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FINE SPECTRA AND LIMIT LAWSI.
FIRST-ORDER LAWS

STANLEY BURRIS AND ANDRAS SARKOZY

ABSTRACT. Using Feferman-Vaught techniques we show a certain property of the
fine spectrum of an admissible classof structuresleadsto afirst-order law. The condition
presented is best possible in the sensethat if it isviolated then one canfind an admissible
class with the same fine spectrum which does not have a first-order law. We present
three conditions for verifying that the above property actually holds.

The first condition is that the count function of an admissible class has regular
variation with a certain uniformity of convergence. This applies to a wide range of
admissible classes, including those satisfying Knopfmacher’s Axiom A, and those
satisfying Bateman and Diamond’s condition.

The second condition is similar to the first condition, but designed to handle the
discrete case, i.e., when the sizes of the structures in an admissible class K are all
powers of asingle integer. It applies when either the class of indecomposables or the
whole class satisfies Knopfmacher’s Axiom A%,

The third condition is also for the discrete case, when there is a uniform bound on
the number of K-indecomposables of any given size.

Preliminaries. Throughout the paper we will be working with classesK of finite

structures, for a first-order language L. First we give a list of definitions that will be

used:
1.
2.
3.

(2]

I(K) isthe closure of K with respect to isomorphism, and
Psin(K) is the closure of K with respect to finite direct products.
For classes Ky, ..., Kn, the product of these classes is defined by Ky ---Kn =

[{A1 x -+ X Aq Aj €Ki} WewriteK" if K=K =+ =K.

. K=" istheclass ;> K'.
. An L-structure A istrivial if its universe A has only one element.
. A member A of K isK-indecomposableif (i) itsuniversehasat least two elements

init, and (ii) itisnot isomorphic to the direct product of two nontrivial members
of K.

. K has unique factorization! if every nontrivial member can be uniquely writ-

ten, up to isomorphism and the order of the factors, as a direct product of K-
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indecomposables.

8. The fine spectrum o of K is the sequence defined by: ok (n) is the number of
structures of sizenin K (up to isomorphism).?

9. The (total) count function 7 for K is defined by

() = > ok(n).
n<x
10. Givenaproperty P let ox(n | P) bethe number of structuresin K of size n having
the property P. And let 7« (X | P) = Snx ok (n | P).
11. The cumulative probability, Proby (P), that a property P holdsin K is defined by

_ jim ([ P)
Probk (P) =: nlgrnoo ey
provided this limit exists.
12. K has afirst-order law if, for every first-order sentence ¢, Probk(¢) exists; if the
latter is always 0 or 1 then we say K has afirst-order 0-1 law.

REMARK 1.1. In much of the work on laws one considersthe proportion of structures
of size n which satisfy a given property. See, for example, [5] and [6]. We have adopted
Compton’s approach to studying direct products, namely consider the proportion of
structures of size at most n which satisfy a given property.

As an example let K be the class of groups I({Z§ x Z75 : n > 1}). Thereis, up to
isomorphism, only one K-indecomposable, namely Zg x Z 5. K has uniquefactorization;
thefine spectrumis: o (n) = 1if nisapower of 90, and = 0 otherwise; and 7 (x) is O for
X < 90, andisnif 90" < x < 90™1. Inthelast section we will seethat K hasa first-order
law; and in Part 11 [7] we show it has a first-order 01 law.

2. Loaded classes.

DEFINITION 2.1. A classK of finite structures is admissible?® if

o K =1Pin(K),

e oy (n) < +oofordl n, ox(1) =1,

e K hasunique factorization, and

e atrivial structure A in K acts as a multiplicative identity, i.e., A x B ~ B for all
B € K.

REMARK 2.2. This definition guaranteesthat if K is an admissible class then we can
determine its fine spectrum from the fine spectrum of the class of K-indecomposables.
Furthermore, the fine-spectrum o can be recovered from the count function 7.

2 The fine spectrum was introduced in 1975 by Walter Taylor [22] for the case that K is an equationally
defined class of algebras.

