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Abstract

When using dyadic data (i.e., data indexed by pairs of units), researchers typically assume a linear model,
estimate it using Ordinary Least Squares, and conduct inference using “dyadic-robust” variance estimators.
The latter assumes that dyads are uncorrelated if they do not share a common unit (e.g., if the same
individual is not present in both pairs of data). We show that this assumption does not hold in many
empirical applications because indirect links may exist due to network connections, generating correlated
outcomes. Hence, “dyadic-robust” estimators can be biased in such situations. We develop a consistent
variance estimator for such contexts by leveraging results in network statistics. Our estimator has good
finite-sample properties in simulations, while allowing for decay in spillover effects. We illustrate our
message with an application to politicians’ voting behavior when they are seating neighbors in the European
Parliament.
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1. Introduction

Dyadic data are categorized by the dependence between two sets of sampled units (dyads). For
example, exports between the United States and Canada depend on both countries (and, plausibly, their
characteristics). This contrasts to classical data in the social sciences that only depend on a single unit
of observation (e.g., the GDP of the United States, or a politician’s vote in a roll call).

The empirical relevance of dyadic data is showcased by its widespread use, which has increased
over the past two decades (Graham (2020a) provides an extensive review). For example, applications
are found in political economy (correlation in voting behavior in Parliament across seating neighbors;
Harmon, Fisman, and Kamenica 2019), international political economy and trade (export–import
outcomes across countries; Anderson and van Wincoop 2003), and international relations (Hoff and
Ward 2004; for a salient example), among many others. In fact, dyadic data are considered to be
dominant in quantitative international relations (Poast 2016). In these examples, applied researchers
typically model the dependence between dyadic outcomes and observable characteristics using a linear
model, which they then estimate using Ordinary Least Squares (OLS). However, inference on such
estimators for the linear parameters is more complex.

The main approach in recent applied work has been the use of the so-called “dyadic-robust”
estimators (e.g., Aronow, Samii, and Assenova 2015; Cameron et al. (2011); Tabord-Meehan 2019,
among others). Such estimators build on the widely used assumption in dyadic data that the error terms
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Figure 1. Hypothetical example of a network in Parliament.

Note: The left figure shows a hypothetical example of politician networks based on seating arrangements: A sits beside B, who sits

beside C, who sits beside D. The right-hand figure illustrates the resulting network among active dyads. As dyads (A, B) and (B, C)
share a unit, they are indirectly linked in the dyadic network. However, though dyads (A, B) and (C, D) do not have a politician in

common, they might still be correlated through two indirect links: namely, B sits beside C, who sits beside D. Hence, D’s actions can

affect politician A.

for dyad (i,j) and for dyad (k,l) can only be correlated if they share a unit (see Aronow et al. 2015;
Tabord-Meehan 2019, for a discussion; Cameron and Miller 2014, for a review).

In this paper, we first argue that such an assumption does not hold in many applications using
dyadic data where dyads may be indirectly connected along a network.1 Figure 1 presents a simple
example in the context of politicians in Congress, whose votes or decisions depend on their seating
neighbors. It is completely possible that behavior across dyads (A,B) and (C,D) might be correlated
along unobservables because they have many indirect connections (in the figure, through A sitting next
to B, who sits next to C).2 We show that such spillovers invalidate the assumptions for consistency of
existing “dyadic-robust” variance estimators through generating interdependence, implying that they
are biased for the true asymptotic variance when dyads may be correlated even when they do not share
a common unit.

To deal with these issues, we develop a consistent variance estimator that explicitly accounts for such
network spillovers even with dyadic data, thereby complementing existing approaches (e.g., Aronow
et al. 2015).3 We prove that our proposed variance estimator is consistent for the true variance of
the OLS estimator in linear models with dyadic data when the cross-sectional dependence follows an
observed (exogenous) network. Our main insight is that the dependence across all dyads, including
indirect spillovers, can be rewritten as correlations across a specific network over dyads. This allows
us to apply the framework of Kojevnikov, Marmer, and Song (2021) to such network random variables,
although here it is a network over dyads, rather than individuals. Monte Carlo simulations show that our
proposed estimator has good finite-sample properties and outperforms other estimators for the relevant
contexts.

To help practitioners, we then provide a step-by-step guideline on whether our estimator may
be appropriate to their context. As we describe, this choice depends on (i) whether spillovers from
indirectly connected dyads are likely to be present, (ii) whether the researcher observes/constructs the
network among dyads through which spillovers propagate, and (iii) whether those spillovers are likely
to be persistent. Our variance estimator is consistent for the asymptotic variance of the OLS estimator

1This is a concrete class of applied examples where the assumption fails. The possibility that cross-sectional dependence in
dyadic data might be more extensive than assumed has been pointed out by Cameron and Miller (2014) and Cranmer and
Desmarais (2016).

2We expand on these examples in the next section and in the Supplementary Material. Such spillovers could be further
rationalized as individual-level unobserved heterogeneity: for example, an unmeasured preference for voting Yes, or a
preference for trading with a certain country (see Graham 2020b and references therein for details).

3We provide an extensive comparison of the relative benefits of each approach in the next section. We note here, though,
that neither approach subsumes the other, as they depend on different assumptions and may be more appropriate for different
applications.
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even under (i)–(iii). And, our estimator can account for decay in propagation, as Corollary 3.1 and
Example 3.1 illustrate.

Finally, we illustrate the extent to which neglecting network spillovers with dyadic data may bias
inference results. Beyond Monte Carlo simulations, we revisit the application in Harmon et al. (2019) of
voting in the European Parliament.4 The authors study whether random seating arrangements (based
on naming conventions) induce neighboring politicians to agree with one another in policy votes. The
outcome, whether politicians i and j vote the same way on a policy, is dyadic in nature. However, i and
j’s votes may be positively correlated even if they are not neighbors: for instance, i and j may sit on either
side of common neighbors k and l, who influence them both, and this seating arrangement is observed.
This chain of influences is sufficient to induce strong positive correlation across non-dyads. We show
that neglecting such higher-order spillovers has significant empirical consequences: their estimated
variance using the estimator in Aronow et al. (2015) is roughly 22% smaller than using our consistent
estimator accounting for such spillovers, while the estimate based on the Eicker–Huber–White estimator
ignoring spillovers is approximately 73% smaller than our proposal, consistent with the arguments of
Erikson, Pinto, and Rader (2014).

