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In this article, we explore the bifurcation problem of limit cycles near the double eight
figure loop (compound cycle with a 2-polycycle connecting two homoclinic loops). A
general theory is established to find the lower bound of the maximal number of limit
cycles (isolated periodic orbits) near the double eight figure loop. The Liénard
system, a well-known nonlinear dynamical model, appears in a natural way in
physics, chemistry, engineering, and so on, where periodic phenomena play a relevant
role. As an application, we investigate an (n+ 1)th-order generalized Liénard system
and prove the system has at least 7[n

6
] + 2[ r

2
]− [ r

4
] limit cycles near the double eight

figure loop for any n ≥ 5 and r = mod(n, 6), and their distribution is also gained.
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1. Introduction

Consider the planar near-Hamiltonian system

ẋ = Hy(x, y) + εf(x, y, δ), ẏ = −Hx(x, y) + εg(x, y, δ), (1.1)

where the parameter |ε| � 1, the vector parameter δ ∈ D ⊂ Rn with D com-
pact, H, f, g are polynomial functions in x and y. The system (1.1) describes a
widely researched dynamical system that not only has numerous applications in
vital areas such as celestial mechanics, molecular dynamics, statistical mechanics,
and quantum mechanics [22, 30] but also is related to the weakened Hilbert’s 16th,
as proposed by Anorld [1], which is an important subject of investigation in the
qualitative theory of plane differential systems.

Let ω = g(x, y, δ)dx − f(x, y, δ)dy be a 1-form. The weakened Hilbert’s 16th
problem is to find an upper bound for the number of isolated zeros of the first-order
Melnikov function (Abelian integral)
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2 H. Shi

M(h, δ) =

∮
Γh

ω,

where Γh = {H(x, y) = h, h ∈ J} is defined as a family of continuous and close
curves, with J being an open interval, and it is related to the lower bound of the
maximum number of limit cycles for the system (1.1).

An essential approach to determining the isolated zero number of M(h, δ) is to
investigate its expansion in h near a centre, a homoclinic loop, or a heteroclinic loop
(see [9–11, 14, 18, 20]). The asymptotic expansion of the first-order Melnikov func-
tionM(h, δ) near the homoclinic or heteroclinic loop will be briefly described below,
including the formulas for the coefficients of the first few terms in the expansion.

Dulac [7] and Roussarie [28] gained the expression of the expansion of M(h, δ)
near and inside the homoclinic loop L with a hyperbolic saddle,

M(h, δ) =
∑
j≥0

(c2j(δ) + c2j+1(δ) (h− hs) ln |h− hs|) (h− hs)
j
, 0 < hs − h � 1,

(1.2)

where H(S) = hs, c0(δ) =
∮
L
ω |ε=0, and c1(δ) = − 1

|λ|

(
∂f
∂x + ∂g

∂y

)∣∣∣
S

with the

eigenvalues ±λ, and the expression of the coefficient c1 was obtained by Han and
Ye [19]. For detailed calculations of higher-order coefficients in the expansion of
M(h, δ), refer to [18, 19, 29, 31].

Suppose system (1.1)|ε=0 has a polycycle L with m hyperbolic saddles Si for
i = 1, . . . ,m, encircling the family of periodic orbits Γh near it, where H(S1) = hs.
Jiang and Han [21] proved the asymptotic expansion ofM(h, δ) near the heteroclinic
loop, and it is in the same form as (1.2). Obviously, the first coefficient c0(δ) =∮
L
ω |ε=0 remains unchanged. The coefficient c1(δ) =

∑m
i=1 −

1∣∣λi∣∣
(

∂f
∂x + ∂g

∂y

)∣∣∣
Si

with the eigenvalues ±λi of Si was given by Li et al. [24] (see [13, 18, 32] and its
references for other results on the calculation of coefficients).

The coefficients ci(δ) in the expansion of the first-order Melnikov function
M(h, δ) can be utilized to acquire a lower bound on the maximum number of
limit cycles: supposing there exists a constant n such that

0 < c0(δ) � −c1(δ) � c2(δ) � · · · � (−1)n−1cn−1(δ) � (−1)ncn(δ),

this implies the integral M(h, δ) can possess n zeros near h = hs. Thereby the
system (1.1) has n limit cycles near the homoclinic or heteroclinic loop.

In recent years, numerous investigations have focused on the number of limit
cycles inside and outside the figure-of-eight loop (double homoclinic loop) or the
two-saddle loop (heteroclinic loop). This research interest not only stems from the
qualitative theory of ordinary differential equations [8, 11, 17, 18, 24–26, 29, 31, 44]
but also relates to various practical issues, such as the generalized Rayleigh–Liénard
oscillator and the Van der Pol–Duffing oscillator [6, 9, 12, 33].
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General study on limit cycle bifurcation near a double eight figure loop 3

In this article, we investigate the limit cycles near a double eight figure loop,
which is a compound cycle with a 2-polycycle connecting two homoclinic loops, see
[15, 16, 38, 43]. Different from the articles mentioned above, the highlight of the
research is that it can be considered both kinds of bifurcations (homoclinic loop
and heteroclinic loop) at the same time. Furthermore, we establish a general theory
for finding a lower bound of the maximal number of limit cycles near the double
eight figure loop by calculating the algebraic structure (generators) of the first-order
Melnikov function. The advantages of this approach are numerous. For instance, it
is more convenient to gain the expressions for the coefficients of the higher-order
terms in the expansion of M (h), and the results on the number of limit cycles for
the system are applicable to any degree n of perturbation. An example is given as
an application to illustrate these advantages.

