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Abstract
This paper is concerned with the increasing stability of the inverse source problem for the elastic wave equation with
attenuation in three dimensions. The stability estimate consists of the Lipschitz type data discrepancy and the high
frequency tail of the source function, where the latter decreases as the upper bound of the frequency increases. The
stability also shows exponential dependence on the attenuation coefficient. The ingredients of the analysis include
Carleman estimates and time decay estimates for the elastic wave equation to obtain an exact observability bound,
and the study of the resonance-free region and an upper bound of the resolvent in this region for the elliptic operator
with respect to the complex frequency. The advantage of the method developed in this work is that it can be used
to study the case of variable attenuation coefficient.

1. Introduction

Inverse source problems have been an active research topic in inverse scattering theory due to their
significant applications in both science and engineering including antenna synthesis, seismic imaging
and biomedical imaging [4, 6, 13, 15, 22]. Theoretically, it is known in general that there is no unique-
ness for the inverse source problem at a fixed frequency due to the existence of non-radiating sources
[1, 2, 16]. From the computational point of view, a more challenging issue is the lack of stability. A small
variation of the data might lead to a huge error in the reconstruction. Recently, it has been realised that
the use of multi-frequency data is an effective approach to overcome the difficulties of non-uniqueness
and instability which are encountered at a single frequency [5]. The increasing stability estimates for the
inverse source problems by multi-frequency measurements have been extensively studied in [6, 8, 11,
15, 19, 20, 23]. We also mention some recent works [3, 9, 10] on inverse scattering problems of elastic
wave equations. This paper is concerned with the stability for the inverse source problem of the elastic
wave equation with attenuation from multi-frequency boundary measurements.

We consider the three-dimensional elastic wave equation

−�∗u − ω2u − iωσu = f(x), x ∈R3, (1.1)

where the positive constant σ > 0 is a damping or attenuation coefficient, �∗ = λ� + (λ + μ)∇∇·,
ω > 0 is the frequency. Here, λ and μ are the Lamé parameters satisfying μ > 0 and 3λ + 2μ > 0,
the vector u denotes the outgoing elastic field and the source function f ∈ L∞ (R3

)3 is assumed to have
a compact support contained in the ball BR. We are interested in the inverse problem of determining
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the source function f(x) by multi-frequency boundary measurements {u(x, ω)|∂BR , ∇u(x, ω)|∂BR} with ω

given in a finite interval.
The main result in this paper is the derivation of the increasing stability estimate for the elastic wave

modelled by the Navier equation with a damping coefficient. Motivated by [15], by the Fourier transform
the inverse source problem is reduced to the identification of the initial data for the initial value problem
of the time-domain damped elastic wave equation by lateral Cauchy data. Then, we obtain an exact
observability bound for the source function using the Carleman estimates, which connects the scattering
data and the unknown source function by taking the inverse Fourier transform. The Fourier transform is
justified by proving an appropriate rate of time decay for the time-domain damped elastic wave equation.
Using the resolvent estimates for the elastic wave equation, we obtain a sectorial resonance-free region
and resolvent estimates for the data with respect to the complex frequency in this region, which lead
to the bound of the analytic continuation of the data from the given data to the higher frequency data.
By tracing the dependence of the bound for analytic continuation and of the exact observability bound
for the elastic wave equation on the attenuation coefficient, we show the exponential dependence of
increasing stability on the damping constant. An important ingredient of the analysis is the application
of the Helmholtz decomposition to the elastic wave. The stability estimate consists of the Lipschitz type
of data discrepancy and the high wavenumber tail for the source function. The latter decreases as the
wavenumber of the data increases, which implies that the inverse problem is more stable when the higher
wavenumber data is used. However, the stability deteriorates as the damping constant becomes larger.
We point out that the method in this work can be used to deal with the case of variable attenuation
coefficient.

This paper is organised as follows. Section 2 is devoted to the well-posedness of the direct scattering
problem. In Section 3, we prove an exact observability bound for elastic wave equations. By Carleman
estimates for wave equations, we trace the dependence of the exact observability bound on the attenua-
tion coefficient. Section 4 is devoted to the proof of the stability estimate. We employ scattering theory
to obtain resolvent estimates for the elliptic operator which gives explicit bounds for analytic continu-
ation. The Fourier transform in time is justified using the decay estimates of the damped elastic wave
equation, which is obtained from the decay estimates for the acoustic wave equation and the Helmholtz
decomposition. Section 5 is devoted to the decay estimates of the damped acoustic wave.

2. Direct source problem

Using the Helmholtz decomposition, the source function f ∈ L2(BR)3 can be decomposed as

f = fp + fs,

where fp, fs ∈ L2(BR)3 with ∇ × fp = 0 and ∇ · fs = 0. Hence, the solution u to the equation (1.1) can be
decomposed into the pressure wave up and shear wave us

u = up + us (2.1)

where ∇ × up = 0, ∇ · us = 0 and

�up + k2
pup = fp, �us + k2

s us = fs. (2.2)

Here, kp =
√

ω2 + iωσ

λ + 2μ
, ks =

√
ω2 + iωσ

μ
are the wavenumbers for the damped pressure and shear

waves. Actually, one has

up = − 1

k2
p

∇∇ · u, us = − 1

k2
s

∇ × ∇ × u in R3. (2.3)
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Motivated by the Helmholtz decomposition (2.1)–(2.2), to investigate the direct scattering problem
of the elastic wave we first study the damped Helmholtz equation. Consider the following Helmholtz
equation:

−�u(x, k) − k2u(x, k) − ikσu(x, k) = f (x), x ∈R3. (2.4)

Here, we note that u and f are scalar-valued functions. The following theorem concerns its well-
posedness.

