′. (2.5a,b)
One may also assume that (•̄) is the ensemble average of (•). In the present work, we
shall consider that the background state is defined using the following temporal-horizontal
average:

ū = lim
t∗→∞

1
2Lt∗

∫ t∗

0

∫ L

−L
u dx dt, τ = lim

t∗→∞
1

2Lt∗

∫ t∗

0

∫ L

−L
T dx dt. (2.6a,b)

If turbulence is ergodic, then the ensemble average should be identical to the
temporal-spatial average. However, recent study suggests that there exist multiple states
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Penetrative convection

of turbulence (Xie et al. 2018; Wang et al. 2020). For a marginally stable field, the
present study also suggests that the background field is steady by using a bifurcation
analysis and branch continuation. But it is not guaranteed that the marginally stable field is
always steady and one may relax the steadiness assumption and consider a time-periodic
background flow. Since we will assess the stability of the background field, it is sufficient
to consider a two-dimensional problem and the governing equations (2.1)–(2.3) are
restated using Reynolds’ decomposition√

Pr
Ra

d2ū
dz2 = ∂zw′u′, (2.7)

dp̄
dz

= θ ′2 − ∂zw′2, (2.8)

1√
PrRa

d2τ

dz2 = ∂zw′θ ′, (2.9)

∇ · u′ = 0 (2.10)

∂tu′ + ū · ∇u′ + u′ · ∇ū + ∇p′ −
√

Pr
Ra

∇2u′ − 2(τ − TM)θ ′ez = T , (2.11)

∂tθ
′ + ū · ∇θ ′ + dτ

dz
w′ − 1√

PrRa
∇2θ ′ = S, (2.12)

where the nonlinear terms are T = ∂zw′u′ex − u′·∇u′ + θ ′2ez − (θ ′2 − ∂zw′2)ez and
S = ∂zw′θ ′ − u′·∇θ ′. The set of governing equations shares many similar features to
the resolvent analysis when using a forcing term to replace the nonlinear terms, which
assumes the mean flow profile to predict the structure of the accompanying fluctuation
fields (McKeon 2017). Following the original idea of Malkus (1956), we assume that the
background field is marginally stable and is stabilised by the nonlinear terms, whence the
nonlinear terms T and S are dropped from the governing equations. And for the minimal
choice of the background velocity field, we set ū = 0, which yields the linear stability
problem

∇ · u′ = 0, (2.13)

∂tu′ + ∇p′ −
√

Pr
Ra

∇2u′ − 2(τ − TM)θ ′ez = 0, (2.14)

∂tθ
′ − 1√

PrRa
∇2θ ′ + dτ

dz
w′ = 0. (2.15)

Actually, only ū = 0 is found in the present work because branch continuation is used.
However, it does not indicate that the background flow should be zero. If an alternative
method is used, e.g. time-stepping method (O’Connor et al. 2021; Wen et al. 2022), or
there is another branch disconnected from the present solution of ū = 0, one may find a
non-zero background field ū, e.g. a mean ‘wind’ flow ū = u(z)ex /= 0. However, we will
leave this possibility for future exploration. In the Rayleigh–Bénard convection, the time
derivative terms can be safely dropped because exchange of stability always holds for
arbitrary τ (Wen et al. 2022). In the penetrative convection, exchange of stability can be
established for the trivial base state (ū, τ ) = (0, 1 − z). For an arbitrary τ , the eigenvalue
can be complex, i.e. no exchange of stability (we tested this numerically but failed to prove
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it rigorously). Nevertheless, when using the bifurcation analysis with branch continuation,
we observe that the marginally stable state is always neutral (i.e. the eigenvalue is always
zero). Hence, in what follows, we drop the time derivative terms in the linear stability
problem. For neutral stability, we rescale the pressure by p′/

√
Pr → p′ and temperature θ ′

by θ ′/
√

Pr → θ ′. Then, the Prandtl number will not appear in the governing equations of
the neutral stability problem.

To characterise the heat flux, a Nusselt number defined as follows:

Nu := 〈|∇T|2〉 =
∫ 1

0

(
dτ

dz

)2

dz + 〈|∇θ ′|2〉, (2.16)

where 〈(•)〉 = ∫ 1
0 (•) dz is the volume-temporal average.

2.2. A piecewise background temperature
To examine the stability of (2.13)–(2.15), a simple and straightforward approach is to
assume a piecewise τ such that we only need to adjust the thickness of boundary layer
(ε) to make it marginally stable. But the piecewise τ does not satisfy the equations of
motion nor is it driven by the nonlinear fluctuation terms in (2.9). The choice of τ was
inspired by previous numerical simulations that indicated that the averaged temperature
field presents a similar structure as the piecewise τ . In this section, we consider the case
of Ra → ∞ (namely, the fluid depth d → ∞). Hence, the boundary layer thickness ε is
used as the length scale. For simplicity, we remove the top plane since d → ∞. Therefore,
we assume the following background temperature profile:

τ =
{

1 − (1 − T̄)z, 0 � z � 1
T̄ = const. 1 < z < ∞.