Consider a generalized Liénard system of type (m,n) defined by

ẋ = y, ẏ = −g(x) + εf(x)y, (1.3)

where g(x ) and f (x ) are polynomials of degree m and n, respectively. Note that
a necessary condition for the Hamiltonian system (1.3)|ε=0 to possess a double
eight figure loop is m ≥ 5. In this article, we examine the scenario where m =5,
chosen for computational convenience, and based on the extensive research by many
scholars on the problem of limit cycles of the system (1.3) when m =5 with n fixed
to a certain value [2–4, 23, 27, 34, 35, 37, 39–42], and in addition it is related to
the complex Ginzburg–Landau equation [5]. For example, Xiong and Zhong [34],
Zhang et al. [40], and Yang and Zhao [37] discussed the limit cycles or the zeros of
first-order Melnikov function (Abelian integral) of the Liénard system

ẋ = y, ẏ = −x(x2 − 2)(x2 − 1
2 ) + εf(x)y, (1.4)

with 0 < |ε| � 1 for f(x) =
∑2

i=0 aix
2i,
∑4

i=0 aix
i, and

∑4
i=0 aix

2i, respectively.
Xu and Li [35] studied the limit cycles of the following system

ẋ = y, ẏ = −x(x2 − 1)(x2 − 9) + εf(x)y, (1.5)

where 0 < |ε| � 1 and f(x) =
∑5

i=0 aix
2i. It is obvious that the unperturbed

systems (1.4)|ε=0 and (1.5)|ε=0 both have a double eight figure loop.
Motivated by [4, 34, 35, 37, 40, 43], in this article, we consider a more generic

system of the form

ẋ = y, ẏ = −x(x2 − a)(x2 − b) + εf(x)y, (1.6)

where 0 < |ε| � 1, f(x) = Σn
i=0aix

i, (a0, a1, . . . , an) ∈ D ⊂ Rn+1 with D being a
compact subset, and a > b > 0, which will ensure the unperturbed system (1.6)|ε=0

exists a double eight figure loop. Without loss of generality, we suppose a > 1 and
b=1. Otherwise, one can utilize a variable transformation
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x →
√
bx, y → b

√
by, t → 1

b
t,

on the system (1.6) to satisfy this assumption. Compared to existing works, on the
one hand, system (1.6) includes the two systems (1.4) and (1.5) described above,
and on the other hand the number of limit cycles we obtain for the system holds
for any value of n.

The remaining sections of this article are organized as follows. In §2, we build a
general bifurcation theory to obtain the lower bound of the maximal number of limit
cycles near the double eight figure loop by finding the algebraic structure of the
first-order Melnikov function. As an application, we also research the system (1.6)
and provide a more optimal result for the lower bound of the maximal number of
the limit cycles near the double eight figure loop in §3.

2. A general bifurcation theory to a double eight figure loop

Assume that system (1.1)|ε=0 has a double eight figure loop (compound cycle)
Γ ⊂ G, which is defined below:

Γ =

(
2⋃

i=1

Li

)⋃
Γ2, Γ2 =

(
S1 ∪ L̃1

)(
S2 ∪ L̃2

)
,

where the 2-polycycle Γ2 is composed of two hyperbolic saddles S1, S2 withH(S1) =

hs and two heteroclinic orbits L̃1, L̃2 satisfying

ω
(
L̃1

)
= S1, α

(
L̃1

)
= S2, ω

(
L̃2

)
= S2, α

(
L̃2

)
= S1,

and L1, L2 are two homoclinic loops outside Γ2. There are three centers O(0, 0), C 1,
C 2 surrounded by Γ2, L1, L2, respectively, whereH(O) = 0,H(C1) = hC1

,H(C2) =
hC2

(see Figure 1).
Near the double eight figure loop Γ, there are four families of periodic orbits:

Γ(h), which is located outside Γ for 0 < h−hs < µ; and L1(h), L2(h), L3(h), which
are located inside Γ for −µ < h−hs < 0, where 0 < µ � 1. Then the four first-order
Melnikov functions are as follows

M(h) =
∮
Γ(h)

gdx− fdy, 0 < h− hs < µ,

M j(h) =
∮
Lj(h)

gdx− fdy, −µ < h− hs < 0, j = 1, 2, 3.
(2.1)

From (1.2), one has

M(h) = ϕ(h)(h− hs) ln(h− hs) +N(h), 0 < h− hs < µ,

M j(h) = ϕj(h)(h− hs) ln |h− hs|+Nj(h), −µ < h− hs < 0, j = 1, 2, 3,

(2.2)
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Figure 1. Periodic orbits near Γ.

where ϕj(h), Nj(h), and N (h) are analytic functions defined for 0 < |h| < µ and
satisfy the following convergent expansions

ϕ(h) =
∑
i≥0

c2i+1(h− hs)
i, ϕj(h) =

∑
i≥0

cj2i+1(h− hs)
i,

Nj(h) =
∑
i≥0

cj2i(h− hs)
i, N(h) =

∑
i≥0

c2i(h− hs)
i.

From [18] or Theorem 3.2.9 of the book [16], it holds that

ϕ3(h) = ϕ1(h) + ϕ2(h). (2.3)

The following theorem further gives the relationships between the functions
ϕj(h), ϕ(h), Nj(h), and N (h).