1.1. Related Literature
The use of dyadic data in Political Science has a rich history, particularly in International Relations.
However, empirical challenges with such models are well known (see Poast 2016 for a historical
overview). Early on, the concerns were mostly about model specification, including the error term.
This includes the 2001 special issue of International Organization, mostly focusing on the use of fixed
effects. More recently, Erikson et al. (2014) pointed out that ignoring dependence across dyads can
lead to erroneous hypothesis testing, as computed standard errors would be too small. Hoff and Ward
(2004), Minhas, Hoff, and Ward (2019), and Minhas et al. (2022) suggest including random coefficients
and latent variables to account for dependencies across dyads. Our approach explicitly accounts for
the whole network of interdependencies across dyads, which can go beyond third-order dependences
(assumed in Minhas et al. 2019, 2022). It does so by using asymptotic inference, rather than Bayesian
(Minhas et al. 2019, 2022) or randomized inference (Erikson et al. 2014).

As a result, our paper is directly related to the literature on (asymptotic) inference in regression
analysis with dyadic random variables. Aronow et al. (2015) and Tabord-Meehan (2019) consider OLS
estimation and inference in a linear dyadic regression model. Meanwhile, Graham (2020a) and Graham
(b) explore a likelihood-based approach to dyadic regression models, while Graham, Niu, and Powell
(2022) and Chiang and Tan (2023) provide results for kernel density estimation in dyadic regression
models. It is also related to other developments in multiway clustering, as we detail in Appendix A.2 of
the Supplementary Material. While useful to allow for correlations along time and within such groups,
this separable structure may be inappropriate for environments where spillovers follow a complex form
of dependence along a network.

However, we emphasize that neither approach subsumes the other. The papers cited above leave the
dependence within “clusters” (groups of dyads that share units) unrestricted, but assume independence
across such clusters. This is akin to the literature with one-way clustering (e.g., Hansen and Lee 2019).
By comparison, our approach restricts such dependence among groups of dyads that share units
(i.e., dependence is assumed to follow the observed network), but allows for dependence across such
“clusters” of dyads along the dyadic network.

2. Setup

Assume that we observe a cross section of N ∈ N individuals located along a network—the latter
interpretable as politicians, countries, firms, or other observation units depending on the context. The

4Replication materials for all results are available online in Canen and Sugiura (2023).
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dyads present in the N-individual network (i.e., among the ( N
N−1) possible dyads) are called active dyads,

so that the dyad for two units i and j (e.g., politicians and countries) is denoted by some m. The set of
active dyads is denoted by MN and M denotes the cardinality of that set.

We assume that each dyad m is endowed with a triplet of dyad-specific variables, forming a triangular
array {(yM,m,xM,m,εM,m)}m∈MN with respect to M, where yM,m ∈R is a one-dimensional observable
outcome, xM,m ∈RK is a K-dimensional vector of observable characteristics with K ∈N, and εM,m ∈R
is a one-dimensional random error term that is not observable to the researcher. We only consider
exogenous network formation and the network is assumed to be observable. These conditions are
summarized in the following assumption.

Assumption 2.1 (Exogenous and Observable Dyadic Networks). The network among dyads is assumed
to be conditionally independent of {εM,m}m∈MN . Furthermore, this network among the N individuals
is assumed to be observable.

While such assumptions are standard in models of dyadic networks, they seem particularly appro-
priate when units or dyad pairs are linked across geographical, physical, or ex ante social relations
(e.g., family ties). This includes capturing neighboring and regional spillovers across countries, as often
done in international relations, or exogenous seating arrangements in Parliament, as illustrated in the
examples in the next section.

The subsequent arguments require us to distinguish between a pair of dyads who share a member
(i.e., who are directly linked—which we call, adjacent) and a pair of dyads who are directly or indirectly
linked (which we call, simply, connected).

Definition 1 (Adjacent and Connected Dyads). Two active dyads m and m′ are said to be adjacent if
they have an individual in common; and they are called connected if they are linked through pairs of
adjacent dyads.

In Figure 1, dyad (A,B) is adjacent to (B,C), and connected with, though not adjacent to, (C,D).
Hence, the adjacency relationship constitutes a network structure among active dyads, and thus a
network over individuals can be transformed to one over active dyads. For example, the right-hand side
panel of Figure 1 provides a network over pairs of voting politicians (i.e., active dyads).5 We define the
geodesic distance between two connected dyads m and m′ to be the smallest number of adjacent dyads
between them. Note that adjacent dyads are a special case of connected dyads with geodesic distance
equal to one.

2.1. The Linear Model
2.1.1. Setup and Identification
The cross-sectional model of interest takes the form of the linear network-regression model: for any
N ∈N,

yM,m = x′M,mβ+εM,m ∀m ∈MN, (1)

where

Cov(εM,m,εM,m′ ∣ XM) = 0 unless m and m′ are connected, (2)

and β is a K ×1 vector of the regression coefficients and XM denotes the M×K matrix that records the
observed dyad-specific characteristics, that is, XM ∶= [xM,1, . . . ,xM,M]′.

5This corresponds to thinking about the line graph of the original graph over individuals.
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In this paper, we assume that β is identified, which follows from standard assumptions on strict
exogeneity, lack of multicollinearity and the existence of finite second moments of yM,m and xM,m. (For
completeness, see Assumption B.1 and Proposition B.1 in the Supplementary Material.)

We note that equation (2) allows for there to be spillovers across the error terms even when dyads m
and m′ are not adjacent, as long as they are connected through indirect links. By comparison, applied
researchers such as Harmon et al. (2019) and Lustig and Richmond (2020) (and the estimators of
Aronow et al. (2015) and Tabord-Meehan (2019)) consider a variant of the linear regression (1) under
the assumption

Cov(εM,d(i,j),εM,d(k,l) ∣ xM,d(i,j),xM,d(k,l)) = 0 unless {i,j}∩{k,l} ≠ ∅, (3)

with m = d(i,j) representing the dyad between i and j. This specific assumption would be equivalent to
setting

Cov(εM,m,εM,m′ ∣ XM) = 0 unless m and m′ are adjacent. (4)

2.1.2. Examples
Whether to allow indirect spillovers (as in (2)) or not (as in (4)) depends on the researchers’ applications.
We now present examples where our approach may be preferable.

Example 2.1 (Gravity Model of Bilateral Trade Flow). A researcher is studying the trade flow from
country i to j, with (log) exports from i to j denoted yij. Following the literature, (s)he assumes yij
follows the structural gravity equation (e.g., Anderson and van Wincoop 2003; Eaton and Kortum 2002;
Helpman, Melitz, and Rubinstein 2008; Melitz 2003):

yij = α+βzij +γ∑
k≠i

gkiyki +ηij, (5)

where zij represents a dyadic characteristic of i and j, such as the shipping cost, whether both
countries are democratic (e.g., Mansfield, Milner, and Rosendorff 2000), or whether both participate
in WTO/GATT (e.g., Gowa and Kim 2005); ∑k gkiyki is the amount i spends on imports (gki equals
one if country i purchases goods from country k and zero otherwise), and ηij captures unobserved
heterogeneity pertaining to the trade flow between countries i and j.

