
Robotica (2023), 41, pp. 392–409
doi:10.1017/S0263574722001370

RESEARCH ARTICLE

A novel inverse kinematics for solving repetitive motion
planning of 7-DOF SRS manipulator
Jingdong Zhao, Zichun Xu , Liangliang Zhao∗, Yuntao Li, Liyan Ma and Hong Liu

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, China
∗Corresponding author. E-mail: zhaoliangliang0619@126.com

Received: 20 April 2022; Revised: 19 July 2022; Accepted: 5 September 2022; First published online: 6 October 2022

Keywords: inverse kinematics, redundant manipulators, joint angle drift, repetitive motion planning

Abstract
The repetitive motion planning movements of the redundant manipulator will cause oscillations and unintended
swings of joints, which increase the risk of collisions between the manipulator and its surroundings. Motivated by
this phenomenon, this paper presents an inverse kinematics algorithm for the spherical-revolute-spherical manipu-
lator to solve the paradox raised by joint-drift and control the pose with no swing of the elbow. This algorithm takes
the joint Cartesian positions set as the intermediary and divides the inverse solution process into two mapping pro-
cesses within joint limits. Simulations are executed to evaluate this algorithm, and the results show this algorithm is
applicable to repetitive motion planning and is capable of producing superior configurations based on its real-time
ability and stable solve rate. Experiments using the 7-degree-of-freedom spherical-revolute-spherical manipulator
demonstrate the effectiveness of this algorithm to remedy the joint-drift and elbow swing compared to Kinematics
and Dynamics Library and TRAC-IK.

1. Introduction
Redundant manipulators that process more degrees-of-freedom (DOFs) than required are attracting
increasing attention with their significant advantages in terms of obstacle avoidance [1] and dynamic
scenarios [2]. With the feature of kinematic redundancy, redundant manipulators have been widely
used in various related fields [3, 4]. The forward kinematics function of redundant manipulators can be
expressed as

r(t)= f (�(t)) , (1)

where r(t) ∈Rm and �(t) ∈Rn. f (·) : Rn→Rm implements the transformation from n-dimensional
configuration space (C-space) to m-dimensional task space. Conversely, f (·)−1, which is difficult to
deduce, denotes the inverse kinematics (IK) of redundant manipulators. Generally, the IK algorithm
for redundant manipulators is designed to solve the kinematics redundancy and to satisfy the given
secondary task. For repetitive motion planning (RMP) tasks, where the end-effector (EE) repetitively
follows the given closed path in Cartesian space or C-space, we first want the manipulator to return to
the initial position both in C-space and Cartesian space after each cyclic task, that is, joint-drift-free
(JDF) motion. Klein and Huang [5] first explain the joint-drift phenomenon (JDP) that occurred during
the RMP, which means a closed path in the task space rather than in C-space is generated due to the
non-integrability of the Pfaffian constraint. JDP may cause damage to manipulators [6] and even some
unpredictable problems [7], such as joint failure or joint lock. Meanwhile, readjusting configurations
will reduce efficiency [8]. In addition, we also want to eliminate needless movements of some joints
during repetitive tip rolling, which may cause collisions between the other joints and surroundings.
Thus, in addition to the basic criteria of real-time and solving stability, an IK algorithm suitable for the
RMP task is indispensable.
C© The Author(s), 2022. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370
https://orcid.org/0000-0002-1031-8018
https://doi.org/10.1017/S0263574722001370

Robotica 393

Although numerous analyses have been performed in the past decades, there is no universal IK
method with all advantages. Analytical methods, numerical methods, and intelligent methods are
the three main types of IK algorithms currently available. Some of the most widely used numerical
approaches are Jacobian-based methods

ṙ(t)= J(�)m×n�̇(t) , (2)
in which ṙ(t) and �̇(t) are the velocities of EE and joints, respectively. J(�)m×n = ∂f (�(t)) /∂� is
the Jacobian matrix. For redundant manipulators, Jacobian transpose [9], Jacobian pseudo-inverse [10],
damped least squares [11], and singular value decomposition [12] are developed. Equation (2) can be
justified with the pseudo-inverse method, which is given by

�̇(t)= J†(�(t))n×m ṙ(t) , (3)

where J†(�(t))n×m is the Moore-Penrose generalized inverse of J(�)m×n, and J†(�(t))n×m = JT
(
JJT

)−1

when J(�)m×n has full row rank r. The generic Jacobian pseudo-inverse IK solver, Orocos Kinematics
and Dynamics Library (KDL), is realized based on Eq. (3), whose solve rate is not satisfactory due to
joint limits. Thus, TRACLAB built the TRAC-IK solver based on KDL with random restarts and nonlin-
ear optimization to improve the computation performance and scalability [13]. However, the traditional
pseudo-inverse algorithms will lead to abrupt changes in joint angles with small movements of EE when
approaching singularities. Meanwhile, the manipulability [14]

w=√det J(�)m×nJT(�)n×m (4)
will drop significantly, which is one of the most commonly used indexes to measure the superiority
of configurations. Moreover, during the motion planning, the neighboring pose should be taken as the
initial seed for the next solution, which means the JDF motion and continuity of configurations cannot be
realized at the same time using the traditional pseudo-inverse algorithms. Due to the lack of internal pose
control, JDP and elbow swing of the 7-DOF manipulator are then caused. Abbasi et al. [15] solve this
problem by using an augmented Jacobian method to maintain the arm pose. In addition, using

(
I − J†J

)
to project onto the nullspace of J(�)m×n, Eq. (3) can be reformulated as

�̇(t)= J†ṙ(t)+(I − J†J
)
ϕ, (5)

and appropriate selection of ϕ ∈Rn can accomplish some tasks with special demands. Some extensions
[16–18] are proposed based on Eqs. (2)–(5) to realize JDF motion. They are, however, accompanied by
the time cost consumed by the tuning process. The Cyclic Coordinate Descent method [19], which is a
sub-category of heuristic methods [20], is realized by iteratively updating each joint angle and may yield
unnatural configurations with discontinuities in joint trajectories and oscillations that are not suitable
for redundant manipulators.

The analytical methods [21, 22] use the geometrical relationships between different links to deduce
the parametric expression of different joint angles. These methods can deduce more than one IK solution
and usually do not suffer from the problem of singularities relative to numerical methods. Analytical
methods can be applied with some additional tasks [23]. However, it is hard to obtain analytical solutions
and the computation efficiency drops significantly when applied to redundant manipulators; for example,
the IK solver in [24] takes 50− 70 ms to compute one IK solution for Baxter. The backbone curve
methods [25] are suitable for redundant manipulators, nevertheless, accompanied by the sacrifices of
real-time action and EE orientation.