(2.17)

Clearly, unlike the Rayleigh–Bénard convection in which the mixing region temperature
T̄ was given (see Currie 1967; Kerr 2016), T̄ in the penetrative convection is an unknown
parameter and is to be determined.

Eliminating the pressure and using the normal mode analysis (u′, θ ′) = (û, θ̂ ) exp(ikx),
we obtain the linearised equations

1√
Raε

(D2 − k2)2ŵ − 2k2(τ − TM)θ̂ = 0, (2.18)

1√
Raε

(D2 − k2)θ̂ − dτ

dz
ŵ = 0, (2.19)

where k represents wavenumber and Raε = βg(�T)2ε3/νκ .
There is an analytical solution in 1 < z < ∞

ŵ = (c0 + c1z + c2z2)e−kz, θ̂ = 4c2

(T̄ − TM)
√

Raε

e−kz. (2.20a,b)

The solution in 0 � z � 1 is solved numerically by requiring ŵ and θ̂ to be continuous
across the interface z = 1

ŵ|1+
1− = diŵ

dzi |1+
1− = θ̂ |1+

1− = dθ̂

dz
|1+
1− = 0, i = 1, 2, 3. (2.21)

Numerical result shows that the critical Rayleigh number Raε is achieved around k → 0
as demonstrated in figure 1. And Raε exhibits a strong dependence on the temperature
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Figure 1. The contour plot of Raε in the (T̄, k) plane: (a) TM = 0 and (b) TM = 0.7.
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Figure 2. The critical Rayleigh number Raε computed numerically at k = 10−4 vs the temperature T̄ of the
mixing region. Solid lines are obtained by fixing TM as indicated in the plot. The dashed line illustrates that the
minimal Rayleigh number Raε = 64/(1 − TM)2 can be achieved at T̄ = (TM + 1)/2, which agrees well with
the numerical solution.

in the mixing region T̄ , e.g. Raε is minimal at T̄ = 0.5 for TM = 0. To explore how
Raε varies with T̄ , we set the wavenumber k at a small value k = 10−4 (for k = 0, the
eigenvalue problem is numerically singular) and the results are illustrated in figure 2. It
is interesting that the minimal Raε is achieved around T̄ = (1 + TM)/2 and the minimal
Raε varies like 64/(1 − TM)2. The penetrative convection is very similar to the classical
Rayleigh–Bénard convection when TM = 0 (Wang et al. 2019; Ding & Wu 2021). Optimal
steady solutions indicate the temperature in the mixing region is around 0.5(T∗

bottom +
T∗

top), which coincides with the stability analysis in this section. This may imply that the
temperature in the bulk region tends to adjust its value such that the system is least stable
and more heat can be transferred.
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To account for the singular limit of k → 0, an asymptotic solution is sought. We expand
the solution in the region of z ∈ [0, 1] as

ŵ = ŵ0(z) + kŵ1(z) + . . . , θ̂ = θ̂0(z) + kθ̂1(z) . . . , Raε = Ra0 + kRa1 + . . . ,

(2.22a–c)
and the leading-order solution is obtained by using the boundary condition at z = 0

ŵ0 = C0z2 + C1z3, θ̂0 = −
√

Ra0(1 − T̄)

(
C0z4

12
+ C1z5

20
+ C2z

)
. (2.23a,b)

Using the conditions in (2.21), we obtain

c2 = C0, c0 + c1 = 0, C1 = 0, C2 = −C0/3 /= 0, (2.24a–d)

and

Ra0 = 16
(1 − T̄)(T̄ − TM)

. (2.25)

One can also solve the problem up to the first-order approximation and obtain the
solution for Ra1 (Kerr 2016). However, we will not pursue this since the numerical
simulation indicates that Ra1 > 0. Therefore, the critical Rayleigh number is achieved at
k = 0, in contrast to Currie (1967), which showed that k = O(1) in the Rayleigh–Bénard
convection when the top wall is retained. However, if the top wall is moved away,
Kerr (2016) showed that the critical Rayleigh number is also achieved at k = 0 in the
Rayleigh–Bénard convection, which is a common feature between penetrative convection
and Rayleigh–Bénard convection. This common feature indicates that large-scale
convection can transfer more heat than small-scale motions.

An optimal Rayleigh number Raopt occurring at T̄ = (1 + TM)/2 can be found from
(2.25)

Raε � Raopt = 64
(1 − TM)2 . (2.26)

The flow is linearly stable for Raε < Raopt. Note that the numerical solutions in figure 2
are in excellent agreement with the analytical solutions in (2.25) and (2.26) with relative
errors smaller than 0.1 %. However, most numerical simulations and the recent optimal
steady solutions show that T̄ is dependent on the Prandtl number, which also deviates
from (1 + TM)/2 when TM is large (e.g. TM = 0.5, 0.7) (Wang et al. 2019; Ding & Wu
2021). Perhaps, in these previous works, Ra is not high enough or the truncated nonlinear
terms are responsible for this deviation.