To see our main point, suppose there are only four countries (1, 2, 3, and 4) which trade, where
country 1 exports to country 2, which in turn exports to country 3, and country 3 exports to country 4.
Equation (5) then simplifies to y12 = α+βz12 +η12, y23 = α+βz23 +γy12 +η23, and henceforth.

Rearranging these equations implies that the trade flow from country 3 to country 4 can be written
as

y34 = α+αγ+αγ2 +γ2βz12 +γβz23 +βz34 +γ2η12 +γη23 +η34.

Therefore, Cov(y12,y34 ∣ z) = γ2Var(η12 ∣ z) ≠ 0, where z ≡ {z12,z23,z34}. Hence, there can be nonzero
correlation between trade flows y12 and y34 even if they do not have a country in common. This is because
an idiosyncratic shock to an upstream country can propagate through the trade network.

Example 2.2 (Legislative Voting). A researcher is interested in whether seating arrangements in
legislatures can affect a politician’s behavior, yi (e.g., propensity to vote “Yes” on a roll call, as Harmon
et al. 2019, or the amount of co-sponsoring, as Lowe and Jo 2021; Saia 2018, among others). For
concreteness, suppose there are four politicians with the seating arrangements given by Figure 1.

The researchers posit that i’s behavior can be influenced by the (average) of its seating neighbors’
own voting behavior through a parameter γ as follows:

yA = α+γyB +ηA, yB = α+γ yA +yC

2
+ηB, (6)

yC = α+γ yB +yD

2
+ηC, yD = α+γyC +ηD. (7)
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If γ ≠ 0, A is affected by their neighbor B, while B is affected by both of its neighbors (A and C) and so
forth. The researcher is interested in whether neighbors’ decisions are more highly correlated than the
decisions among non-neighbors.

Denote yij as the dyadic outcome of interest (e.g., a measure of correlation between i and j’s
decisions). Both yAB and yCD involve yB and yC, which are themselves a function of ηB and ηC. Hence,
Cov(yAB,yCD) ≠ 0, even if the two pairs of legislators do not share a common member.

2.1.3. Estimation
Throughout this paper, we focus on the OLS estimator ofβ, denoted by β̂. Under the assumptions above,
we can write

β̂−β =
⎛
⎝ ∑

j∈MN

xM,jx′M,j
⎞
⎠

−1

∑
m∈MN

xM,mεM,m. (8)

It is straightforward to verify that β̂ is unbiased for β under our identification conditions (Assumption
B.1 in the Supplementary Material). However, a consistency result is by no means trivial due to the
dependence along the network which induces a complex form of cross-sectional dependence, hindering
a naïve application of the standard theory for independently and identically distributed (i.i.d.) random
vectors.

2.2. Outline of Our Procedure
2.2.1. Inference
Inference about β is based on a normal approximation of the distribution of β̂ around β. We focus on
hypothesis testing conducted using the expression

(V̂ar(β̂))−
1
2 (β̂−β), (9)

where V̂ar(β̂) is a consistent estimator of the asymptotic variance of β̂. Our main result in Section 3.4
is providing such an appropriate estimator, which takes the form

V̂ar(β̂) ∶=
⎛
⎝ ∑

k∈MN

xkx′k
⎞
⎠

−1
⎛
⎝ ∑

m∈MN

∑
m′∈MN

κm,m′hm,m′ ε̂mε̂m′xmx′m′
⎞
⎠
⎛
⎝ ∑

k∈MN

xkx′k
⎞
⎠

−1

, (10)

where κm,m′ is an appropriate kernel function that will formally be defined in Section 3.4; hm,m′

represents an indicator function that takes one if dyads m and m′ are connected and zero otherwise;
and ε̂m ∶= ym −x′mβ̂.

This paper derives conditions under which V̂ar(β̂) is consistent for the asymptotic variance of β̂.
Before doing so, let us compare the variance estimator (10) with an often used estimator based on one-
way clustering of dyad groupings.

Remark 2.1 (Dyadic-Robust Variance Estimator). An increasing number of applied researchers, such
as Harmon et al. (2019) and Lustig and Richmond (2020), estimate model (1) and conduct inference
using the following dyadic-robust variance estimators proposed by Aronow et al. (2015) and Tabord-
Meehan (2019):

V̂ar(β̂) ∶=
⎛
⎝ ∑

k∈MN

xkx′k
⎞
⎠

−1
⎛
⎝ ∑

m∈MN

∑
m′∈MN

1m,m′ ε̂mε̂m′xmx′m′
⎞
⎠
⎛
⎝ ∑

k∈MN

xkx′k
⎞
⎠

−1

, (11)

where 1m,m′ equals one if dyads m and m′ are adjacent and zero otherwise.
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Note that the use of the dyadic-robust variance estimator sets cases in which two dyads are not
adjacent, but connected, to zero. Meanwhile, our estimator (10) accounts for network spillovers by
accommodating the correlation across both adjacent and connected dyads.6 As our examples above
suggest, the structure of the variance estimator (11) may not be compatible with indirect spillovers in
some settings, which should assume the specification (2) instead. This suggests that the dyadic-robust
variance estimator may be inconsistent when non-adjacent dyads can still affect the correlation structure
and outcomes of dyad m.7 This conjecture is formally proven in Corollary 3.1 and illustrated in Monte
Carlo simulations in Section 4. We note that this is a feature of applying such dyadic-robust variance
estimators to network spillovers, and not a feature of those estimators per se.

2.2.2. Guidelines on Whether and How to Use the Proposed Estimator
1. When deciding whether to use our proposed estimator (10), the researcher should first ask

whether spillovers from indirectly connected dyads are likely to be present (and not decay imme-
diately) in their setup: that is, is equation (2) a more appropriate assumption than equation (4)?

While this depends on the specific application, Examples 2.1 and 2.2 illustrate models where
that is likely to be the case. And, condition (17) provides a notion of how much persistence is
needed for a bias to appear. As we show below, these insights are robust to decaying spillover
effects (see Corollary 3.1, Example 3.1, and the associated simulation results).

2. If such spillovers of unobservables are likely to exist, are they governed by an exogenous and
observable network (Assumption 2.1), such as physical, geographical, or social (e.g., family ties)?
If so, the proposed estimator is appropriate under regularity conditions.