The neural network methods [26], which have the advantages of generality and low dependence
on kinematics function models [27, 28], are the most important components of intelligent methods.
Moreover, neural networks can be the solvers of optimization issues to reduce the complexity of the IK
problem and achieve some secondary tasks [29]. For instance, Xie et al. [30] use the gradient descent
method to construct the dynamic neural network with velocity compensation to complete high-precision
RMP tasks. Li et al. [31] formulate the sparse optimization problem to solve the redundancy resolution
with the consideration of joint failure. Nevertheless, pre-training the network and constructing the train-
ing set have a significant impact on prediction accuracy and take unpredictable long. The tuning process

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

394 Jingdong Zhao et al.

remains a challenge for these methods. In addition, some hybrid methods have been utilized to solve
the IK of manipulators. The combination of genetic algorithm and particle swarm [32] is impressive
with its 100% solve rate, but with a higher computation cost relative to TRAC-IK. Further research in
ref. [33] extends the algorithm in ref. [32] with a variety of constraints and improves its scalability and
computation efficiency.

In reference to previous works, our aim is to design an IK algorithm for the spherical-revolute-
spherical (SRS) manipulator that solves the RMP issues with low computational cost and complexity
while also satisfying the high solve rate and real-time applications. The main contributions of this paper
are the following:

(1) The proposed algorithm remedies the JDP without a complex tuning process and enables internal
pose control, that is, the elimination of elbow swing.

(2) Some classifications are considered to boost the second mapping process, in which the nonlinear
constrained optimization (NLopt) problems are formulated to reduce the calculation complexity.
This algorithm is suitable for real-time applications and provides a high solve rate.

(3) This algorithm can deduce superior solutions with higher manipulability while inducing only
EE position error without pose error.

(4) Comparative simulations and experiments are performed on the KUKA LBR iiwa 14 R820
manipulator to demonstrate the effectiveness and advantages of this algorithm in RMP and
internal pose control.

The remainder of this paper is organized as follows: Section 2 explains the two mapping processes of
the proposed algorithm, in which the theoretical analyses are presented to demonstrate the advantages.
Section 3 first presents the quantitative test results of the proposed algorithm and then performs the
simulations to demonstrate its effectiveness in RMP and the ability to deduce superior solutions with
higher manipulability. To verify simulation results, the experiments of RMP are performed with the
KUKA LBR iiwa 14 R820 in Section 4. Finally, Section 5 gives the conclusions of this article and
presents future work.

2. Algorithm
In this section, the proposed algorithm and relevant theoretical analyses are explained in detail to solve
the IK of the SRS manipulator and remedy the problems encountered in RMP. Some important notations
used in the proposed algorithm are listed in Table I, and the abbreviations frequently used in this paper
are shown in Table II.

2.1. Mapping from task space to joint positions set
To prevent the JDP and algorithmic singularity induced by the Jacobian-based algorithm, the IK problem
is solved by two mapping processes instead of directly calculating the joint angles. For the first mapping
h(·) : Rm→ SP, the Cartesian position of the most important elbow joint (i.e., P3) can be derived by
spatial iteration with the consideration of link length and joint limits. As shown in Fig. 1, P1 and P5 can
be excluded from the iteration due to the fixed base and desired EE pose. Thus, the determined target
(i.e., Pnt) is for P4, and the iteration process is given by the following two phases:

S1p
�=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
iP′4 = Pnt = Pdes − Rdes

[
n
n−1x, n

n−1y, n
n−1z

]T
(n= 7)

iP′3 = iP′4 + ̂iP′4i−1P3 · l3, θmin
6 ≤ θ6 ≤ θmax

6 or iP′3 = iP′4 + Ru1(�ϕ6)
̂iP′4i−1P3 · l3

iP′2 = iP′3 + ̂iP′3i−1P2 · l2, θmin
4 ≤ θ4 ≤ θmax

4 or iP′2 = iP′3 + Ru2(�ϕ4)
̂iP′3i−1P2 · l2,

(6)

in which u1 =−l̂4 × ̂iP′4 i−1P3 and u2 = ̂iP′4i−1P3 × ̂iP′3i−1P2, and
https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

Robotica 395

Table I. Mathematical notations.

Notation Meaning
S1p, S2p Sets of joint Cartesian positions in different phases
SP Set of joint Cartesian positions after iteration
C1−7 Set of all possible IK solutions
E Subset of C1−7 that meets the Cartesian error constraint
Pi Cartesian position vector of the i-th joint in Fig. 1−→
li Direction vector of the i-th link in Fig. 1

An Transformation matrix of frame �n with respect to frame �n−1

Tdes, Rdes, Pdes The desired homogeneous matrix and its rotation matrix and position vector
�init, �des The initial and desired joint angle vectors of the manipulator
q0 The initial state vector for each iteration of the proposed algorithm
h(·) Mapping from task space to SP

g(·) Mapping from SP to �des

w, wavg Manipulability and its average value

P1

P2

P3

P4

P5

l1

l2

l3

l4
y0

x0

z0

x7

y7

z7

Figure 1. Schematic of the 7-DOF SRS manipulator, where P1 and P5 indicate the base and end-effector
positions, respectively, and Pi (i= 2, 3, 4) indicate the shoulder, elbow, and wrist positions in order.

S2p
�=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
iP′′2 = [0, 0, ẑ0 · l1]

T

iP′′3 = iP′′2 + îP′′2iP′3 · l2, θmin
2 ≤ θ2 ≤ θmax

2 or iP′′3 = iP′′2 + Ru3(�ϕ2) îP′′2 iP′3 · l2

iP′′4 = iP′′3 + îP′′3iP′4 · l3, θmin
4 ≤ θ4 ≤ θmax

4 or iP′′4 = iP′′3 + Ru4(�ϕ4) îP′′3iP′4 · l3,

(7)

in which u3 = ẑ0 × îP′′2 iP′3 and u4 = îP′′2iP′′3 × îP′′3 iP′4. When θi(i= 2, 4, 6) exceed joint limits, �ϕi can be
given by

�ϕi =
{

θmax
i − θi if θmax

i < θi,

θmin
i − θi if θi < θmin

i .

Ru(θ) represents the rotation around the axis u by an angle θ , which is given as

Ru(θ)=(cos θ) I +(sin θ) [u]× +(1− cos θ)(u⊗ u) ,

where [u]× is the cross-product matrix of u. iP′n and iP′′n (2≤ n≤ 4) denote the position of Pn in Fig. 1
after the first and second phases of the i-th iteration, respectively. The superscript i−1 indicates the joint
positions after the last iteration, or the initial joint positions when i= 1. ln is the length of the n-th link.
Pdes and Rdes are the position vector and rotation matrix of Tdes, respectively. n

n−1x, n
n−1y, and n

n−1z are the

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

396 Jingdong Zhao et al.

Table II. Abbreviations.

Abbreviation Name
EE End-effector
JDF Joint-drift-free
IK Inverse kinematics
DOF Degree-of-freedom
C-space Configuration space
JDP Joint-drift phenomenon (or phenomena)
RMP Repetitive motion planning
SRS Spherical-revolute-spherical
KDL Orocos Kinematics and Dynamics Library

x, y, and z coordinates of the origin of frame �n−1 in frame �n(1≤ n≤ 7). ẑn is the z-axis unit vector of
frame �n, and l̂4 = Rdes

[
n
n−1x, n

n−1y, n
n−1z

]T
(n= 7) is the desired direction vector of the end link.