3 Admissible classes form a select part of the general framework of arithmetical categories used by
Knopfmacher [13] in his study of generalized prime number theorems.
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DEFINITION 2.3. LetK beaclassof structures, and let F bethe class of K-indecompos-
ables. We say that K is loaded if, for every partition F, ..., Fx of F into classes closed
under isomorphism, and for every sequencery, ..., re of nonnegative integers, the set
Fi™ - Fo™ of structures A € K with at least r; factors from Fi, 1 < i < k, has an

asymptotic density, i.e.,
Prob (isinF;™ -+ F'*) exists.
REMARK 2.4. Notethat K isloaded also implies
|:f11 . |:ifi|:i2+fli+1 . |:k2fk
has an asymptotic density as, for any property P,

T«(n | hasexactly r; factors from F; and P)
=71¢(n| hasat least r; factorsfrom F; and P)
—7k(n| hasat least r; + 1 factors from F; and P).

3. Logical aspects. The Feferman-Vaught methods played a key role in [4] where
it is proved that every directly representable variety has afirst-order law. Now we apply
them to admissible classes.

LEMMA 3.1. Let ¢ be a first-order sentence with a Feferman-Vaught sequence
(D, ¢1,. .., &x). Then there is a positive integer ¢, such that if H is a class of struc-
tureswith H | ¢ or H | ¢, 1 < i <k, then

(a) for each positive integer n either H" = ¢ or H" | ¢, and
(b) n>c, impliesH" E ¢, or n > ¢, impliesH" | —¢.

PROCF. LetAq,..., An_1 € H. Then

@ Ao X XAt Eo iff 2"E®[o4].....[od).

where [¢i] is the characteristic function of the set of coordinates where ¢; holds. Each
[#i] iseither the 1 or 0 of 2", for n > 1, depending solely on whether H £ ¢ or H E —¢;.
Thus d([44], - - - , [#«]) is asentencewhich does not depend on n. Part (a) now follows
from (1). For (b) first recall that Skolem'’s elimination of quantifiers [20] for Boolean
algebras gives, for each Boolean algebra sentence W, the existence of a constant cy with

the property
n>cy=2"EW, or
n>cy=2"F-Y.
Letc, = max{cy : W=®(\1..... \). A € {0.1}}. .

Next we introduce a simple tool which has been popular with universal algebraists.
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DEFINITION 3.2. The ternary discriminator function t on a set S is the mapping
t: S — Sdefined by

_(c ifa=b
t@b.c)= { a otherwise.

For A astructure let At denote the expansion by the ternary discriminator. And for H a
class of structureslet H' be the classof A!, for A in H.

We are only going to use the simplest properties of the ternary discriminator, namely
the ability to define the indecomposabl e factors and to define factor congruences.

LEMMA 3.3. LetAgy, ..., An be nontrivial structures.
(@ A} x --- x Al satisfiesthe sentence
bind == VxVsz((x =y —tXY.2 =2 A XAy = tXY.2) = x))
iff n=1.
(b) Givena,bfromA; x --- x A the binary relation
{(c,d) : t(a,b,c) = t(a, b.d)}
is the kernel of the projection map

7TJIA1X-~‘XAH—>HA]'
jed

whered ={i: g =b;,1 <i <n}.
PrOOF. (Straightforward.) ]

THEOREM 3.4. Supposethat K is admissible.
(a) If Kisloadedthen K hasa first-order law.
(b) If K isnot loaded then there is an admissible K’ with the same fine spectrumas K
such that K’ does not have a first-order law.

PROOF. (@) Let ¢ be a first-order sentence with a Feferman-Vaught sequence

tained by defining two members of F to be equivalent when they agree on the same ¢ ;'s.
Letc=max{c, : 1 <j <Kkj}.
ForO<i< (and0<j <cdefine

Fooifj<c
Hij =9 >
F ifj=c
Thenfor0 <j; <clet

Pio....j,1 = Probx (isin Hoj, - - - He—1j, ).
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defined by: v(A)(i) is the minimum of ¢ and the number of factors of A from F; (in a
complete factorization of A). A consequenceof Lemma 3.1 isthat if 7(A) = ¥(B) then
either both A and B satisfy ¢, or neither do.

Thusfor g € (c+ 1)! onehasy~(g) C K consists of all structures A in K such that,
for 0 <i < ¢, A hasexactly g(i) factorsfrom F; if g(i) < c, and at least ¢ factors from
Fi if g(i) = c. Consequently

For A € K lety(A) bethefunctionin (c+1)‘,i.e., 7(A): {0,..., (-1} —A0.....c},

Define a function f: (c + 1) — {0, 1} by f(g) = 1 iff members of 7~1(g) satisfy ¢.