3. One can implement our estimator by (i) choosing a kernel (e.g., rectangular; see Section 3.4),
(ii) setting the lag-truncation, bM (either by a known value, or adaptively by bM = 2 log(M)/
log(max(average degree,1.05)), where M is the number of dyads and we use the average degree
of the dyadic network, and (iii) plugging-in those choices into equation (10).

The estimator is consistent under regularity conditions, even when spillovers decay, and shows
good finite-sample properties in the simulations below.

3. Theoretical Results

3.1. Network-Dependent Processes
Let YM,m be a random vector defined as

YM,m ∶= xM,mεM,m,
8 (12)

and denote CM ∶= {xM,m}m∈MN .9 From equations (8) and (12), we can write

β̂−β =
⎛
⎝

1
M ∑

j∈MN

xM,jx′M,j
⎞
⎠

−1
1
M ∑

m∈MN

YM,m. (13)

6See Definition 1 and the subsequent discussion. The choice of kernel and lag-truncation is discussed in Section 3.4.
7Clustering estimators may be inappropriate when the correlation structure has network spillovers as in (2), because each

agent has a complex (i.e., non-separable) structure of connections, reflected in a non-separable network across dyads. If
the network model features positive spillovers, then the dyadic-robust variance estimator will likely underestimate the true
variance, leading to conservative hypothesis testing. Meanwhile, it is likely to overstate the true variance when there are negative
spillovers. We expand on this point in our numerical simulations.

8By construction, the collection of YM,m’s constitutes a triangular array of random vectors.
9For the case of stochastic networks, it is defined to include information about the network topology as well as the collection

of the dyad-specific attributes {xM,m}m∈MN . See Kojevnikov et al. (2021).
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Our interest lies in proving the asymptotic properties of β̂ taking advantage of the expression (13).
However, the presence of εM,m in YM,m, which is allowed to be correlated along the network over active
dyads, renders our approach nonstandard and unsuitable for applications of canonical results, such as
those for i.i.d. random variables or even other variants, including spatially correlated and time-series
data.

The main insight of this paper is that the spillovers across connected—even if not adjacent—dyads
can be rewritten as the dependence of YM,m’s along the network of active dyads (hereby, referred to as
the “network”). This allows us to embrace such complex cross-sectional dependence and appropriately
rewrite the problem so that recent results on network dependent random variables (Kojevnikov et al.
2021) can be applied. To do so, the dependence between random variables for any two sets of dyads
A and B, YM,A and YM,B, which are at a distance s from one another, is assumed to be controlled
by a sequence of bounded (random) coefficients θM,s. As the minimum distance, s, between A and B
grows, the dependence {θM,s} between YM,A and YM,B, is assumed to go to zero. A formal description
is provided in Appendix A of the Supplementary Material.

3.2. Definitions
As will become transparent shortly, asymptotic theories for β̂ rest on tradeoffs between the correlation
of the network-dependent random vectors (i.e., the dependence coefficients) and the denseness of the
underlying network. To measure the denseness, we first define two concepts of neighborhoods: for each
m ∈MN and s ∈N∪{0},

MN(m; s) ∶= {m′ ∈MN ∶ ρM(m,m′) ≤ s},
M∂

N(m; s) ∶= {m′ ∈MN ∶ ρM(m,m′) = s},

where ρM(m,m′) denotes the geodesic distance between dyads m and m′.10 The former set collects all
the m’s neighbors whose distance from m is no more than s (which we call a neighborhood), while the
latter registers all the m’s neighbors whose distance from m is exactly s (which we call a neighborhood
shell).

Next, we define two types of density measures of a network: for k,r > 0,

ΔM(s,r;k) ∶= 1
M ∑

m∈MN

max
m′∈M∂

N (m;s)
∣MN(m;r)/MN(m′; s−1)∣k,

δ∂M(s;k) ∶= 1
M ∑

m∈MN

∣M∂
N(m; s)∣k,

(14)

where it is assumed that MN(m′;−1) = ∅. The former measure gauges the denseness of a network in
terms of the average size of a version of the neighborhood. Kojevnikov et al. (2021) show that controlling
the asymptotic behavior of an appropriate composite of these two measures (denoted by cM and defined
in Assumption 3.6) is sufficient for the Law of Large Numbers (LLN) and Central Limit Theorem (CLT)
of the network dependent random variables (Condition ND).

Note that there are two different units at play here: the number of sampling units (i.e., individuals),
N, and the number of dyads, M. We now assume that M → ∞ as N → ∞, eliminating the possibility
of extremely sparse networks among individuals. This is empirically relevant and consistent with both
applied and theoretical literatures (see Appendix A.1 of the Supplementary Material for a discussion).

Assumption 3.1. M →∞ as N →∞.

10Recall that we define the geodesic distance between two connected dyads m and m′ to be the smallest number of adjacent
dyads between them.
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3.3. Asymptotic Properties of β̂
We make use of the following two regularity assumptions for the proof of consistency of β̂ for β
(Theorem 3.1) and to derive its asymptotic distribution (Theorem 3.2).11 All proofs can be found in
Appendix B of the Supplementary Material.

Assumption 3.2 (Conditional Finite Moment of εm). There exists p > 4 such that supN≥1maxm∈MN

E[∣εm∣p ∣ CM] <∞ a.s.

Assumption 3.3 (Kojevnikov et al. 2021, Assumption 3.4). There exists a positive sequence rM → ∞
such that for k = 1,2,

M2θ
1−1/p
M,rM

σM

a.s.→ 0, and M
σ2+k

M
∑
s≥0

cn(s,rM;k)θ
1− 2+k

p
M,s

a.s.→ 0,

as M →∞, where p > 4 is the same as in Assumption 3.2.

Assumption 3.2 requires that the errors are not too large once conditioned on common shocks.
Together with the standard full-rank assumption for identification of β, this implies Assumption 3.1
of Kojevnikov et al. (2021) for each uth element of YM,m, denoted by Yu

M,m with u ∈ {1, . . . ,K}.
Assumption 3.3 is a condition that controls the tradeoff between the denseness of the underlying

network and the covariability of the random vectors. If the network becomes dense, then the dependence
of the associated random variables has to decay much faster. This embodies the idea that spillovers
decay as they propagate farther (see, e.g., Kelejian and Prucha (2010)), which is consistent with the
applications described above. For instance, Acemoglu, García-Jimeno, and Robinson (2015) assume
that network spillovers are zero if agents are sufficiently distantly connected on a geographical network.
This assumption may be violated for very dense networks with low decay of spillovers.

