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New Super-quadratic Conditions for
Asymptotically Periodic Schrodinger
Equations

Xianhua Tang

Abstract. 'We study the semilinear Schrédinger equation

~2u+V(x)u=f(x,u), xeRN,
{u e H'(RN),

where f is a superlinear, subcritical nonlinearity. It focuses on the case where V(x) = Vo (x)+V1(x),

Vo € C(RN), Vo(x) is 1-periodic in each of x1,x2,..., %N, sup[o(— & +V5) N (-00,0)] < 0 <

inf[o(=A+Vp)N(0,00)], Vi € C(RY),and limjy|, 0o Vi(x) = 0. A new super-quadratic condition

is obtained that is weaker than some well-known results.

1 Introduction

Consider the following semilinear Schrédinger equation

—-Au+V(x)u=f(x,u), xeRY,

D u e H'(RN),

where V:RY — R and f:RY x R —» R are asymptotically periodic in x and f is
superlinear as |u| > oo.

The existence of a nontrivial solution for (1.1) has been widely investigated when
V(x) and f(x,u) are periodic in x and satisfy the following basic assumptions:

(V) VeC(RN), V(x) is 1-periodic in each of xi, x5, . .., xy and
sup[o(— 2 +V) N (-00,0)] <0< A:=inf[o(— A +V) N (0,00)].
(F1) f e C(RN xR), and there exist constants p € (2,2*) and Cy > 0 such that
If(x, 1) < Co(1+]tP™h), V(x,t) e RN xR.

(F2) f(x,t)=o0(|t|) as|t| - 0, uniformlyin x € RN, and F(x, t) := fotf(x,s)ds > 0.
(F3) f(x,t)is1-periodic in each of x1, x5, ..., xN.

See [4,5,11,12,19,28,30] and the references therein. In those papers, (AR) is a classical
existence condition that is due to Ambrosetti and Rabinowitz [2].
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Asymptotically Periodic Schrodinger Equations 423
(AR) there exists a g > 2 such that

0<uF(x,t) <tf(x,t), V(x,t) eRY x (R~ {0}).

(AR) is a very convenient hypothesis, since it readily achieves mountain pass ge-
ometry as well as satisfaction of the Palais-Smale condition. However, it is a severe
restriction, since it strictly controls the growth of f(x,t) as |t| — co. In recent years,
there have been papers devoted to replacing (AR) with weaker conditions. For exam-
ple, Liu and Wang [17] first introduced a more natural superquadratic condition.

|F(x, t)]
|t]?
Subsequently, (SQ) has been commonly used [6-8,12,13,18, 21, 31]. However, it is

not sufficient to guarantee that (1.1) has a nontrivial solution. Later, Ding and Lee [6]
gave the following milder existence condition.

(DL) F(x,t) = 3tf(x,t) - F(x,t) > 0if t # 0, and there exist co > 0,70 > 0,and x >
max{1, N/2} such that|f(x, t)|* < coF(x, t)|t|*, forall (x, t) € RN xR, |t] > ro.

Under Assumption (F1), Condition (DL) greatly weakens (AR). Soon after, (DL)
was generalized to more general equations or systems (see e.g., [3,21,23,32,34]).

Szulkin and Weth [20] developed an ingenious approach to find the ground state
solutions for problem (1.1). They demonstrated that (SQ) together with the following
Nehari type assumption (Ne) implies that (1.1) has a ground state solution.

(SQ) limyo0

= oo, uniformly in x € RN,

(Ne) ¢t~ f(x,t)/|t| is strictly increasing on (—oc0,0) U (0, c0).

Based on Szulkin and Weth [20], Liu [16] showed that (1.1) has a nontrivial solution
by using the following weak version (WN) instead of (Ne).

(WN) ¢t~ f(x,t)/|t] is non-decreasing on (—o0,0) U (0, c0).

Recently, Tang [22] introduced new super-quadratic conditions as follows.

F(x,t
(WS) limyy- o0 | (|f|2 )l = o0, almost everywhere x € RY;
(Ta) there exists a 0y € (0,1) such that

1- 6%

5 tf(x,t)z/{;:f(x,s)ds:F(x,t)—F(x,Ht)

forall 0 € [0, 600], (x,t) e RN x R.

Clearly, (WS) is slightly weaker than (SQ). Besides, (Ta) improves (AR), (WN), and
the following weak version of (AR) (see [22]).