Due to the determined direction vector of the end link and the fixed base, iP′4 and iP′′2 should be cor-
rected at the beginning of each phase. Equations (6)–(7) are cycled through until the distance between
iP′′4 and Pnt meets the Cartesian error requirement and the angles between adjacent links are within joint
limits. The EE position is subsequently deduced by P5 = iP′′4 + l̂4 · l4. Set SP

�= {P3, P4 ∈ S2p, P1, P2, P5

}
,

containing all joint positions, is obtained after all iterations are completed. The advantages of the pro-
posed algorithm are presented below, including theoretical analyses demonstrating its applicability to
RMP.

(1) JDF motion: When there are no external disturbances, each iteration phase and the final con-
figuration are predetermined before the first phase with the given initial state vector q0 ∈R7, Pnt, and
the Cartesian error. The initial joint positions (i.e., 0P3, 0P4) for the iteration of h(·) can be obtained by
forward kinematics with q0. Once the above variables are determined, Eqs. (6)–(7) can guarantee the
uniqueness of h(·), that is, SP is unique for each IK query.

(2) Continuity of links’ configurations
{−→

l1 ,
−→
l2 ,
−→
l3 ,
−→
l4

}
: For motion planning tasks, the Cartesian

path can be interpolated as consecutive path points. Meanwhile, the pose of the end link can be guaran-
teed because P5 is not involved in iterations. In addition, since

−→
l1 is a constant vector, the key to iteration

is to find the elbow position (i.e., P3). Assuming Pt and Pt = Pt +−→�P are two consecutive path points
that are treated as the targets for P4, for the iteration of Pt, the position change of P3 in different phases
can be summarized as ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

iP′3 =
(

Pt +−→�p
)
+

i−1P3 −
(

Pt +−→�p
)

∥∥∥i−1P3 −
(

Pt +−→�p
)∥∥∥

2

l3

iP′′3 = iP′′2 +
iP′3 − iP′′2∥∥iP′3 − iP′′2

∥∥
2

l2,

(8)

where the underline is used to indicate the iteration of Pt. Using Eq. (8) to compare with the iteration
process of Pt, the variation can be quantified as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

iP′3 − iP′3 =−→�P+ l3

(i−1P3 −
(
Pt +−→�P

)
∥∥∥i−1P3 −

(
Pt +−→�P

)∥∥∥
2

−
i−1P3 − Pt

‖i−1P3 − Pt‖2

)

iP′′3 − iP′′3 = l2

(
iP′3 − iP′′2∥∥iP′3 − iP′′2

∥∥
2

−
iP′3 − iP′′2∥∥iP′3 − iP′′2

∥∥
2

)
,

(9)

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

Robotica 397

where iP′′2 = iP′′2. Since i starts from 1, the limit of Eq. (9) as
−→
�P approaches 0 is given by⎧⎪⎨⎪⎩

lim−→
�P→0

(
iP′3 − iP′3

)= 0

lim−→
�P→0

(
iP′′3 − iP′′3

)= 0.
(10)

As shown in Eq. (10), the minor movement of P4 in Cartesian space does not lead to the abrupt move-
ment of P3 with the same q0. Equations (6)–(7) are the theoretical basis for generating smooth trajectories
since they can be used to deduce continuous links’ configurations

{−→
l1 ,
−→
l2 ,
−→
l3 ,
−→
l4

}
for continuous path

points.
(3) Guaranteed EE pose: P5 is excluded from the iteration to improve efficiency and induce only

position error with no orientation error of EE, which eliminates the effect of repeated rotation of the 7th
joint on other links compared to the pseudo-inverse algorithms. When performing repetitive tip rolling
motions, such as screwing tasks, the elbow joint does not swing due to the repetitive rotation of the 7th
joint, which reduces the risk of collisions and improves the safety of operations.

(4) Superior configurations: Generally, a higher w implies better singularity avoidance and adaptabil-
ity during execution. In contrast with pseudo-inverse algorithms, Eqs. (6)–(7) can deduce the desired
and natural configurations with higher w. Furthermore, the solution process of the proposed algo-
rithm is completed without using J(�)m×n, which compensates for the algorithmic singularity of the
pseudo-inverse algorithms.

2.2. Mapping from joint positions set to the desired joint angle vector
An algorithmic solution implementing the mapping g(·) : SP→�des is given in this subsection, in which
�des ∈R7 is the desired IK joint angle vector. Note that the solution uniqueness and continuity derived
from h(·) can be retained in the process of g(·). |θi|(i= 2, 4, 6) are first calculated by

|θi| =
∣∣∣∣∣π − arccos

(
l2
j + l2

j+1 −
(∥∥Pj+2 − Pj

∥∥
2

)2

2ljlj+1

)∣∣∣∣∣ , (11)

where i= 2j. |θi|(i= 2, 4, 6) will appear in the denominator of some equations and terminate calculations
when one of them approaches or equals to zero. Hence, the realization of g(·) can be classified into the
following cases:

(1) θ2, θ4, and θ6 are not equal to zero: θ1 is first calculated by(
A1A2A3[0, 0, 0, 1]T

)
1,1
= P3,x, (12)

where the subscripts i, j indicate the value of the i-th row and j-th column of the corresponding matrix,
and x indicates the x coordinate of the corresponding joint Cartesian position. An is the transformation
matrix of frame �n with respect to frame �n−1. However, because the sign of θ2 cannot be determined
temporally, the combinations of θ1 and θ2 should be filtered with the following equations

θmin
i ≤ θi ≤ θmax

i , (13)

∣∣1− ẑi · ̂li/2+1

∣∣≤ ε1

(
i= 2, 4, 6

)
, (14)

where ε1 = 10−3 is the defined tolerance. The solution set C1,2 is defined as

C1,2 =
{
(θ1, θ2) |Eqs. (11)− (14)

}
. (15)

Given the set C1,2, θ3 is calculated by(
A3A4A5[0, 0, 0, 1]T

)
1,1
=(A−1

2 A−1
1 [P4, 1]T

)
1,1

. (16)

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

398 Jingdong Zhao et al.

Thus, the set C3,4 is defined as

C3,4 =
{
(θ3, θ4) |Eqs. (11), (13), (14), and (16)

}
. (17)

Similarly, θ5 is calculated by(
A5A6A7[0, 0, 0, 1]T

)
1,1
=
(

A−1
4 A−1

3 A−1
2 A−1

1 Tdes[0, 0, 0, 1]T
)

1,1
, (18)

which is used to define the set

C5,6 =
{
(θ5, θ6) |Eqs. (11), (13), (14), and (18)

}
. (19)