Theorem 2.1 Assume the functions M(h) and Mj(h) (j = 1, 2, 3) defined by (2.1)
satisfy (2.2), where H, f , and g are polynomial functions on G containing double
eight figure loop Γ. It follows for 0 < |h| < µ that

1

2
ϕ(h) = ϕ1(h) + ϕ2(h), (2.4)

and

N(h) = N1(h) +N2(h) +N3(h). (2.5)

In fact, by applying Theorem 1.1 in [17] respectively to the right and left part of
the y-axis of the phase portrait in Figure 1 one can directly obtain the conclusion
of Theorem 2.1. For brevity, we omit the detailed proof here.
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Depending on (2.3), (2.4), and (2.5), one has

M j(h) =
∑
i≥0

(cj2i + cj2i+1(h− hs) ln |h− hs|)(h− hs)
i, 0 < hs − h � 1, j = 1, 2,

M3(h) =
∑
i≥0

(cj2i + (c12i+1 + c22i+1)(h− hs) ln |h− hs|)(h− hs)
i, 0 < hs − h � 1,

M(h) =
∑
i≥0

(
c12i + c22i + c32i + 2(c12i+1 + c22i+1)(h− hs) ln |h− hs|

)
(h− hs)

i,

0 < h− hs � 1.
(2.6)

Specifically, if system (1.1) is centrally symmetric, that is,

H(−x,−y) = H(x, y), f(−x,−y, δ) = −f(x, y, δ), g(−x,−y, δ) = −g(x, y, δ),

then it follows that c12i = c22i and c12i+1 = c22i+1.
At this time, (1.1) is also a Z2-equivariant system. Furthermore, we present the

following theorem.

Theorem 2.2 Suppose that system (1.1) is centrally symmetric.
(i) If there exists a δ0 ∈ D, such that

c12i(δ0) = c32i(δ0) = c12j+1(δ0) = 0, i, j = 0, 1, . . . , n− 1,

c12n(δ0), c
3
2n(δ0) > 0,

and

rank
∂
(
c10, c

3
0, c

1
1, c

1
2, c

3
2, c

1
3, . . . , c

1
2n−2, c

3
2n−2, c

1
2n−1

)
∂ (δ1, . . . , δs)

(δ0) = 3n,

then system (1.1) can exist 7n limit cycles near the double eight figure loop Γ for
some (ε, δ) near (0, δ0).

(ii) If there exists a δ0 ∈ D, such that

c12i(δ0) = c32j(δ0) = c12j+1(δ0) = 0, i = 0, 1, . . . , n, j = 0, 1, . . . , n− 1,

c32n(δ0)c
1
2n+1(δ0) < 0,

and

rank
∂
(
c10, c

3
0, c

1
1, c

1
2, c

3
2, c

1
3, . . . , c

1
2n−2, c

3
2n−2, c

1
2n−1, c

1
2n

)
∂ (δ1, . . . , δs)

(δ0) = 3n+ 1,
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then system (1.1) can exist 7n + 2 limit cycles near the double eight figure loop Γ
for some (ε, δ) near (0, δ0).

(iii) If there exists a δ0 ∈ D, such that

c12i(δ0) = c32i(δ0) = c12j+1(δ0) = 0, i = 0, 1, . . . , n, j = 0, 1, . . . , n− 1,

c12n+1(δ0) 6= 0,

and

rank
∂
(
c10, c

3
0, c

1
1, c

1
2, c

3
2, c

1
3, . . . , c

1
2n, c

3
2n

)
∂ (δ1, . . . , δs)

(δ0) = 3n+ 2,

then system (1.1) can exist 7n + 3 limit cycles near the double eight figure loop Γ
for some (ε, δ) near (0, δ0).

Proof. The proof follows a similar approach to theorem 1.2 in [17]. For clarity, we
will focus on proving part (i) as outlined below. By the assumptions, there exists a
δ0 ∈ D such that

∣∣c10∣∣� ∣∣c11∣∣� ∣∣c12∣∣� · · · �
∣∣c12n−2

∣∣� ∣∣c12n−1

∣∣� ∣∣c12n∣∣ ,
∣∣c30∣∣� ∣∣c11∣∣� ∣∣c32∣∣� · · · �

∣∣c32n−2

∣∣� ∣∣c12n−1

∣∣� ∣∣c32n∣∣ ,
and c14n, c

3
4n, c

1
4n+1, c

1
4n+2, c

3
4n+2, c

1
4n+3 with symbols +,+,−,−,−,+, respectively.

For 0 < hs − h � 1, the expansion of M1 = M2 in (2.6) includes terms such as
c10, c

1
1(h−hs) ln |h−hs|, c12(h−hs), c

1
3(h−hs)

2 ln |h−hs|, . . ., which have symbols
+,−,+,−, respectively, and follow this pattern repetitively. These terms satisfy∣∣c10∣∣� ∣∣c11∣∣� ∣∣c12∣∣� · · · �

∣∣c12n−1

∣∣� ∣∣c12n∣∣. As a result, both M 1 and M 2 possess
at least 2n simple zeros for 0 < hs − h � 1.