(WAR) there exists a y > 2 such that 0 < uF(x,t) < tf(x,t), forall (x,t) e RN x R.

Motivated by the aforementioned works, in the periodic case, we first weaken (DL)
to the following condition, i.e., F(x,¢) > 0,¢ # 0, to F(x, t) > 0.

(F4) F(x,t) 2 0, and there exist ¢y > 0, &y € (0, A), and x > max{1, N/2} such that

Lt’t) >A -8 implies [L{t)]x < coF(x,t).

https://doi.org/10.4153/CMB-2016-090-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-090-2

424 X. Tang

Clearly, (WAR) and (DL) yield (F4). What we do notice, though, is that we cannot
verify that (WN) implies (F4). However it is very difficult to find a function f that
satisfies both (F2) and (WN,) but not (F4). Before presenting our first result, we give
two nonlinear examples to illustrate Assumption (F4).

Example 1.1  Let F(x, t) = t*In[1 + t* sin*(27x,)]. Then

213 sin® (27x1)

x,t) = 2tIn[1 + t* sin®(27x;) ] + ——————",
fet) [ (2mx1)] 1+ t2sin(2mx;)
t* sin?(2mx;)

———20.
1+ 2 sin*(27x;)

F(x,t) =
It is easy to see that f satisfies (WS) and (F4) with x > max{1, N/2}, but none of (AR),
(5Q), (WAR), or (DL).

Example 1.2 Let N <4and F(x,t) = a(|t[*/* = 3|t|'"/* + £|¢°/*), a > 0. Then

13 55 405
flxt) = ‘1( Z|t|5/4 - §|t|3/4 + 6—4|t|l/4) t,

5 3,2
?(x,t)=§a|t\9/4( |t|—2) >0.

Similarly, f satisfies (SQ) and (F4) with « = 12/5 and a € (0, 64A/405), but none of
(AR), (WN), (WAR), (DL), or (Ta).

We are now in a position to state the first result of this paper.

Theorem 1.3  Assume that V and f satisfy (V), (F1), (F2), (F3), (F4), and (WS). Then
problem (1.1) has a nontrivial solution.

When V(x) is positive and asymptotically periodic, there are considerably fewer
results [1,14, 33]. In this case, the spectrum o(- & +V) c (0, 00). Comparing with
appropriate solutions of a periodic problem associated with (1.1), a nontrivial solution
can be found by using a version of the mountain pass theorem.

When V(x) is periodic and sign-changing, while f(x, u) is asymptotically peri-
odicin x, there seems to be only one result [12]. Let @y and ® denote the energy func-
tionals associated with (1.1) with periodic and asymptotically periodic nonlinearity f,
respectively. By using a generalized linking theorem for the strongly indefinite func-
tionals and comparing with (C)c-sequences of @, and @, Li and Szulkin [12] proved
that (1.1) has a nontrivial solution if V and f satisfy Assumptions (V) and (F1), (F2),
(AR) and the following asymptotically periodic condition.

(F5) f(x,t) = fo(x,t) + fi(x, 1), O¢ fo, fi € C(RN x R), fo(x,t) is I-periodic in each
of x1,x2,...,xn and fy and f; satisfy the following:

0<tfo(x,t) < oifo(x,1), V(x,t) e RN x (R~ {0}),

0 < Fo(x, 1) ::fotfo(x,s)dsg;tfo(x,t), V(o 1) € RY x (R~ {0)),
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Fi(x,t) ::/;tfl(x,s)ds>0, V(x,t) e RY x (R~ {0})
i) <a(x) ([ +]H77"),  V(x,t) eRY xR,

where y > 2 is the same as in (AR), a € C(R") with lim|y_,.c a(x) = 0.

We point out that the assumption in (F5) that fo(x,t) is differentiable in ¢ and
0 < tfo(x,t) < t*9;fo(x,t) (which implies that t — fo(x, t)/|t| is strictly increasing
on (—00,0) U (0, 00)) is crucial in Li and Szulkin [12].

If V(x) is both asymptotically periodic and sign-changing, the operator — A +V
loses the ZN -translation invariance. For this reason, many effective methods for pe-
riodic problems cannot be applied to asymptotically periodic ones. To the best of our
knowledge, there are no existence results for (1.1) when V(x) is asymptotically peri-
odic and sign-changing. Motivated by [6,12,14,24-27,33], we shall find new tricks to
overcome the difficulties caused by dropping the periodicity of V (x).

