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Abstract
In the control of space robots, flexible vibrations exist in the base, links and joints. When building a motion con-
trol scheme, the following three aspects should be considered: (1) the complexity in dynamic modeling; (2) the
low accuracy of motion control and (3) the simultaneous suppression of multiple flexible vibrations. In this paper,
we propose a motion vibration integrated saturation control scheme. First, the dynamic model of space robot with
flexible-base, flexible-link and flexible-joint is established according to the assumed modes method and Lagrange
equation. Second, singular perturbation theory is used to decompose the model into two subsystems: a slow subsys-
tem containing the rigid motions of base and joints as well as the vibration of links, and a fast subsystem containing
vibrations of base and joints. Third, an integrated sliding mode control with input restriction, output feedback and
repetitive learning (ISMC-IOR) is designed, which can track the desired trajectories of base and joints with −3
orders of magnitude accuracy, while suppressing the multiple flexible vibrations of base, links and joints 50%–
80% and 37% performance improvement over ISMC-IOR-NV were achieved. Finally, the algorithm is verified by
simulations.

1. Introduction
Space robots are systems with a certain topology that are articulated by multiple connecting links. They
are widely used in space operations [1, 2] and play an important role in the construction process of
the space station [3]. In recent years, with the increasing demand for space manipulation accuracy,
high-precision control of space robots draws attention [4, 5]. As non-negligible factors affecting control
accuracy, the topic of flexibilities in the base, link and joint on space robot becomes an important subject.
The links of space robot are generally designed to be thin and long, which is prone to vibration when
performing tasks, especially auxiliary docking or capture operations [6]. Space robot with movable
link on the base is more maneuverable and with larger working range, compared to one with fixed link.
However, the movable link is mounted on the slender base truss rail; thus, it is easily affected by external
shocks such as drive torque or cosmic rays, leading to base vibration. In addition, space robot links are
generally driven by lightweight harmonic flexible wheels mounted at the joints, gaining the advantages
of being small size, light-weighted and with large transmission ratio at the price of out-of-sync problem
between the space robot motor and the joint, resulting in joint vibration [7]. These flexible vibrations,
once excited, can take a very long time to decay in the undamped space environment. In order to reduce
the influence of the structural flexibility of the system, a “low-speed, slow-running” operation model
is commonly used, but this operation model is time-consuming and laborious. Therefore, it is of great
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practical importance to study the influence of the flexibility of base, link and joint in the mathematical
modeling and controller design for space robots.

For space robots with flexible base, links and joints, the non-completeness of dynamics and the strong
coupling between rigid and flexible motions greatly increase the difficulty in dynamics analyzing and
controller designing. Most researches on space robot address the flexibility problem by focusing on either
the link [8] or the joint [9], while studies on base flexibility are mostly found in ground robot systems
[10, 11]. Mori et al. [12] presented an impedance and vibration suppression fusion control for a flexible-
base manipulator, but it was not suitable for space weightlessness environment nor did it consider the
effect of link flexibility. Yu [13] analyzed a flexible-link space robot considering the influence of base
flexibility on system modeling and control, but the experimental implementation process of the flexible-
link is not presented. Designing actual flexible arms is very important in fast and high-precision control
situations and has received a lot of attention from scholars [14, 15]. Aghajari et al. [16] proposed a kind
of flexible-link that can achieve fast movements and precise positioning and has a wide range of applica-
tions in the field of space exploration. Zhang et al. [17] studied the dynamics and control of a flexible-link
space robot considering friction and joint flexibility. A trajectory tracking controller with friction com-
pensation was designed, but base flexibility was not included. Xie et al. [18] proposed a dynamics model
considering the flexibility in links and joints and used fuzzy sliding mode control to achieve joint tra-
jectory tracking. For the fast subsystem, a velocity difference feedback control and a linear quadratic
optimal control were designed to suppress the vibration of the flexible links and joints, respectively.
Although the expected results were achieved, the fast subsystem vibration suppression algorithm com-
posed of two algorithms was with complex structure and required large computational efforts. To the
best of our knowledge, it is still an open topic to combine the three aspects (i.e. flexibilities of base, link
and joint) regarding model building and controller designing. In order to improve the aerospace perfor-
mance of flexible-base, flexible-link and flexible-joint (FBFLFJ) space robot in extreme environments,
it is particularly important to control the motion vibration synchronization.

Space robots are costly from software and hardware development, especially in control algorithm
design. The good controllers contribute to cost-saving and efficiency in practice [19, 20]. The follow-
ings are three aspects to be considered. First, the power and torque of the drive motor are always limited
on space robots; therefore, the input constraints should be considered to avoid control failure [21, 22].
Second, output feedback based on position sensing is preferred when speed sensors are not available
[23]. Third, repetitive learning control can be introduced to accommodate reoccurring errors in peri-
odic tasks [24, 25]. Liu et al. [26] proposed a control strategy for momentum constraint under external
disturbances and input saturation. Zhang et al. [27] proposed an output feedback predictive control strat-
egy to achieve coordination and synchronous stabilization with output consistency. Califano et al. [28]
proposed exponentially stable repetitive learning algorithms and gave an explicit proof of fully localized
asymptotic tracking and interference suppression. The abovementioned control algorithms are mainly
designed for single working conditions, while in practice, the controller must take on all the three aspects.

Based on the above considerations, this paper establishes an FBFLFJ space robot dynamics model
using the hypothetical modal method with Lagrange’s equation and decomposes the model according
to the principle of mutual independence of dual time scales by using the singular perturbation method.
Due to the three flexibilities being coupled with each other, it is very difficult to suppress the vibration
at the same time. In this paper, the vibration of base and joint is decomposed in fast subsystem, and the
vibration of link is decomposed in slow subsystem. Then, the vibrations of base and joint are suppressed
with linear quadratic optimal controller, and the vibration of the link is suppressed by hybrid trajectory
method based on the virtual force concept. Finally, considering the restricted drive torque, unmeasurable
velocity information and uncertain model information of space robot, we propose an integrated sliding
mode control with input restriction, output feedback and repetitive learning (ISMC-IOR). By using
the class invariance theorem, the stability of the algorithm is proved, and the simulation analysis is
performed to verify its effectiveness.

The rest of the paper is organized as follows: in Section 2, an FBFLFJ space robot is introduced, and
its dynamic model is developed using the assumed mode method and Lagrange method. In Section 3,
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Figure 1. Structure diagram of the FBFLFJ space robot system.

Figure 2. Structure diagram of the flexible link.

the FBFLFJ space robot is decomposed into fast and slow subsystems using the singular perturbation
method, and its properties are introduced. In Section 4, the motion and vibration integrated control
method is presented and its stability is investigated. In Section 5, experimental data from a computer
simulation are presented. Section 6 gives the conclusion.