Then we have
Probk(¢) = >~ f(9) - Py)....a(-1)-
ge(c+D)’
(b) Now let us supposethat K is not loaded. Let F be the class of K-indecomposables.
LetFq,..., Fx beapartition of F into classesclosed under isomorphism, andletrq, ..., rg

be a sequence of nonnegative integers such that
Proby (isin F{™ -+ F.™)

is not defined. Let F’ be an expansion of F' by 2k constants a;, by, such that we have
a = by in members of F;, and & # b in members of F \ Fi. Let K = IPgn(F’). Then
K" isadmissible;
the set of K’-indecomposablesisF’;
the fine spectrum of K’ is the same as that of K;
the K’-indecomposablesF’ are defined in K’ by ¢ing (from Lemma 3.3);
asProby (isin F{™ -+ - F.™¥) does not exist, it follows that
Prob, (isin (F1)=" - - - (F)="«) does not exist;
o (F)=" - (FR)>"x isdefined in K’ by the sentence ¢ which expresses “has a least
ri indecomposablefactors, for 1 < i <k, which satisfy g = b;” (such a sentence
can be constructed using Lemma 3.3).
As Prob, (isin (F})=" - - - (F)="%) does not exist, it follows that K’ does not have a
first-order law. m

Thus, among the admissible classes K, the ones for which knowledge of the fine
spectrum alone is sufficient to conclude a first-order law are precisely the ones that are
loaded.

4. Monotonefunctionsand regular variation at infinity. Inthissectionwecollect
some basic facts about the behavior of f(xt) /f(t) ast — +oo.

DEFINITION 4.1. Letf: (0, +00) — [0, +00) be given. Define the functions pr and p;
by
f(xt)

pi(X) = Iﬂ[)go iOR
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provided this limit existsand isin (0, +00);
ity = [y TOKE)
()= 1M Sy
provided thislimit existsand isin [0, +oo];
f issaidto haveregular variation (at infinity) with index o (see[9], p. 3), alsoindicated
by writing f € RV, if
(8 dom(pr) = (0. +o0), and
(b) ps(X) = x* onits domain.

PrOPOSITION 4.2. Supposef: (0, +0o) — [0, +00) is nondecreasing. Then
e p; and p; arenondecreasing on their domains,
e p; is a multiplicative function on its domain, a multiplicative subgroup of the
positivereals,
e and we have only the following three possibilities:
(& dom(pr) = dom(p;) = (0. +00). Inthiscasef € RV, for somea > 0;
(b) dom(ps) = dom(p;) = {c" : n € Z} for somec > 1. In this case thereisan
a > 0 such that ps(X) = x* for x € dom(ps).
(c) dom(pr) = {1} # dom(p}). In this casethereisac > 1 such that

0 forx e (0.1/c)
pr¥=<¢1 forx=1
+oo  for x € (c, +00).
Furthermore, no point of (1/c. 1) U (1. ¢) isin dom(pf).

PROOF. The fact that ps is nondecreasing on its domain follows simply from the
monotonicity of f since0 < ¢ < dimplies

fle) _ 1

ft)y — f(@) -
If ¢, d € dom(ps), then

G _ 1@ 10
f©)y £/ f(5H
sufficesto show thelimit ast — +oo of the left side exists, and that

pi(c/d) = pr(c)/ pr (d).

Thusdom(ps) isamultiplicative subgroup of the positivereals, and ps isamultiplicative
function.

Now the multiplicative subgroups of the positive reals are either densein the positive
reals, or they are cyclic. In the former case, as ps is multiplicative and monotone on
its domain, it follows that p; is continuous at x = 1; and then one can show dom(ps) =
(0, +00), and ps is continuous on this domain. Thusit must be x* for some o > 0.