Before presenting our second theorem, we make the following assumptions instead
of (V) and (F5), respectively.

(V1) V(x) = Vo(x) + Vi(x), Vo € C(RN) n L>°(RY) and

sup[a(— A +Vp) N (=00,0)] <0< A:=inf[o(- & +V,) N (0, 00)],

Vie C(RN) and lim|x|_,oo Vl(x) =0;
(V2) Vo(x) is I-periodic in each of x;, x5, . .., xn, and

0<-Vi(x) <sup[-Vi(x)] <A, VxeRY;
RN
(F5') f(x,t) = fo(x,t) + fi(x,t), fo € C(RN x R), fo(x, t) is I-periodic in each of
X1, X2, - - o> XN fo(%, £) = o([t]) as t — 0, uniformlyinx € RN; t — fo(x, t)/|t]is

non-decreasing on (—o00,0) U (0, 00); limy;|.oo [Fo (x, )|/|t|* = 00, a.e. x € RY;
fi € C(RN x R) satisfies the following:

“Vi(x)t* + Fi(x,t) >0, VY (x,t)¢ B1+\/ﬁ(0) x (R~ {0}),
Fi(xt)20, [fi(x.6)] <a(e)(dl+ 407, V(x.t) eRY xR,
where a € C(RY) with limj, .o a(x) = 0.
Remark 1.4 Comparing (F5) with (F5'), the condition that fy(x, t) is differentiable
in t is dropped; the condition 0 < tfy(x,t) < t9;fo(x,t) is weakened to the re-

quirement that ¢ — fo(x, t)/|t| is non-decreasing on (—o0,0) U (0, 00 ); (AR) is also
weakened to (WS) for f,.

We are now in a position to state the second result in this paper.

Theorem 1.5  Assume that (V1), (V2), (F1), (F2), (F4), and (F5’) are satisfied. Then
(1.1) has a nontrivial solution.

The remainder of this paper is organized as follows. In Section 2, some preliminary

results are presented. The proofs of Theorems 1.3 and 1.5 are given in Section 3 and
Section 4, respectively.
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2 Preliminaries

Let X be a real Hilbert space with X = X~ @ X* and X~ L X™. For a functional ¢ €
C!'(X,R), ¢ is said to be weakly sequentially lower semi-continuous if for any u, —
u in X one has ¢(u) < liminf, . ¢(u,), and ¢’ is said to be weakly sequentially
continuous if lim, e (¢’ (44 ), v) = (@' (u),v) for each v € X.

Lemma 2.1 ([11,12]) Let (X, |-||) be a real Hilbert space with X = X~ & X* and
X~ 1 X*, and let ¢ € C'(X,R) be of the form

1 + - - + - +
o) = (| = Ju™) —y(u), w=u"+u"eX"®X".

Suppose that the following assumptions are satisfied:

(KS1) y € CY(X,R) is bounded from below and weakly sequentially lower semi-contin-
uous;

(KS2) v is weakly sequentially continuous;

(KS3) there exist r > p > 0 and e € X" with |e| = 1such that x := inf ¢(S;) >
sup ¢(0Q), where

S;={ueX :|ul=p}, Q={v+se:veX ,s20,[v+se|<r}.
Then there exist a constant ¢ € [«, sup ¢(Q)] and a sequence {u, } c X satisfying
o(un) > ¢, @ (un)[(1+ un]) - 0.

Let Ag = — A +V;. Then A, is self-adjoint in L*(R"N) with domain D(A¢) =
H?(RY) (see [10, Theorem 4.26]). Let {€(1) : —0c0 < A < +oo} and |Ao| be the
spectral family and the absolute value of Ay, respectively, and let | Ao/ be the square
root of | Ag|. Set U = id —£(0) — &(0-). Then U commutes with Ay, [Ao|, and [A,["/2,
and Ay = U|Ay| is the polar decomposition of A (see [9, Theorem IV 3.3]). Let

E=9(A|"?), E =&(0)E, E*=[id-&(0)]E.