Under the marginal stability assumption, the piecewise temperature gives the following
scaling law of heat transport in penetrative convection as Ra → ∞:

Raε = 2−3RaNu−3(1 − TM)3 = 64
(1 − TM)2 ⇒ Nu = 1

8
(1 − TM)5/3Ra1/3, (2.27)

where Nu = (1 − TM)d/(2ε). In Ding & Wu (2021), they assumed that the temperature
in the mixing region is linearly dependent on TM and the bottom wall such that they
derived (2.27) (the coefficient was not given). The present work justified their assumption
and determined the coefficient 1/8 using the piecewise background temperature analysis.
Currie (1967) derived Raε = 32 in the classical Rayleigh–Bénard convection using the
piecewise background temperature, which is half of the present work (Raε = 64 when
TM = 0). It implies that the penetrative convection will show a different heat transport
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scaling law from the classical Rayleigh–Bénard convection (Nu ∼ 0.315Ra1/3) at very
large Ra, although their heat transport is very close for Ra � 109 (see Wang et al. 2019;
Ding & Wu 2021). It is worth pointing out that the prefactor 1/8 depends on the choice
of the background temperature τ . For instance, in Kerr (2016), an error function yields
Raε = √

π and Nu ∼ 0.330Ra1/3 can be derived. Therefore, if one chooses a different
background temperature profile for penetrative convection, a different prefactor would be
expected but the Ra1/3 should remain invariant.

3. Conditional lower bound: variational problem

In the previous section, we assumed a given shape for the background profile τ , in this
section we solve for the background profile τ as the numerical solution to a variational
problem. In Wen et al. (2022), it is shown that a conditional lower bound on the heat
transfer in Rayleigh–Bénard convection can be derived based on the marginal stability
assumption. It is interesting that the conditional lower bound also exhibits the 1/3 scaling.
In this section, we follow Wen et al. (2022) and aim to derive a conditional lower bound
on heat transfer in penetrative convection. The neutral stability problem of an unknown τ

is stated as follows:

∇ · u′ = 0, (3.1)

−∇p′ + 1√
Ra

∇2u′ + 2(τ − TM)θ ′ez = 0, (3.2)

1√
Ra

∇2θ ′ − dτ

dz
w′ = 0. (3.3)

Here, we can also conclude that the scaling law is independent of Pr under the marginal
stability assumption.

Using (2.16), we can conclude that

Nu � Nul, Nul =
∫ 1

0

(
dτ

dz

)2

dz. (3.4a,b)

It will be interesting to extremise Nul such that it delivers a lower bound of heat transport.
Therefore, we construct the following Lagrangian:

L :=
∫ 1

0

(
dτ

dz

)2

dz −
〈
u† · (−∇p′ + 1√

Ra
∇2u′ + 2(τ − TM)θ ′ez)

〉

−
〈
θ†

(
1√
Ra

∇2θ ′ − dτ

dz
w′

)〉
− 〈p†∇ · u′〉, (3.5)

wherein the marginal stability is imposed as a constraint; u†, θ† and p† are adjoint variables
of u′, θ ′ and p′. It should be stressed that the conditional lower bound is not rigorously
derived from the equations of motion. Therefore, the solutions of the full system can either
deliver a higher heat flux or a lower heat flux than the conditional lower bound.

Variation of L gives the following Euler–Lagrange equations:

δL /δp† := ∇ · u′ = 0, (3.6)

δL /δu† := −∇p′ + 1√
Ra

∇2u′ + 2(τ − TM)θ ′ez = 0, (3.7)
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δL /δθ† := 1√
Ra

∇2θ ′ − dτ

dz
w′ = 0, (3.8)

δL /δp := ∇ · u† = 0, (3.9)

δL /δu := −∇p† + 1√
Ra

∇2u† − dτ

dz
θ†ez = 0, (3.10)

δL /δθ := 1√
Ra

∇2θ† + 2(τ − TM)w† = 0, (3.11)

δL /δτ := 2
dτ 2

dz2 + 2θ ′w† + dw′θ†

dz
= 0. (3.12)

It is noted that there is a close relationship between the adjoint variables (u†, θ†, p†) and
the primitive variables (u′, θ ′, p′) in the Rayleigh–Bénard convection (Wen et al. 2022),
which significantly simplifies the Euler–Lagrange system. However, in the penetrative
convection, such a relationship is lost due to the nonlinear constitutive relation (1.1),
which complicates the calculation of the Euler–Lagrange equations, i.e. we have to solve a
coupled system between the primitive variables and adjoint variables. The Euler–Lagrange
equations may admit non-unique solutions when the instability of the base state (ū, τ ) =
(0, 1 − z) is subcritical, i.e. solutions can exist when Ra < Rac (Rac is the critical Rayleigh
number for the base state). However, to find a ‘lower’ bound, we only seek solutions which
produce the lowest Nul for Ra > Rac. Then, a parametric continuation is used to track the
solutions of the Euler–Lagrange equations by continuously increasing Ra.