The other claims are now relatively straightforward to verify. ]

COROLLARY 4.3. Let f be nondecreasing and nonnegative on (0, +o0). If ps(c) = 1
for a single positivec # 1thenf € RV,.
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PROOF. From ps(c) = 1 follows ps(c") = 1 for n € Z. Givenx > 0 choosen € Z such
that ¢" < x < ¢™1. Then we have, from the monotonicity of f,
n +1.
f(c™) < f(xt) < f(c" t);
f®) — f® — )

and, asthelimit ast — +oo of the extremesis 1, it follows the same holdsfor the middle
quotient. Thus ps(x) = 1 for x > 0, i.e.,,f € RV,. ]

5. Generalizedintegers. Theinteresting questions about loaded admissible classes
K are now mainly questions about developing a better understanding of this concept—
such questions are really in the domain of number theory, in the study of Beurling's
generalized integers, as described in the 1969 article [1] by Bateman and Diamond.

DEFINITION 5.1. Let
d=(d1,dy,...)

be a (possibly finite) sequence of integers® with 1 < d; < d, < ---. If the sequenceis
infinite we require d, — +oo.

() The generalized integers Ny consists of the set of sequencesn = (ng, Ny, ...) of
nonnegative integers, of the same length as d, which are eventually 0 if d is an infinite
sequence.®

(b) Theproduct m - n of two generalized integersm and n isgiven by coordinatewise
addition, i.e.,

m-n=(m+m).

Note that the sequence (0. 0, . . .) of zerosin Nq is the multiplicative identity 1 of Ng.

(©) The generalized primes P consist of the set of elements of Ny of the form
©.....0,1,0,...),i.e, members of Ny which are O except for one coordinate which is
1. pj, the i-th generalized prime, hasa 1 only in thei-th coordinate.

Note that the sets Ny and P depend only on the length of the sequenced.

(d) Every element of Ny different from (0.0, ...) has a unique factorization into
members of P.

(e) Thesize|n| of ageneralized integer n does depend on d, and is given by

In =11d"

(f) Thenotation o, WhereQ C P, means ;2 3~ peq - We use the notation JT,cq

] o [p|=n
in asimilar manner.

4 Bateman and Diamond [1] allow the d;, to be positive real numbers. Our definition of generalized integers
reflects the context of working with admissible classes. Essentially all of the results of this section carry over
verbatim to their setting.

5 Bateman and Diamond only consider the case that the sequence d is infinite. For generalized integers
they usethe sizes T di”' instead of the sequences (ny, Ny, . . .). Of course several sequences may have the same
size, so they speak of their generalized integers as having a certain multiplicity.
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DEFINITION 5.2. (a) a, isthe number of generalized integers of sizen, namely
an=|{meNg:|m[=n}|.

Note that a; = 1.
(b) Aq(x) isthe number of generalized integers of sizeat most x, i.e.,

Ag(x) = > an.
n<x
For any property P, Aq(x | P) is the number of generalized integers of size at most x
which satisfy P .

Thefollowing simple observation is quite important.

LEMMA 5.3. Thennumber of generalized integersof sizeat most X which are multiples
of a given generalized integer m is precisely Aq(x/|m|).

ProoOF. We observe that
Im-n| <x iff |m|-|n| <x iff |n] <x/|m|.

From the unique factorization property in Ng we know that m - ny = m - n, iff ny = n,.
Thus the set of multiples of m which have size at most x is in one-one correspondence
with the set of generalized integers of size at most x/|m| using the mappingm - n +— n.
|

In terms of Dirichlet series and Euler products we have, at least formally,

+00 -1
@ Sao/r= I (Y o) = 11 (1- o
n=1 peP\ n |p| peP |p|
REMARK 5.4. Every admissible class K of finite structures has a system of general-
ized integers Ny associated with it, namely let D1, Do, ... be representatives of the K-
indecomposables, ordered by increasing size, andlet d; = |D;|. Definethemapr: K — Ng
by v(A) = n, where, given the complete factorization

A~D} x .- x DX,

n is the member of Ny with the nonzero entries nj; = &. This map satisfies (A x B) =
v(A) - v(B); and its kernel isthe equivalencerelation of ‘isisomorphicto’.

Conversely, given generalized integers Ny, one can find an admissible class K such
that Ny is the set of generalized integers associated with K. Thus counting problems
for admissible classes, where one counts up to isomorphism, are identical to counting
problemsin generalized integers.