Following a similar analysis as described above, we find that M 3 (resp., M ) has
at least 2n (resp., n) simple zeros for 0 < hs − h � 1 (resp., 0 < h − hs � 1).
Consequently, system (1.1) has at least 7n limit cycles near the double figure eight
loop. This concludes the proof of the theorem. �

Theorem 2.3 Suppose that system (1.1) is non-centrally symmetric.
(i) If there exists a δ0 ∈ D, such that

c1i (δ0) = c2i (δ0) = c32j(δ0) = 0, i = 0, 1, . . . , 2n− 1, j = 0, 1, . . . , n− 1,

c12n(δ0), c
2
2n(δ0), c

3
2n(δ0) > 0,
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and

rank
∂
(
c10, c

2
0, c

3
0, c

1
1, c

2
1, . . . , c

1
2n−2, c

2
2n−2, c

3
2n−2, c

1
2n−1, c

2
2n−1

)
∂ (δ1, . . . , δs)

(δ0) = 5n,

then system (1.1) can exist 7n limit cycles near the double eight figure loop Γ for
some (ε, δ) near (0, δ0).

(ii) If there exists a δ0 ∈ D, such that

c1i (δ0) = c2i (δ0) = c32j(δ0) = 0, i = 0, 1, . . . , 2n, j = 0, 1, . . . , n− 1,

c32n(δ0)c
1
2n+1(δ0) < 0, c32n(δ0)c

2
2n+1(δ0) < 0,

and

rank
∂
(
c10, c

2
0, c

3
0, c

1
1, c

2
1, . . . , c

3
2n−2, c

1
2n−1, c

2
2n−1, c

1
2n, c

2
2n

)
∂ (δ1, . . . , δs)

(δ0) = 5n+ 2,

then system (1.1) can exist 7n + 2 limit cycles near the double eight figure loop Γ
for some (ε, δ) near (0, δ0).

(iii) If there exists a δ0 ∈ D, such that

c1i (δ0) = c2i (δ0) = c32j(δ0) = 0, i = 0, 1, . . . , 2n, j = 0, 1, . . . , n,

c12n+1(δ0)c
2
2n+1(δ0) 6= 0,

and

rank
∂
(
c10, c

2
0, c

3
0, c

1
1, c

2
1, . . . , c

1
2n, c

2
2n, c

3
2n

)
∂ (δ1, . . . , δs)

(δ0) = 5n+ 3,

then system (1.1) can exist 7n + 3 limit cycles near the double eight figure loop Γ
for some (ε, δ) near (0, δ0).

Proof. From the assumptions, there exists a δ0 ∈ D such that∣∣c10∣∣� ∣∣c11∣∣� ∣∣c12∣∣� · · · �
∣∣c12n−2

∣∣� ∣∣c12n−1

∣∣� ∣∣c12n∣∣ ,∣∣c20∣∣� ∣∣c21∣∣� ∣∣c22∣∣� · · · �
∣∣c22n−2

∣∣� ∣∣c22n−1

∣∣� ∣∣c22n∣∣ ,∣∣c30∣∣� ∣∣c11 + c21
∣∣� ∣∣c32∣∣� · · · �

∣∣c32n−2

∣∣� ∣∣c12n−1 + c22n−1

∣∣� ∣∣c32n∣∣ .
And the symbols for c14n, c

2
4n, c

3
4n, c

1
4n+1, c

2
4n+1, c

1
4n+2, c

2
4n+2, c

3
4n+2, c

1
4n+3, c

2
4n+3 are

+, +, +, −, −, −, −, −, +, + respectively.
Similar to the proof of Theorem 2.2, we omit the details. This finishes the proof.

�
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3. An application

Note that system (1.6) represents a Hamiltonian system with symmetry along the
y-axis, defined by the Hamiltonian H(x, y) = 1

2y
2 + 1

2ax
2 − 1

4 (1 + a)x4 + 1
6x

6 for
a > 1. This system possesses five equilibrium points: three elementary centres at
O(0, 0), C1(

√
a, 0), and C2(−

√
a, 0); and two hyperbolic saddles at S1(1, 0) and

S2(−1, 0). The centres C 1 and C 2 are each encircled by homoclinic loops L1 and
L2, respectively, with H(C1) = H(C2) = hc =

1
4a

2 − 1
12a

3, and H(S1) = H(S2) =
hs = 1

4a− 1
12 . The origin O(0, 0) is surrounded by a 2-polycycle Γ2. Furthermore,

for 0 < |h − hs| � 1, the equation H(x, y) = h defines four families of periodic
orbits: L1(h) and L2(h) for hc < h < hs, L3(h) for 0 < h < hs, and L4(h) for
h > hs. Figure 1 illustrates the phase portrait of (1.6)|ε=0. We have the following
theorem.

Theorem 3.1 For all n ≥ 5, the Liénard system (1.6) can exist 7[n6 ] + 2[ r2 ] − [ r4 ]
limit cycles near the double eight figure loop for some (ε, δ) near (0, δ0), where
r = mod(n, 6).

Remark 3.2. To the best of our knowledge, this number of limit cycles is maximal
that we have been able to find so far near the double eight figure loop. Xu and
Li [35] (resp., Xiong and Zhong [34]) proved that the system (1.5) (resp., (1.4)),

with f(x) =
∑5

i=0 aix
2i (resp.,

∑4
i=0 aix

2i), has 10 (resp., 9) limit cycles near the
double eight figure loop, which is consistent with taking n =10 (resp., n =8) in the
Theorem 3.1 for the more general system (1.6).

Let Iik(h) =
∮
Li(h)

xkydx and Ik(h) =
∮
L(h)

xkydx be integrals over the curves

Li(h) and L(h), respectively, as defined in §2 and illustrated in Figure 1. Based on
the classification of these curves, we derive the following four first-order Melnikov
functions.