2. Dynamic model of an FBFLFJ space robot
The flexible-base flexible-link and flexible-joint (FBFLFJ) space robot system is shown in Figure 1. It
consists of a free-floating flexible-base B0, and flexible-link B1 and flexible-link B2. The inertial coor-
dinate system OXY and the local coordinate systems Oi′Xi′Yi′(i′ = 0, 1, 2) of each split are established.
O0 coincides with the base mass center OC0, and Oi coincides with the joint hinge center connecting the
split Bi−1 and Bi (i = 1, 2). qb is the flexible deformation of the base, q0 is the base attitude angle, qi is
the relative angle of the link Bi and qmi is the joint motor rotor angle (i = 1, 2). When the base is not
deformed, the distance between OC0 and O1 is l0. The mass of the base is m0, and the rotational inertia is
J0. The initial length of link Bi is li, the density is ρi and the motor rotor rotational inertia is Jmi(i = 1, 2).

According to the configuration and vibration characteristics of the FBFLFJ robot links, each link
is simplified to a simply supported beam, as shown in Fig. 2, and analyzed by Euler-Bernoulli beam
theory and hypothetical modal method. Taking its flexural stiffness EIi as a constant value, the flexible
deformation of the link Bi at xi section at the moment t is vi(xi, t) =∑ni

j=1 φij(xi) δij(t), (0 ≤ xi ≤ li), where
xi is any distance on the coordinate system Xi of the main axis of link Bi, φij and δij represent the j-order
modal function and corresponding modal coordinates of link Bi, respectively. Taking the retained modal
number as ni = 2, the equivalent stiffness factor of link Bi is kδij = EIi

∫ li
0

(
φ̈2

ij(xi)
)

dxi, (i, j = 1, 2).
According to the SPONG assumption [29], the flexible base and the flexible joints are assumed to

be massless linear telescopic spring and linear torsional spring, respectively. The elasticity coefficients
of base and joint are defined as kb and kmi(i = 1, 2), respectively, and are taken as constant values. The
flexible-joint structure is shown in Fig. 3.
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Figure 3. Structure diagram of the flexible joint.

According to the geometric position relationship of the FBFLFJ space robot in the inertial coordinate
system, we have ⎧⎪⎨

⎪⎩
r0 = (x0, y0)

T

r1 = r0 + (l0 + qb) e0 + x1e1 + v1(x1, t) c1

r2 = r0 + (l0 + qb) e0 + l1e1 + x2e2 + v2(x2, t) c2

, (1)

where r0 denotes the position vector of the base mass center in the inertial coordinate system, and ri

denotes the vector of any point on the link Bi in the inertial coordinate system (i = 1, 2). (x0, y0) is the

base center of mass coordinate. e0 =
[

sin(q0)

cos(q0)

]
, e1 =

[
sin(q0 + q1)

cos(q0 + q1)

]
, c1 =

[− cos(q0 + q1)

sin(q0 + q1)

]
, e2 =[

sin(q0 + q1 + q2)

cos(q0 + q1 + q2)

]
and c2 =

[− cos(q0 + q1 + q2)

sin(q0 + q1 + q2)

]
are the basis vectors.

According to the centroid theorem, we have

m0r0 +
2∑

i=1

∫ li

0

ρiridxi = MrC, (2)

where rC denotes the position vector of the total center of mass of the system in the inertial coordinate
system, and the total mass of the system is M = m0 +∑2

i=1 ρili.
Let the initial momentum of the system be 0, then MṙC = 0. Combining Eqs. (1) and (2), the total

kinetic energy of the FBFLFJ space robot system can be obtained as

T = 1

2
m0ṙ2

0 + 1

2
J0q̇2

0 +
2∑

i=1

(
1

2

∫ li

0

ρiṙ2
i dxi

)
+

2∑
i=1

(
1

2
Jmiq̇

2
mi

)
. (3)

Neglecting the effect of gravity, the total potential energy of the FBFJFL space robot system is

V = 1

2
kbq2

b +
2∑

i=1

(
EIi

2

∫ li

0

(
∂2vi(xi, t)

∂x2
i

)2

dxi

)
+

2∑
i=1

(
1

2
kmi(qmi − qi)

2

)
. (4)

Let L = T − V be the Lagrange function, and substitute Eqs. (3) and (4) into the Lagrange equa-
tion to obtain the FBFLFJ space robot dynamics model with uncontrolled base position and controlled
attitude, as[

D
(
qbojδ

)
0

0 Jm

] [
q̈bojδ

q̈m

]
+
[

H
(
qbojδ, q̇bojδ

)
0

0 0

] [
q̇bojδ

q̇m

]
+
[

ξ bojδ

Kmσ

]
=
[

τ bojδ

τm

]
, (5)

where D
(
qbojδ

)
is the symmetric positive definite mass matrix, and H

(
qbojδ, q̇bojδ

)
denotes the cen-

trifugal force matrix. Here qbojδ = [
qb qT

ojδ

]T
, qojδ = [

qT δ
T
]T

, q = [
q0 qT

j

]T
, qj =

[
q1 q2

]T
,

δ = [
δ11 δ12 δ21 δ22

]T
, qm = [

qm1 qm2

]T
, Jm = diag(Jm1, Jm2) , Kδ = diag(kδ11, kδ12, kδ21, kδ22) ,

Km = diag(km1, km2) , σ = qm − qj, ξ bojδ = [
kbqb 0 − (τ )

T
(Kδδ)

T
]T

, τ bojδ = [
0 τ0 0T

]T . τm =[
τm1 τm2

]T is the motor rotor control torque.
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3. Model decomposition and properties of the FBFLFJ space robot
3.1. FBFLFJ space robot model singular perturbation decomposition
To facilitate the control analysis of the FBFLFJ space robot, the model is firstly decomposed and
Eq. (5) is rewritten as

D
(
qbojδ

)
q̈bojδ + H

(
qbojδ, q̇bojδ

)
q̇bojδ + ξ bojδ = τ bojδ, (6)

Jmq̈m + τ = τm, (7)

τ = Kmσ . (8)

Rewrite the matrices D
(
qbojδ

)
and H

(
qbojδ, q̇bojδ

)
from Eq. (6) as

[
Daa Dab

Dba Dbb

]
and

[
Haa Hab

Hba Hbb

]
,

respectively, in which Daa, Haa ∈R
1×1, Dab, Hab ∈R

1×7, Dba, Hba ∈R
7×1, Dbb, Hbb ∈R

7×7. D
(
qbojδ

)
is

invertible and can be defined by [
N11 N12

N21 N22

]
=
[

Daa Dab

Dba Dbb

]−1

, (9)

where N11 ∈R
1×1, N12 ∈R

1×7, N21 ∈R
7×1 and N22 ∈R

7×7.
By substituting Eq. (9) into Eq. (6), we obtain

q̈b = −N11

(
Haaq̇b + Habq̇ojδ + kbqb

)− N12

(
Hbaq̇b + Hbbq̇ojδ

)+ N12

⎡
⎢⎣

τ0

τ

−Kδδ

⎤
⎥⎦ , (10)

q̈ojδ = −N21

(
Haaq̇b + Habq̇ojδ + kbqb

)− N22

(
Hbaq̇b + Hbbq̇ojδ

)+ N22

⎡
⎢⎣

τ0

τ

−Kδδ

⎤
⎥⎦ . (11)