3.3.1. Consistency
Theorem 3.1 (Consistency of β̂). Under Assumptions 3.1–3.3, ∣∣β̂−β∣∣2

p→ 0 as N →∞.

When Assumption 3.1 is dropped, Theorem 3.1 continues to hold in terms of the number of active
dyads M.

3.3.2. Asymptotic Normality
Let SM ∶= ∑m∈MN

YM,m, which is present in β̂ in equation (13). Let Su
M be the uth entry of SM for u ∈

{1, . . . ,K} and denote the unconditional variance of Su
M by τ 2

M ∶= Var(Su
M). Since Su

M is not a sum of
independent variables, its variance cannot be simply expressed as a sum of the variances of YM,m. We
thus need to explicitly take into account covariance between the random variables {Yu

M,m}m∈MN . We
study the CLT for the normalized sum of Yu

M,m, which is given by Su
M
τM

.
Assumption 3.4 bridges the conditional variance (assumed in Assumptions 3.2 and 3.3) and the

unconditional variance of SM
τM

, which we are interested in. The final assumption for the asymptotic
normality result is a standard regularity condition guaranteeing that the asymptotic variance is well
defined,12 which follows from both matrices in the expression being well-defined.

Assumption 3.4 (Growth Rates of Variances). σ2
M

τ 2
M

a.s.→ 1 as N →∞.

11These assumptions are required for Theorem 3.2, but as usual, the proof of consistency (Theorem 3.1) can be derived
under weaker conditions. (See Assumptions B.2 and B.3 and their associated discussion, in the Supplementary Material.)

12Further note that Theorem 3.2 is proved under a weaker condition than Assumption 3.4.
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Assumption 3.5. (a) For all N ≥ 1, {xM,m}m∈MN have uniformly bounded support.
(b) limN→∞( 1

M ∑k∈ME[xM,kx′M,k]) is positive definite.
(c) limN→∞

N
M2 ∑m∈MN

∑m′∈MN
E[εM,mεM,m′xM,mx′M,m′] exists with finite elements.

Under these assumptions, the asymptotic distribution of β̂ is given by the following.

Theorem 3.2 (Asymptotic Normality of β̂). Under Assumptions 3.1–3.5,
√

N(β̂−β) d→N(0,AVar(β̂))
as N →∞, where

AVar(β̂) = lim
N→∞

N
⎛
⎝ ∑

k∈MN

E[xM,kx′M,k]
⎞
⎠

−1
⎛
⎝ ∑

m∈MN

∑
m′∈MN

E[εM,mεM,m′xM,mx′M,m′]
⎞
⎠
⎛
⎝ ∑

k∈MN

E[xM,kx′M,k]
⎞
⎠

−1

,

(15)

which is positive semidefinite with finite elements.

3.4. Consistent Estimation of the Asymptotic Variance of β̂ under Network Spillovers
Our objective is to consistently estimate AVar(β̂) defined in Theorem 3.2. As errors are mean zero, YM,m
is centered, that is, E[YM,m] = 0 for each m ∈MN .

3.4.1. The Estimator
The proposed estimator is a type of kernel estimator. Let bM denote the bandwidth, or the lag truncation
(its choice is described in Section 3.4.2) and ω ∶ R → [−1,1] a kernel function such that ω(0) = 1,
ω(z) = 0 whenever ∣z∣ > 1, and ω(z) =ω(−z) for all z ∈R. The feasible variance estimator of interest is

V̂ar(β̂) =
⎛
⎝

1
M ∑

k∈MN

xM,kx′M,k
⎞
⎠

−1
⎛
⎝

1
M2 ∑

s≥0
∑

m∈MN

∑
m′∈M∂

N (m;s)
ωM(s)ŶM,mŶ′M,m′

⎞
⎠
⎛
⎝

1
M ∑

k∈MN

xM,kx′M,k
⎞
⎠

−1

,

(16)

with ωM(s) ∶= ω( s
bM

) for all s ≥ 0 and ŶM,m ∶= xM,mε̂M,m, where ε̂M,m ∶= yM,m −x′M,mβ̂.

3.4.2. Choice of Lag Truncation, bM
There are two approaches for the choice of the associated lag truncation parameter. First, the researcher
may already know (or is willing to impose) the truncation, perhaps due to a theoretical/institutional
motivation. For instance, Acemoglu et al. (2015) set the lag to two in a related problem. Then,
the thought exercise is that this choice will adapt as M → ∞ according to the assumptions below.
Alternatively, the researcher could use a data-driven choice. Assumption 3.6(c) suggests that it should
depend on both the sample size and the network topology, including the average degree of the dyadic
network. One such selection rule is suggested in Kojevnikov et al. (2021) based on their proofs:
bM = 2 log(M)/ log(max(average degree,1.05)).

3.5. Consistency of the Proposed Estimator
The consistency of the variance estimator requires two sets of additional assumptions. The first set is
Assumption 4.1 of Kojevnikov et al. (2021), but stated here in terms of the network over dyads.
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Assumption 3.6 (Kojevnikov et al. 2021, Assumption 4.1). There exists p > 4 such that
(a) supN≥1maxm∈MN E[∣εm∣p ∣ CM] <∞a.s.;

(b) limM→∞∑s≥1 ∣ωM(s)−1∣δ∂M(s)θ
1− 2

p
M,s = 0a.s.;

(c) limM→∞
1
M ∑s≥0 cM(s,bM;2)θ

1− 4
p

M,s = 0a.s., where

cM(s,r;k) ∶= inf
α>1

(ΔM(s,r;kα))
1
α (δ∂M(s; α

α−1
))

α−1
α
.

Assumption 3.6(a) is a stronger counterpart to Assumption 3.2, as it requires that a higher-
order (i.e., higher than fourth order) conditional moment be well-defined. Assumption (b) posits a
tradeoff between the kernel function, the denseness of a network, and the dependence coefficients.
Specifically, the kernel function ωM is required to converge to one sufficiently fast. Kojevnikov et al.
(2021) demonstrate primitive conditions under which this requirement is fulfilled (Proposition 4.2).
Assumption (c) requires that the correlation coefficients decay much faster relative to the denseness of
the network. This is satisfied in the suggested choice for bM above.

Another set of conditions restricts the denseness of the network, ruling out the situation where
the network becomes progressively dense: most notably, the case where every single individual unit
is directly linked to every other individual.

Assumption 3.7. (a) supN≥1∑s≥0 δ
∂
M(s;1) <∞; (b) limM→∞

1
M ∑s≥0 cM(s,bM;2) = 0.

The following theorem is the main theoretical contribution of this paper.