Theorem 2.1. Given f ∈ L2
(
R3
)

with a compact support, there exists a unique exponentially decaying
outgoing solution u ∈ H2

(
R3
)

to (2.4) for every k > 0 with the following estimate:

|u(x, k)| ≤ C(f )e−c(k,σ )|x|

as |x| −→ ∞. Here, C(f ) and c(k, σ ) are positive constants depending on f and k, σ , respectively.

Proof . We define

u∗(x, k) =
∫
R3

eix·ξ 1

|ξ |2 − k2 − ikσ
f̂ (ξ )dξ , x ∈R3,

where

f̂ (ξ ) = 1

(2π )3

∫
R3

f (x)e−ix·ξdx.

This definition is motivated by taking the Fourier transform of u(x, k) formally with respect to the spatial
variable x. Then by the Plancherel’s theorem, for each k > 0 one has that u∗(·, k) ∈ H2

(
R3
)

and satisfies
equation (2.4).

Since

G(x, k) =
∫
R3

eix·ξ 1

|ξ |2 − k2 − ikσ
dξ = eiκ|x|

4π |x| ,

where κ = (k2 + ikσ )
1
2 with 	κ > 0, one can rewrite u∗(x, k) as

u∗(x, k) = (G ∗ f )(x) =
∫
R3

eiκ|x−y|

4π |x − y| f (y)dy. (2.5)

Thus, since f has a compact support by (2.5) one has that the solution u∗(x, k) satisfies the estimate

|u∗(x, k)| ≤ C(f )e−c(k,σ )|x|,

where C(f ) and c(k, σ ) are positive constants depending on f and k, σ , respectively. Using direct
calculations, one may show that ∇u∗ and �u∗ have similar exponential decay estimates.

Now we prove the uniqueness. Assume that ũ∗(x, k) is another solution to (2.4). Then one has

(−� − k2 − ikσ )(u∗ − ũ∗) = 0

and applying Fourier transform to the above equation gives(|ξ |2 − k2 − ikσ
) (

û∗ − ũ∗
)

(ξ ) = 0.

Since for k > 0 one has that |ξ |2 − k2 − ikσ 
= 0 for all ξ ∈R3, the inverse Fourier transform gives u∗ −
ũ∗ = 0, which proves the uniqueness.

The well-posedness of the direct scattering problem is a direct consequence of the Helmholtz
decomposition (2.1)–(2.2) and Theorem 2.1 for the Helmholtz equation.
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Theorem 2.2. Let f ∈ L2
(
R3
)3 with a compact support. Then there exists a unique outgoing solution u

of Schwartz distribution to (1.1) for every ω > 0. Moreover, the solution satisfies

|u(x, ω)| ≤ C(f)e−c(ω,σ ,λ,μ)|x|

as |x| → ∞, where C(f) and c(ω, b, λ, μ) are positive constants depending on f, and ω, σ and Lamé
parameters, respectively.

3. Exact observability bounds for elastic wave equations

In order to bound the unknown source f by boundary data of u (see Lemma 4.2), we will prove an
observability bound for the initial data of the corresponding time-domain damped elastic wave equation
by noting that the solution to the time-harmonic damped elastic wave equation can be connected with
the time-domain damped elastic wave equation by Fourier transformation.

We will derive an exact observability bound for the initial data f of the following time-domain damped
elastic wave equation{

∂2
t U(x, t) − �∗U(x, t) + σ∂tU(x, t) = 0, (x, t) ∈R3 × (0, +∞),

U(x, 0) = 0, ∂tU(x, 0) = f(x), x ∈R3,
(3.1)

Using Helmholtz decomposition again to the vector-valued initial condition f ∈ L2(BR)3, one has

f = fp + fs,

where fp, fs ∈ L2(BR)3 with ∇ × fp = 0 and ∇ · fs = 0. As a consequence, we decompose the solution U
to the equation (3.1) into a sum of pressure wave Up and shear wave Us (see, e.g., [4])

U = Up + Us (3.2)

where Up and Us satisfy ∇ × Up = 0, ∇ · Us = 0 and the following damped pressure and shear wave
equations {

∂ttUp − c2
p�Up + σ∂tUp = 0, (x, t) ∈R3 × (0, ∞),

Up(x, 0) = 0, ∂tUp(x, 0) = fp(x), x ∈R3,
(3.3)

and {
∂ttUs − c2

s�Us + σ∂tUs = 0, (x, t) ∈R3 × (0, ∞),

Us(x, 0) = 0, ∂tUs(x, 0) = fs(x), x ∈R3.
(3.4)

Here, cp = √
λ + 2μ and cs = √

μ are the wave speeds for pressure and shear waves, respectively.
The following Carleman estimate is useful in deriving the exact observability bound.