Lemma 3.3. For n ≥ 5 and 0 < |h− hs| � 1.
(i) If Li(h) near the homoclinic loop Li for i = 1, 2, and Li(h) near the 2-polycycle

Γ2 for i= 3, M i(h) can be written as

M i(h) =
4∑

k=0

Pk(h)I
i
k(h), for i = 1, 2, 3. (3.1)

(ii) If L(h) near the double eight figure loop Γ, one has

M(h) =
4∑

k=0

Pk(h)Ik(h), (3.2)

where Pk(h) are polynomials of h, degPi(h) 6 [n−k
6 ] for k = 0, 1, 2, 3, 4. The

notation [s] is defined as the integer part of s.
In particular, the terms I1(h), I3(h), I

i
1(h), and Ii3(h) (i = 1, 2, 3) in Eqs. (3.1)

and (3.2) will not appear if f(−x) = f(x).
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Proof. The idea of proof is similar to the proposition 2.4 in [44]. From the definition
of {L1(h), L2(h), L3(h), L(h)} , Γh, it can be observed that

1

2
y2 +

1

2
ax2 − 1

4
(1 + a)x4 +

1

6
x6 = h. (3.3)

Multiplying the (3.3) by xlym and integrating it over Γh, we have

1

2
Il,m+2 +

1

2
aIl+2,m − 1

4
(1 + a)Il+4,m +

1

6
Il+6,m = hIl,m, (3.4)

where Ii,j =
∮
Γh

xiyjdx.

It follows from (3.3) that

y
∂y

∂x
+ ax− (1 + a)x3 + x5 = 0. (3.5)

Multiplying (3.5) by xl−5ym (l ≥ 5) and integrating it over Γh by parts, one has

− l − 5

m+ 2
Il−6,m+2 + aIl−4,m − (1 + a)Il−2,m + Il,m = 0. (3.6)

Hence by (3.4) and (3.6), we obtain

Il+6,m =
3(2m+ l + 5)

2(3m+ l + 7)
(1 + a)Il+4,m − 3(m+ l + 3)

3m+ l + 7
aIl+2,m +

6(l + 1)

3m+ l + 7
hIl,m.

(3.7)
If l =5 in (3.6), it is direct that

I5,m = (1 + a)I3,m − aI1,m.

Therefore, it follows from taking m =1 in (3.7) that the generators of M (h) (resp.,
M i(h)) are I0(h), I1(h), I2(h), I3(h), and I4(h) (resp., Ii0(h), I

i
1(h), I

i
2(h), I

i
3(h),

and Ii4(h)). By induction in n, it is easy to see the dimensions of P0(h), P1(h),
P2(h), P3(h), and P4(h).

It can be proved in a similar way if f(−x) = f(x). This finishes the proof. �

Proof of Theorem 3.1. From Lemma 3.3, we suppose for k = 0, 1, 2, 3, 4 that

Pk(h) = mk
0 +mk

1(h− hs) +mk
2(h− hs)

2 + · · ·+mk

[n−k
6 ]

(h− hs)
[n−k

6 ]. (3.8)

Setting f(x) = Σn
0aix

i, it is easy to verify that∣∣∣∣∣∣∣∣
∂

(
m0

0,m
1
0,m

2
0,m

3
0,m

4
0, . . . ,m

0
[n6 ]

,m1

[n−1
6 ]

,m2

[n−2
6 ]

,m3

[n−3
6 ]

,m4

[n−4
6 ]

)
∂ (a0, a1, a2, a3, a4, a6, a7, a8, a9, a10, . . . , an)

∣∣∣∣∣∣∣∣ 6= 0,
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where 5 6= mod(n, 6). If f(−x) = f(x), one has

∣∣∣∣∣∣∣∣
∂

(
m0

0,m
2
0,m

4
0, . . . ,m

0
[n6 ]

,m2

[n−2
6 ]

,m4

[n−4
6 ]

)
∂ (a0, a2, a4, a6, a8, a10, . . . , an)

∣∣∣∣∣∣∣∣ 6= 0,

where n is even. And hence, the coefficients in (3.8) are independent.
For 0 < |h − hs| � 1, assume that Ik(h) and Iik(h) for i = 1, 2, 3 in Lemma 3.3

can be represented as

Iik(h) = aik,0 + ãik,1(h− hs) ln |h− hs|+ · · ·
+ ãik,n(h− hs)

n ln |h− hs|+ aik,n(h− hs)
n +O((h− hs)

n),

Ik(h) = a4k,0 + ã4k,1(h− hs) ln |h− hs|+ · · ·
+ ã4k,n(h− hs)

n ln |h− hs|+ a4k,n(h− hs)
n +O((h− hs)

n).

(3.9)

(i) Centrally symmetric. If [n6 ] = [n−2
6 ] = [n−4

6 ] = s in (3.8), we set

δδδ1 , (m0
0,m

2
0,m

4
0,m

0
1,m

2
1,m

4
1, . . . ,m

0
s,m

2
s,m

4
s),

EEE1 ,
∂
(
c10, c

3
0, c

1
1, c

1
2, c

3
2, c

1
3, . . . , c

1
2s, c

3
2s, c

1
2s+1

)
∂δδδ1

,

where the coefficients cji appear in (2.6).
Substituting (3.8) and (3.9) into (3.1), it follows from (2.6) that