Now the singular perturbation decomposition is performed for the system: treat qojδ as slow sub-
variable, and treat qb and σ as fast sub-variables. μ = 1/ min(kb, km1, km2) is defined as the singular
perturbation factor, and tf = t/

√
μ is the fast time scale, where the equivalent stiffness coefficients of

the base and the joints at this time scale are kbf and Kmf , respectively, and the flexible deformations are
qbf and σ f , respectively, where kbf = μkb, Kmf = μKm, qbf = qb/μ, and σ f = σ/μ. The following relation
exists

kbqb = kbf

μ
qbf μ = kbf qbf , (12)

Kmσ = Kmf

μ
σ f μ = Kmf σ f . (13)

By substituting qbf = qb/μ, Eqs. (12) and (13) into Eqs. (10) and (11), we get

μq̈bf = −N11

(
Haaμq̇bf + Habq̇ojδ + kbf qbf

)− N12

(
Hbaμq̇bf + Hbbq̇ojδ

)+ N12

⎡
⎢⎣

τ0

Kmf σ f

−Kδδ

⎤
⎥⎦ , (14)

q̈ojδ = −N21

(
Haaμq̇bf + Habq̇ojδ + kbf qbf

)− N22

(
Hbaμq̇bf + Hbbq̇ojδ

)+ N22

⎡
⎢⎣

τ0

Kmf σ f

−Kδδ

⎤
⎥⎦ . (15)
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Consider the case when μ tends to 0, kb and Km tend to infinity and qb tends to 0, we can see that the
joint rotation angle qj =

[
q1 q2

]T is approximately equal to the motor rotor rotation angle qm. Thus,
when μ = 0, the robot can be considered as a rigid system. Let � be an arbitrary variable and � denotes
the new expression for � as μ tends to 0. To find the dynamics model of the slow subsystem, let μ = 0,
from Eqs. (14) and (15) we have

0 = −N11Habq̇ojδ − N11kbf qbf − N12Hbbq̇ojδ + N12

⎡
⎢⎣

τ0

Kmf σ f

−Kδδ

⎤
⎥⎦ , (16)

q̈ojδ = −N21Habq̇ojδ − N21kbf qbf − N22Hbbq̇ojδ + N22

⎡
⎢⎣

τ0

Kmf σ f

−Kδδ

⎤
⎥⎦ . (17)

The total controller of the drive motor with joint flexibility compensation is designed as

τm = (I + Kc) τ n − Kcτ , (18)

where I ∈ R2×2 is the unit matrix, Kc ∈ R2×2 is the symmetric positive definite flexible compensation
matrix and τ n = τ ns + τ nf is the controller to be designed. τ ns ∈ R2×1 is the slow sub-controller, and
τ nf ∈ R2×1 is the fast sub-controller.

By substituting controller τm, σ f = σ/μ and μ = 0 into Eq. (7), we get

Kmf σ f = τ ns − (I + Kc)
−1 Jmq̈j, (19)

By substituting Eqs. (16), (18) and (19) into Eq. (17), we have the dynamics model of the slow
subsystem containing q and δ as

R
(
qojδ

)
q̈ojδ + S

(
qojδ, q̇ojδ

)
q̇ojδ + ξ ojδ = τ ojδ, (20)

where R
(
qojδ

)= Dbb +
⎡
⎢⎣

0 0 0

0 (I + Kc)
−1 Jm 0

0 0 0

⎤
⎥⎦ , S

(
qojδ, q̇ojδ

)= Hbb, ξ ojδ = [
0T (Kδδ)

T
]T

,

τ ojδ =
[ (

τ oj

)T
0T
]T

, and τ oj =
[
τ0 τ T

ns

]T .

Denote the fast subsystem state variable as qf = [
qf 1 qf 2 qT

f 3 qT
f 4

]T , and we have qf 1 = qbf −
qbf , qf 2 = √

μq̇bf , qf 3 = σ f − σ f and qf 4 = √
μσ̇ f . qf is derived with respect to tf , and the dynamics model

of the fast subsystem containing qb and σ is obtained by combining Eq. (14), controllers τm, σ f = σ/μ

and Eq. (7), as

dqf /dtf = Af qf + Bf τ nf , (21)

where Af =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

−N11kbf 0 N∗
12Kmf 0

0 0 0 I
0 0 −J−1

m (I + Kc) Kmf 0

⎤
⎥⎥⎥⎥⎦ , Bf =

⎡
⎢⎢⎢⎢⎣

0

0

0

J−1
m (I + Kc)

⎤
⎥⎥⎥⎥⎦ , N∗

12 is the row vector con-

sisting of the elements of the second and third terms of N12.

3.2. Dynamical model properties
From Eq. (20), it can be seen that the motion of the base and joints of the slow subsystem and the
links vibration are coupled with each other. In order to control the base attitude and the joints, this
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section decouples the slow subsystem into a fully driven rigid subsystem and designs the control algo-

rithm. Among them, R
(
qojδ

)
and S

(
qojδ, q̇ojδ

)
are written as

[
R11 R12

R21 R22

]
and

[
S11 S12

S21 S22

]
, respectively.

R11, S11 ∈R
3×3, R12, S12 ∈R

3×4, R21, S21 ∈R
4×3, and R22, S22 ∈R

4×4. The fully driven rigid subsystem
dynamic model is obtained from Eq. (20), as

M(δ, q) q̈ + C
(
δ, δ̇, q, q̇

)
q̇ + κ

(
δ, δ̇, q, q̇

)= τ oj, (22)

where M = R11 − R12R−1
22 R21, C = S11 − R12R−1

22 S21, and κ = (
S12 − R12R−1

22 S22

)
δ̇ − R12R−1

22 Kδδ is the
system dynamics nonlinear term.

According to Kelly et al. [30], Eq. (22) has several fundamental properties as follows:

Property 1. The inertia matrix M(x) is symmetric positive definite and satisfies the following inequal-
ities:

λm(M) ‖y‖2 ≤ yTM(x) y ≤ λM(M) ‖y‖2 ∀y ∈R
3×1, (23)

where λm(·) and λM(·) represent the minimum and maximum eigenvalues of the matrix, respectively,
and ‖·‖ represents the 2-norm.

Property 2. The centrifugal-Coriolis matrix C ∈R
3×3 satisfies the following relationship:

C(x, y) z = C(x, z) y∀y, z ∈R
3×1, (24)

Cm ‖y‖ ≤ ‖C(x, y)‖ ≤ CM ‖y‖ ∀y ∈R
3×1, (25)

where Cm and CM are known positive constants.