Lemma 3.1. Let T > 2R + 1, ϕ(x, t) = |x − a|2 − θ 2
(
t − T

2

)2 where a /∈ BR, dist(a, ∂BR) = 1 and
θ = 1

2
. Let U be a solution to (3.1) with f ∈ H1(BR)3, suppf ⊂ BR. Then we have the following Carleman

estimate: ∑
|α|≤1

s3−2|α|
∫

BR×(0,T)

|∂αU|2e2sϕdxdt

�
∫

∂BR×(0,T)

(
s3|∂tt∇U|2 + s3|∂tU|2

)
e2sϕd(x)dt,

where α = (α1, α2, α3, α4) ∈N4 and ∂α = ∂α1
t ∂α2

x1
∂α3

x2
∂α4

x3
.

https://doi.org/10.1017/S0956792523000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000116


900 G. Yuan and Y. Zhao

Proof . Let v = ∇ · U and w = ∇ × U. Assume U is the solution to (3.1). By Carleman estimate in [14]
or [7] one has that ∑

|α|≤1

s3−2|α|
∫

BR×(0,T)

(
|∂αU|2 + |∂αv|2 + |∂αw|2

)
e2sϕdxdt

�
∫

∂BR×(0,T)

s
(
|∂tv|2 + |∇v|2 + s2v2

)
e2sϕd(x)dt

+
∫

∂BR×(0,T)

s
(
|∂tw|2 + |∇w|2 + s2w2

)
e2sϕd(x)dt. (3.5)

Since the Helmholtz decomposition (3.2) gives

�v = (c2
p)−1∂ttv + (c2

p)−1σ∂tv, �w = (c2
s )−1∂ttw + (c2

s )−1σ∂tw,

by the elliptic regularity theory one has

‖v‖2
H2(∂BR) � ‖∇U‖2

L2(∂BR)3×3 + ‖∂t∇U‖2
L2(∂BR)3×3 + ‖∂tt∇U‖2

L2(∂BR)3×3

and

‖w‖2
H2(∂BR)3 � ‖∇U‖2

L2(∂BR)3×3 + ‖∂t∇U‖2
L2(∂BR)3×3 + ‖∂tt∇U‖2

L2(∂BR)3×3 .

Hence, from (3.5) we have∑
|α|≤1

s3−2|α|
∫

BR×(0,T)

|∂αU|2dxdt

�
∫

∂BR×(0,T)

(
s|∂tt∇U|2 + s|∂t∇U|2 + s|∂tU|2 + s3|∇U|2 + s3|U|2

)
e2sϕd(x)dt.

Since f has compact support contained in BR, one has

‖U‖L2(∂BR×(0,T))3 � ‖∂tU‖L2(∂BR×(0,T))3

and

‖∇U‖L2(∂BR×(0,T))3×3 , ‖∂t∇U‖L2(∂BR×(0,T))3×3 � ‖∂tt∇U‖L2(∂BR×(0,T))3×3 ,

which completes the proof.

Using Lemma 3.1 and following the arguments in the proof of [[15], Theorem 3.1], we obtain the
exact observability bound.

Theorem 3.2. Assume that the observation time T satisfies 4(2R + 1) < T < 5(2R + 1). There exists a
constant C depending on the domain BR such that

‖f‖2
L2(BR)3 ≤ CeCσ 2

(
‖∂tU‖2

L2(∂BR×(0,T))3 + ‖∂tt∇U‖2
L2(∂BR×(0,T))3×3

)
(3.6)

for all U solving (3.1) with f ∈ H1(BR)3, suppf ⊂ BR.

4. Inverse source problem

In this section, we study the inverse source problem for elastic waves. Denote the resolvent of the elliptic
operator −�∗ by

R0(ζ ) = (−�∗ − ζ 2)−1, ζ ∈C. (4.1)

https://doi.org/10.1017/S0956792523000116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000116


European Journal of Applied Mathematics 901

The following results on analyticity and resolvent estimates of R0(ζ ) with respect to complex frequency
ζ ∈C are useful in the subsequent analysis of the stability estimate. The proof utilises the method for
the classical Schrödinger operator in [11].

Proposition 4.1. Fix a smooth cut-off function ρ ∈ C∞
0

(
R3
)
. The free resolvent defined by (4.4) is

analytic in C with respect to ζ as a family of operators

ρR0(ζ )ρ : L2
(
R3
)3 → L2

(
R3
)3

with the following resolvent estimate:

‖ρR0(ζ )ρ‖
L2(R3)

3→Hj(R3)
3 =O

(
〈ζ 〉j−1eL(	̃ks)−

)
, j = 0, 1, 2, (4.2)

Here, 〈ζ 〉 = √
1 + |ζ |2, k̃s = ζ

√
1
μ
, (	̃ks)− = max{0, −	̃ks} and L satisfies csL > diamsuppρ with

diamsupp ρ = sup{|x − y| : x, y ∈ suppρ}.
Proof . Recall the wavenumbers for compressional and shear waves given by

k̃p = ζ

√
1

λ + 2μ
, k̃s = ζ

√
1

μ
, (4.3)

respectively. Denote the resolvents of the pressure and shear waves in the frequency domain respec-
tively by

Rp(ζ ) = (−� − k̃2
p

)−1
, Rs(ζ ) = (−� − k̃2

s

)−1
.