Theorem 3.3 (Consistency of the Network-Robust Variance Estimator). Under the conditions for
Theorem 3.2, and Assumptions 3.6 and 3.7, ∥NV̂ar(β̂)−Var(β̂)∥F

p→ 0 as N →∞, where ∥ ⋅ ∥F indicates
the Frobenius norm.

Theorem 3.3 establishes the consistency of our proposed variance estimator accounting for network
spillovers across dyads in the sense of the Frobenius norm.

3.6. When to Use the Proposed Estimator and the Role of Decaying Spillover Effects?
It follows from Theorem 3.3 that the dyadic-robust variance estimator (11) is inconsistent for the true
variance when the underlying network involves a non-negligible degree of far-away correlations, as
suggested in the examples of the previous section.13 Specifically, the following corollary states that the
dyadic-robust variance estimator of Aronow et al. (2015) may not necessarily be consistent when it is
naïvely applied to the network-regression model with nonzero correlations beyond direct neighbors.

Corollary 3.1 (Inconsistency of Dyadic-Robust Estimators with Network Spillovers). Suppose that the
assumptions required in Theorem 3.3 hold. Assume, in addition, that

inf
N≥1

1
M

∥∑
s≥2

∑
m∈MN

∑
m′∈M∂

N (m;s)
E[εM,mεM,m′xM,mx′M,m′]∥

F
> 0. (17)

Then, the dyadic-robust estimator (11) applied to the network-regression models (1) and (2) is inconsistent.

13If the network is such that there are only adjacent dyads (i.e., when equation (4) holds), then the result above implies
consistency of this estimator for dyadic dependence. By comparison, Lemma 1 of Aronow et al. (2015) and Propositions
3.1 and 3.2 of Tabord-Meehan (2019) also provide consistent variance estimators for the dyadic dependence case without
higher-order network spillovers. However, these results and ours do not subsume one another. Indeed, their estimators can
accommodate flexible dependence within clusters of dyads that share common units, while we assume that the network of
spillovers is observed even if there are only adjacent connections.
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The added condition (17) in Corollary 3.1 pertains to both the network configuration of active dyads
and the regression variables. It represents a setting where the spillovers from far-away neighbors are
non-negligible even when N is large. For instance, (17) can hold even if there are not many neighbors,
as long as the covariances between the error terms are sufficiently large. This builds on Erikson et al.
(2014) that inference with dyadic data may be biased if one only partially accounts for such spillovers.
On the other hand, if far-away neighbors in the network have only a negligible effect on the cross-
sectional dependence, the dyadic-robust variance estimator remains a good approximation for the
asymptotic variance of linear dyadic data models with network spillovers across dyads. These insights
are investigated further in Section 4 using numerical simulations.

These observations extend to settings where the spillovers decay along the network (i.e., when
the correlation along unobservables decreases with the geodesic distance among dyads). Indeed, our
estimator already accounts for such decay through the indirect covariances in its expression (16). When
such spillovers propagate and decay is not too high, then condition (17) is satisfied, as such spillovers
are non-negligible. On the other hand, if they decay at a very high rate (in the limit, a 100% decay from
adjacent to connected dyads), then our estimator will become very similar to the dyadic-robust variance
estimator.

However, some researchers may be willing to tolerate some asymptotic bias to still implement the
dyadic-robust estimator. Then, when should they prefer our proposed estimator? While a general
answer is complex because the bias depends on both the strength of indirect spillovers and the network
configuration, the example below, together with the subsequent simulations, provides useful directions
for salient settings.

Example 3.1 (Maximum Admissible Bias in the Dyadic-Robust Variance Estimator). Suppose that
spillovers decay exponentially with distance along the network: i.e., E[εM,mεM,m′xM,mxM,m′] = γs, where
s is the geodesic distance between dyads m and m′, γ ∈ (0,1) and S the longest path in the network.

Let B > 0 denote the maximum tolerance for condition (17) that the researcher is willing to allow
when using the dyadic-robust variance estimator (11). Then, a sufficient condition for the researcher to
prefer the proposed estimator (16) over (11) is that the decay rate γ is higher than a threshold γ̄, where

ln γ̄ = 2
S+2

{ lnB− ln(S−1)− 1
S−1 ∑

s≥2
lnδ∂M(s)}.

When the tolerated bias is small (B → 0), dependence is large enough and does not decay too fast
(large γ), or the network is more dense, our approach is preferable because it provides a consistent
estimator even with non-negligible spillovers. Since the network is observed, S and the last term are
estimable and can be used for such diagnostics. Appendix C.5 of the Supplementary Material provides
further discussions, while the next section presents for our baseline results and discusses simulation
exercises.

4. Monte Carlo Simulations

4.1. Simulation Design
We compare three types of variance estimators across different specifications and network configu-
rations. We use the Eicker–Huber–White estimator as a benchmark,14 the dyadic-robust estimator
of Tabord-Meehan (2019) as a comparison accounting for the dyadic nature of the data (when
inappropriately used in the presence of network spillovers), and our proposed estimator which is robust
to network spillovers across dyads.

We first generate networks on which random variables are assigned by following Canen, Schwartz,
and Song (2020), among others, by employing two models of random graph formations. They are

14It is used in Bliss and Russett (1998) and Mansfield et al. (2000), for instance.
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referred to as Specifications 1 and 2. Specification 1 uses the Barabási and Albert (1999) model of
preferential attachment, with the fixed number of edges ν ∈ {1,2,3} being established by each new
node.15 Specification 2 is based on the Erdös–Renyi random graph (Erdös and Rényi 1959, 1960) with
probability p= λ

N for N denoting the number of nodes andλ ∈ {1,2,3}being a parameter that governs the
probability relative to the node size. The summary statistics for the networks generated by Specifications
1 and 2 are given in Appendix C.1 of the Supplementary Material.

For each of the randomly generated networks, the simulation data are generated from the following
simple network-linear regression:

ym = xmβ+εm,
16

with m ∶= d(i,j) representing the dyad between agent i and j. The dyad-specific regressor xm is defined
as xm ∶= ∣zi −zj∣, where both zi and zj are drawn independently from N(0,1). The regression coefficient
is fixed to β = 1 across specifications.

The dyad-specific error term εm is constructed to exhibit nonzero correlation with εm′ as long as
dyads m and m′ are connected (i.e., in the network terminology, there exists a path in the simulated
network), while the strength of the correlation is assumed to decay as they are more distant. This decay
is parametrized by γ (see Appendix C of the Supplementary Material for details). If γ = 1, then spillover
effects are the same no matter how far the agents are apart, that is, the spillover effects do not decay. If
γ = 0, there are no spillover effects, so the dyadic-robust variance estimator should be consistent. The
case of S = 2 corresponds to a situation where up to friends of friends may matter for spillovers.