Property 3. The matrix Ṁ(x) − 2C(x, ẋ) is skew-symmetric, which implies that

yT
[
Ṁ(x) − 2C(x, ẋ)

]
y = 0∀y ∈R

3×1. (26)

Property 4. There must exist known positive constants kM, kC1, kC2, kC3 and kC4 for all
x, y, z, x1, y1, x2, y2 ∈R

3×1 fulfilling

‖M(x) z − M(y) z‖ ≤ kM ‖Tanh(x − y)‖ ‖z‖ , (27)

∥∥C
(
x1, y1

)
z − C

(
x2, y2

)
z
∥∥≤ kC1

∥∥Tanh
(
y1 − y2

)∥∥ ‖z‖ + kC2

∥∥y1

∥∥ ‖Tanh(x1 − x2)‖ ‖z‖ , (28)

∥∥κ(x1, y1

)− κ
(
x2, y2

)∥∥≤ kC3

∥∥y1 − y2

∥∥+ kC4

∥∥y1

∥∥ ‖Tanh(x1 − x2)‖ , (29)

where kM, kC1, kC2, kC3 and kC4 are obtained according to Kelly. ξ = [
ξ1 ξ2 ξ3

]T ∈R
3×1, and

Tanh(ξ) = [
tanh(ξ1) tanh(ξ2) tanh(ξ3)

]T , where ξ is an arbitrary vector.

4. ISMC-IOR
4.1. SMC-IOR base on desired trajectory
The continuous differentiable periodic expectation trajectory satisfies the bounded condition∥∥q̇d

∥∥≤ VM, and
∥∥q̈d

∥∥≤ AM, (30)

where VM and AM are, respectively, the upper bound of the expected velocity and the acceleration norm.
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For the convenience of analysis, define N ∈ R3×1 as

N(q, q̇) = M(δ, q) q̈d + C
(
δ, δ̇, q, q̇

)
q̇ + κ

(
δ, δ̇, q, q̇

)
. (31)

Let Nd = N
(
qd, q̇d

)
, where Nd is a periodic function with period T . Expanded Nd in Fourier

series as

Nd = a0 +
∞∑

k=1

[
ak cos(kωt) + bk sin(kωt)

]
, (32)

where ω = 2π/T is the angular frequency. a0, ak and bk are the unknown constant vectors.
Define the filtered tracking error η = ė + Tanh(e) + Tanh(v), where e = qd − q is the trajectory

tracking error and v ∈ R3×1 is the filter vector. For the rigid subsystem Eq. (22), design the algorithm of
sliding mode control with input restriction, output feedback and repetitive learning based on the desired
trajectory (SMC-IOR-D) as

τ oj = K0Sgn
(
Tanh(e) + αef

)− (
k′ + 1

)
Tanh(v) + Tanh(e) + Sat

(
Q0z0 +

N∑
k=1

Qk żk

)
, (33)

⎧⎪⎨
⎪⎩

Tanh(v) = p1 − (k′ + 1) e
ṗ1 = −k′Tanh(e) − (k′ + 2) Tanh(v) − α−1ef

p1(0) = (k′ + 1) e(0)

, (34)

⎧⎪⎨
⎪⎩

ef = p2 + α−1(e − Tanh(e))
ṗ2 = α−1Tanh(v) − ef

p2(0) = α−1(Tanh(e(0)) − e(0))

, (35)

{
z0 = p0 + Q0e
ṗ0 = Q0(Tanh(e) + Tanh(v))

, (36)

{
żk = pk + Qke
ṗk = Qk(Tanh(e) + Tanh(v)) − k2ω2zk

k = 1, · · · N, (37)

where K0 ∈R
3×3 is a constant diagonal matrix, ef ∈R

3×1 is a filter vector and α and k′ are posi-
tive constants. Q0, Qk ∈R

3×3 are constant positive definite diagonal matrices, Q0z0 +∑N
k=1 Qk żk is

the repetitive learning controller (RC), and N is the number of harmonic oscillator terms. Sgn(ξ) =[
sgn(ξ1) sgn(ξ2) sgn(ξ3)

]T , Sat(ξ) = [
sat(ξ1) sat(ξ2) sat(ξ3)

]T , ξ ∈R
3×1 is an arbitrary vector.

Sat(·) is a saturation function whose elements are as follows:

sat(ξi′) =
{

ξi′ , |ξi′ | ≤ βi′

βi′sgn(ξi′) , |ξi′ | > βi′
∀ξi′ ∈R, i′ = 1, 2, 3, (38)

where βi′ is the maximum threshold value of the saturation function.
Take the derivative of η, left multiply both sides of the resultant equation by M(δ, q) and substituting

e = qd − q, Eqs. (22), (31) and (34) into the right side of the equation, then we have

M(δ, q) η̇ = −k′M(δ, q) η − M(δ, q)
(
I3 − Sech2

(e)
)
η + Ñ + Nd − τ oj − 1

2
Ṁ(δ, q) η, (39)

Ñ = N − Nd − M(δ, q)
[
Sech2

(e) (Tanh(e) + Tanh(v)) +Tanh(v) − Tanh(e) + α−1ef

]
+ 1

2
Ṁ(δ, q) η. (40)
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Convert Eq. (40) into the normal form, and according to e = qd − q, Properties 1−4 and Eq. (30), it
is obtained from the expression of η that∥∥∥Ñ

∥∥∥≤ 4λM1 ‖z‖ + λM2 ‖z‖2 = (4λM1 + λM2 ‖z‖) ‖z‖ = ρ(‖z‖) ‖z‖ , (41)

where λM1 = max{℘1, ℘2, ℘3, ℘4} , λM2 = 8CM, z = [
TanhT

(e) eT
f TanhT

(v) ηT
]T . ℘1 = kMAM+

kC2V2
M + 2CMVM + kC4VM + λM(M) + kC3, ℘2 = 2CMVM + 1

2
λM

(
Ṁ
)+ kC3, ℘3 = λM (M)

α
, ℘4 = 2CMVM+

λM(M) + kC3. ρ(‖z‖) ∈R is the positive definite invertible non-decreasing function.

Lemma 1. Define the auxiliary intermediate variable Ln(t) ∈R as shown below

Ln(t) = ηT
[
f n(t) − K0sgn

(
Tanh(e) + αef

)]
, (42)

If K0ii satisfies sufficient K0ii >
∥∥f n(t)

∥∥
∞ +

∥∥∥ḟ n(t)
∥∥∥

∞
, then∫ t

0

Ln(τ ) dτ ≤ ξn, (43)

where K0ii denotes the i-th element on the diagonal of the diagonal matrix K0. K0ii =[
K011 K022 K033

]T
, f n(t), ḟ n(t) ∈ l∞, and ξn =∑n

i=1 K0ii|tanh(ei(0))| − TanhT
(e(0)) f n(0) , n = 1, 2.