Fix a smooth cut-off function ρ ∈ C∞
0

(
R3
)

and denote diamsupp ρ = sup{|x − y| : x, y ∈ suppρ}. As in
[11], for ζ ∈C the resolvents of the wave speed for pressure and shear waves can be represented by

ρRp(ζ )ρ =
∫ L

0

eĩkptρW(t)ρdt, ρRs(ζ )ρ =
∫ L

0

eĩkstρW(t)ρdt,

where W(t) = sin t
√−�√−�

and L satisfies csL > diamsuppρ. Consequently, by (3.2), (3.3) and (3.4) we obtain
that

ρR0(ζ )ρ f = ρRp(ζ )ρ fp + ρRp(ζ )ρ fs. (4.4)

Moreover, since by [[11], Theorem 3.1]

‖ρRp(ζ )ρ‖
L2(R3)

3→L2(R3)
3 =O

(
(1 + |ζ |)−1eL(	̃kp)−

)
and

‖ρRs(ζ )ρ‖
L2(R3)

3→L2(R3)
3 =O

(
(1 + |ζ |)−1eL(	̃ks)−

)
where (t)−: = max{0, −t}, we obtain from (4.4) and (4.3) that

‖ρR0(ζ )ρ f‖
L2(R3)

3 � (1 + |ζ |)−1eL(	̃ks)−
(
‖fp‖L2(R3)

3 + ‖fs‖L2(R3)
3

)
� (1 + |ζ |)−1eL(	̃ks)−‖f‖

L2(R3)
3 . (4.5)

Now we can derive the analyticity of the free resolvent ρR0(ζ )ρ from those of ρRp(ζ )ρ and ρRs(ζ )ρ.
In what follows, we prove the resolvent estimates (4.2) by standard regularity theory of elliptic equations.
The case for j = 0 is a consequence of (4.5). For j = 2, taking ρ̃ ∈ C∞

0

(
R3
)

such that ρ̃ = 1 near the
support of ρ, we have from [[21], (7.13)] that

‖ρu‖
H2(R3)

3 ≤ C
(
‖ρ̃u‖

L2(R3)
3 + ‖ρ̃(−�∗)u‖

L2(R3)
3

)
,

where C > 0 is a constant. Let u = R0(ζ )(ρf) with f ∈ L2
(
R3
)3. One has

‖ρR0(ζ )(ρf)‖
H2(R3)

3 ≤ C
(
‖ρ̃R0(ζ )(ρf)‖

L2(R3)
3 + ‖ρ̃(−�∗)(R0(ζ )(ρf))‖

L2(R3)
3

)
.
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Since

‖ρ̃(−�∗)(R0(ζ )(ρf))‖
L2(R3)

3 = ‖ρf + ρ̃|ζ |2R0(ζ )(ρf)‖
L2(R3)

3

� 〈ζ 〉2eL(	̃ks)−‖f‖
L2(R3)

3 ,

we get

‖ρR0(ζ )ρ‖
L2(R3)

3→H2(R3)
3 � 〈ζ 〉2eL(	̃ks)− .

Finally, the case of j = 1 can be obtained from the interpolation between j = 0 and j = 2, which
completes the proof.

Define a vector-valued real function space

CQ = {f ∈ Hn(BR)3 : n ≥ 5, ‖f‖Hn(BR)3 ≤ Q, suppf ⊂ BR, f:BR →R3
}

.

Due to the exact observability bound (3.6), we introduce the boundary measurement of the elastic
wave

‖u(x, ω)‖2
∂BR

:=
∫

∂BR

(
ω2|u(x, ω)|2 + ω4|∇u(x, ω)|2

)
d(x). (4.6)

In the following lemma, we bound the unknown source by the boundary measurements (4.6).

Lemma 4.2. There holds

‖f‖2
L2(BR)3 � eCσ 2

∫ +∞

0

‖u(x, ω)‖2
∂BR

dω,

where u(x, ω) is the solution to the direct scattering problem (1.1) with f ∈ CQ.

Remark 4.3. The proof of Lemma 4.2 depends on the exact observability inequality (3.6) and
Fourier transform. Intuitively, by letting U(x, t) = 0, t < 0, we can see u(x, ω) = ∫ +∞

−∞ U(x, t)eiωtdt =∫ +∞
0

U(x, t)eiωtdt. By Theorem 3.6 and Plancherel’s theorem, we have

‖f‖2
L2(BR)3 ≤ CeCσ 2

(
‖∂tU‖2

L2(∂BR×(0,T))3 + ‖∂tt∇U‖2
L2(∂BR×(0,T))3×3

)
≤ CeCσ 2

(
‖∂tU‖2

L2(∂BR×(0,+∞))3 + ‖∂tt∇U‖2
L2(∂BR×(0,+∞))3×3

)
= C

2π
eCσ 2

∫ +∞

0

‖u(x, ω)‖2
∂BR

dω. (4.7)

Thus, we formally proved Lemma 4.2. To justify the Fourier transform rigorously, one can obtain the
decay estimates of the solution U to the time-domain initial-valued elastic wave (3.1) by combining
the Helmholtz decomposition (3.2) and the decay estimates for acoustic wave equations proved in
Theorem 5.1 assuming that the source f has sufficient regularity (f ∈ Hn, n ≥ 5). As the proof follows
the arguments in [[17], Lemma 3.1] in a straightforward way, we omit it for brevity.

Define

I0(s) =
∫ s

0

ω2

∫
∂BR

u(x, ω) · u(x, −ω)d(x)dω,

I1(s) =
∫ s

0

ω4

∫
∂BR

∇u(x, ω) : ∇u(x, −ω)d(x)dω,

where : denotes the double dot product which is defined by A : B =
3∑

i,j=1

aijbij for A = (aij)3
i,j=1, B = (bij)3

i,j=1.

Since the integrands are entire analytic functions of ω, the integrals in I0(s) and I1(s) with respect to ω

can be taken over any path joining points 0 and s of the complex plane. Consequently, I0(s) and I1(s) are
entire analytic functions of s = s1 + is2.
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The following lemma gives estimates of I0(s) and I1(s). The proof employs the resolvent estimates in
Proposition 4.1.