To solve the Euler–Lagrange equations, we expand the variables according to

⎛
⎜⎝

u′
w′
p′
θ ′

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

∑K
1 um(z) sin(kmx)∑K
1 wm(z) cos(kmx)∑K
1 pm(z) cos(kmx)∑K
1 θm(z) cos(kmx)

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎝

u†

w†

p†

θ†

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

∑K
1 u†

m(z) sin(kmx)∑K
1 w†

m(z) cos(kmx)∑K
1 p†

m(z) cos(kmx)∑K
1 θ†

m(z) cos(kmx)

⎞
⎟⎟⎟⎟⎟⎠ . (3.13a,b)

Here, we assumed that there is a mirror symmetry in the solution (Ding & Wu 2021).
Under mirror symmetry, it is easy to prove that u′w′ = 0 and ū = 0. Although the mirror
symmetry may be broken at high Ra (see DNS below), we do not pursue this possibility
in the present work because our numerical approach does not find an asymmetric solution
of the Euler–Lagrange equations. Hence, the amplitude of the triangle mode satisfies the
following equations:

kmum + Dwm = 0, (3.14)

kmpm + 1√
Ra

(D2 − k2
m)um = 0, (3.15)

−Dpm + 1√
Ra

(D2 − k2
m)wm + 2(τ − TM)θm = 0, (3.16)

1√
Ra

(D2 − k2
m)θm − dτ

dz
wm = 0, (3.17)

kmu†
m + Dw†

m = 0, (3.18)
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Penetrative convection

kmp†
m + 1√

Ra
(D2 − k2

m)u†
m = 0, (3.19)

−Dp†
m + 1√

Ra
(D2 − k2

m)w†
m − dτ

dz
θ†

m = 0, (3.20)

1√
Ra

(D2 − k2
m)θ†

m + 2(τ − TM)w†
m = 0, (3.21)

2
dτ 2

dz2 +
K∑
1

θmw†
m + 1

2

K∑
1

dwmθ†
m

dz
= 0. (3.22)

Here, the notation D := d/dz is the differential operator with respect to z.
The optimal wavenumber km for the mth marginal mode is sought by adding the

following equation:

δL /δkm :=
∫ 1

0
u†

mpm − 2km√
Ra

(u†
mum + w†

mwm + θ†
mθm) + p†

mum dz = 0. (3.23)

It is crucial to ensure all the modes are marginally stable such that a true lower bound
can be yielded. A well-honed technique, i.e. Newton algorithm, has been developed
in the study of upper bound problems (Plasting & Kerswell 2003; Ding & Kerswell
2020). A complementary method, which uses a time-stepping algorithm, also succeeded
in obtaining the upper bound of heat transfer in Rayleigh–Bénard convection (Wen
et al. 2020a). The advantage of the time-stepping algorithm is that it does not require
a bifurcation analysis nor a branch continuation technique. Recently, the time-stepping
algorithm was utilised to solve the quasilinear problem by O’Connor et al. (2021) and
then the lower bound on heat transport in Rayleigh–Bénard convection (Wen et al. 2022).
We should point out that, unlike the upper bound problem, the time-stepping algorithm
does not guarantee the global optimal solution in either the quasilinear problem or
the conditional lower bound problem. Also, it requires quite a long time to reach to a
steady state and the time-stepping algorithm cannot be used to find an unstable ‘steady’
state. Indeed, we have known that the stability of the trivial state (ū, τ ) = (0, 1 − z) is
subcritical when TM � 0.4 and Pr = 1 (Ding & Wu 2021). Therefore, the present work
chooses the Newton algorithm and branch continuation to track the solutions for the
conditional lower bound problem and the quasilinear problem in § 4. To check if there is a
new unstable mode emerging as Ra increases, we have to solve (2.13)–(2.15) and examine
if there is a positive eigenvalue λ, which is introduced into the problem by the normal
mode analysis: (u′, θ ′) = (û, θ̂ ) exp(ikx + λt).