Proof. See Appendix A. �
Thus, the stability theorem for SMC-IOR-D is formulated as follows:

Theorem 1. When Eqs. (33)−(37) of SMC-IOR-D are under the input constraints from Eq. (44), if
the controller parameters meet the sufficient conditions shown in Eqs. (45)−(48), the asymptotic stable
trajectory tracking control of the FBFLFJ space robot can be realized

K0ii + k′ + 2 + βi ≤ τoj,i,max, (44)

K0ii > max
{∥∥f 1 (t)

∥∥
∞ +

∥∥∥ḟ 1(t)
∥∥∥

∞
,
∥∥f 2(t)

∥∥
∞ +

∥∥∥ḟ 2(t)
∥∥∥

∞

}
, (45)

α > 1.5, (46)

k′ = (kn + 1) /λm(M) , (47)

kn >
1

4λ3

max
{
ρ2
(√

λ12/λ11

∥∥y1(0)
∥∥) , ρ2

(√
λ22/λ21

∥∥y2(0)
∥∥) , ρ2(‖z(0)‖)

}
, (48)

where λ11 = 0.5 min{1, λm(M)} , λ12 = max
{
1, 1

2
λM(M)

}
, λ21 = 1

2
min

{
1, λm

(
Q0

)
, ω2, λm(M)

}
,

λ22 = 1
2

max
{
2, λM

(
Q0

)
, N2ω2, λM(M)

}
, λ3 = 1 − 3

2α
, f 1(t) = Nd − B · sgn

(
Q0z0 +∑N

k=1 Qk żk

)
, and

f 2(t) =∑∞
k=N+1

[
ak cos(kωt) + bk sin(kωt)

]
.

Proof. See Appendix B. �

4.2. SMC-IOR based on hybrid trajectory
The SMC-IOR-D in the previous section achieves asymptotic stable tracking of the base attitude and
joint angle, but the vibration of the flexible link is not suppressed. In this section, we use the concept
of virtual control force to modify the original desired trajectory and generate a hybrid trajectory qh that
reflects both the flexible vibration of the link and the rigid motion of the system. Based on this, the
sliding mode control with input restriction, output feedback and repetitive learning based on the hybrid
trajectory (SMC-IOR-H) is designed to achieve the dual functions of motion tracking and simultane-
ous suppression of the links vibration. The virtual force F ∈R

3×1 is introduced, and the error between
the desired trajectory and the hybrid trajectory is eh = qd − qh, which is generated by the second-order
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command generator ëh + aėh + beh = F, where a, b ∈R
3×3 are the constant positive definite diagonal

matrix.
The hybrid error is defined as er = qh − q, and the hybrid filter tracking error is defined as ηr =

ėr + Tanh(er) + Tanh(vr). vr and efr are the hybrid filter vectors. Then, the SMC-IOR-H is obtained as
follows:

(
τ oj

)
r
= K0Sgn

(
Tanh(er) + αefr

)− (
k′ + 1

)
Tanh(vr) + Tanh(er) + Sat

(
Q0z0r +

N∑
k=1

Qk żkr

)
, (49)

⎧⎪⎨
⎪⎩

Tanh(vr) = p1r − (k′ + 1) er

ṗ1r = −k′Tanh(er) − (k′ + 2) Tanh(vr) − α−1efr

p1r(0) = (k′ + 1) er(0)

, (50)

⎧⎪⎨
⎪⎩

efr = p2r + α−1(er − Tanh(er))

ṗ2r = α−1Tanh(vr) − efr

p2r(0) = α−1(Tanh(er(0)) − er(0))

, (51)

{
z0r = p0r + Q0er

ṗ0r = Q0(Tanh(er) + Tanh(vr))
, (52)

{
żkr = pkr + Qker

ṗkr = Qk(Tanh(er) + Tanh(vr)) − k2ω2zkr

k = 1, · · · N. (53)

Defining the state variable as qs =
[
δ

T eT δ̇
T ėT

]T

, the equation of state is obtained from
Eqs. (49)–(53) and Eq. (22) as follows:

q̇s = Asqs + BsF + Ls, (54)

where As =

⎡
⎢⎢⎢⎢⎣

0 0 I 0

0 0 0 I
−R−1

22 Kδ −R−1
22 R21b −R−1

22 S22 −R−1
22 R21a

0 −b 0 −a

⎤
⎥⎥⎥⎥⎦ , Bs =

⎡
⎢⎢⎢⎢⎣

0

0

R22R21

I

⎤
⎥⎥⎥⎥⎦, and Ls =

⎡
⎢⎢⎢⎢⎣

0

0

R−1
22 R21

(
G − q̈d

)− R−1
22 S21q̇

G

⎤
⎥⎥⎥⎥⎦.

If Ls satisfies the following conditions:

‖Ls(t)‖E∥∥qs

∥∥
E

≤ 1

2
∥∥N−1

s

∥∥
s
‖Ps‖s

= λmin (Ns)

2λmax (Ps)
, ∀qs ∈ R3×1, (55)

then the virtual force F is

F = −R−1
s BT

s Psqs. (56)

In Eq. (56), Rs > 0, and Ps is the solution of Riccati equation PsAs + AT
s Ps − PsBsR−1

s BT
s Ps + Qs = 0.

Constructing the Lyapunov function V
(
qs

)= qT
s Psqs, V

(
qs

)
is derived and combining with Eqs. (55) and

(56) yields V̇
(
qs

)≤ −
(
qT

s Nsqs − λmin (Ns)
∥∥qs

∥∥2
)

≤ 0, so the system is stable.
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Figure 4. Integrated sliding mode control with input restriction, output feedback and repetitive learning.

4.3. Multiple flexible suppression control based on linear quadratic optimal method
As analyzed above, the state equation qf at the fast time scale tf is shown in Eq. (21). The performance
index function is constructed as

Jqf = 0.5
∫ ∞

0

(
qT

f Qf qf + τ T
nf Rf τ nf

)
dtf . (57)

In Eq. (57), symmetric matrix Qf ≥ 0, Rf > 0. The optimal control of the fast subsystem is designed as

τ nf = −R−1
f BT

f Pf qf , (58)

where Pf is the solution of the Riccati equation Pf Af + AT
f Pf − Pf Bf R−1

f BT
f Pf + Qf = 0.

Then, ISMC-IOR is composed of SMC-IOR-H, virtual force Eq. (56), fast sub-controller Eq. (58)
and motor general controller Eq. (18). The overall scheme of this controller is shown in flowchart Fig. 4,
where the blue dashed area is the fast subsystem controller and the red dashed area is the slow subsystem
controller. According to the above analysis, the implementation of the ISMC-IOR does not need the
dynamic model information of space robot and the motion speed information of base and joint, and can
meet the requirements of limited driving torque of FBFLFJ space robot.