Lemma 4.4. Denote S = {z = x + iy ∈C : − π

4
< argz < π

4
}. Let s = s1 + is2 ∈ S. The following esti-

mates hold:

|I0(s)|� (1 + |s|)3eC(4s1+σ )‖f‖2
L2(BR)3 ,

|I1(s)|� (1 + |s|)5eC(4s1+σ )‖f‖2
L2(BR)3 .

Proof . We first show that κ(ω) = √
ω2 + iωσ is analytic for ω ∈ S. When ω = ω1 + iω2 ∈ S the image

of ω2 + iσω satisfies

{ω2 + iσω|ω ∈ S} ∩ i(−∞, 0] = φ.

In fact, assume that ω ∈ S. Since

ω2 + iσω = (ω2
1 − ω2

2 − σω2) + i(2ω1ω2 + σω1),

if ω2 + iσω ∈ i(−∞, 0], then we have

ω2
1 − ω2

2 − σω2 = 0, 2ω1ω2 + σω1 ≤ 0,

which gives ω2 ≤ − σ

2
. Then, we have

ω2
1 = ω2

2 + σω2 ≤ ω2
2 − σ 2

2
< ω2

2,

which is in contradiction with the assumption that ω ∈ S where ω1 ≥ |ω2|. Therefore, by choosing the
branch cut of

√
z to be z ∈C\i(−∞, 0] we obtain that κ(ω) = √

ω2 + iωb is analytic for ω ∈ S.

Let κ(ω) = κ1(ω) + iκ2(ω). A direct calculation gives |κ2(ω)|2 ≤ (1 + √
2)
(
ω1 + σ

4

)2

for ω ∈ S.
Consequently, by the resolvent estimates in Proposition 4.1 we have that for j = 0, 1, 2

‖u(x, ω)‖Hj(BR)3 = ‖R0(κ(ω))f‖Hj(BR)3

� eC(	ω)−(1 + |ω|)j−1‖f‖L2(BR)3

� (1 + |ω|)j−1eC(ω1+ σ
4 )‖f‖L2(BR)3

� (1 + |ω|)j−1eC(4ω1+σ )‖f‖L2(BR)3 .

Then letting ω = st, t ∈ [0, 1], we obtain that

|I0(s)|� |s|3

∫ 1

0

t2

(∫
∂BR

|u(x, st)|2d(x)

)1/2 (∫
∂BR

|u(x, −st)|2d(x)

)1/2

dt

� (1 + |s|)3

∫ 1

0

t2‖u(x, st)‖H1(BR)3‖u(x, −st)‖H1(BR)3dt

� (1 + |s|)3eC(4s1+σ )‖f‖2
L2(BR)3 .

For I1(s) repeating the above arguments for I0(s), we have that

|I1(s)|� |s|5

∫ 1

0

t4

(∫
∂BR

|∇u(x, st)|2d(x)

)1/2 (∫
∂BR

|∇u(x, −st)|2d(x)

)1/2

dt

� |s|5

∫ 1

0

t4‖u(x, st)‖H2(BR)3‖u(x, −st)‖H2(BR)3dt

� (1 + |s|)5eC(4s1+σ )‖f‖2
L2(BR)3 .

The proof is completed.
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The following lemma proved in [6] provides an estimate of the high frequency tail of ‖u(x, ω)‖2
∂BR

.

Lemma 4.5. Let f ∈ CQ. Then the following estimate holds:∫ ∞

s

‖u(x, ω)‖2
∂BR

dω � 1

s2n−3
‖f‖2

Hn(BR)3 .

The following lemma on analytic continuation is proved in [8] which will be useful in the subsequent
analysis.

Lemma 4.6. Let J(z) be analytic in S = {z = x + iy ∈C : − π

4
< argz < π

4
} and continuous in S̄

satisfying ⎧⎪⎪⎨⎪⎪⎩
|J(z)| ≤ ε, z ∈ (0, K],

|J(z)| ≤ M, z ∈ S,

|J(0)| = 0.

Then there exits a function β(z) satisfying⎧⎪⎨⎪⎩
β(z) ≥ 1

2
, z ∈

(
K, 2

1
4 K
)

,

β(z) ≥ 1
π

((
z
K

)4 − 1
)− 1

2
, z ∈

(
2

1
4 K, ∞

)
such that

|J(z)| ≤ Mεβ(z) ∀ z ∈ (K, ∞).

The following lemma is a direct consequence of Lemmas 4.4 and 4.6.

Lemma 4.7. Let f ∈ CQ. Then there exists a function β(s) satisfying⎧⎪⎨⎪⎩
β(s) ≥ 1

2
, s ∈

(
K, 2

1
4 K
)

,

β(s) ≥ 1
π

((
s
K

)4 − 1
)− 1

2
, s ∈

(
2

1
4 K, ∞

)
,

(4.8)

such that

|I0(s) + I1(s)|� Q2e(C+1)sε2β(s), ∀s ∈ (K, ∞),

where

ε2 =
∫ K

0

‖u(x, ω)‖2
∂BR

dω.

Proof . It follows from Lemma 4.4 that there exists C > 0 such that

|(I0(s) + I1(s)) e−(C+1)|s||� Q2, ∀s ∈ S.

Moreover, we have

|(I0(s) + I1(s)) e−(C+1)|s|| ≤ ε2, s ∈ [0, K].