Now let ustranslate the basic definitions regarding loaded classes to the language of
generalized integers.

https://doi.org/10.4153/CJM-1997-022-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-022-4

476 S. BURRISAND A. SARKOZY
DEFINITION 5.5. (a) The (asymptotic) density of S C Ny isgiven by

_ . A4(x|isins)
S =M = m

provided this limit exists.
(b) For H;j C Ny define

H1~~~Hk={n1-~~nk|n1€H1 ..... HKEHk}.

We write H* for the set of generalized integers which can be factored as the product of
exactly k members of H. And let
H=" = |JH,
S
the set of generalized integers which can be written as the product of at least r members
fromH.

DEFINITION 5.6. Nq is loaded if, for every partition Pq,..., Py of the generalized

primes P and for every sequencery, ..., r of nonnegative integers, the set

plZTI .. pkzrk
of generalized integers which have, for each i, at least r; factors from P; (including
repeats), has an asymptotic density.

PROPOSITION 5.7. Suppose Ng is loaded. Then
(a) for Pq,..., Py a partition of P and for r; > 0 the set
Pl Pl pi2+'li+1 e p%fk
has a density;
(b) for Q C P and r a nonnegative integer, the following sets have a density:
1. Q=" - (P\ Q)9 i.e, the set of generalized integers which have at least r
factorsfrom Q;
2. Q"-(P\ Q)Y i.e, the set of generalizedintegerswhich haveexactly r factors
fromQ;
3. Q',i.e, the set of generalized integer swhich factor into exactly r factors, all
fromQ;
4. Q=" i.e, the set of generalized integers which factor into at least r factors,
and all factors comefromQ;
(c) A(P) =0, i.e., the set of generalized primes has density 0, and
(M) A(M - Ng) = limy, oo XM = 5, (1/|m]) exists and is > 0, i.e., the set of

Ad(x)
multiples of any generalized integer has positive density.
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PrROCF. Item (a) follows essentially asin Remark 2.4. For exampleif P ispartitioned
into two classesP; and P, then

PPy =gt g\ PE By
andasP;™ - P, D P P52 it follows that A(PY - P5™) exists and
APY - P52 = APT™ - P5™) — AP PS™).

Item (b) isaspecial case of item (a).

For item (c) first note that by (b) every set of generalized primes has a density. Now
suppose A(P) = a > 0. This clearly implies that the number of generalized primes
is infinite as the density of any finite set is 0. One can choose a sequence of integers
0=np <N <ny<---suchthat if we set

Q={peP:ny<|p| <M1}

then, with Q(x) being the counting function for Q, we have

QM) . [>3a ifiisodd
Ag(m) <ia ifiiseven’

But this guarantees that the set of primes Q does not have a density, contradicting item
(b). ThusA(P) = 0.

For item (d) we use Lemma 5.3 to see that the number of generalized integers of size
at most x which are multiples of m is precisely Aq(x/|m|). To show that this limit exists
wesimply factor mtoobtainm = pi - - - p)¥, wherethe p; are distinct generalized primes.
Thenlet P; = {pi},for 1 <i < k;andlet Py =P\ {p1....,pPx}- Then Py, ... Py iS
afinite partition of the primes, and

m-Ng =P P PO,

Theright hand side has a density by the definition of loaded. Now we need to show this
density is positive.

First, supposen - Ny has positive density for some n # 1. Then, by the monotonicity
of Aq, we can apply Proposition 4.2 to claim pa,(|n|¥) = pa,(In|)¢ > 0 for k € Z. As pa,
is nondecreasing it follows that pa,(1/|n]) > 0 for al n € Ng. Thus the density of each
N - Ng is positive.

So now supposethat A(n - Ng) = 0for every n € Ng, n # 1. Then for any finite subset
F of Ng we have A(F - Ng) = 0, i.e., the density of the set of multiples of any finite subset
of generalized integersis 0. Now we can use this information to construct a sequence of
integers0 =np < nNp < hp < --- such that if we set

Q={peP:m<|p| <Min}
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then, with Q=%(x) being the counting function for Q=°, we have

Q=0(ny) i > % if i isodd

Ag(my) <1 ifiiseven’
But this guaranteesthat the set Q~° does not have a density, contradicting item (b). Thus
A(n - Ng) > Oforal n € Ng. n

REMARK 5.8 (BATEMAN AND DIAMOND ([1], THEOREM 4C)). prove that A(P) = 0
under the hypotheses (a) As € RV,, for some a > 0, and (b) >,cp ﬁ = +00.