5. Simulation
Taking the FBFLFJ space robot shown in Fig. 1 as an example, the simulation is carried out. The size of
the base is l0 = 1.5 m, the mass of the base is m0 = 40 kg, the inertia moment of the base is J0 = 30 kg · m2

and the elastic coefficient of the base is kb = 500 N/m. The density of link B1 is ρ1 = 3.5 kg/m, the den-
sity of link B2 is ρ2 = 1.1 kg/m, the length of the link is li = 1.5 m and the bending stiffness of the link is
EIi = 100 N/m2. At joint i, the motor rotor rotational inertia is Jmi = 0.1 kg · m2 and the joint elasticity
coefficient is kmi = 50 Nm/rad, i = 1, 2. Before the controller is turned on, the FBFLFJ space robot base
and joints do not move, and the base, links and joints do not vibrate. Its initial configuration is qb(0) =
0 m, q(0) = [

1.1 0.7 1.4
]T

rad, δ(0) = [
0 0 0 0

]
m, qm(0) = [

0.7 1.4
]T

rad, q̇b(0) = 0 m,

q̇(0) = [
0 0 0

]T
rad, δ̇(0) = [

0 0 0 0
]

m, q̇m(0) = [
0 0

]T
rad. Let 0 s be the simulation ini-

tial moment. At this time, turn on the controller so that the FBFLFJ robot base and joints track the
following desired trajectory:

qd = [1 0.8 1.2]T rad.
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(a) (b)

Figure 5. Trajectory tracking curve of the FBFLFJ space robot base attitude under two control
conditions. (a) ISMC-IOR-NV. (b) ISMC-IOR.

In order to illustrate the vibration suppression effect on the flexible vibration of the base, links and joints
and motion control effect of the base and joints of the FBFLFJ space robot, ISMC-IOR is used to conduct
a simulation study, where the controller parameters are K0 = diag(20, 0.5, 0.9) , k′ = 20, α = 5, Q0 =
diag(10, 90, 30) , Qk = diag(2, 2, 2) , N = 3, a = b = diag(5, 5, 5). The saturation function thresholds
are β1 = 20, β2 = β3 = 40. The flexible vibration of the FBFLFJ space robot base, links and joints affects
the system control accuracy. In order to verify the effect of flexible vibration on the system control accu-
racy, the flexible suppressors in ISMC-IOR, i.e., the fast sub-controller τ nf and the SMC-IOR-H are
turned off, and the ISMC-IOR without vibration suppression (ISMC-IOR-NV) consisting of the SMC-
IOR-D and τm = (I + Kc) τ ns − Kcτ is used for simulation studies. For fairness, all control parameters
remained unchanged. The control conditions are divided into ISMC-IOR-NV and ISMC-IOR.

Figure 5 shows the FBFLFJ space robot base attitude trajectory tracking under two control conditions,
and Fig. 6 shows the FBFLFJ space robot joints trajectory tracking under two control conditions.

As can be seen from Figs. 5(a) and 6(a), without the flexible vibration suppressor, although the base
and joints can track the desired trajectory, they have an obvious vibration trend after stabilization. Among
them, joint 1 showed vibration in 0.5–1.5 s, and after 20 s, both the base and the joints have different
amplitudes of vibration. From Figs. 5(b) and 6(b), it can be seen that by turning on the flexible vibration
suppressor and using ISMC-IOR for controlling, not only the base and joints can accurately track the
desired trajectory, but also the vibration of the base and joints has been significantly suppressed.

Figure 7(a) and (b) shows the error convergence rate under ISMC-IOR-NV and ISMC-IOR control
conditions, which are calculated by the formula log

∥∥q − qd

∥∥, and the unit is log(rad). Therefore, the
smaller the error convergence rate, the higher the control accuracy of the controller. Furthermore, to
verify the high-precision characteristics of the repetitive learning controller in ISMC-IOR, the integrated
sliding mode control for motion and vibration (ISMC) algorithm without repetitive learning controller
is used to control the FBFLFJ space robot to track the desired trajectory qd. The slow sub-controller
in ISMC is

(
τ oj

)
r
= M

(
q̈h + λ1ėr + λ2sr

)+ Cq̇ + κ , where, sr = ėr + λ1er. The control parameters are
λ1 = λ1 = 1. The rest of the parameters are identical to those of ISMC-IOR. Figure 7(c) shows the error
convergence rate under ISMC.

As can be seen from Fig. 7(a) and (b), the minimum error convergence rate is about −3.2 when the
flexible vibration suppressor is turned off, while the minimum error convergence rate is about −4.7
when the flexible vibration suppressor is turned on, and the accuracy of ISMC-IOR control is signifi-
cantly higher than that of ISMC-IOR-NV. It shows that the flexible vibration seriously affects the control
accuracy of the system, and the ISMC-IOR proposed in this paper can improve the control quality of
the system. In addition, it can be seen from Fig. 7(c) that the system error convergence rate mean value
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(a) (b)

Figure 6. Trajectory tracking curve of the FBFLFJ space robot joints under two control conditions.
(a) ISMC-IOR-NV. (b) ISMC-IOR.

under ISMC is about −2.8, which is significantly lower than the error convergence rate mean value of
−3.8 under ISMC-IOR, see Fig. 7(b); therefore, ISMC-IOR has higher control accuracy than ISMC in
tracking repetitive signals, calibrating the effectiveness of the repetitive controller. In order to clarify the
error convergence under the three control conditions, the error convergence values for the three control
cases at any moment are analyzed according to Fig. 7, as shown in Table I.

As can be seen from Table I, the error convergence value of the system under ISMC-IOR control is
the smallest, which proves the effectiveness of the controller proposed in this paper in high-precision
tracking control.

In order to verify the effect of the control algorithm proposed in this paper on the flexible vibration
suppression of the base and joints of the system, the following simulation analysis is conducted. Figure 8
shows the flexible vibration curves of the base under the two control conditions, and Figs. 9 and 10 show
the flexible vibration curves of joint 1 and joint 2 under the two control conditions.

As can be seen from Fig. 8, the amplitude of the base reached 0.1 m when turning on the controller.
With ISMC-IOR-NV control, the amplitude of the base was maintained at 0.0014 m after 20–30 s,
while with ISMC-IOR control, the amplitude of the base gradually decreased and was suppressed to
within 0.0005 m at 30 s. The vibration frequency was also decreased. From Fig. 9(a), it can be seen
that under the ISMC-IOR-NV control, the amplitude of joint 1 reached 3 rad at 2 s and maintained at
1 rad after 10 s. The amplitude of joint 2 reached 1.2 rad at 2 s and maintained at 1.8 rad after 10 s. From
Fig. 9(b), it can be seen that under the ISMC-IOR control, the initial amplitude of the joint 1 is 1.2 rad,
which is maintained within 0.17 rad after stabilization; the initial amplitude of the joint 2 is 0.6 rad,
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Table I. Tracking error convergence value under three control conditions.