For any u € E, it is easy to see that u = u™ + u*, where

u =&0)ueE, u" :=[id-&(0)JucE"
and
(21) AQM7 = —|A0|u7, ‘/4()11+ = |.A(]|l/l+, YueEn @(Ao)

Define an inner product (u,v) = (|Ao|"?u, |[Ao|?v) 2, for all u,v € E and the
corresponding norm

(2.2) lul) = || [Ao2u]

5 ucek,

where (-, )2 denotes the inner product of L>(RY) and | - |; denotes the norm of
L*(RYN). By (V1), E = H'(RY) with equivalent norms. Therefore, E embeds con-
tinuously in L(RY) for all 2 < s < 2*. In addition, one has the decomposition
E = E~ @ E*, orthogonal with respect to both (-, - );2 and (-, -).
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Under assumptions (V1), (F1), and (F2), the solutions of problem (1.1) are critical
points of the functional

(2.3) O(u) = % fRN(|Vu|2 + V(x)u*)dx - A;N F(x,u)dx, VueeE,
@ is of class C'(E,R), and
24) (O (u),v) = fm(v”v” £V (x)uv)dx - fRNf(x,u)vdx, Vu,veE.
Let
25)  D(u) - %fw (9P + Vo)) dx = [ Fo(xu)dv, vue,
Then @y is also of class C'(E,R), and
(@ (u),v) = wa(V”W + Vo(x)uv)dx - wa fo(x,u)vdx, Vu,veE.
In view of (2.1) and (2.2), we have ®o(u) = 3 ([|u"|* = |u~|*) = [~ Fo(x,u)dx and
(@()ou) = |2~ 2= [ folxwpuds,  Vu=u+u’ <.

We set ¥ (u) = [on[-Vi(x)u? + F(x,u)]dx, forall u € E.
Employing a standard argument, one can easily verify the following fact.

Lemma 2.2 Suppose that (V1), (V2), (F1), and (F2) are satisfied. Then ¥ is nonneg-
ative, weakly sequentially lower semi-continuous, and V' is weakly sequentially contin-
uous.

3 The Periodic Case

In this section, we assume that V and f are 1-periodic in each of x3, x,. .., xn, i.e.,
(V) and (F3) are satisfied. In this case, V; = V, V4 = 0, fo = f, and f; = 0. Thus,
Do (u) = O(u).

Lemma 3.1 ([25, Lemma 2.4]) Suppose that (V), (F1), (F2), and (WN) are satisfied.
Then ®(u) > O(tu+w) + 3|w|? + %(CD'(u),u) - (@' (u),w), forallu € E, t >
0O,weE".

Define N~ = {u € ENE™ : (®'(u),u) = (®'(u),v) = 0,Vv € E”}. First introduced
by Pankov [18], the set N~ is a subset of the Nehari manifold

N={ueE~{0}:(D'(u),u)=0}.

Corollary 3.2  Suppose that (V), (F1), (F2), and (WN) are satisfied. Then for u e N7,
O(u) > O(tu+w)+3|w|? forallt>0,we E.
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Corollary 3.3  Suppose that (V), (F1), (F2), and (WN) are satisfied. Then

1- ¢
2

O(u) > %Hu”z - fRNF(x, fut)dx + S (@ (), u) + (D (), w7,

forallueE,t>0.

Analogous to the proof of [22, Lemma 3.3], it is easy to show the following lemma.

Lemma 3.4  Suppose that (V), (F1), (F2), and (WS) are satisfied. Then there exist a
constant ¢ > 0 and a sequence {u, } c E satisfying

(XY DO(un) > ¢, [0 (un)| 1+ [ua]) — 0.

Lemma 3.5 Suppose that (V), (F1), (F2), (F3), (F4), and (WS) are satisfied. Then
any sequence {u, } c E satisfying

(3.2) O(up) > c20, (D' (un),u;)—0

is bounded in E.

Proof In view of (3.2), there exists a constant C; > 0 such that
1
(3.3) C1> (i) = 2 (@' (1), 1) = fR F(x, u,)dx.

To prove the boundedness of {u, }, arguing by contradiction, suppose that ||u,, | — co.
Let v, = up/||un|. Thenl = |v, | If 8 := limsup, SUP g fBl(y) [vi]2dx = 0,
then by Lions” concentration compactness principle [15] or [29, Lemma 1.21], v} — 0
in LS(RN) for 2 < s < 2*. Set ¥’ = x/(x — 1) and

(3.4) Q= {xery {00 75
Uy
Then using A[v} |3 < |v}]? one has
X, u — 0
(3.5) 5 y(v;)zdxs (A—&O)||v;\|531—T

On the other hand, by virtue of (F4), (3.3), and the Holder inequality, one can get that

(3.6) fRN\Qn f(xu%nu")(ﬁ)zdx < [/RN\Q," f();inu)

Vx +12
<o [, Teouds) vl

< Gs[[vy 30 = 0(1).