Finally, |θ7|, which is the angle between x̂6 and x̂7, is given by

|θ7| = |arccos(x̂6 · x̂7)| , (20)

where x̂6 and x̂7 are the first three rows of the first columns of
6∏

n=1

An and Tdes, respectively. The set C1−7,

which includes all possible IK solutions, is expressed as

C1−7 =
{
� |Eqs. (15), (17), (19), and (20)

}
. (21)

(2) |θ2|
= 0, |θ4| = 0, and |θ6| = 0: C1,2 is derived in the same way as in the first case. Due to
|θ4| = |θ6| = 0, the analytical expressions for the remaining joint angles are difficult to obtain. Thus,
the remaining solution processes can be formulated as the NLopt problem, which is given by

min
[(

θ3 −�init,3

)2 +(θ5 −�init,5

)2 +(θ7 −�init,7

)2
]

s.t. |θ3 + θ5 + θ7| =
∣∣∣arccos

((
A−1

2 A−1
1 Tdes

)
1,1

)∣∣∣ and Eq. (13),
(22)

in which �init,i denotes the i-th value of the initial joint angle vector of the manipulator (i.e., �init). The
NLopt problem can be solved by the Sequential Least Squares Quadratic Programming algorithm. In
this case, C1−7 is defined as C1−7 = {� |Eqs. (15), (22), and θ4 = θ6 = 0 }.

(3) |θ2| = 0, |θ4|
= 0, and |θ6| = 0: The solutions to |θ1 + θ3| and |θ5 + θ7| are formulated as

min
[(

θ1 −�init,1

)2 + (θ3 −�init,3

)2
]

s.t. |θ1 + θ3| =
∣∣∣arccos

(
Tdes,1,3

s4

)∣∣∣ and Eq. (13),
(23)

where si is the abbreviation of sin θi, and

min
[(

θ5 −�init,5

)2 + (θ7 −�init,7

)2
]

s.t. |θ5 + θ7| =
∣∣∣arccos

(
Tdes,3,1

−s4

)∣∣∣ and Eq. (13).
(24)

Equation (14) is utilized to eliminate some wrong combinations of(θ1 + θ3) and θ4. C1−7 is thus given
by C1−7 = {� |Eqs. (11), (14), (23), (24) , and θ4 = θ6 = 0}.

(4) |θ2| = 0, |θ4| = 0, and |θ6|
= 0: Using Eq. (11), |θ7| can be calculated by

|θ7| =
∣∣∣∣arccos

(
Tdes,3,1

−s6

)∣∣∣∣ . (25)

Then, C6,7 is defined as

C6,7 =
{
(θ6, θ7) |Eqs. (11), (25), and

∣∣ẑ5 · l̂4

∣∣≤ ε1

}
. (26)

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

Robotica 399

The solution to θ1, θ3, and θ5 is formulated as

min
[(

θ1 −�init,1

)2 + (θ3 −�init,3

)2 + (θ5 −�init,5

)2
]

s.t. |θ1 + θ3 + θ5| =
∣∣∣arccos

((
TdesA−1

7 A−1
6

)
1,1

)∣∣∣ and Eq. (13).
(27)

Then, we can obtain C1−7 = {� |Eqs. (26), (27), and θ2 = θ4 = 0}.
(5) |θ2|
= 0, |θ4|
= 0, and |θ6| = 0: The procedures in the first case are repeated until the sets C1,2 and

C3,4 are obtained. Then, the solution to θ5 and θ7 can be written as

min
[(

θ5 −�init,5

)2 +(θ7 −�init,7

)2
]

s.t. |θ5 + θ7| =
∣∣∣arccos

((
A−1

4 A−1
3 A−1

2 A−1
1 Tdes

)
1,1

)∣∣∣ and Eq. (13).
(28)

Similarly, C1−7 is thus defined as C1−7 = {� |Eqs. (15), (17), (28), and θ6 = 0} .
(6) |θ2| = 0, |θ4|
= 0, and |θ6|
= 0: Using Eq. (11) and Tdes, |θ5| should be calculated first by

|θ5| =
∣∣∣∣arccos

(
c4c6 − Tdes,3,3

s4s6

)∣∣∣∣ , (29)

where ci is the abbreviation of cos θi. Given Eq. (29), C5,6 is defined as

C5,6 =
{
(θ5, θ6) |Eqs. (11), (13), and (29)

}
. (30)

Then, θ7 is obtained by solving

s4s5s7 −(c4s6 + c5c6s4) c7 = Tdes,3,1 (31)

with the constraints of Eqs. (14), (30), and
∣∣1+ ŷ3 · l̂2

∣∣≤ ε1. After deriving the set

C4,5,6,7 =
{
(θ4, θ5, θ6, θ7) |Eqs. (11), (13), (30), and (31)

}
, (32)

the solution to θ1 and θ3 is formulated as

min
[(

θ1 −�init,1

)2 + (θ3 −�init,3

)2
]

s.t. |θ1 + θ3| =
∣∣∣arccos

((
TdesA−1

7 A−1
6 A−1

5 A−1
4

)
1,1

)∣∣∣ and Eq. (13).
(33)

Finally, C1−7 is defined as C1−7 = {� |Eqs. (32), (33), and θ2 = 0}.
(7) |θ2|
= 0, |θ4| = 0, and |θ6|
= 0: Given Eq. (11), θ7 can be calculated first with

|θ7| =
∣∣∣∣∣arccos

((
A−1

2 A−1
1 Tdes

)
3,1

−s6

)∣∣∣∣∣ (34)

and C1,2, which is similarly defined as in the first case. Then, C6,7 is defined as

C6,7 =
{
(θ6, θ7) |Eqs. (11), (34), and

∣∣ẑ5 · l̂4

∣∣≤ ε1

}
. (35)

Thus, the solution to θ3 and θ5 can be formulated as

min
[(

θ3 −�init,3

)2 + (θ5 −�init,5

)2
]

s.t. |θ3 + θ5| =
∣∣∣arccos

((
A−1

2 A−1
1 TdesA−1

7 A−1
6

)
1,1

)∣∣∣ and Eq. (13).
(36)

C1−7 is then defined as C1−7 = {� |Eqs. (15), (35), (36), and θ4 = 0}.
(8) |θ2| = 0, |θ4| = 0, and |θ6| = 0: The solution to the remaining joint angles can be formulated as

min
[(

θ1 −�init,1

)2 + (θ3 −�init,3

)2 +(θ5 −�init,5

)2 +(θ7 −�init,7

)2
]

s.t.
∣∣θ1 + θ3 + θ5 + θ7

∣∣= ∣∣ arccos
(
Tdes,1,1

) ∣∣ and Eq. (13).
(37)

Hence, C1−7 is given as C1−7 = {� |θ2 = θ4 = θ6 = 0 and Eq. (37) }.
https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

400 Jingdong Zhao et al.

No matter which case is performed, C1−7 will eventually be defined to obtain �des. Traversing C1−7

with

Ttemp(�)= A1A2 · · · A7 =
[

Rtemp Ptemp

0 1

]
, (38)

each Ttemp(�) can be used to compare with Tdes to derive the set E⊆C1−7, which is defined as