No. Control conditions 15s 20s 25s 30s Average
1 ISMC-IOR-NV −2.10 −1.95 −1.90 −2.00 −1.99
2 ISMC-IOR −3.10 −3.20 −2.90 −3.00 −3.05
3 ISMC −2.20 −2.25 −2.35 −2.25 −2.26

(a) (b)

(c)

Figure 7. Tracking error convergence rate of the FBFLFJ space robot under three control conditions.
(a) ISMC-IOR-NV. (b) ISMC-IOR. (c) ISMC.

which is maintained at 0.1 rad after stabilization. Both of them are significantly suppressed compared
to the ISMC-IOR-NV control. It shows that the flexible vibration suppressor proposed in this paper can
effectively suppress the flexible vibration of the base and joints.

In order to analyze the vibration of the flexible links of the FBFLFJ space robot under the two control
algorithms, the following simulations are performed. Among them, Fig. 10 shows the first two orders
of modal vibration curves of the link B1 under two control conditions, and Fig. 11 shows the first two
orders of modal vibration curves of the link B2 under two control conditions.

From Figs. 10(a) and 11(a), it can be seen that under ISMC-IOR-NV control, the 1st order modal
coordinates of link B1 are maintained at 0.002 m at 20–30 s, and 0.001 m at 20–30 s for the 2nd order
modal coordinates; the 1st order modal coordinates of link B2 are maintained at 0.012 m, and 0.017 m
for the 2nd order modal coordinates. As shown in Figs. 10(b) and 11(b), under ISMC-IOR control, both
the 1st and 2nd order modal coordinates of the link B1 are suppressed to within 0.001 m; the 1st order
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(a) (b)

Figure 8. Flexible vibration curve of FBFLFJ space robot base under two control conditions. (a)
ISMC-IOR-NV. (b) ISMC-IOR.

(a) (b)

Figure 9. Flexible vibration curve of FBFLFJ space robot joints under two control conditions.
(a) ISMC-IOR-NV. (b) ISMC-IOR.
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(a) (b)

Figure 10. Flexible vibration curve of FBFLFJ space robot link B1 under two control conditions.
(a) ISMC-IOR-NV. (b) ISMC-IOR.

modal coordinates of the link B2 are suppressed to 0.0025 m and the 2nd order modal coordinates are
suppressed to 0.001 m. Compared with the ISMC-IOR-NV control, the modal vibration of both links
under ISMC-IOR control is effectively suppressed.

In order to quantitatively analyze the suppression effect of the controller proposed in this paper on the
flexible vibration of the system, the vibration of all the flexible variables of the system with the flexible
suppressor on and off is analyzed in combination with Figs. 10 and 11, as shown in Table II.

As can be seen in Table II, the ISMC-IOR proposed in this paper has the obvious function of
suppressing the multiple flexible vibrations of the system. Compared with ISMC-IOR-NV, the vibra-
tion suppression performance of the base, joints and links of the FBFLFJ space robot controlled by
ISMC-IOR can be improved by 50%, 85%, 94.44%, 44.44%, 37.50%, 80.77% and 94.12%, respectively.

In order to verify the torque limitation of the proposed algorithm, the driving torque required
for ISMC-IOR control is analyzed and the simulation results are shown in Fig. 12. It can be seen
that the maximum upper bound of the real-time moment is

(
τ oj

)
r
= [

50 60 40
]T . According to

K0ii + k′ + 2 + βi ≤
(
τoj,i,max

)
r
, it is obtained that

(
τoj,0,max

)
r
≥ 62,

(
τoj,1,max

)
r
≥ 62.5,

(
τoj,2,max

)
r
≥ 62.9. The

moment in the simulation satisfies the constrained relation
(
τoj,i

)
r
≤ (

τoj,i,max

)
r
, where

(
τoj,i

)
r
is the element

corresponding to vector
(
τ oj

)
r
, i = 1, 2, 3, so the moment constraint requirement is satisfied.
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Table II. Vibrations of the FBFLFJ space robot base, joints and links at 20–30 s.

Performance improvement of
No. Flexible variables ISMC-IOR-NV ISMC-IOR ISMC-IOR over ISMC-IOR-NV
1 qb/m 1.0 × 10−3 0.5 × 10−3 50.00%
2 σ1/rad 1.000 0.150 85.00%
3 σ2/rad 1.800 0.100 94.44%
4 δ11/m 1.8 × 10−3 1.0 × 10−3 44.44%
5 δ12/m 0.8 × 10−3 0.5 × 10−3 37.50%
6 δ21/m 0.013 2.5 × 10−3 80.77%
7 δ22/m 0.017 1.0 × 10−3 94.12%

(a) (b)

Figure 11. Flexible vibration curve of FBFLFJ space robot link B2 under two control conditions.
(a) ISMC-IOR-NV. (b) ISMC-IOR.

6. Conclusions
(1) For the actuator saturated space robot affected by multiple flexible vibrations of base, links and
joints, the modeling method of dynamic model of FBFLFJ space robot is analyzed. On this basis, a
singular perturbation decomposition scheme of the model is proposed. Then, according to the rigid
flexible subsystem, we propose an algorithm of integrated sliding mode control with input restriction,
output feedback and repetitive learning.
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Figure 12. Torques under ISMC-IOR.

(2) The simulation results show that the flexible vibration significantly affects the control accuracy
of the system, and the rigid controller without suppressing the flexible vibration cannot control the
FBFLFJ space robot system to perform the accurate tracking task. In contrast, the controller proposed
in this paper can make the system track the desired trajectory with −3 orders of magnitude accuracy
while suppressing the multiple flexible vibrations of the system base, links and joints 50%–80% and
37% performance improvement were achieved. The control algorithm enables the space robot system
to work with limited input torque and can also deal with the lack of model information and speed
information.
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Appendix A: Proof of Lemma 1

Proof. Define the intermediate variable s = Tanh(e) + αef , then η = s + ṡ. Substitute η into Eq. (42)
and take the integral to obtain

∫ t

0

Ln(τ ) dτ ≤
∫ t

0

|s(τ )|T

(∣∣f n(τ )
∣∣+

∣∣∣∣∣d
(
f n(τ )

)
dτ

∣∣∣∣∣− K0ii

)
dτ

+
n∑

i=1

|si(t)| (|fni(t)| − K0ii) +
n∑

i=1

K0ii|si(0)| − sT(0) f n(0) (59)

|�| represents a new expression after taking the absolute value of each element of vector or matrix
�. According to K0ii >

∥∥f n(t)
∥∥

∞ +
∥∥∥ḟ n(t)