A direct application of Lemma 4.6 shows that there exists a function β(s) satisfying (4.8) such that

|(I0(s) + I1(s)) e−(C+1)s|� Q2ε2β , ∀s ∈ (K, ∞),

which completes the proof.
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In the following theorem, we present an increasing stability estimate for the inverse source problem
following the arguments in [19].

Theorem 4.8. Let u(x, ω) be the outgoing solution of the scattering problem (1.1) corresponding to the
source f ∈ CQ. Then for ε sufficiently small the following estimate holds:

‖f‖2
L2(BR)3 � eCσ 2

⎛⎜⎝ε2 + Q2(
K

2
3 | ln ε| 1

4

)2n−3

⎞⎟⎠ (4.9)

where

ε2 =
∫ K

0

‖u(x, ω)‖2
∂BR

dω.

Proof . We can assume that ε < e−1, otherwise the estimate is obvious. Let

s =

⎧⎪⎨⎪⎩
1

((C + 3)π )
1
3

K
2
3 | ln ε| 1

4 , 2
1
4 ((C + 3)π )

1
3 K

1
3 < | ln ε| 1

4 ,

K, | ln ε| 1
4 ≤ 2

1
4 ((C + 3)π )

1
3 K

1
3 .

If 2
1
4 ((C + 3)π )

1
3 K

1
3 < | ln ε| 1

4 , then we have from Lemma 4.7 that

|I0(s) + I1(s)|� Q2e(C+3)se− 2| ln ε|
π

(
( s

K )
4−1

)− 1
2

� Q2e
(C+3)

((C+3)π)
1
3

K
2
3 | ln ε| 1

4 − 2| ln ε|
π ( K

s )2

= M2e
−2

(
(C+3)2

π

) 1
3

K
2
3 | ln ε| 1

2

(
1− 1

2 | ln ε|− 1
4

)
.

Noting

1

2
| ln ε|− 1

4 <
1

2
,

(
(C + 3)2

π

) 1
3

> 1,

we have

|I0(s) + I1(s)|� Q2e−K
2
3 | ln ε| 1

2 .

Using the elementary inequality

e−x ≤ (6n − 9)!
x3(2n−3)

, x > 0, (4.10)

we get

|I0(s) + I1(s)|� Q2(
K2| ln ε| 3

2

(6n − 9)3

)2n−3 . (4.11)

If | ln ε| 1
4 ≤ 2

1
4 ((C + 3)π )

1
3 K

1
3 , then s = K. We have that

|I0(s) + I1(s)| ≤ ε2.

Here, we have used the fact that

I0(s) + I1(s) =
∫ s

0

‖u(x, ω)‖2
∂BR

dω, s > 0.
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Hence, we obtain from Lemma 4.5 and (4.11) that∫ ∞

0

‖u(x, ω)‖2
∂BR

dω

≤ I0(s) + I1(s) +
∫ ∞

s

‖u(x, ω)‖2
∂BR

dω

� ε2 + Q2⎛⎜⎜⎝K2| ln ε|

3

2
(6n−9)3

⎞⎟⎟⎠
2n−3 + Q2(

2− 1
4 ((C + 3)π )− 1

3 K
2
3 | ln ε| 1

4

)2n−3 .

By Lemma 4.2, we have

‖f‖2
L2(BR) � eCσ 2

⎛⎜⎝ε2 + Q2(
K2| ln ε| 3

2

)2n−3 + Q2(
K

2
3 | ln ε| 1

4

)2n−3

⎞⎟⎠ .

Since K
2
3 | ln ε| 1

4 ≤ K2| ln ε| 3
2 when K > 1 and | ln ε| > 1, we finish the proof and obtain the stability

estimate (4.9).

The stability estimate (4.9) consists of two parts: the first part is the Lipschitz type of data discrepancy
and the second part is the high frequency tail of the source function. As the upper bound K of the
frequency increases, the stability estimate (4.9) tends to a Lipschitz-type stability which suggests that
the inverse source problem becomes more stable when data of higher frequency are used. It also shows
that the stability deteriorates if the attenuation σ becomes larger.

5. Useful decay estimates for acoustic waves

To justify the Fourier transform in Remark 4.3, we need to prove some decay estimates for the solution U
to the time-domain initial-valued elastic wave (3.1). As mentioned in Remark 4.3, in order to obtain the
decay estimates of the solution to the time-domain initial-valued elastic wave (3.1), we just need to prove
decay estimates for the dumped acoustic wave equation since we have the Helmholtz decomposition
(3.2). In this section, we will prove some decay estimates which can guarantee that the Fourier transform
for the solution of the dumped acoustic wave equation is well defined (see Remarks 5.2 and 5.3).

We consider the following initial-valued damped acoustic wave equation in R3⎧⎨⎩∂2
t U(x, t) − �U(x, t) + σ∂tU(x, t) = 0, (x, t) ∈R3 × (0, +∞),

U(x, 0) = 0, ∂tU(x, 0) = f (x), x ∈R3,
(5.1)

where f (x) ∈ L1
(
R3
)∩ Hs

(
R3
)
. The regularity assumption Hs

(
R3
)

for f (x) will be specified later. Since
the equation in (5.1) has constant coefficients, the decay estimates of the solution U(x, t) can be derived
by the standard Fourier transform.