E=
{
� :

(
εrot + εpos

)≤ εtol, � ∈C1−7

}
. (39)

The rotation error(i.e., εrot) and position error
(
i.e., εpos

)
can be calculated by

εrot = arccos
(

tr(R−1
tempRdes)−1

2

)
and εpos = dist

(
Ptemp, Pdes

)= ∥∥Ptemp − Pdes

∥∥
2
, (40)

respectively. Meanwhile, �des can be found by

�des = arg min
�∈E

‖�−�init‖1. (41)

Some joint angle elements in � and �init can be omitted to reduce the variation in other joints and
obtain other desired solutions. Although |θi|(i= 2, 4, 6) are rounded to a given number of places, C1−7

in the first case has the most elements, and the multi-threaded solvers are required to boost the computa-
tional process to obtain �des. For other cases, multithreading may reduce the efficiency of computation.
The procedure of the proposed algorithm is outlined in Algorithm 1, where MultiThread is programmed
to realize Eqs. (38)–(40) with multithreading, and MultiCase implements the solutions to Cases 2–8.

Algorithm : Solving process of the proposed algorithm
Input: q0, �init, Tdes, ε1 = 10−3, and εtol;
Output: �des;
1: Pnt← determined target for iteration
2: if The target is reachable then
3: while

∥∥iP′′4 − Pnt

∥∥
2
> εtol do

4: Equations (6)–(7)
5: if

∥∥iP′′4 − Pnt

∥∥
2
≤ εtol then

6: SP← Eq. (7)
7: end if
8: end while
9: |θi|(i= 2, 4, 6)← Eq. (11)
10: if ∀ |θi|
= 0 then
11: C1−7← Eq. (21)
12: E←MultiThread(C1−7)
13: else if ∃ |θi| = 0 then
14: C1−7←MultiCase(θ2, θ4, θ6)
15: for each � ∈C1−7 do
16: if Eq. (40) is satisfied then
17: PushBack(�, E)
18: end if
19: end for
20: end if
21: �des← Eq. (41)
22: end if

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

Robotica 401

0 40 80 120 160 200
Path point

–2.2

–1.6

–1

–0.4

0.2

0.8

Jo
in

t a
ng

le
 (

ra
d)

(a)

0 40 80 120 160 200
Path point

–2.2

–1.6

–1

–0.4

0.2

0.8

Jo
in

t a
ng

le
 (

ra
d)

(b)

0 40 80 120 160 200
Path point

–2.2

–1.6

–1

–0.4

0.2

0.8

Jo
in

t a
ng

le
 (

ra
d)

(c)

0 40 80 120 160 200
Path point

–2

–1.2

–0.4

0.4

1.2

Jo
in

t a
ng

le
 (

ra
d)

(d)

0 40 80 120 160 200
Path point

–2

–1.2

–0.4

0.4

1.2
Jo

in
t a

ng
le

 (
ra

d)
(e)

0 40 80 120 160 200
Path point

–2

–1.2

–0.4

0.4

1.2

Jo
in

t a
ng

le
 (

ra
d)

(f)

Figure 2. The joint trajectories synthesized by (a), (d) KDL, (b), (e) TRAC-IK, and (c), (f) the proposed
algorithm, respectively, when the tip of the KUKA manipulator traces the circle (first row) and square
paths (second row) twice.

3. Simulation and performance
The performance of the proposed algorithm is quantified in this section by applying it to the KUKA LBR
iiwa 14 R820. Meanwhile, KDL and TRAC-IK are adopted as baselines for comparisons. The joint-drift
and screwing simulations are performed using the proposed algorithm on the KUKA manipulator. The
ability of the proposed algorithm to deduce superior solutions is also demonstrated.

In this section, the initial state for each iteration of the proposed algorithm is q0 = [0, 0, 0, 0, 0, 0, 0]

rad, that is, 0Pi = [0, 0,
∑i−1

n=1 ln]
T
(i= 3, 4). Before performing the simulations below, the solve rate and

average solve time of the proposed algorithm are first verified by a quantitative test with 10, 000 random
samples, which are constructed by reachable manipulator configurations. When the Cartesian error is
10−6, the results show that the solve rate is 99.93% and the average solve time is 0.59 ms, which satisfy
our requirements for stability and real-time ability of the IK algorithm. All simulations in this section
are performed with the 10−6 Cartesian error constraint and implemented in C++ on a computer with
an Intel Core i3-9100 CPU @ 3.6 GHz × 4 and 15 GB RAM.

3.1. Joint-drift simulations
In this subsection, the joint-drift simulations are performed on the KUKA manipulator using KDL,
TRAC-IK, and the proposed algorithm, respectively. The EE of the KUKA manipulator must trace the
given circle and square paths repeatedly, where the radius of the circle is 0.14 m and the side length of
the square is 0.2 m. Both paths have been interpolated to 100 path points. Figure 2 illustrates the joint
trajectories synthesized by the above three algorithms when tracing the given circular (Fig. 3(a)) and
square (Fig. 3(c)) paths twice, in which the initial joint angles are �init = [0.526, −0.609, 0, −1.431,
0, −1.102, 0.526] rad and �init = [0.777, −0.888, 0, −0.936, 0, −1.316, 0.777] rad, respectively.
As shown in Fig. 2(a), (b), (d), and (e), the drifts of joints 1, 3, 5, and 7 can be clearly observed when
using KDL and TRAC-IK. Contrastively, the joint trajectories deduced by the proposed algorithm all

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

402 Jingdong Zhao et al.

(a)

0 40 80 120 160 200
Path point

–2

1

4

7

10

C
ar

te
si

an
 e

rr
or

10–7

Position error Pose error

(b)

(c)

0 40 80 120 160 200
Path point

–2

1

4

7

10

C
ar

te
si

an
 e

rr
or

10–7

Position error Pose error

(d)

Figure 3. (a), (c) Manipulator motion trajectory profiles and the (b), (d) Cartesian errors generated by
the proposed algorithm when tracing the given circular (first row) and square (second row) paths twice.

Figure 4. The configurations of the KUKA manipulator synthesized by (a), (d) KDL, (b), (e) TRAC-IK,
and (c), (f) the proposed algorithm, respectively, when passing the same point in the 20-cycle circular
and square tracing tasks.

return to their initial states in Fig. 2(c) and (f), which indicates the JDF motion is realized. Moreover,
Fig. 3(a) and (c) illustrate the tracking performance of the proposed algorithm, in which the EE can
successfully trace the specified paths (red lines) with good continuity of configurations (blue lines).
Using Eq. (40) to generate variation curves of the position error and pose error, it can be observed from
Fig. 3(b) and (d) that the maximum value of position error is less than 10−6 and the pose error is always
zero, both of which meet the error constraint and demonstrate the theoretical analyses in Section 2.1.