The definition of regular variation is too restrictive for some of the cases we will
encounter. Thus we introduce the following:

DEFINITION 5.9. Let f:(0,+o0) — [0, +00) be given. f is said to have d-regular
variation (at infinity) with index «, aso indicated by writing f € RV, (d), if

m . An
fim 1@ _

@)

@

for ma non-negative integer, and for n restricted to the integers.

COROLLARY 5.10. If Ng isloaded then either

(@ Aq € RV, for somea > 0, or

(b) thereisa positiveinteger d such that all sizes|m| of the generalized integersfrom
Ng are powersof d, and Aq € RV,,(d) for some o > 0.

PROOF. The function Ay is nonnegative and monotone, so Proposition 4.2 applies.
By Proposition 5.7(d) we see that the case (¢) in 4.2 cannot occur. 4.2(a) gives our (a).

The other possibility is 4.2(b). So let dom(pa,) = {c": n € Z}. Let {d": n € Z} be
the cyclic subgroup generated by {|p| : p € P}, the set of sizesof the generalized primes
(which must bein dom(pa,) by 5.7(d) and 4.2). We can assumed > 1. Asd isrational,
it follows that it must be an integer. Thus all the sizes of the primes, the d;’s, are powers
of asingle integer d, and then it follows that all the sizes of the integersin Ny are also
powers of d. Now let

- Ag(d™) _
T Bg@
and let
a =logy(6).
Thenitis easy to check that Aq € RV, (d). ]

Because of theimportance of the case (b) in Corollary 5.10 weintroducethefollowing:

DEFINITION 5.11. Ng is a discrete generalized number system if the sizes of the
generalized integers are all powers of some integer d.

From Corollary 5.10 we see the study of loaded Nqy’'s naturally splitting into two
(overlapping!) cases:
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e Ny isregular if A € RV,, and
e Ny isdiscretely regular if the sizes of the generalized integers are all powers of
some integer d, and Ay € RV,(d) for some a > 0.
In both cases we are able to obtain wide ranging results that apply to many examples
of generalized integers (and admissible classes) studied in the literature. Some of the
open questions in the discrete case appear to involve difficult additive number theory.
Questions regarding both cases are formulated at the end of this section.

ExAMPLE 5.12. A system of generalized integers with exactly one generalized prime
is an example of a system that is both regular and discrete.

It is no accident that this exampleis actually slowly varying at infinity.

PROPOSITION 5.13. Let Ny be a system of generalized integers that is both regular
and discrete. Then Ag € RV,.

PROOF. Let the sizes of the generalized primes in P form a subset of {d.d?, ...,
d*, ...}, where d is the positive integer that generates the domain of pa,. Then one can
find arbitrarily large reals t such that no sizes of members of Ny are in the interval
[t. 3t]. Thusone can find arbitrarily larget such that Aq(3t)/Aq(t) = 1. By the regularity
assumption it follows that lim_.+., Aq(3t)/Aq(t) = 1. Then from Lemma 4.3 one has
Ad(X) € RVj. [ ]

REMARK 5.14. For any system Ny of generalized integers with P infinite, Bateman
and Diamond ([1], p. 158) show that ZneNd |n|_01 HpeP(l - |p|_0)_11 and ZpeP |p|_0
converge for the same positive real . The infimum of such ¢ will be called the abscissa
of convergenceof Ng (or of P). If, furthermore, Ay € RV,, then they note on p. 166 of
[1] that « is the abscissaof convergence of Ng.

PROPOSITION 5.15. Let Ny be a system of generalized integers, and let o be the
abscissa of convergenceof ¥ a,/n®.
(a) The abscissa of convergenceis given by

a =limsup M.
n—too  lOGN
(b) If @ < +oo then, for s> «,
Aa(n) = O(n°).
(c) If Ng isloaded then o < +o0.
ProoF. For (a) and (b) see Titchmarsh [23], §9.14, 292-293. For (c) choosea € Nqy

with a # 1. Then Ng is loaded implies a - Ng has positive density . Choose A > 771,
andleta=|al. Then

- — im D@
V= A(a' Nd) - nﬂvrpoo Ad(an+1)’

50 Ag(a") = O(\"). Since Aq is nondecreasing, Ag(X) = O(X'°%*). Thus by part (a) the
abscissaof convergenceis at most log, . ]
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THE REGULAR CASE.