Applying the Fourier transform to the solution U(x, t) to (5.1) with respect to the spatial variable x,
we obtain that

U(x, t) =F−1(mσ (t, ξ )f̂ (ξ ))(x),

where F−1 denotes the inverse Fourier transform, the multiplies mσ (t, ξ ) takes the form

mσ (t, ξ ) = e− σ
2 t

√
σ 2 − 4|ξ |2

(
e

1
2 t
√

σ 2−4|ξ |2 − e− 1
2 t
√

σ 2−4|ξ |2
)

, (5.2)
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and f̂ (ξ ) is the Fourier transform of f defined as follows:

f̂ (ξ ) = 1

(2π )3

∫
R3

e−ix·ξ f (x)dx.

Assume that
√

σ 2 − 4|ξ |2 = i
√

4|ξ |2 − σ 2 when |ξ |2 > σ 2

4
. Then (5.2) becomes

mσ (t, ξ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2e− σ

2 t
sinh

(
t
2

√
σ 2−4|ξ |2

)
√

σ 2−4|ξ |2
, |ξ |2 < σ 2

4
,

e− σ
2 t

sin

(
t
2

√
4|ξ |2−σ 2

)
√

4|ξ |2−σ 2
, |ξ |2 > σ 2

4
.

Notice from the representation of the multiplies mσ (t, ξ ) above that the solution U(x, t) behaves as a
“parabolic type” of e−t�f in the low frequency, while for the high frequency part it behaves like a
“dispersive type” of eit�f .

Theorem 5.1. Let U(x, t) be the solution of (5.1). Then U(x, t) satisfies the decay estimate

supx∈R3 |∂α

x ∂ j
t U(x, t)|� (1 + t)− 3+|α|

2 ‖f ‖L1(R3) + e−ct‖f ‖Hs(R3), (5.3)

where j ∈N, α is a multi-index vector in N3 such that ∂α
x = ∂α1

x1
∂α2

x2
∂α3

x3
, s > j + |α| + 1

2
and c > 0 is some

positive constant. In particular, for |α| = j = 0, the following estimate holds:

supx∈R3 |U(x, t)|� (1 + t)− 3
2

(
‖f ‖L1(R3) + ‖f ‖H1(R3)

)
. (5.4)

Remark 5.2. The estimate (5.4) provides a time decay of the order O((1 + t)− 3
2 ) for U(x, t) uniformly

for all x ∈R3, which gives

sup
x∈R3

∫ ∞

0

|U(x, t)|2dt �
∫ ∞

0

(1 + t)−3dt < +∞.

Hence, letting U(x, t) = 0 when t < 0 then U(x, t) has a Fourier transform Û(x, k) ∈ L2(R) for each x ∈R3.
Moreover, the following Plancherel equality holds:∫ +∞

0

|U(x, t)|2dt =
∫ +∞

−∞
|Û(x, k)|2dk.

Remark 5.3. To study the inverse source problem, it suffices to assume that f ∈ Hs
(
R3
)

, s ≥ 5. In this
case, it follows from the above theorem that both ∂tU(x, t) and ∂tt∇U(x, t) are continuous functions.
Moreover, we have from (5.3) that the following estimate holds:

supx∈R3 |∂tU(x, t)|� (1 + t)− 3
2 ‖f ‖L1(R3) + e−ct‖f ‖Hs(R3),

supx∈R3 |∂tt∇U(x, t)|� (1 + t)−2‖f ‖L1(R3) + e−ct‖f ‖Hs(R3).

Proof . Without loss of generality, we may assume that σ = 1, and then

m(t, ξ ) � mσ (t, ξ ) = e− 1
2 t

√
1 − 4|ξ |2

(
e

1
2 t
√

1−4|ξ |2 − e− 1
2 t
√

1−4|ξ |2
)

.

First we prove (5.3) for j = 0. Choose χ ∈ C∞
0

(
R3
)

such that suppχ ⊂ B(0, 1
4
) and χ (ξ ) = 1 for

|ξ | ≤ 1
16

. Let

U(x, t) =F−1(m(t, ξ )χ (ξ )f̂ ) +F−1(m(t, ξ )(1 − χ (ξ ))f̂ )

:= U1(x, t) + U2(x, t).

For U1(x, t), since
√

1 − 4|ξ |2 ≤ 1 − 2|ξ |2 when 0 ≤ |ξ | ≤ 1
4
, we have for |ξ | ≤ 1

4
that

1√
1 − 4|ξ |2

e
− t

2

(
1±

√
1−4|ξ |2

)
≤ 2e−t|ξ |2 , t ≥ 0.
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For each x ∈R3, we have

∂α

x U1(x, t) =
∫
R3

eix·ξ (iξ )αm(t, ξ )χ (ξ )f̂ (ξ )dξ ,

which gives

sup
x∈R3

|∂α

x U1(x, t)| ≤
∫

|ξ |≤ 1
4

|ξ |αe−t|ξ |2 |f̂ (ξ )|dξ � ‖f̂‖L∞(R3)

∫
|ξ |≤ 1

4

|ξ |αe−t|ξ |2dξ .