As the tip of the KUKA manipulator continues to trace the paths, some of the joint angles drift to their
fixed values until the path is closed in C-space when using KDL and TRAC-IK. Figure 4 displays the
whole joint-drift process induced by KDL and TRAC-IK, and the joint angle repeatability guaranteed
by using the proposed algorithm. Table III lists the detailed simulation data, in which the joint-drift
(‖�(20)−�(0)‖2) synthesized by the proposed algorithm in different tracing tasks is 4.491× 10−7 and
9.177× 10−8 rad, which are significantly smaller than those of KDL and TRAC-IK. For the circular and
square tracing tasks with 2000 path points, the average solution time of the proposed algorithm is 0.243
and 0.239 ms, respectively. Notably, the JDF motion is realized by the proposed algorithm with only

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

Robotica 403

Table III. Comparisons of joint-drifts among KDL, TRAC-IK, and the proposed algorithm when the
tip traces the two different paths twenty times.

KDL TRAC-IK Proposed algorithm

Joint-drifts (rad) Circle Square Circle Square Circle Square
|θ1(20)− θ1(0)| 0.544 0.279 0.544 0.275 0 0
|θ2(20)− θ2(0)| 0.172 0.076 0.172 0.074 0 0
|θ3(20)− θ3(0)| 0.896 0.656 0.896 0.647 1.490× 10−8 7.885× 10−8

|θ4(20)− θ4(0)| 0 8.900× 10−5 0 8.700× 10−5 0 0
|θ5(20)− θ5(0)| 0.623 0.536 0.623 0.528 4.489× 10−7 4.696× 10−8

|θ6(20)− θ6(0)| 0.126 0.066 0.126 0.064 0 0
|θ7(20)− θ7(0)| 0.418 0.245 0.418 0.242 0 0
‖�(20)−�(0)‖2 1.306 0.930 1.306 0.917 4.491× 10−7 9.177× 10−8

Table IV. The effects of position error on joint-drift when the
proposed algorithm is applied to different tracing tasks.

Position error Task ‖�(20)−�(0)‖2 (rad)
10−3 Circle 4.409× 10−7

Square 0

10−4 Circle 4.409× 10−7

Square 0

10−5 Circle 4.425× 10−7

Square 4.891× 10−8

10−6 Circle 4.491× 10−7

Square 9.177× 10−8

three parameters, that is, q0, Pnt, and Cartesian error requirement, which omit the time-consuming tuning
process. In summary, the simulation results substantiate the effectiveness of the proposed algorithm
when applied to the KUKA manipulator to perform real-time JDF motion.

Finally, since the proposed algorithm does not induce pose error, the effects of position error on joint-
drift (i.e., ‖�(20)−�(0)‖2) are verified. As shown in Table IV, position error causes a minor change
in joint-drift within the computation accuracy. This effect is insignificant when compared to the change
in magnitude of the position error.

3.2. Screwing simulation
The 2F-85 ROBOTIQ gripper and KUKA manipulator are used to perform the screwing simulation.
Meanwhile, the connector is designed to connect the KUKA flange and the ROBOTIQ gripper, as shown
in Fig. 5(a). The initial joint angle vector is �init = [0.527,−0.609, 0,−1.430, 0,−1.102,−3.0] rad. Due
to the joint limit of θ7, the height of EE needs to be adjusted to reset θ7 during the screwing process.
Hence, the above process is divided into the following stages:

(1) EE is first planned to finish the motion in which the gripper rotates and drops in height until
reaching the limit of θ7.

(2) EE moves up to reset θ7 and then returns to the height at the end of the first stage.
(3) Repeat the motion of the first stage.

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

404 Jingdong Zhao et al.

Figure 5. Screwing simulation results using (a) the proposed algorithm, (b) TRAC-IK, and (c) KDL,
respectively. For each row, the first column shows the initial and final configurations, and the second
column shows the joint trajectories and the variations of EE height relative to the base.

To complete the solution for each path point, the timeout is 15 ms and the running type of TRAC-IK
is “Distance,” which means TRAC-IK runs the full timeout and then returns the solution that minimizes
the sum of squared error from the seed. As shown in Fig. 5, the green dotted lines indicate the different
stages, from which the variations of EE height clearly show the screwing processes. In contrast with
TRAC-IK and KDL, the proposed algorithm can rotate the 7th joint significantly as desired and with
little variation in other joint angles during the process. Both KDL and TRAC-IK induce an intense swing
of the elbow joint, which increases the risk of colliding with nearby objects and people. Moreover, for
664 path points, the average solution time of the proposed algorithm is 0.223 ms.

3.3. Manipulability performance evaluation
In this subsection, the simulation path points in Cartesian space are obtained by calculating the linear
path between the target configuration in C-space and the zero position using forward kinematics, where
the target configuration is selected randomly in the low manipulability region of the KUKA manipulator.
The average values of manipulability wavg are obtained by solving the path with the three algorithms and

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

Robotica 405

1 20 40 60 80 100
Path point

–1.5

–0.5

0.5

1.5

2.5

Jo
in

t a
ng

le
 (

ra
d)

w
avg

 = 5.682 10–4

(a)

1 20 40 60 80 100
Path point

–1.5

–0.5

0.5

1.5

2.5

Jo
in

t a
ng

le
 (

ra
d)

w
avg

 = 5.885 10–4

60 62.5 65
0.8

1

(b)

1 20 40 60 80 100
Path point

–2

–1

0

1

2

Jo
in

t a
ng

le
 (

ra
d)

w
avg

 = 1.172 10–2

(c)

1 20 40 60 80 100
Path point

–1

0

1

2

3

Jo
in

t a
ng

le
 (

ra
d)

w
avg

 = 1.411 10-–3

40 42.5 45
-0.05

0.08

(d)

Figure 6. Joint trajectories derived from manipulability simulations using (a) KDL, TRAC-IK with the
running types (b) “Distance” and (c) “Manip1”, and (d) the proposed algorithm, respectively.

used as the measure indexes. Moreover, both the running types “Manip1” and “Distance” of TRAC-
IK are used to solve the path, in which “Manip1” means TRAC-IK runs the full timeout and then
returns the solution that maximizes w. The timeout is 10 ms to guarantee the solution stability of KDL
and TRAC-IK. The target configuration is �end = [0.144,−0.027, 2.805,−0.869, 1.610, 0.112, 1.649]
rad. As shown in Fig. 6(c), although the max wavg is derived, the oscillatory joint trajectories are gen-
erated when using the “Manip1” type of TRAC-IK, which is not applicable to continuous motion.
Figure 6(d) indicates that the proposed algorithm can generate smooth trajectories with a higher
wavg = 1.411× 10−3, which is approximately triple that of KDL (Fig. 6(a)) and the “Distance” type
of TRAC-IK (Fig. 6(b)). The average solution time of the proposed algorithm is 5.543 ms, and the
simulation results substantiate the above statements that the proposed algorithm can produce superior
configurations relative to KDL and TRAC-IK.

