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1. Introduction. Let Pa)(x) be the nth ultraspherical polynomial.

n
Also let pf]a)(x) = Pfla)(x)/PLa)(i). The following generating relation is
well known (3, p.98).
o 4 1"1’ 0
- " >
2 2r(e+=)e it [1-x%) It 158y = 2 P
2 - n -
2 n=o n!
It can also be written as
2 2 00 n
xt Lo tt(M-x)y (o) t
(1.1) e oFi( sat—; 2 ) = nZ—opn (x) o

This suggests the consideration of the class of polynomial sets
{Qn(x), n=0,1,2,...}, Qn(x) is of exact degree n and

o n
xt 2 t
(1.2) e oty 1-x ) = = Qn(x)n_'. ,
n=o

holds where ¢(u) has a formal power series expansion, ¢(o) =1,
o(-u) = ¢(u). It is obvious that the set of normalized ultraspherical
polynomials is only one of many possible sets in the above class. For

example if ¢(u) = 1 then Qn(x) =x .

It is therefore of interest to see what else is required in order to
characterize the ultraspherical polynomials by means of (1.2). We
give below four such characterizations. We show that if we require
that {Qn(x)} be orthogonal, hypergeometric of certain type, that

Qn(x), n=0,1,2,... satisfy a differential equation of the second
order of Sturm- Liouville type, or that the set {Qn(x)} satisfy a
certain functional equation, then Qn(x) is essentially the nth

ultraspherical polynomial.

Canad. Math. Bull. vol. 11, no. 3, 1968

457

https://doi.org/10.4153/CMB-1968-054-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-054-1

We note that (1.2) imply that {Qn(x)} satisfy the equation (1)

(1.3) (-0 60 = (mr{Q () - xQ_ ()

n+1 n+1

In fact one can show that (1.3) is equivalent to (1.2). We also note
that (1.2) implies

(1.4) Q(1)=1, Q1= n=01,2...

(1.5) Q (-x) = (17 Q (x) .
o K

If Qn(x) = 2 bn,k)x then (1.3) (or equivalently (1.2)) yields
k=o

(1.6) (nt1)b(n, k) - (n-k+2)b(n+1, k-1) - (k+1)b(n+1,k+1) = 0.
We further remark that (1.5) implies
b(n, n-1) = b(n,n-3) = ... =0.

For brevity we denote b(n,n) by bn. We shall also use the

notation }
j a(at1) ... (a+n-1) (n>1)
(a)n - \\ 1 {n = 0)
ai,az,...,ap;x 0 (ozi)n...(a/ )n 0
' q R TG T TS T
“[31,82,...,(3(1; n=o 1M q'n

2. We first assume that the set {Qn(x)} is an orthogonal set

and hence satisfies the recurrence relation (3, p. 42).

(2.1) Q  ,(x) = (Ax+B )R (x)+CQ (x) (n>1)
n+1 n n n n n-

1

where Q (x) =1, Q(x)=A x+B , A =b /b and A C # 0.
o 1 o o) n nt+1 n n n

Putting x =1 and x = -1 in (2.1) and making use of (1.4) we
get, respectively,

A +B +C = 1, A -B +C =1
n n n n n n
so that Bn =0 for all n and hence

(2.2) 1 = A +C
n n

Putting k= n in (1.6) we get
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(2.3) (nt1){b_, -b } = -2b(nt1,n-1)

n+

Now equating coefficients of xn_1 in both sides of (2.1) we get, using
(2.2) and (2.3),

b b
1 n+1 n+1
- = = - - - —)b

bn) n (bn bn—i) (1 b ) n-1

1
Lnt1)(b
PR 2% Tp

n n

1

which may be simplified to

2
(2.4) bb . - (nt1)bl +2b b +(n-2b b =0,
bo = 1, b1 = 1
To solve (2.4) make the substitution
() 2"
bnz'TZ—)\)—n‘kn (ko:k1:1, kn;‘O for n> 2)