Figure 3 shows the dispersive relation of a marginally stable state at Ra = 109. For
TM = 0, we have detected 7 marginally stable modes, while there is only 1 marginally
stable mode for TM = 0.7. Another interesting feature is that the eigenvalue λ is real for
all wavenumbers k when TM = 0, while it is complex for 40 < k < 90 when TM = 0.7 (in
Rayleigh–Bénard convection, all the leading eigenvalues are real O’Connor et al. 2021;
Wen et al. 2022). Although the mode with a complex eigenvalue is linearly stable, it
might be important when the fully nonlinear system is considered. The bifurcation diagram
of the critical modes is illustrated in figure 4. For small TM (TM � 0.1), the penetrative
convection is very similar to the Rayleigh–Bénard convection, and the bifurcation diagram
exhibits a hierarchical structure (new unstable modes emerge as Ra increases). When
TM > 0.1, only a single critical mode is detected using our algorithm, e.g. TM = 0.3, 0.7.
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Figure 3. The dispersive relation of a marginally stable state obtained using the variational problem at
Ra = 109.
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Figure 4. The bifurcation diagram of the wavenumber km, (a–d) TM = 0, 0.1, 0.3, 0.7. Each line stands for
the wavenumber km of the mth mode vs the Rayleigh number Ra. In (a,b), large wavenumber modes appear in
pairs (adjacent solid and dashed lines). In (c,d), only a single critical mode is detected.

This demonstrates that the thickness of the stable layer plays an important role in selecting
the marginal modes.

To illustrate the critical modes at different values of TM , two typical cases of TM = 0
and TM = 0.3 are plotted in figures 5 and 6. For TM = 0, there are seven marginal
modes: a central mode with six wall modes (the wall mode either concentrates near
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Figure 5. The eigenvectors of the marginally stable state obtained from the variational problem: TM = 0 and
Ra = 109. In (c,d), zoom-in insets are shown.

the top wall or the bottom wall, and they usually appear in pairs). The wavenumber
of the central mode is of order O(1), which seems to persist as Ra → ∞, and the
wavenumber of other modes scales as Ra1/3 (see figure 4). Equation (2.27) shows that
the thickness of a marginally stable boundary layer ε scales as Ra−1/3. Therefore, if
the convection cell is confined within the boundary layer, then its size is proportional
to the boundary layer thickness and we can immediately obtain k = 2π/ε ∼ Ra1/3. Like
the long-wave analytical solution in § 2.2, the central mode, which occupies the whole
domain, represents the large-scale motion in the system. However, for TM = 0.3, there
is only a single marginal mode which always concentrates near the bottom wall (the
corresponding wavenumber also scales as Ra1/3). Such an interesting feature indicates that
convection is confined within the boundary layer near the bottom wall and the outside fluid
is stationary. Figure 7 demonstrates that the background temperature profile does have two
boundary layers when TM � 0.1 and it only has a single boundary layer when TM > 0.1.
Nevertheless, we observe that the background temperature profile is not physical: the heat
flux is not conserved – the heat flux at the bottom wall is not equal to that at the top
wall. This non-physical feature is caused by the non-physical driving force in (3.22).
Therefore, we can conclude that the variational problem delivers a non-physical bound
for the penetrative convection, which, however, delivers a physically plausible solution in
the classical Rayleigh–Bénard convection (Wen et al. 2022). If the solution of the full
system satisfies the marginal stability assumption, it should deliver a higher heat flux
than the present conditional lower bound. If heat flux in the full system is lower than the
present conditional lower bound, the corresponding mean field should violate the marginal
stability assumption, i.e. the averaged field is not marginally stable.
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Figure 6. The eigenvectors of the marginally stable state obtained from the variational problem at different
Rayleigh numbers and TM = 0.3.
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Figure 7. The marginally stable temperature profile obtained from the variational problem at Ra = 109.

4. Quasilinear problem

In § 3, the background temperature derived from the variational problem is non-physical
because of the non-physical driving force. Now, we examine the marginal stability
assumption of τ that is yielded from the quasilinear problem, i.e. the background
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temperature field is driven by the perturbation field (see (2.9))

d2τ

dz2 =
√

Ra
2

K∑
1

d(wmθm)

dz
. (4.1)

Note that the Prandtl number Pr can also be scaled out from (4.1) by introducing
θ ′/

√
Pr → θ ′. The global heat transfer is conserved when the background temperature

field is driven by the physical perturbations. Using (4.1), we can expect that if there is a
boundary layer near the bottom wall, there should be a complementary boundary layer
near the top wall. Using the Newton algorithm, it is more tedious to find the solution of
(3.14)–(3.21) and (4.1) than the variational problem in § 3, because there is no equation for
the wavenumber km in the quasilinear problem. In O’Connor et al. (2021), both harmonic
and sub-harmonic waves were included in their quasilinear problem, i.e. km = mkc/2
(m ∈ N

+ and kc is the critical wavenumber of primary instability). It indicates that we
should consider an infinitely long domain to allow those harmonic and sub-harmonic
waves. In Wen et al. (2022), a finite domain of size L = 2π/kc was considered and
km = mkc (m ∈ N

+). Comparison between O’Connor et al. (2021) and Wen et al. (2022)
indicates that the domain size’s effect is negligible. Hence, we follow Wen et al. (2022)
and fix the domain size in the present work, which also allows us to perform DNS with
initial conditions seeded by the quasilinear problem.