4. Experiment verification
The experiments in this section are designed to verify the simulation results in Sections 3.1 and 3.2, as
well as the practical feasibility of the proposed algorithm. Thus, the relevant procedures of the experi-
ments are basically the same as those of simulations. Notably, the proposed algorithm is implemented
on the KUKA LBR iiwa 14 R820 manipulator with the 10−6 Cartesian error constraint to solve all path
points in real time.

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

406 Jingdong Zhao et al.

Figure 7. The experiments for tracking the circle (first three rows) and square (last three rows) paths
are performed on the KUKA manipulator using (a), (d) KDL, (b), (e) TRAC-IK, and (c), (f) the proposed
algorithm, respectively. The KUKA manipulator begins with the initial point (first column), moves coun-
terclockwise through the path points (middle three columns), and finally gets back to the start point (last
column).

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370

Robotica 407

Figure 8. Snapshots of the screwing assembling experiment using the proposed algorithm with the
KUKA manipulator and the 2F-85 ROBOTIQ gripper. The 7th joint rotates from -3 rad to 1.714 rad,
and the EE moves down during each screwing process, after which the 7th joint must be reset to -3 rad,
and the EE moves upwards as required.

4.1. Experiment A: Circular and square path tracking
In order to verify the reliability of joint-drift simulation results, the physical experiments are performed
on the KUKA manipulator using the above three baselines. For the circular and square path tracing, the
initial joint angles of the KUKA manipulator are �init = [0.527,−0.609, 0, 1.430, 0,−1.102, 0.527] rad
and �init = [0.777,−0.888, 0, 0.936, 0,−1.316, 0.777] rad, respectively. The initial state for each itera-
tion of the proposed algorithm is q0 = [0, 0, 0, 0, 0, 0, 0] rad. As shown in Fig. 7(c) and (f), the tip of the
KUKA manipulator can track the red paths accurately and steadily when using the proposed algorithm.
Meanwhile, the continuity of configurations can be guaranteed. After 20-cycle tracking tasks, the initial
and final configurations of the KUKA manipulator are identical. On the contrary, as shown in the last
columns of Fig. 7(a), (b), (d), and (e), the JDP caused by KDL and TRAC-IK can be clearly observed.
Thus, the feasibility of the proposed algorithm to generate JDF motion with guaranteed Cartesian preci-
sion is experimentally verified. All the experimental processes can be found in the accompanying video
(See Supplementary materials).

4.2. Experiment B: Screwing assembling
This subsection presents the screwing experiment performed by the KUKA manipulator and 2F-
85 ROBOTIQ gripper to validate the simulation results derived from the proposed algorithm. The
initial joint angles of the KUKA manipulator are �init = [0.527,−0.609, 0, 1.430, 0,−1.102,−3.0]
rad, and the initial state for each iteration of the proposed algorithm is q0 = [0, 0, 0, 0, 0, 0, 0]
rad. In this experiment, the allowable motion range of the seventh joint is set from −3 to 1.714
rad. As shown in Fig. 8, the screwing experiment is divided into four phases. When the sev-
enth joint reaches 1.714 rad in the second and fourth columns of Fig. 8, the EE should be
raised to reset the seventh joint and the gripper should be released. The KUKA manipulator fin-
ished the whole screwing process with minor variations in other joints and no swing of the

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370
https://doi.org/10.1017/S0263574722001370

408 Jingdong Zhao et al.

elbow, which is presented in detail in the accompanying video (See Supplementary materials).
In addition, it can be observed that the bolt can be accurately screwed into the hole with the guarantee
of EE precision by the proposed algorithm.

5. Conclusion
In this paper, an IK algorithm to solve the redundancy resolution and the RMP of the SRS manipulators
has been presented. The proposed algorithm first implements the mapping from the task space to the
joint Cartesian positions and then deduces the desired joint angles from the second mapping. Beyond
that, the proposed algorithm can be applied to real-time applications and provide a high solve rate,
which has been demonstrated by a quantitative IK test on the KUKA manipulator. In contrast with
KDL and TRAC-IK, simulations and experiments have been performed on the KUKA manipulator to
verify that the proposed algorithm can remedy the joint-drift problems and elbow swing. Meanwhile,
the EE accuracy and the continuity of the trajectory can be guaranteed simultaneously. Moreover, when
compared to the other two baselines, the proposed algorithm can generate superior configurations with
higher manipulability.

Future work will focus on extending this algorithm to more types of manipulators. A more com-
putationally efficient algorithm that does not need classification during the second mapping is worth
investigating when applied to hyper-redundant manipulators. Some constraints on obstacle avoidance
can be imposed in the first mapping to take advantage of the kinematic redundancy of redundant manip-
ulators. Notably, the initial value has a significant impact on solution time for different IK queries, which
is worth optimizing and further discussion.

Supplementary materials. To view supplementary material for this article, please visit https://doi.org/10.1017/
S0263574722001370.

Authors’ contributions. None.

Financial support. This work has been supported by the National Natural Science Foundation of China [Project Number:
92148203] and Self-Planned Task [NO. SKLRS202201A01] of State Key Laboratory of Robotics and System.

Conflicts of interest. The authors declare that they have no conflict of interests.

Ethical considerations. None.

References
[1] L. Zhao, J. Zhao and H. Liu, “Solving the inverse kinematics problem of multiple redundant manipulators with collision

avoidance in dynamic environments,” J. Intell. Robot. Syst. 101(2), 30 (2021).
[2] L. Zhao, Z. Jiang, Y. Sun, J. Zhao and H. Liu, “Collision-free kinematics for hyper-redundant manipulators in dynamic

scenes using optimal velocity obstacles,” Int. J. Adv. Robot. Syst. 18(1), 1–17 (2021).
[3] R. K. Malhan, A. M. Kabir, B. Shah and S. K. Gupta, “Identifying Feasible Workpiece Placement with Respect to Redundant

Manipulator for Complex Manufacturing Tasks,” In: IEEE International Conference on Robotics and Automation (ICRA),
IEEE (2019) pp. 5585–5591.

[4] Z. Mu, T. Liu, W. Xu, Y. Lou and B. Liang, “A hybrid obstacle-avoidance method of spatial hyper-redundant manipulators
for servicing in confined space,” Robotica 37(6), 998–1019 (2019).

[5] C. A. Klein and C.-H. Huang, “Review of pseudoinverse control for use with kinematically redundant manipulators,” IEEE
Trans. Syst. Man Cybern. 13(2), 245–250 (1983).

[6] Z. Li, F. Xu, D. Guo, P. Wang and B. Yuan, “New P-type RMPC scheme for redundant robot manipulators in noisy
environment,” Robotica 38(5), 775–786 (2020).

[7] Z. Li, C. Li, S. Li and X. Cao, “A fault-tolerant method for motion planning of industrial redundant manipulator,” IEEE
Trans. Ind. Inform. 16(12), 7469–7478 (2019).