We get on putting f =k /k (f, =1, £ #0 for n>2)
n n n n =

-1 1
!a/+n—1!!oz+n2 atn-1
. ff - +1) —
(2.5) 2 (2a0+n)(20+n-1) n n+l (nt1) 2ain-1 n
ot+n
+ (n-2) Potn +1 =0

Putting fn =1 + g, (g1 =0, g, # -1n>2) formula (2.5) becomes

ot+n-1 at+n
. — - (n-1) —
(2.6) " 2a+n (1) T Bn
(0+n-1)(a+n)
2 g 8
(2a+n-1)(2a+tn) “n "nHl

1
(@]

If g, = 0 for some k>2 then g =0 for all n>k, conversely if
Z n Z

g =0 then g =0 for all n> 2. Hence we have the two cases:
n+1 n -

Case 1. If g, = 0 then g, = 0 for all n and the result is that

o) 2"

bn T(@2))
n
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Case 2. If g, # 0 then g # 0 for all n. Thus put g = 1/(]':n
and formula (2.6) yields

n G n-1 G = 1 .
20 +n)(2x+n) n+1  2(\+n-1)(2x+n-1) n  (2x» +n-1)(2\+n)

Thus
(n-1) -1
G = —— +
2(n +n-1)(2\ +n-1) =n 2 +n-1 ¢
where C is an arbitrary constant. Hence
2.7) G = - 2(x +n-1) i C (\+n-1)(2 +n-1) . (m>2) .
n n-1 (n-1) -
(2r)_
Case 2a. I C=0 then k = - ®%° that bn= 1 and this

2 ()\)n

case was ruled out.

Case 2b. Now suppose that C # 0. Then

n2+af n+p
= 1 4 where - . -B
T2 @@ =Tk Py

n-1 n +a2n+ﬁ2

Thus 1
2x)_ (v -7)
n C'n
kn = ) 2 !
(2x —C)n
so that 1 n
h-=2) 2
C'n
bn = > .
(2x - E)n

To summarize we have seen that in Cases 1 and 2b

o) 2"
b = —=
n (2)\)n
At+n n
so that A =2 and C = - , and hence from (2.1) we
n 2hx+n n 2 x+n
conclude that
o)
= P .
Q (x) = P ()
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Now the following theorem follows:

THEOREM 1. The only polynomial set {Qn(x)} , where deg

Q11 = n, whichis orthogonal and satisfies (1.2) is the set of ultra-

spherical polynomials.

3. In this section we assume that the set {Qn(x)} satisfy (1.2)

and
-n, ntY, o,, 0, 00, X H
(3.1) Qx = F [ 1z P2y %]
n P q B sBoreerP ;
1, 2, ’q ’

where the parameters ELITEREY Qp-Z’ 51, cees Bq are arbitrary

complex numbers with ﬁk # -m, a negative integer

Put

o Kk
Q(x) = Z C(n k)(1-x)
n

k=0

k
in (1.2) and then equate coefficients of (1-x) . We get
(3.2) (n-k+2)C(n+1,k-1) + (n+1)C(n, k) - (n-2k+1)C(n+1,k) = 0 .
Put

(-n)y (4y), (a,), -oo 2 )

p-2'k
k(B e (B

C(n, k) =
in (3.2) and simplify. It then follows that

k(B +e-1)(B, +h-1) L. (B k1)

= K(2k+y-1)
(ar1 +k—1)(a2+k-1) e (ozp_2+k- 1)
so that
(-n). (n+y)
AR

Consequently we have proved

THEOREM 2. The only hypergeometric polynomial of the type
(3.1) which has a generating function (1.2) is the set of ultraspherical

polynomials.
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4, We now assume that the function ¢(u) in (1.1) involves a
parameter o (so that Qn(x) = Qn(x, «) in such a fashion so that

, 4 _ n(nt29)
(4'1) dX Qn(xl Q/) - 2Q+1 Ql’l—i(x’ 0+1) (nz 1) .