EEE1 =



a1
0,0 a1

2,0 a1
4,0 0 0 0 · · · 0 0 0

a3
0,0 a3

2,0 a3
4,0 0 0 0 · · · 0 0 0

ã1
0,1 ã1

2,1 ã1
4,1 0 0 0 · · · 0 0 0

a1
0,1 a1

2,1 a1
4,1 a1

0,0 a1
2,0 a1

4,0 · · · 0 0 0

a3
0,1 a3

2,1 a3
4,1 a3

0,0 a3
2,0 a3

4,0 · · · 0 0 0

ã1
0,2 ã1

2,2 ã1
4,2 ã1

0,1 ã1
2,1 ã1

4,1 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

a1
0,s a1

2,s a1
4,s a1

0,s−1 a1
2,s−1 a1

4,s−1 · · · a1
0,0 a1

2,0 a1
4,0

a3
0,s a3

2,s a3
4,s a3

0,s−1 a3
2,s−1 a3

4,s−1 · · · a3
0,0 a3

2,0 a3
4,0

ã1
0,s+1 ã1

2,s+1 ã1
4,s+1 ã1

0,s ã1
2,s ã1

4,s · · · ã1
0,1 ã1

2,1 ã1
4,1


.
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Let FFF 0 =

 a10,0 a12,0 a14,0
a30,0 a32,0 a34,0
ã10,1 ã12,1 ã14,1

, A(x) =
√

1
2a− 1

6 − ax2 + 1
2 (1 + a)x4 − 1

3x
6 and

γ1 = arcsin
( √

2√
3a−1

)
, where ã10,1 = ã12,1 = ã14,1 = − 1√

2(a−1)
,

a10,0 =2

∫ 1
2
√
6a−2

1

A(x)dx

=
3
√
2

16

√
a− 1(a+ 1)−

√
3

16
(3a− 1)(a− 3)

(
γ1 −

π

2

)
,

a12,0 =2

∫ 1
2
√
6a−2

1

x2A(x)dx

=

√
2

64

√
a− 1(9a2 − 14a+ 9)−

√
3

192
(3 a− 5) (3a− 1)2

(
γ1 −

π

2

)
,

a14,0 =2

∫ 1
2
√
6a−2

1

x4A(x)dx

=
3
√
2

1024

√
a− 1

(
45 a3 − 73 a2 + 23 a+ 13

)
−

√
3

1024
(5a− 7)(3a− 1)3

(
γ1 −

π

2

)
,

a30,0 =2

∫ 1

−1

A(x)dx

=
3
√
2

8

√
a− 1(a+ 1)−

√
3

8
(3a− 1)(a− 3)γ1,

a32,0 =2

∫ 1

−1

x2A(x)dx

=

√
2

32

√
a− 1

(
9 a2 − 14 a+ 9

)
−

√
3

96
(3 a− 5) (3 a− 1)

2
γ1,

a34,0 =2

∫ 1

−1

x4A(x)dx

=
3
√
2

512

√
a− 1

(
45 a3 − 73 a2 + 23 a+ 13

)√
3−

√
3

512
(5 a− 7)(3 a− 1)3γ1.

From |FFF 0| = −3
√
3

128 π (3 a− 1) (a− 1)
3 6= 0, it follows that |EEE1| = |FFF 0|s+1 6= 0. By

Theorem 2.2 (iii), the system (1.6) has at least 7[n6 ] + 3 limit cycles near h = hs.
For [n6 ] = [n−2

6 ] = [n−4
6 ] + 1 = s, there are 3s + 2 free coefficients m0

0, m
2
0, m

4
0,

m0
1, m

2
1, m

4
1, . . ., m

0
s−1, m

2
s−1,m

4
s−1,m

0
s,m

2
s. Let

δδδ2 , (m0
0,m

2
0,m

4
0,m

0
1,m

2
1,m

4
1, . . . ,m

0
s−1,m

2
s−1,m

4
s−1,m

0
s),

EEE2 ,
∂
(
c10, c

3
0, c

1
1, c

1
2, c

3
2, c

1
3, . . . , c

1
2s−2, c

3
2s−2, c

1
2s−1, c

1
2s

)
∂δδδ2

.

https://doi.org/10.1017/prm.2024.116 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.116


General study on limit cycle bifurcation near a double eight figure loop 13

It can be seen that |EEE2| = a10,0 · |FFF 0|s 6= 0. Note that c32sc
1
2s+1 = (a32,0m

2
s)(ã

1
2,1m

2
s) <

0 when δδδ2 = 000. Applying Theorem 2.2 (ii), the system has at least 7[n6 ] + 2 limit
cycles near h = hs.

If [n6 ] = [n−2
6 ] + 1 = [n−4

6 ] + 1 = s, it implies that the 3s+1 coefficients m0
0,m

2
0,

m4
0, m

0
1,m

2
1, m

4
1, . . . ,m

0
s−1,m

2
s−1,m

4
s−1,m

0
s are free. Let

δδδ3 , (m0
0,m

2
0,m

4
0,m

0
1,m

2
1,m

4
1, . . . ,m

0
s−1,m

2
s−1,m

4
s−1),

EEE3 ,
∂
(
c10, c

3
0, c

1
1, c

1
2, c

3
2, c

1
3, . . . , c

1
2s−2, c

3
2s−2, c

1
2s−1

)
∂δδδ3

,

then we obtain |EEE3| = |FFF 0|s 6= 0. In addition, it is not hard to verify that c12s =
a10,0m

0
s, c

3
2s = a30,0m

0
s, c

4
2s = c12s + c32s = (a10,0 + a30,0)m

0
s when δδδ3 = 000. Since the

parameter m0
s is free and a10,0, a

3
0,0 > 0, we suppose c12s, c

3
2s, c

4
2s > 0. Utilizing

Theorem 2.2 (i), the system has at least 7[n6 ] limit cycles near h = hs.
(ii) Non-centrally symmetric. Set [n6 ] = [n−1

6 ] = [n−2
6 ] = [n−3

6 ] = [n−4
6 ] = s

in (3.8) and

δ̂δδ
1
, (m0

0,m
1
0,m

2
0,m

3
0,m

4
0, . . . ,m

0
s,m

1
s,m

2
s,m

3
s,m

4
s),

ÊEE1 ,
∂
(
c10, c

2
0, c

3
0, c

1
1, c

2
1, . . . , c

1
2s, c

2
2s, c

3
2s, c

1
2s+1, c

2
2s+1

)
∂δ̂δδ

1 .