We consider three scenarios for each type of network. In the main text, we set S = 2 and γ = 0.8. The
results for S = 2 with γ = 0.2 are given in Appendix C.5 of the Supplementary Material, and the ones for
S = 1 with γ = 0.8 are in Appendix C.6 of the Supplementary Material. For comparison purposes, we
employ the mean-shifted (by one) rectangular kernel with the lag truncation equal to two throughout
the experiments.

4.2. Results
In Table 1, we present the coverage probability for β and the average length of the confidence interval
across simulations. To do so, we compute the t-statistic using the OLS estimator for β and different
variance estimators under a normal distribution approximation.17 The finite-sample properties of the
three variance estimators are further illustrated in Figure 2 in Appendix C.3 of the Supplementary
Material.

The results for the empirical coverage probabilities depend on two dimensions: the sample size (N)
and the denseness of the underlying network (parametrized by ν and λ). The coverage probability for
each estimator improves with the sample size. However, when spillovers are high (γ = 0.8), only our
proposed network-robust variance estimator has coverage close to 95%, consistent with Theorem 3.3.
Meanwhile, in this setup, both the Eicker–Huber–White and the dyadic-robust variance estimators
perform poorly as the underlying network becomes denser, no matter which specification of the network
is involved. For example, in Specification 1 with ν = 3 and the largest sample size (N = 5,000), the
confidence intervals based on the Eicker–Huber–White and the dyadic-robust variance estimators
do not cover the true parameter 615 and 455 times out of 5,000 simulations (12.3% and 9.1%),

15In generating the Barabási–Albert random graphs, we follow Canen et al. (2020) by choosing the seed to be the Erdös–
Renyi random graph with the number of nodes equal the smallest integer above 5

√
N, where N denotes the number of nodes.

16To simplify notation, we drop the M subscript, making the triangular array structure implicit.
17It is well known that the estimates of a variance–covariance matrix may be negative semidefinite when the sample size

is very small. This occurs in 4 out of 5,000 simulations when N = 500. Rather than dropping such observations, we follow
Cameron et al. (2011) and augment the eigenvalues of the matrix by adding a small constant, say 0.005, thereby obtaining a
new variance estimate that is more conservative.
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Table 1. The empirical coverage probability and average length of confidence intervals forβ at 95%
nominal level: S = 2, γ = 0.8.

Specification 1 Specification 2

N ν = 1 ν = 2 ν = 3 λ = 1 λ = 2 λ = 3

Coverage probability

Eicker–Huber–White 500 0.877 0.868 0.871 0.891 0.870 0.875

1,000 0.880 0.873 0.873 0.892 0.881 0.888

5000 0.879 0.871 0.877 0.890 0.882 0.880

Dyadic-robust 500 0.922 0.898 0.894 0.932 0.921 0.917

1,000 0.929 0.913 0.901 0.937 0.927 0.924

5,000 0.934 0.912 0.909 0.939 0.933 0.922

Network-robust 500 0.930 0.917 0.915 0.937 0.937 0.941

1,000 0.939 0.934 0.933 0.946 0.945 0.948

5,000 0.949 0.944 0.943 0.947 0.948 0.948

Average length of the confidence intervals

Eicker–Huber–White 500 0.368 0.409 0.482 0.287 0.285 0.296

1,000 0.266 0.302 0.331 0.205 0.201 0.207

5,000 0.132 0.159 0.176 0.092 0.090 0.094

Dyadic-robust 500 0.426 0.454 0.520 0.328 0.329 0.337

1,000 0.312 0.339 0.361 0.236 0.232 0.237

5,000 0.158 0.178 0.192 0.106 0.104 0.108

Network-robust 500 0.441 0.493 0.568 0.337 0.349 0.366

1,000 0.326 0.373 0.408 0.244 0.248 0.259

5,000 0.167 0.199 0.222 0.110 0.112 0.118

Note: The upper-half of the table displays the empirical coverage probability of the asymptotic confidence interval
for β, and the lower-half showcases the average length of the estimated confidence intervals. As the sample size
(N) increases, the empirical coverage probability for our estimator accounting for network spillovers approaches
0.95, the correct nominal level. However, that is not the case for alternative estimators.

respectively. On the other hand, the network-robust variance estimator is designed to capture higher-
order correlations and, thus, its coverage remains stable across network configurations.

A similar conclusion is drawn from the average length of the confidence intervals: the confidence
intervals for the Eicker–Huber–White and dyadic-robust variance estimators are typically 10%–20%
shorter than those for our proposed estimator when γ is large and S = 2. This means the former
undercovers the true parameter (in the presence of positive spillovers). However, as the magnitude of
spillovers decreases (i.e., γ tends to zero), higher-order spillovers are less pronounced, so that the biases
from using the Eicker–Huber–White and dyadic-robust variance estimators disappear. This is shown in
Table 7 of Appendix C.5 of the Supplementary Material for the case of S = 2 and γ = 0.2. When S = 1,
the dyadic-robust variance estimator coincides with our proposed estimator (i.e., there are no spillovers
from non-adjacent links, or spillovers fully decay immediately). This is shown in Table 8 of Appendix
C.6 of the Supplementary Material.

Finally, Appendix C.7 of the Supplementary Material shows that the results are robust to spillovers
that can reach the most distantly connected neighbors (S = ∞) and to choosing the lag-truncation
adaptively, following the rule bM = 2 log(M)/ log(max(average degree,1.05)) suggested above.
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5. Empirical Illustration: Legislative Voting in the European Parliament

We now turn to an empirical application, revisiting the work of Harmon et al. (2019) on whether
legislators who sit next to each other in Parliament tend to vote more alike on policy proposals.

They focus on the European Parliament, whose Members (MEPs) are voted in through elections
in each European Union (EU) member country every 5 years. The Parliament convenes once or twice
a month, in either Brussels or Strasbourg, to debate and vote on a series of proposals. Once elected to
the European Parliament (EP), these MEPs are organized into European Political Groups (EPGs), which
aggregate similar ideological members/parties across countries. As Harmon et al. (2019) describe, these
EPGs function as parties for many of the traditional party functions in other legislatures, including
coordination on policy and policy votes. Most importantly, MEPs sit within their EPG groups in the
chamber. However, within each EPG group, non-party leaders traditionally sit in alphabetical order by
last name. See Figure 4 in Appendix D.1 of the Supplementary Material for an example.