K 1/x 2
dx| " |vil3e
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So F(x,u) > 0 implies that uf(x,u) > 0. Hence, combining (3.5) with (3.6) and
making use of (2.4) and (3.2), we have

N e IR

1+0(1) K
L - e
TR YRR

do
Sl_j+ 1.
2+ o(1)

This contradiction shows that & > 0.
Going, if necessary, to a subsequence, we may assume the existence of k, € ZV

such that /Bl+\/ﬁ(krﬂ) [vi|2dx > g. Let w,(x) = vu(x + ky,). Since V(x) is 1-periodic
in each of x1, x5, . .., xn, then ||w,|| = |v,| = 1, and
(3.7) f w 2dx > 8/2.

BHW(O)

Passing to a subsequence, we have w, — w in E, w, — w in L}, _(RN), 2 <'s < 2%,
w, = wa.e. on RY, Obviously, (3.7) implies that w # 0.

Now we define u*" (x) = u, (x + k,). Then uk/|u, | = w, - wa.e. on RN, w # 0.
For x € {y e RN : w(y) # 0}, we have lim,, o, [uk"(x)| = co. Hence, it follows from

(2.3), (3.2), (F2), (F3), (WS), and Fatou’s lemma that

1 ) 1 F(x,
0= fim S < tim D0~ tim [ (i 1= i) - ), P ]
nooo fup[2 o neo Ju [ nmeel 2 B (uy")?
1 F(x,uf" 1 F(x,ul
< — —liminf WWﬁdx <—- liminf% 2dx = —o0
2 n—soo RN (unn)z 2 RN n—oo (unn)Z
This contradiction shows that {u, } is bounded. [ |

Lemma 3.6 ([26, Theorem 1.2]) Assume that (V), (F1), (F2), (F3), (WN), and (WS)
are satisfied. Then problem (1.1) has a solution ug € E such that ®(ug) = infy- @ > 0.

Proof of Theorem 1.3 Combining Lemma 3.4 with Lemma 3.5, we can get that there
exists a bounded sequence {u,} c E satisfying (3.1). Now the usual concentration-
compactness argument suggests that @' () = 0 for some u € E \ {0}. [ |

4 The Asymptotically Periodic Case
In this section, we always assume that V satisfies (V1) and (V2).

Lemma 4.1  Suppose that (V1), (V2), (F1), and (F2) are satisfied. Then there exists
p > 0 such that

(4.1) % :=inf{®(u) :u € E¥, |u| =p} > 0.
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Proof Set® = suppn[-Vi(x)]. Let &g = (A —®y)/3. Then (F1) and (F2) imply that
there exists a constant C,, > 0 such that

(4.2) F(x,t) < eoltf + Celt]?, V(x,t) e RN xR,

From (2.3), (4.2), and the Sobolev imbedding inequalities |u, < y,|u| and Alu3 <
|u|? for u € E*, we have

1 1
D(u) = EH“HZ +3 fRN Vi(x)u2dx - wa F(x,u)dx

1
> = [[ul® = (@0 + 2¢0) [ull3] - Cey |l

S(1- 222 jup? -

)
This shows that there exists p > 0 such that (4.1) holds. [ |

bCe,lul?, VueE".

Lemma 4.2  Suppose that (V1), (V2), (F1), (F2), and (WS) are satisfied. Then for
any e € E*, sup®(E~ ® R*e) < oo, and there is R, > 0 such that ®(u) < 0, for all
ueE-®R", |u| > R..

Proof Arguing indirectly, provided that for some sequence {w, +s,e} c E~ @ Re
with |w, + s,e| = oo such that ®(w,, + s,e) > 0 forall n € N, set
V= (Wy +sne)/||[wy + sne| =v, + tpe.

Then ||v, + t,e| = 1. Passing to a subsequence, we may assume that t,, - ¢, v, — v~,
and v, — v~ a.e. on RN, Hence, it follows from (V2) and (2.3) that

O(w, +sp€)
- Hwn +spul?