The bifurcation diagram of km is illustrated in figure 8, indicating that the quasilinear
problem undergoes a hierarchical bifurcation as Ra increases for all TM , which is an
obviously different feature from the lower bound problem. The central mode m = 1 is
always critical for all TM in the quasilinear problem. The largest two wavenumbers exhibit
a Ra1/3 scaling, as demonstrated in figure 8, which implies that there are two boundary
layers in the system. Thicknesses of the two boundary layers are proportional to Ra−1/3 and
convection cells should be confined within them. Figure 9 demonstrates that the two modes
m = 23, 25 are concentrated in the near-wall regions, which are due to the instability of the
boundary layers. Figure 9 also indicates that larger-scale convection contains more kinetic
energy.

Figure 10 depicts the profiles of the background temperature of the quasilinear problem
at Ra = 109. It demonstrates that the boundary layers become thicker and the asymmetry
of τ becomes more conspicuous as TM increases (the top boundary layer is thicker than
the bottom boundary layer). The mean temperature in the bulk region increases but the
mean temperature is below (TM + 1)/2. It may be caused by the constraint of the top
wall or the relatively low Rayleigh numbers (Ra � ∞). A similar feature to the classical
Rayleigh–Bénard convection is that there are also two dips in the profile of background
temperature. However, as TM increases, the protruding part of the lower ‘dip’ becomes
smaller, while it remains significant in the top ‘dip’. The ‘dip’ structure, however, is not
significant in the optimal horizontal-averaged temperature profiles. In addition, figure 10
indicates that the quasilinear problem predicts a thinner boundary layer than the optimal
steady solution by Ding & Wu (2021), and it seems that the optimal steady solution yields
a mean temperature profile that is more consistent with the Malkus (1954) hypothesis.
Unlike the penetrative convection, the ‘dip’ structures are significant in both the steady
optimal solutions (Sondak et al. 2015) and the quasilinear problem (O’Connor et al. 2021)
of the classical Rayleigh–Bénard convection. The predicted mean averaged temperature
in the bulk region is a bit lower than the optimal horizontal-averaged temperature due to
the consequence of thinner boundary layers. It also indicates that the quasilinear problem
predicts a higher heat flux than the optimal steady solution.
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Figure 8. The bifurcation diagram of the wavenumber km of the quasilinear problem, (a–d)
TM = 0, 0.1, 0.3, 0.7.
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Figure 9. The eigenvectors of the marginally stable state obtained from the quasilinear problem: TM = 0 and
Ra = 109.
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Figure 10. The marginally stable temperature profiles (lines) obtained from the quasilinear problem at Ra =
109. Symbols are the optimal horizontal-averaged temperature obtained from Ding & Wu (2021) at Ra = 109,
Pr = 1.

Furthermore, we plot the Nusselt number predicted by the quasilinear approach and the
conditional lower bound in figure 11, and the Nusselt number is rescaled by (1 − TM)−5/3.
It is interesting that the quasilinear approach shows that Nu ∼ 0.17(1 − TM)5/3Ra1/3 when
TM � 0.3 (lines are almost overlapping). But for small TM , the quasilinear approach
shows that heat transport is slightly lower than 0.17(1 − TM)5/3Ra1/3, which, perhaps,
is because the Rayleigh number is not large enough (however, they are very close to
(1/8)(1 − TM)5/3Ra1/3). An interesting feature is that the line can be multi-valued when
the instability of the base state (ū, τ ) = (0, 1 − z) is subcritical (see the solid lines
for TM = 0.5, 0.7 in figure 11). This indicates that the background temperature field
is non-unique, although the lower branch is linearly unstable (Ding & Wu 2021). Note
that the subcritical instability nature of penetrative convection indicates that the retained
nonlinear term ∂zw′θ ′ destabilises the base state (ū, τ ) = (0, 1 − z), thus contradicting
Malkus’s assumption. At high Ra, our algorithm did not find a double-branch solution
but this does not mean the solution of the quasilinear problem is unique. The lower bound
roughly follows (1 − TM)5/3Ra1/3 when TM � 0.3, and it deviates from (1 − TM)5/3Ra1/3

when TM is large, which perhaps is also because of the relatively low Ra. Both the
quasilinear problem and the lower bound indicate that Nu ∼ Ra1/3.

5. Direct numerical simulations

In previous sections, different choices of the background field τ were examined and the
ensuing turbulent heat transport under the marginal stability assumption was examined.
Now we investigate the heat transport and flow fields using DNS. To check the
influence of the truncated nonlinear terms in the quasilinear problem, DNS are performed
by initialising simulations with the quasilinear states. Aiming at understanding how
mirror symmetry influences the turbulent state, two different sets of simulations were
performed: (i) with a mirror symmetry (ii) without a mirror symmetry. Here, we only
consider a two-dimensional study. If there are two different statistical states emerging
from the two sets of numerical simulations, this indicates that the turbulent state is
degenerate in penetrative convection. The spatial discretisation was accomplished using
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Figure 11. The Nusselt number Nu vs the Rayleigh number Ra; ‘QL’ stands for quasilinear problem (solid
lines) and ‘VS’ is for the variational lower bound problem (dashed lines).

a Fourier-spectral method. The axial direction was discretised with a Fourier transform
(Frigo & Johnson 2005) and the 2/3 dealiasing rule was implemented. A finite difference
method with non-uniform grid clustering near the walls (Chebyshev points) was used in
the wall-normal direction. The time discretisation was accomplished with a second-order
Adams–Bashforth–Crank–Nicolson method. Details of the numerical method can be
found in Willis (2017) and Ding & Wu (2021).