5.1. Data
We adopt the dataset used in Harmon et al. (2019), which collects the MEP-level data on votes cast in
the EP. The dataset records what each MEP voted for (Yes or No), where she was seated, and a number
of individual characteristics (e.g., country, age, education, gender, and tenure). We restrict the sample to
the policies voted in Strasbourg during the seventh term, and we focus on the seating pattern between
July 14 and July 16, 2009 (which involved 116 different proposals being voted on). The resulting sample
has 2,431,261 observations, which are split into 422 politicians forming 26,099 pairs (i.e., dyads) of MEPs
over 116 proposals.18 Further information on the construction of our sample is detailed in Appendix
D.3 of the Supplementary Material.

5.2. Empirical Setup
We follow Harmon et al. (2019) in assuming that two MEPs who are seated next to each other within the
same political group are treated as an active dyad and that such relations are exogenously determined.
Their main specification is a linear model:

Agreed(i,j),t = β0 +β1SeatNeighborsd(i,j),t +εd(i,j),t, (18)

where Agreed(i,j),t is an indicator that takes one if MEP i and j cast the same vote on proposal t, and
zero otherwise, SeatNeighborsd(i,j),t is a binary variable that equals one if MEP i and j are seated next
to each other when the vote for proposal t is taken place, and zero otherwise. The authors originally
conducted inference using the estimator in Aronow et al. (2015), assuming that dyads m = d(i,j) cannot
be correlated with m′ = d(k,l) unless they share a common member.

We compare this approach to using the variance estimator introduced in Section 3.4, which allows
the error terms to exhibit nonzero correlations as long as they are connected on the network over dyads
represented by the adjacency relation of seating arrangements in Parliament. We use the mean-shifted
rectangular kernel with the lag truncation equal the longest path in the constructed network, which
accommodates all the possible correlations across connected dyads (i.e., pairs of MEPs), placing equal
weight on each of them.19

Inspired by Harmon et al. (2019), we consider three specifications: (I) a simple linear regression
model as given in (18); (II) the model (18) augmented with a flexible set of other demographic
variables;20 and (III) the model (18) with both a flexible set of other demographic variables and

18There are 334 pairs of adjacent dyads and 591 pairs of connected dyads.
19In Appendix D.4 of the Supplementary Material, we replicate this analysis with a different choice of kernel and setting the

lag-truncation parameter following the criterion suggested above/in Kojevnikov et al. (2021). The results are very similar.
20Following Harmon et al. (2019), we include indicators whether country of origins, quality of education, freshman status,

and gender, respectively, are the same, as well as differences in ages and tenures.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

11
9.

0.
20

7,
 o

n 
15

 M
ar

 2
02

5 
at

 1
1:

59
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

40

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2023.40


326 Nathan Canen and Ko Sugiura

Table 2. Spillovers in legislative voting—main analysis

Specification (I) Specification (II) Specification (III)

Panel A: Parameter estimates

seat neighbors 0.007 0.006 0.006

Panel B: Standard errors

Eicker–Huber–White 0.003 0.003 0.003

Dyadic-robust 0.008 0.008 0.009

Network-robust 0.010 0.010 0.011

Note: Panel A displays the parameter estimates for the variable “Seat Neighbors” for the three different
specifications, and Panel B shows the standard errors for its regression coefficient using different variance
estimators. Adjacency of MEPs is defined at the level of a row-by-EP-by-EPG. (See the note below Figure 4 in
Appendix D.1 of the Supplementary Material.) The independent variables are Seat neighbors, whether both
MEPs are from the same country; whether both MEPs have the same quality of education, whether both MEPs
are freshman or not; the difference in the MEPs’ ages; and the difference in the MEPs’ tenures. A full description
of the result is provided in Supplementary Table 13.

day-specific fixed effects. When fixed effects are present in their original estimation, we estimate a
within-difference model via OLS.

5.3. Results
The main results of our empirical analysis are summarized in Table 2. Panel A displays the parameter
estimates for the three different specifications. This panel shows that our point-estimates are consistent
with the original estimates of Harmon et al. (2019) (columns 6 and 7 of Table 4), as they are close to
0.006 (their original results) and stable across specifications.21 Hence, changes to point estimates are
not due to sample selection. The positive coefficient for SeatNeighbors suggests that the MEPs sitting
together tend to vote more similarly than those sitting apart, providing evidence in favor of their original
hypothesis. The coefficients on the covariates (displayed in Panel C of Supplementary Table 13) are also
quantitatively and qualitatively similar to those in their original paper.

Panel B shows the standard errors for the regression coefficient of SeatNeighbors using different vari-
ance estimators. As foreshadowed in the Monte Carlo simulations, the Eicker–Huber–White estimates
are the smallest, followed by the dyadic-robust estimates, which, in turn, are smaller than the network-
robust estimates. In fact, for Specification (III), the Eicker–Huber–White estimate is roughly 73%
smaller than using the estimator accounting for network spillovers across dyads, while the dyadic-robust
one is 22% smaller. This fact entails two implications. First, our finding provides empirical evidence
in support of the existence of indirect positive spillovers among the MEPs: even distant connections
may indirectly generate correlated behavior among politicians i and j. Second, the use of alternative
estimators not accounting for such spillovers undercovers the true parameter and may generate biased
hypothesis testing about the regression coefficient of SeatNeighbors. The difference in estimates appears
quantitatively meaningful in this empirical example.

6. Conclusion

To conclude, we clarify that our goal in this exercise is neither to criticize dyadic-robust variance
estimators, which are a fundamental part of the empiricist’s toolkit, nor to suggest that our approach

21Note that our dependent variable is equal to one if two MEPs vote the same and zero otherwise, while Harmon et al. (2019)
code it as one if MEPs vote differently. Hence, to compare our estimates with theirs, the signs on the estimates of SeatNeighbors
must be flipped.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

11
9.

0.
20

7,
 o

n 
15

 M
ar

 2
02

5 
at

 1
1:

59
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

40

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/pan.2023.40


Political Analysis 327

should always be used. Rather, we wish to draw attention that researchers should fully specify the cross-
sectional dependence in their model. If the conventional assumption of dyadic dependence correctly
specifies the environment in question, or when spillovers beyond immediate neighbors might be
negligible, then previous approaches suffice. However, as we have discussed above, existing applications
may apply the latter method even if it is seemingly inappropriate to their setting. This includes situations
where such network spillovers may be present or persistent (even with decay). In such scenarios, our
estimator provides a possible solution. Those choices, though, must be guided by the application that
empiricists face. Hence, building on Poast (2016), we recommend researchers to continue to fully specify
their model, including full specification of their covariance structure, thereby clarifying what type of
inference procedure is most appropriate for their environment.
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