- 1 B F(x,w, +sye)
- l 2_, 2, - 234 — A\ T onm)
=5 el ZHV” |©+ 5 /11-1<N Vi(x)(v, + t,e)“dx fRN dx

[wn + sne|?
t2 1 F +
<Loefp - L [ T o) g,
2 2 RN |w, +sue|

(43) 0<

If t = 0, then it follows from (4.3) that

1 F(x,w, + t2
0< e [ EEMEE) gy B g,
2 RV |w, +snel? 2

which yields |v,, | - 0,and so 1= |v, + t,e|* = 0, a contradiction.
If ¢ # 0, then it follows from (4.3) and (WS) that

F bl
0 <timsup[ et - Ly [ FOeMn o) 4]

n—oo RN HW”+5”6H2

& (x, Wy +sne), _
EH ||2—hm1nff o :5 e;Z)( L+ tee)idx
n n
I3 s Wa + -
< Slel = tmanr P00 (2 - oo
nsoo (W, +sue

https://doi.org/10.4153/CMB-2016-090-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-090-2

Asymptotically Periodic Schrodinger Equations 431
a contradiction. |

Corollary 4.3  Suppose that (V1), (V2), (F1), (F2), and (WS) are satisfied. Let e € E*
with ||e| = 1. Then there is an r > p such that sup ®(dQ) < 0, where

Q={w+se:weE ,s>0,|w+se| <r}.
Let mg := infyo @g, where
N®={ueE~E :(®f(u),u) = (Py(u),v)=0,Vv e E}.

Lemma 4.4  Suppose that (V1), (V2), (F1), (F2), and (F5') are satisfied. Then there
exist a constant c, € [k, mg) and a sequence {u,} c E satisfying

(4.4) D(uy) = cor [ (un)[(1+ [un) >0,

Proof Employing Lemma 3.6, there exists a u € E such thatu # 0 on B, ,(0),
@} (u) = 0,and @o (%) = my. Set E(u) = E- @ R*wand {y := sup{®(u) : u € E(u)}.
Lemma 4.1 implies that {, > & > 0. By (V2), (F5'), (2.3), (2.5), and Corollary 3.2, we
have @ (u) < ®o(u) < my, for all u € E(%). Hence, {y < mq. If {y = my, then there is
a sequence {u, } with u, =w, +s,u € E(#) such that

1 _
(4.5) mo— — < O(u,) = O(w, +s,u) < my.
n

It follows from Lemma 4.2 and (4.5) that {s,} c R and {w,} c E~ are bounded.
Passing to a subsequence, we have s, — s and w,, — w in E. It is easy to see that s > 0.
It follows from (2.3), (2.5), and Corollary 3.2 that

1 1
mo — < O(uy) :CDO(u,,)+EfRN Vl(x)uftdx—fRN Fi(x,u,)dx

<mo - %Hwn 2 - % [ [-Vio)u2 + 28 () d,
which yields that 1 [wy|*> + 3 [ox[-Vi(x)(wy + sa1t)? + 2F1(x, wy + s,u)]dx < 1.
According to Fatou’s Lemma and the weakly lower semi-continuity of the norm, one
gets that 1 [w|® + 1 [ou[-Vi(x) (W + su)? + 2F (x, w + su)]dx = 0. This, together
with (F5'), implies that w = 0 and % = 0 on B, ,;(0), a contradiction. Therefore,
(o € [k, mp). In view of Lemmas 2.1, 2.2, 4.1, and Corollary 4.3, there exist a constant
C« € [k, my) and a sequence {u,} c E satisfying (4.4). [ |

Lemma 4.5 Suppose that (V1), (V2), (F1), (F2), (F4), and (F5') are satisfied. Then
any sequence {u, } c E satisfying (3.2) is bounded in E.

Proof Given the condition (3.2), there exists a constant C; > 0 such that (3.3)
holds. To prove the boundedness of {u,}, and arguing by contradiction, suppose
that ||u,| — oo. Letv, = u,/|u,|. Then1= ||v,||>. Passing to a subsequence, we have
vy, — v in E. There are two possible cases: (i) v = 0 and (ii) v # 0.
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Case (i): v =0, i.e.,v, =~ 0in E. Then v, — 0 and v, —>01anOC(RN),2S5<2*

and v; > 0and v, - 0 a.e. on RV, From (Vl), it is easy to show that
(4.6) lim f Vi(x)(v})*dx = lim / Vi(x)(v;)*dx = 0.
n—oo RN n—oo ]RN

If  := limsup,,_, ,, SUp gy fBl(y) [v;|*dx = 0, then by Lions’ concentration com-

pactness principle [15] or [29, Lemma 1.21], v;; — 0 in LS(RN) for 2 < s < 2*. Set Q,,
as (3.4). Then (3.5) and (3.6) hold also. Combining (3.5) with (3.6) and using (2.4),
(3.2), and (4.6), we have

”“nH2 —(D(un), u, —u,)

[un?