Combining with (2.6) and substituting (3.8) and (3.9) into (3.1), one determines

that ÊEE1 can be expressed as



a1
0,0 a1

1,0 a1
2,0 a1

3,0 a1
4,0 · · · 0 0 0 0 0

a1
0,0 −a1

1,0 a1
2,0 −a1

3,0 a1
4,0 · · · 0 0 0 0 0

a3
0,0 0 a3

2,0 0 a3
4,0 · · · 0 0 0 0 0

ã1
0,1 ã1

1,1 ã1
2,1 ã1

3,1 ã1
4,1 · · · 0 0 0 0 0

ã1
0,1 −ã1

1,1 ã1
2,1 −ã1

3,1 ã1
4,1 · · · 0 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a1
0,s a1

1,s a1
2,s a1

3,s a1
4,s · · · a1

0,0 a1
1,0 a1

2,0 a1
3,0 a1

4,0

a1
0,s −a1

1,s a1
2,s −a1

3,s a1
4,s · · · a1

0,0 −a1
1,0 a1

2,0 −a1
3,0 a1

4,0

a3
0,s 0 a3

2,s 0 a3
4,s · · · a3

0,0 0 a3
2,0 0 a3

4,0

ã1
0,s+1 ã1

1,s+1 ã1
2,s+1 ã1

3,s+1 ã1
4,s+1 · · · ã1

0,1 ã1
1,1 ã1

2,1 ã1
3,1 ã1

4,1

ã1
0,s+1 −ã1

1,s+1 ã1
2,s+1 −ã1

3,s+1 ã1
4,s+1 · · · ã1

0,1 −ã1
1,1 ã1

2,1 −ã1
3,1 ã1

4,1


.

Let F̂FF 0 =


a10,0 a11,0 a12,0 a13,0 a14,0
a10,0 −a11,0 a12,0 −a13,0 a14,0
a30,0 0 a32,0 0 a34,0
ã10,1 ã11,1 ã12,1 ã13,1 ã14,1
ã10,1 −ã11,1 ã12,1 −ã13,1 ã14,1

, in which all coefficients of F̂FF 0,

except for the following six, have been determined under the condition of central
symmetry,
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a11,0 =2

∫ 1
2
√
6a−2

1

xA(x)dx =
3
√
2

10

√
a− 1(a− 1)2,

a13,0 =2

∫ 1
2
√
6a−2

1

x3A(x)dx =
3
√
2

70

√
a− 1(6a+ 1)(a− 1)2,

a31,0 =2

∫ 1

−1

xA(x)dx = 0, a33,0 = 2

∫ 1

−1

x3A(x)dx = 0, ã11,1 = ã13,1 = − 1√
2(a− 1)

.

It follows that |F̂FF 0| = 27
√
3

1120 π(3a−1)(a−1)6 6= 0, which gives |ÊEE1| = |F̂FF 0|s+1 6= 0.
By Theorem 2.3 (iii), the system (1.6) has at least 7[n6 ]+3 limit cycles near h = hs.

If [n6 ] = [n−1
6 ] = [n−2

6 ] = [n−3
6 ] = [n−4

6 ] + 1 = s, the 5s + 4 coefficients m0
0, m

1
0,

m2
0, m

3
0, m

4
0, . . ., m

0
s−1, m

1
s−1,m

2
s−1,m

3
s−1,m

4
s−1,m

0
s,m

1
s,m

2
s,m

3
s are independent.

Let

δ̂δδ
2
, (m0

0,m
1
0,m

2
0,m

3
0,m

4
0, . . . ,m

0
s−1,m

1
s−1,m

2
s−1,m

3
s−1,m

4
s−1,m

0
s,m

1
s),

ÊEE2 ,
∂
(
c10, c

2
0, c

3
0, c

1
1, c

2
1, . . . , c

1
2s−2, c

2
2s−2, c

3
2s−2, c

1
2s−1, c

2
2s−1, c

1
2s, c

2
2s

)
∂δ̂δδ

2 .

It is not difficult to verify that

|ÊEE2| =

∣∣∣∣∣ a10,0 a11,0
a10,0 −a11,0

∣∣∣∣∣ · |F̂FF 0|s 6= 0.