Multiply (4.1) by /0! and sum over n>1. We get

0 n 1-2« : ) n
d t d 20+ 1 t
= = = It — ).
e = Qe s ST R < Z Q (e att) n.}
n=1 n=o
Thus ~
/ t
(20 +1) 'jup (tV 1-x2 ) - ———XZ ot (1) 1-x°
! % oz e j
2 | 2. [ 2 ] zl
=t \x q)a_'_i(t\/ 1-x ) +V 1-x (pa+1(t\ 1—x))
+ (2at+1) t (t /1 2)
« Pot+1 x
I
[ o]
¢ (u) = = Ca,k 2k
k=0
then (4.2) imply
2 -
(4.3) (2a+1) = Cloy )T 1-x2) - (et 1)x = 2k Cla, K2 (1-x5) <1

= x D Clot 1, 0P -xAT 13 2k Clatt, 9T -x)N

2k +
b o2et) T Clatt, )t Tk

Equating the coefficient of t2n we get

(4.4) Cla, n) :«m Clat1, - 1)
n 1
= (-1) —2;———‘1" C(a+n, 0)
2 nie+3)
2'n

On the other hand the coefficients of t2n+1 yield

1
Cla,n) = 2T2%2 Clet1,n)

a/+i
2
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which is also satisfied by (4.4) provided that
C(a+n,0) = C(a+n+1,0) for all n .
Thus C(z+n,0) is independent of n. Call it C(«), where C(a) = C(a+1).

Thus it follows that
2

u
-5

o (@) = Cla) oF,(-; atg s

Consequently we have proved

THEOREM 3. If the polynomial set {Qn(x, @)} is generated

by (1.2) and satisfies (4.1) then

(@)

Qn(x, a) = C(a) Pn

(x)

where C(a) is an arbitrary constant such that C(a) = C(a+1).

5. Finally we prove in this section the following theorem

THEOREM 4. If the polynomial set {Qn(x)} satisfies (1.2)

and a differential equation of the second order

(5.1) A(x)Q;(x) + B(x)A;I(x) + )\n Qn(x) =0

where A(x) and B(x) are polynomials of the second and first degrees
respectively, and )\n is independent of x then Qn(x) is essentially

the ultraspherical polynomial,

Proof. Since the degree of Qn(x) is exactly n and since

Qi(x) = C11x, Qz(x) = CZix + C22 we see that (5.1) reduces to
(5.2) (Q/XZ +y) Q;;(x) + bx Q;l(x) - n(an-a+b)Qn(x) = 0

where az +b2 # 0.

I G(x,t) = eXt o(t 1-x2 ) then (5.2) implies
? &
%] %]
(5.3) (ax2+ry)—2q +bx—a/t2 ——éq-bta_tq: 0
ax ot

Putting x =0 in (5.3) we get

(5.4) atg"(t) + (b +y)e'(t) - yto(t) = O

463

https://doi.org/10.4153/CMB-1968-054-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-054-1

2
It is easy to see that o= 0 is not possible. For then ¢(u) = e

2
cu .
Furthermore (1.1) with ¢(u) = e and (5.2) with ¢ =0 are not
compatible.

We may now assume that o= 0. It then follows that

2
- Lbty+l et
§0(t) - Ori (": 2 b 4Y )

In view of (1.1) we see that the conclusion of the theorem is true.
6. Remark. Illief (2) has shown that the ultraspherical

polynomials are the only orthogonal system of polynomials in the class
of polynomial sets defined by means of

where ¢(u) is an even function which is either a polynomial whose
zeros are all real or an entire function which is the limit of such
polynomials.

It is thus apparent that the hypothesis in Theorem 1 is weaker
and the theorerm may be considered as a slight improvement over that
which was obtained by Illief.
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