_ +12 -2 f(x Un) 2 -2
< L M@0 - (o [ SR ()2 - (v,

s—[R Vi(x)(v?) dx+[ flx ")(w) dx+AN\Qnﬂ%ﬁ(v;)2dx

do
él—j+ 1).
= +o(1)

1+o0(1) =

This contradiction shows that § > 0.
Going if necessary to a subsequence, we may assume the existence of k,, € Z" such
that /Bl+\/ﬁ(kn) [vi2dx > g. Letw,(x) = v,(x+k,). Since Vy(x) is I-periodic in each

of x1,x2,..., xy, then
)
(4.7) [ wiPdxs .
Bl+\/ﬁ( ) 2
Now we define i, (x) = u,(x+k, ). Thent,/||u,|| = w, and |w,| = |v,| = 1. Passing

to a subsequence, we have w, — win E, w, — win LfOC(RN), 2<s<2%andw, - w
a.e. on RN, Obviously, (4.7) implies that w # 0. Hence, it follows from (3.2), (F5') and
Fatou’s Lemma that

0 < lim c+o(1) . D(u,)

w2 a2
TR I P iy L L ) F(x+ky,tn) ,
= Hm [ S = e+ 5 [ ieoviax- [ Sy a]

1 L. F() X, U, 1 o
< — —liminf MW% dx < — - liminf
nsco JRN U2 2 JrV n-oe u2

= —00,

which is a contradiction.

Case (ii) v # 0. In this case, we can also deduce a contradiction by a standard
argument.

Cases (i) and (ii) both show that {u,} is bounded in E. [ |

Proof of Theorem 1.5 It is easy to see that (F5’) implies (WS). Applying Lemmas

4.4 and 4.5, we obtain that there exists a bounded sequence {u, } c E satisfying (4.4).
Passing to a subsequence, we have u,, — u in E. Next we prove u # 0.
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Arguing by contradiction, suppose that u = 0, i.e., u, —~ 0in E, and so u, — 0 in
(RY),2 <s<2%and u, - 0a.e. on RN. By (V1) and (F5'), it is easy to show that

loc

(4.8) lim f Vi(x)u2dx =0, lim f Vi(x)u,vdx =0, VveE
n—oo JRN n—oo JRN
and
(4.9) le o Fi(x,u,)dx =0, nhjg fRNfl(x,u,,)vdx =0, VveE.
Note that
1

(4.10) Do (u) :d)(u)—EfRN Vl(x)uzdx+fRN Fi(x,u)dx, YucE
and

(4.11) (Dg(u),v) =(P'(u),v) - —/RN Vi(x)uvdx + [RNfl(x,u)vdx, Vu,v €E.
From (4.4), (4.8)-(4.11), one can get that ®g(u,) = c«, | Py (u,)|(1+ |u,|) = O.

A standard argument shows that {u,, } is a non-vanishing sequence. Going, if nec-
essary, to a subsequence, we may assume the existence of k,, € Z" such that

)
f lun|?dx > =
By, 5 (kn) 2

for some & > 0. Let v,,(x) = u,(x + k). Then

)
(4.12) [ [va|*dx > —.
Bl+x/ﬁ(0) 2
Since Vy(x) and fy(x, u) are periodic on x, we have |v,| = ||u,| and
(4.13) Do(vn) = car [ @(va) [(1+ [va]) 0.

Passing to a subsequence, we have v, ~ vin E, v, > vin L] (RY),2 <s < 2" and
v, — v a.e. on RN. Obviously, (4.12) and (4.13) imply that v # 0 and ®},(V) = 0. This
shows that v € N? and so @ (V) > m,. On the other hand, by using (4.13), (WN), and
Fatou’s Lemma, we have

Mg > Cy = hm Do (vy) - g(vn),vn)]
fo(x, v,,)vn - Fo(x, v,,)]
fo(x,vu)v —F(xv)] f [lf(xV)V—F(xV)]dx

0 n)Vn 0 n rvl2 0\A> 0 >

0(7), V) = @o(V) 2 my.

/ lim
RN n—

n [
= lm [ |
n |
—QMﬂ—l

1
2
1
2
(@

This contradiction implies that & # 0. It is obvious that u € E is a nontrivial solution
for problem (1.1). u
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