For m2
s and m3

s, one has

c32s = a32,0m
2
s, c12s+1 = ã12,1m

2
s + ã13,1m

3
s, c22s+1 = ã12,1m

2
s − ã13,1m

3
s,

when δ̂δδ
2

= 000. Setting |m3
s| � |m2

s|, one has c32sc
1
2s+1 < 0, c32sc

2
2s+1 < 0 from

a32,0ã
1
2,1 < 0. Taking Theorem 2.3 (ii) into account, the system (1.6) has at least

7[n6 ] + 2 limit cycles near h = hs.
When [n6 ] = [n−1

6 ] = [n−2
6 ] = [n−3

6 ]+1 = [n−4
6 ]+1 = s, we have 5s+3 free coeffi-

cients m0
0,m

1
0,m

2
0,m

3
0,m

4
0, . . ., m

0
s−1,m

1
s−1, m

2
s−1,m

3
s−1,m

4
s−1,m

0
s,m

1
s,m

2
s. Owing

to |ÊEE2| 6= 0, we will consider m2
s below. If δ̂δδ

2
= 000, it holds that

c32s = a32,0m
2
s, c12s+1 = ã12,1m

2
s, c22s+1 = ã12,1m

2
s,

which imply c32sc
1
2s+1 < 0, c32sc

2
2s+1 < 0. From Theorem 2.3 (ii), the system (1.6)

has at least 7[n6 ] + 2 limit cycles near h = hs.
For [n6 ] = [n−1

6 ] = [n−2
6 ] + 1 = [n−3

6 ] + 1 = [n−4
6 ] + 1 = s, there are 5s + 2 free

coefficients m0
0,m

1
0,m

2
0, m

3
0,m

4
0, . . ., m

0
s−1,m

1
s−1,m

2
s−1,m

3
s−1,m

4
s−1,m

0
s,m

1
s. Let

δ̂δδ
3
, (m0

0,m
1
0,m

2
0,m

3
0,m

4
0, . . . ,m

0
s−1,m

1
s−1,m

2
s−1,m

3
s−1,m

4
s−1),

ÊEE3 ,
∂
(
c10, c

2
0, c

3
0, c

1
1, c

2
1, . . . , c

1
2s−2, c

2
2s−2, c

3
2s−2, c

1
2s−1, c

2
2s−1

)
∂δ̂δδ

3 ,
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and hence |ÊEE3| = |F̂FF 0|s 6= 0. It follows that

c12s = a10,0m
0
s + a11,0m

1
s, c22s = a10,0m

0
s − a11,0m

1
s,

c32s = a30,0m
0
s, c42s = c12s + c22s + c32s = (2a10,0 + a30,0)m

0
s,

when δ̂δδ
3
= 000. By virtue of the fact that the coefficients m0

s and m1
s are independent,

we assume |m1
s| � |m0

s|. Naturally, we arrive at c12s, c22s, c32s, c42s > 0 from a10,0, a
3
0,0 >

0. By Theorem 2.3 (i), the system (1.6) has at least 7[n6 ] limit cycles near h = hs.
If [n6 ] = [n−1

6 ] + 1 = [n−2
6 ] + 1 = [n−3

6 ] + 1 = [n−4
6 ] + 1 = s, we gain 5s + 1

free coefficients m0
0,m

1
0,m

2
0, m3

0,m
4
0, . . ., m0

s−1,m
1
s−1,m

2
s−1,m

3
s−1,m

4
s−1,m

0
s. By

|ÊEE3| = |F̂FF 0|s 6= 0, we first consider the coefficient m0
s. It follows from δ̂δδ

3
= 000 that

c12s = a10,0m
0
s, c22s = a10,0m

0
s,

c32s = a30,0m
0
s, c42s = c12s + c22s + c32s = (2a10,0 + a30,0)m

0
s.

Combining m0
s is independent and a10,0, a

3
0,0 > 0, one gets c12s, c

2
2s, c

3
2s, c

4
2s > 0. As a

result of Theorem 2.3 (i), the system (1.6) has at least 7[n6 ] limit cycles near h = hs.
�

4. Conclusions

A double eight figure loop is one of the common topological structures in differ-
ential system. Moreover, one can utilize it to investigate the simultaneous existence
of two (homoclinic loop and heteroclinic loop) bifurcations. This article we estab-
lish a general theory to find the lower bound of the maximal number of limit cycles
near the double eight figure loop with hyperbolic saddles. In addition, the new
approach facilitates the computation of expressions for higher-order coefficients in
the expansion of the first-order Melnikov function (Abelian integral) M (h) near the
double eight figure loop by finding the algebraic structure (generators) of M (h),
and the conclusion gained for the limit cycles can be valid for the perturbation with
any degree n.

As an application of our theory and inspired by [4, 34, 35, 37, 40, 43], we study
the number of limit cycles in an (n + 1)th-order generalized Liénard differential
system, whose unperturbed system is a Hamiltonian with double eight figure loop
passing two hyperbolic saddles. Besides the fact that system (1.6) can contain the
two systems (1.4) and (1.5), and the result for the limit cycles holds for any n ≥ 5.

After receiving notification of the acceptance of the article, we noticed Yang and
Han’s recent work [36], which also studied the problem of limit cycles near a double
eight figure loop.
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[12] L. Gavrilov and I. D. Iliev. The limit cycles in a generalized Rayleigh-Liénard oscillator.
Discrete Contin. Dyn. Syst. 43 (2023), 2381–2400.

[13] W. Geng and Y. Tian. Bifurcation of limit cycles near heteroclinic loops in near-
Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 95 (2021), Paper No.
105666.

[14] M. Han. On Hopf cyclicity of planar systems. J. Math. Anal. Appl. 245 (2000), 404–422.

[15] M. Han. Asymptotic expansions of Melnikov functions and limit cycle bifurcations.
Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22 (2012), 1250296.

[16] M. Han. Bifurcation Theory of Limit Cycles (Alpha Science International Ltd.), Beijing,
Beijing; Oxford, 2017.

[17] M. Han, J. Yang and J. Li. General study on limit cycle bifurcation near a double
homoclinic loop. J. Differ. Equ. 347 (2023), 1–23.
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