[8] Z. Zhang, T. Fu, Z. Yan, L. Jin, L. Xiao, Y. Sun, Z. Yu and Y. Li, “A varying-parameter convergent-differential neural network
for solving joint-angular-drift problems of redundant robot manipulators,” IEEE/ASME Trans. Mech. 23(2), 679–689 (2018).

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370
https://doi.org/10.1017/S0263574722001370
https://doi.org/10.1017/S0263574722001370
https://doi.org/10.1017/S0263574722001370

Robotica 409

[9] P. Chiacchio and B. Siciliano, “A closed-loop jacobian transpose scheme for solving the inverse kinematics of nonredundant
and redundant wrists,” J. Robot. Syst. 6(5), 601–630 (1989).

[10] J. Wang, Y. Li and X. Zhao, “Inverse kinematics and control of a 7-DOF redundant manipulator based on the closed-loop
algorithm,” Int. J. Adv. Robot. Syst. 7(4), 37–47 (2010).

[11] C. W. Wampler, “Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods,”
IEEE Trans. Syst. Man Cybern. 16(1), 93–101 (1986).

[12] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with singularity robustness for robot manipulator control,”
ASME J. Dyn. Syst. Meas. Cont. 108(3), 163–171 (1986).

[13] P. Beeson and B. Ames, “TRAC-IK: An Open-Source Library for Improved Solving of Generic Inverse Kinematics,”
In: IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), IEEE (2015) pp. 928–935.

[14] T. Yoshikawa, “Manipulability of robotic mechanisms,” Int. J. Robot. Res. 4(2), 3–9 (1985).
[15] V. Abbasi, B. Azria, E. Tabarah, V. Menon, E. Phillips and M. Bedirian, “Improved 7-DOF Control of ISS Robotic

Manipulators,” In: Space OPS, 2004 Conference (2004) pp. 407.
[16] H. Lu, L. Jin, J. Zhang, Z. Sun, S. Li and Z. Zhang, “New joint-drift-free scheme aided with projected ZNN for motion

generation of redundant robot manipulators perturbed by disturbances,” IEEE Trans. Syst. Man Cybern. Syst. 51(9),
5639–5651 (2019).

[17] L. Jin, Z. Xie, M. Liu, K. Chen, C. Li and C. Yang, “Novel joint-drift-free scheme at acceleration level for robotic redundancy
resolution with tracking error theoretically eliminated,” IEEE/ASME Trans. Mech. 26(1), 90–101 (2020).

[18] D. Guo, Z. Li, A. H. Khan, Q. Feng and J. Cai, “Repetitive motion planning of robotic manipulators with guaranteed
precision,” IEEE Trans. Ind. Inform. 17(1), 356–366 (2020).

[19] L.-C. Wang and C.-C. Chen, “A combined optimization method for solving the inverse kinematics problems of mechanical
manipulators,” IEEE Trans. Robot. Autom. 7(4), 489–499 (1991).

[20] A. Aristidou, J. Lasenby, Y. Chrysanthou and A. Shamir, “Inverse kinematics techniques in computer graphics: A survey,”
Comput. Graph. Forum 37(6), 35–58 (2018).

[21] W. Xu, L. Yan, Z. Mu and Z. Wang, “Dual arm-angle parameterisation and its applications for analytical inverse kinematics
of redundant manipulators,” Robotica 34(12), 2669–2688 (2016).

[22] B. Ma, Z. Xie, Z. Jiang and H. Liu, “Precise semi-analytical inverse kinematic solution for 7-DOF offset manipulator with
arm angle optimization,” Front. Mech. Eng. 16(3), 435–450 (2021).

[23] J. Oh, H. Bae and J.-H. Oh, “Analytic Inverse Kinematics Considering the Joint Constraints and Self-Collision for Redundant
7DOF Manipulator,” In: First IEEE International Conference on Robotic Computing (IRC), IEEE (2017) pp. 123–128.

[24] A. Sinha and N. Chakraborty, “Geometric Search-based Inverse Kinematics of 7-DoF Redundant Manipulator with Multiple
Joint Offsets,” In: International Conference on Robotics and Automation (ICRA), IEEE (2019) pp. 5592–5598.

[25] G. S. Chirikjian and J. W. Burdick, “A modal approach to hyper-redundant manipulator kinematics,” IEEE Trans. Robot.
Autom. 10(3), 343–354 (1994).

[26] E. Oyama, N. Y. Chong, A. Agah and T. Maeda, “Inverse Kinematics Learning by Modular Architecture Neural Networks
with Performance Prediction Networks,” In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation (Cat. No.01CH37164), IEEE (2001) pp. 1006–1012.

[27] G. M. Marconi, R. Camoriano, L. Rosasco and C. Ciliberto, “Structured prediction for CRiSP inverse kinematics learning
with misspecified robot models,” IEEE Robot. Autom. Lett. 6(3), 5650–5657 (2021).

[28] Z. Xie, L. Jin, X. Luo, B. Hu and S. Li, “An acceleration-level data-driven repetitive motion planning scheme for kinematic
control of robots with unknown structure,” IEEE Trans. Syst. Man Cybern. Syst. 52(9), 5679–5691 (2021).

[29] A. A. Hassan, M. El-Habrouk and S. Deghedie, “Inverse kinematics of redundant manipulators formulated as quadratic
programming optimization problem solved using recurrent neural networks: A review,” Robotica 38(8), 1495–1512 (2020).

[30] Z. Xie, L. Jin, X. Du, X. Xiao, H. Li and S. Li, “On generalized RMP scheme for redundant robot manipulators aided with
dynamic neural networks and nonconvex bound constraints,” IEEE Trans. Ind. Inform. 15(9), 5172–5181 (2019).

[31] Z. Li, C. Li, S. Li, S. Zhu and H. Samani, “A sparsity-based method for fault-tolerant manipulation of a redundant robot,”
Robotica 40(10), 3396–3414 (2022).

[32] S. Starke, N. Hendrich, S. Magg and J. Zhang, “An Efficient Hybridization of Genetic Algorithms and Particle Swarm
Optimization for Inverse Kinematics,” In: IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE
(2016) pp. 1782–1789.

[33] S. Starke, N. Hendrich and J. Zhang, “Memetic evolution for generic full-body inverse kinematics in robotics and animation,”
IEEE Trans. Evol. Comput. 23(3), 406–420 (2019).

Cite this article: J. Zhao, Z. Xu, L. Zhao, Y. Li, L. Ma and H. Liu (2023). “A novel inverse kinematics for solving repetitive
motion planning of 7-DOF SRS manipulator”, Robotica 41, 392–409. https://doi.org/10.1017/S0263574722001370

https://doi.org/10.1017/S0263574722001370 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001370
https://doi.org/10.1017/S0263574722001370

	
	Introduction
	Algorithm
	Mapping from task space to joint positions set
	Mapping from joint positions set to the desired joint angle vector
	Simulation and performance
	Joint-drift simulations
	Screwing simulation
	Manipulability performance evaluation
	Experiment verification
	Experiment A: Circular and square path tracking
	Experiment B: Screwing assembling
	Conclusion