To illustrate the nonlinear evolution of the quasilinear state, we consider two cases of
TM = 0, 0.7. The Nusselt number is monitored during the numerical simulation, as shown
in figures 12 and 14, which demonstrates that the quasilinear steady state is nonlinearly
unstable. It also indicates that the Nusselt numbers of the symmetric and asymmetric
cases are identical and the flow becomes steady when the Rayleigh number is low (e.g.
Ra = 107). However, as Ra increases to 108, we observe that the time series of Nu(t) start
to deviate from each other as t increases and both cases are chaotic. This suggests that the
system can allow different chaotic solutions, i.e. the ‘turbulent’ state can be degenerate
in penetrative convection. It also implies that the background temperature field can be
non-unique at high Ra since we can obtain different averaged fields using the simulation
data. Figures 12 and 14 also demonstrate that spontaneous symmetry breaking occurs at
high Rayleigh number in the system. To illustrate the spontaneous symmetry breaking,
we plot the flow field and thermal field in figures 13 and 15. For TM = 0, only two
large convection cells are observed in both the symmetric simulation and asymmetric
simulation. However, in the asymmetric simulation, the hot plume near the bottom wall
and the cold plume near the top wall start to oscillate when symmetry breaks, causing a
mean ‘wind’ flow in the system. The mean ‘wind’ flow is time periodic as indicated by
the vortex incline angle. As demonstrated in figure 12, the oscillating asymmetric flow
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Figure 12. The evolution of Nusselt number with time t at Pr = 1, TM = 0. The solid (dashed) lines
represent simulation results with (without) mirror symmetry.

generally transfers less heat than the symmetric flow. However, for TM = 0.7, we observe
that the asymmetric flow can transfer more heat than the symmetric flow, as demonstrated
in figure 14, in contrast to the case of TM = 0. Unlike the case of TM = 0, we observe
that the initial field develops into a two-layer structure which undergoes the spontaneous
symmetry breaking at t ≈ 160. The two-layer structure is unstable, which evolves into a
symmetric four-convection-cell structure or an asymmetric two-convection-cell structure
as demonstrated in figure 15. Note that the width of the symmetric four-convection-cell
structure is approximately half of the asymmetric two-convection-cell, indicating that
large-scale motion can transfer more heat.

The long-time average of Nusselt number Nu is rescaled by factor (1 − TM)−5/3Ra−1/3

(Nu is averaged within t ∈ [1000, 2000]) and plotted against Ra as shown in figure 16.
For TM = 0.5, 0.7, we observe that heat transport via optimal steady solution (Ding
& Wu 2021) follows (1 − TM)5/3Ra1/3 asymptotically. And the optimal steady solution
transfers more heat than the two-dimensional ‘turbulent’ states (both symmetric and
asymmetric simulations deliver lower Nu than the optimal steady solution). The heat
transport by two-dimensional ‘turbulent’ states and the optimal steady state is bounded
by the quasilinear solution and the lower bound. However, for TM = 0, 0.1, 0.3, heat
transport by the two-dimensional ‘turbulent’ states and the optimal steady state is lower
than the lower bound when the Rayleigh number is large. This indicates that the averaged
thermal field of the two-dimensional ‘turbulent’ states is not marginally stable. In this
sense, it contradicts the hypothesis of Malkus (1956). However, figure 16 implies that
the background field is over-stabilised by the nonlinear terms at high Ra and the global
heat transfer is consequently reduced, which agrees well with Malkus’s assumption. It
should be also stressed that the heat transfer computed using the full system is less than
the quasilinear problem, similar to the findings by Wen et al. (2022) in Rayleigh–Bénard
convection. Although many previous works claimed that penetrative convection is almost
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Figure 13. The instantaneous flow and thermal fields computed at Pr = 1, TM = 0 and Ra = 109.

identical to the Rayleigh–Bénard convection when TM = 0, it is questionable whether the
Nu ∼ Ra1/2 scaling can be observed in penetrative convection as Ra → ∞.

6. Conclusion

The present study investigates heat transport in penetrative convection by assuming
a marginally stable temporal-horizontal-averaged field or background field. A linear
stability problem is built around the background field by truncating the nonlinear
perturbation terms. A minimal choice of the background field is then considered: (ū, T̄) =
(0, τ (z)), leading to an eigenvalue problem of an unknown background temperature τ .
Three different approaches were used to determine the profile of the marginally stable
temperature τ : a piecewise profile, a variational problem and a quasilinear approach.
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Figure 14. The evolution of Nusselt number with time t at Pr = 1, TM = 0.7. The dashed (solid) lines
represent simulation results with (without) mirror symmetry.