Since ∫
|ξ |≤ 1

4

|ξ |αe−t|ξ |2dξ �
{

C, 0 ≤ t ≤ 1,

t−
3+|α|

2 , t ≥ 1,

and ‖f̂‖L∞(R3) � ‖f ‖L1(R3), we obtain

sup
x∈R3

|∂α

x U1(x, t)|� (1 + t)− 3+|α|
2 |f ‖L1(R3) ∀α ∈N3. (5.5)

To estimate U2(x, t), noting

(1 − �)
p
2 U2(x, t) =

∫
R3

eix·ξ (1 + |ξ |2)
p
2 m(t, ξ )(1 − χ (ξ ))f̂ (ξ )dξ ,

we have from Plancherel’s theorem that∫
R3

|(1 − �)
p
2 U2(x, t)|2dx =

∫
R3

(1 + |ξ |2)p|m(t, ξ )(1 − χ (ξ ))f̂ (ξ )|2dξ . (5.6)

There exists a positive constant c such that

|m(t, ξ )| ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

te− t
2 (1−

√
1−4|ξ |2)

∣∣∣ 1−e
−t
√

1−4|ξ |2

t
√

1−4|ξ |2

∣∣∣� e−ct, 1
16

< |ξ | ≤ 1
2
,

1
2
te− t

2
sin t

2

√
4|ξ |2−1

t
2

√
4|ξ |2−1

� e−ct, 1
2
< |ξ | ≤ 1,

e− t
2√

4|ξ |2−1
| sin t

2

√
4|ξ |2 − 1| ≤ e−ct√

4|ξ |2−1
, |ξ | > 1.

Hence, when |ξ | ≥ 1
16

we have

|(1 + |ξ |2)1/2m(t, ξ )|� e−ct.

It follows from (5.6) that

‖U2(x, t)‖2
Hp(R3)

≤
∫

|ξ |≥ 1
16

|(1 + |ξ |2)
p
2 m(t, ξ )f̂ (ξ )|2dξ

≤ e−2ct

∫
R3

|(1 + |ξ |2)− 1
2 + p

2 f̂ (ξ )|2dξ = e−2ct‖f ‖2
Hp−1(R3)

.

On the other hand, by Sobolev’s theorem, we have for p > 3
2

that

sup
x∈R3

|U2(x, t)| ≤ ‖U2(·, t)‖Hp(R3) � e−ct‖f ‖Hp−1(R3).

More generally, for any α ∈N3 it holds that

(1 − �)
p
2 ∂α

x U2(x, t) =F−1((1 + |ξ |2)
p
2 m(t, ξ )(1 − χ (ξ ))∂̂α

x f ),

which leads to

sup
x∈R3

|∂α

x U2(x, t)|� e−ct‖∂α

x f ‖Hp−1(R3) � e−ct‖f ‖Hs(R3). (5.7)

Here s = p − 1 + |α| > |α| + 1
2

by choosing p > 3
2
. Combining the estimate (5.5) with (5.7) yields (5.3)

for j = 0.
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Next we consider the general case with j 
= 0. Noting

∂ j
t U(x, t) =

∫
R3

eix·ξ ∂ j
t m(t, ξ )f̂ (ξ )dξ ,

we obtain from direct calculations that

∂ j
t m(t, ξ ) = ∂ j

t

(
e− 1

2 t

√
1 − 4|ξ |2

(
e

1
2 t
√

1−4|ξ |2 − e− 1
2 t
√

1−4|ξ |2
))

=
j∑

l=0

(
l
j

)
(−1)j−l2−j

(√
1 − 4|ξ |2

)l−1

e− t
2

(
e

1
2 t
√

1−4|ξ |2 + (−1)l+1e− 1
2 t
√

1−4|ξ |2
)

:=
j∑

l=0

ml(t, ξ ),

where
(

l
j

)
= j!

(j−l)!l! . Hence, we can write ∂ j
t U(x, t) as

∂ j
t U(x, t) =

j∑
l=0

∫
R3

eix·ξ ml(t, ξ )f̂ (ξ )dξ :=
j∑

l=0

Wl(x, t). (5.8)

For each 0 ≤ l ≤ j, j 
= 0, using similar arguments for the case j = 0 we obtain

sup
x∈R3

|∂α

x Wl(x, t)| ≤ (1 + t)− 3+|α|
2 ‖f ‖L1(R3) + e−ct‖f ‖Hs(R3) (5.9)

for s > l + |α| − 1
2
. Combining (5.8) and (5.9), we obtain the general estimate (5.3).

6. Conclusion

We have presented an increasing stability result for the inverse source problem of the elastic wave equa-
tion with attenuation. A key ingredient in the proof is the use of the scattering theory to analyse the
resolvent of the elliptic operator. The advantage of this method is that it can be used to study the case of
a variable attenuation coefficient. For instance, consider the following elastic wave equation:

−�∗u − ω2u − iωσ (x)u + V(x)u = f(x), x ∈R3.

where V is a bounded potential function. Formally, one has from the classical resolvent identity that

u = R0(ω)(I + (iωσ (x) + V(x))R0(ω))−1f,

where I is the identity operator. The operator I + (iωσ (x) + V)R0(ω) is invertible if the attenuation
coefficient σ (x) is assumed to be small. Indeed, for small σ (x) using the free resolvent estimate (4.2)
one has for 	ω > 0 sufficiently large that

‖(iωσ (x) + V(x))R0(ω)u‖L2(R3) ≤ 1

2
‖u‖L2(R3),

which gives by the Neumann series argument that the operator I + (iωσ (x) + V)R0(ω) is invertible. As
a consequence, using the standard perturbation argument in scattering theory one may prove a similar
resolvent estimates as Proposition 4.1 for the resolvent (−�∗ − iωσ (x) − ω2)−1 with variable attenua-
tion. An exact observability may also be derived using Carleman estimates for wave equation. A more
challenging problem is to remove the smallness assumption. We hope to report the progress on this
problem elsewhere.
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