∥∥∥
∞

and ef (0) = 0, Eq. (59) satisfies
∫ t

0
Ln(τ ) dτ ≤ ξn. Proof

complete. �

Appendix B: Proof of Theorem 1

Proof. Case I.
∣∣(Q0z0 +∑N

k=1 Qkżk

)
i

∣∣> βi for all i.
Define auxiliary function P1(t) = ξ1 − ∫ t

0
L1(τ ) dτ and variable

∫ vi

0
tanh τ sech2 τdτ . P1(t) ≥ 0 is

obtained from Lemma 1 and Eq. (45), in combination with
∫ vi

0
tanh τ sech2 τdτ ≥ 0, the Lyapunov

function V1 is constructed as

V1 =
3∑

i=1

ln(cosh ei) +
3∑

i=1

∫ vi

0

tanh τ sech2 τdτ + 1

2
eT

f ef + 1

2
ηTM(δ, q) η + P1 = yT

1 U1y1, (60)

where y1 = [
LnT(e) FnT(v) eT

f ηT
√

P1

]T
, Ln(e) = [√

ln(cosh e1)
√

ln(cosh e2)
√

ln(cosh e3)
]T , and

Fn(v) =
[√∫ v1

0
tanh τ sech2 τdτ

√∫ v2

0
tanh τ sech2 τdτ

√∫ v3

0
tanh τ sech2 τdτ

]T

. �
According to the value of stability condition λ11, λ12 and Eq. (60), we get

λ11

∥∥y1

∥∥2 ≤ V1

(
t, y1

)≤ λ12

∥∥y1

∥∥2
. (61)

Derive from Eq. (60), and according to Eqs. (33)–(39), we have

V̇1 = V̇H + Ṗ1 + ηT ·
[

Nd − B · Sgn
(

Q0z0 +
N∑

k=1

Qk żk

)
− K0sgn

(
Tanh(e) + αef

)]
, (62)

V̇H = − TanhT
(e) Tanh(e) − TanhT

(v) · Tanh(v) + α−1eT
f

(
I3 − Sech2

(e)
)
(η − Tanh(e) − Tanh(v))

− eT
f ef + ηTÑ − k′ηTM(δ, q) η − ηTM(δ, q)

(
I3 − Sech2

(e)
)
η. (63)

Substitute f 1(t) and P1(t) = ξ1 − ∫ t

0
L1(τ ) dτ into Eq. (62) to get V̇1 = V̇H . By substituting Eqs. (41),

(46) and (47) into V̇H , and according to λ3, we have

V̇H ≤ −λ3 ‖Tanh(e)‖2 − λ3 ‖Tanh(v)‖2 − λ3

∥∥ef

∥∥2 − λ3 ‖η‖2 + ρ2(‖z‖) ‖z‖2 / (4kn) = −γ ‖z‖2 ,
(64)
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where γ = λ3 − ρ2(‖z‖)
4kn

. According to the stability condition Eq. (48), it can be seen that γ ‖z‖2 is a

continuous positive semidefinite function on the attraction domain D = {
y1| ‖z‖ < ρ−1

(
2
√

λ3kn

)}
, and

that there exists a domain of attraction S1 ⊂ D as

S1 =
{
y1 ∈ D|λ12

∥∥y1

∥∥2
< λ12

[
ρ−1

(
2
√

λ3kn

)]}
. (65)

According to the invariance-like theorem which is detailed in theorem 8.4 by Khalil [31], it can
be seen that ∀y1(0) ∈ S1. When, t → ∞, γ ‖z‖2 → 0. Combined with the definition of vector z and the
expression of vector η in Eq. (41), it can be seen that when t → ∞, e(t), ef (t), v(t), η(t), ė(t) → 0.

Case II.
∣∣(Q0z0 +∑N

k=1 Qk żk

)
i

∣∣≤ βi for all i.
Introduce variable z̃k = zk − z∗

k (k = 1, · · · N) , let⎧⎨
⎩

z∗
0 = Q−1

0 a0

z∗
k = (kω)

−1 Q−1
k

[
ak sin(kωt) − bk cos(kωt)

] . (66)

Since z̈∗
k = −(kω)

2 z∗
k , the closed-loop system variables are as follows:{ ˙̃z0 = Q0η

¨̃zk + k2ω2z̃k = Qkη (k = 1, · · · N)
. (67)

Construct the Lyapunov function V2 as

V2 =
3∑

i=1

ln(cosh ei) +
3∑

i=1

∫ vi

0

tanh τ sech2 τdτ + 1

2
eT

f ef + 1

2
ηTM(δ, q) η + P2

+ 1

2
z̃T

0 Q0z̃0 + 1

2

N∑
k=1

˙̃zT
k
˙̃zk + 1

2

N∑
k=1

k2ω2z̃T
k z̃k = yT

2 U2y2, (68)

where y2 = [
LnT(e) FnT(v) eT

f ηT
√

P2 z̃T
0 z̃T

1 · · · z̃T
N

˙̃zT
1 · · · ˙̃zT

N

]T
. According to the

value of stability condition λ21 and λ22, combined with Eq. (68) we have

λ21

∥∥y2

∥∥2 ≤ V2

(
t, y2

)≤ λ22

∥∥y2

∥∥2
. (69)

Take the derivative of Eq. (68), substitute the right side of the resulting equation into Eqs. (34), (35),
(39) and (67), and according to f 2(t) and P2(t) = ξ2 − ∫ t

0
L2(τ ) dτ , we have

V̇2 = TanhT
(e) · ė + TanhT

(v) Sech2
(v) v̇ + eT

f ėf + 1

2
ηTṀ(δ, q) η

+ ηTM(δ, q) η̇ + Ṗ2 + z̃T
0
˙̃z0 +

N∑
k=1

˙̃zT
k
¨̃zk +

N∑
k=1

k2ω2z̃T
k
˙̃zk = V̇H . (70)

According to Eqs. (63) and (64), we get V̇H ≤ −γ ‖z‖2, and its continuous semi-positive definite on
the domain of attraction D, according to the stability condition Eq. (48), we get the domain of attraction
S2 ⊂ D as

S2 =
{
y2 ∈ D|λ22

∥∥y2

∥∥2
< λ22

[
ρ−1

(
2
√

λ3kn

)]}
. (71)

Based on the invariance-like theorem, ∀y2(0) ∈ S2. When t → ∞, e(t), ef(t), v(t), η(t), ė(t) → 0. Proof
complete.
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Appendix C: Acronyms description, as shown in Table III.

Table III. Acronyms description.

Acronym Notes
FBFLFJ Flexible-base flexible-links flexible-joints
SMC Sliding mode control
SMC-IOR Sliding mode control with input restriction, output feedback and repetitive

learning
SMC-IOR-D Sliding mode control with input restriction, output feedback and repetitive

learning based on the desired trajectory
SMC-IOR-H Sliding mode control with input restriction, output feedback and repetitive

learning based on hybrid trajectory
ISMC Integrated sliding mode control for motion and vibration algorithm without

repetitive learning controller
ISMC-IOR Integrated sliding mode control with input restriction, output feedback and

repetitive learning
ISMC-IOR-NV Integrated sliding mode control with input restriction, output feedback and

repetitive learning without vibration suppression

Cite this article: X. Fu, H. Ai and L. Chen (2023). “Integrated sliding mode control with input restriction, output feed-
back and repetitive learning for space robot with flexible-base, flexible-link and flexible-joint”, Robotica 41, 370–391.
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