Using a piecewise temperature profile, we derived that large convection cells transfer
more heat and the optimal temperature in the mixing region is the average value of
the bottom wall temperature Tbottom and the liquid temperature corresponding to the
maximal density TM . An analytical scaling law for heat transfer using the piecewise
background temperature is obtained: Nu = (1/8)(1 − TM)5/3Ra1/3, Ra → ∞. For
TM = 0, although previous work claimed that penetrative convection is almost identical
to the Rayleigh–Bénard convection (Wang et al. 2019), under the marginal stability
assumption, the present work indicates that they are different as Ra → ∞ and their
difference is more conspicuous when TM > 0.

A variational problem is then constructed to derive a conditional lower bound for heat
transfer under the marginal stability constraint. When TM � 0.1, the variational problem
shows that the marginally stable modes undergo a hierarchical bifurcation as Ra increases,
which yields a background temperature profile of two boundary layer structures: one
located near the bottom wall and the other near the top wall. For TM > 0.1, only a single
mode is detected for all Ra and the background temperature only has one boundary layer
structure nested to the bottom wall. Unlike the Rayleigh–Bénard problem, in which the
variational problem can yield a physically meaningful background temperature profile
(Wen et al. 2022), the present study shows that the conditional lower bound is not
physically meaningful because the global heat transfer is not conserved. One potential
approach to derive physical meaningful bound on heat transport in penetrative convection
(either upper bound or lower bound) is the auxiliary function method (Tobasco, Goluskin
& Doering 2018), which deserves future exploration. In the present study, to incorporate
more physical information, we invoked the quasilinear approach and solved the ensuing
problem using a Newton method with branch continuation. For all TM , we observed
that the marginal modes undergo a hierarchical bifurcation as Ra increases and the
background temperature has two boundary layer structures. It is interesting that, when
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Figure 15. The instantaneous flow and thermal fields computed at Pr = 1, TM = 0.7 and Ra = 1010.
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Figure 16. The Nusselt number Nu vs the Rayleigh number Ra. ‘OP’ stands for optimal solution in Ding & Wu
(2021). ‘DNSS’ (‘DNSA’) is for the direct numerical simulation with (without) mirror symmetry. Solid lines
are quasilinear approximation and dashed lines are the variational lower bound for various values of TM : blue
lines for TM = 0; red lines for TM = 0.1; green lines for TM = 0.3; magenta lines for TM = 0.5; cyan lines for
TM = 0.7.

the base state (0, 1 − z) is subcritically unstable, the background temperature profile can
be non-unique as Ra < Rac (Rac being the critical Rayleigh number of the base state), and
the sophisticated time-stepping algorithm as developed in O’Connor et al. (2021) and Wen
et al. (2022) cannot be used therein. For TM � 0.3, quasilinear approach agrees well with
the analytical scaling but with a slightly lower coefficient: Nu ≈ 0.17(1 − TM)5/3Ra1/3.
For TM < 0.3, we observe that the scaling yielded from the quasilinear approach is not
in good agreement with the analytical scaling, which perhaps is because Ra is not large
enough. It is clear that the marginally stable background field τ is non-unique as it can
either be constructed using the variational problem or the quasilinear approach. But it
should be stressed that, although τ is different in shape, the Ra1/3 scaling remains the
same.

Last, to test the effect of truncated nonlinear terms, DNS were performed by utilising
the quasilinear problem as initial condition. The DNS show that the nonlinear terms are
over-stabilising the assumed marginally stable field at high Ra, which suppresses heat
transfer in penetrative convection. Thus, our present study is in excellent agreement with
the hypothesis of Malkus (1956) in the turbulent flow regime, whence it is questionable if
the Nu ∼ Ra1/2 scaling can be observed in penetrative convection as Ra → ∞. A possible
way is to break the thermal boundary layer using rough walls. However, it should be
pointed out that the fluid is always stably stratified near the top wall in penetrative flow,
which should impede the transition into the ultimate regime. The mirror symmetry was
either imposed or removed in the DNS, aiming at examining the existence of different
turbulent states. We demonstrated that spontaneous symmetry breaking can occur at high

960 A26-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

19
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.199


Z. Ding and Z. Ouyang

Ra (e.g. TM = 0.7, Ra = 1010), leading to different statistics of the nonlinear system. Such
a phenomenon indicates that the marginally stable background field can be non-unique at
high Ra and the turbulent states in penetrative convection are degenerate. For instance,
a horizontal ‘wind’ flow was observed in direct numerical simulation without mirror
symmetry, which indicates that a time-periodic background flow might also satisfy the
marginal stability assumption. More interestingly, the Prandtl number’s influence on heat
transfer can be examined using the unsteady background field.
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