THEOREM 5.16. Let Ny be a system of generalized integers such that
(a8) Aq hasregular variation (at infinity) with index o(> 0), i.e,,

forx > 0;
(b) thereis a positive constant C such that

Adg(xt) > Cx"Aq(t)

fort,x > 1.
Then Ny is loaded.

PrROOF. Let Pq,..., Pk be a partition of the generalized primes P and ry, ..., rge a

seguence of nonnegative integers. Let

— > >r
B=P-. P

havethe Dirichlet series -2 b, /n®, i.e., by isthe number of elementsof B of sizen; and
let B(x) be the counting function for B. Let {1, ..., k} = J1 U J, where

B={il<i<k Y — <+oo}.
peP; |p|

L={ii1<j<k Y — =+oo}.
pePi||

TheclassP; islargeif j € Jo; and small otherwise.

CASE 1. First we consider the casethat r; = O for all j € J; thusP;™ - - - P puts
restrictions only on the number of generalized primes belonging to the ‘small’ classes
P;. Then clearly we have

9, ( 1 ) 1.,
—_ = e — . 1 —_—
Zw = U0 20 o) LA
i1<--<i,
p,l...‘,pi‘,ePJ
k 1\71
) = Mo@- 1111 (1- =) -
ey i=1pep, p|
where
o R (I P g
: peP; |p|S = (|pi1| T |pi/|)s'
i1<--<iy
Piy;--sPi, €Pj
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Let X, denote the set of the Dirichlet series "7 e,/ n® that are absol utely convergent
fors=q,i.e,

Clearly X is closed under the Dirichlet convolution product, i.e., if >3 €,/n° and
et fn/n® belong to X, then so does 57722 gn /%, where gn = Sy, &, k. Now let us

write
1 oo
(5) (1— —) = )
ple_i[DJ |p|S n=1 nS
1)V X
(6) (l + —) = EALY
PE'I’J’ (A=
1 oo 7,
7 - o
( ) gj (|p|1||p|/|)s nglns'
i1 <-<iy
p|1 ..... piIEPJ
and .
1) oo 1 0y,
®) (=) = (S ) =2
U= pr) = L &peE) =4
Clearly we have
©) |Xn| <¥n < U
and
(10) 0<2 <Upn.

It followsfromj € J; that the Dirichlet seriesin (8) belongsto X,, thus by (9) and (10),
the Dirichlet series in (5) and (7) belong to X,, too. Thus their product, the Dirichlet
series representing g;(s), belongsto X, (for all j € J1). Thuswriting

(11) IRCE Z s

jeh

this Dirichlet series belongsto X,, i.e.,

(12) Z M < +00.
By (2), (3) and (11) we have
RVy R an
(13) ;1 Z o
whence
(14) BX) =3 b= 3 via = Z(vk ) a() = 3" ViAa(x/K).
n<x ke<x k<x <x/k k<x
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Fix ane > 0. Then, for 1 < Q < x we have, by (14),
(15

B — (3 ) Ao

k=1

<809 — (2 i )Ast0] + A0 35 1o

< [B69 — 3 wesbe0]+ 3 - A/~ S+ At - B
<| 3w+ 3 - A9 - 52 +Ad(>z'vk'

Denote the three terms in the last expression by Ry, Ry, and Rs. It follows from (12) that
thereis an Qqp(e) such that

(16) Rs < €Ad(X)
if Q > Qo(e). Next, by the hypothesis (b) of the theorem, there is a positive constant C
such that Ad( ) vl
X V)
17) Ri< 3 |wl-1/C- <1/C-Ag(¥) - Z k.

Q<k<x
so that by (12) thereisan Q;(¢) such that

Ry < eAq(X)

if Q > Qi(e). Finally, it follows from the hypothesis (a) that, writing Yx<q || = La,
thereis an xg(e, Q) such that

Ad(X)

Ag(x/K) — < —Ad(x) if X > Xo(e. Q).

uniformly for 1 <k < Q. Thus, for x > xg(e, Q), we have

(18) R < ), |Vk|—Ad(X) = eAd(¥).

k<Q

Now let Q = max(Qo(e), Ql(e)). Then for x > Xo(e, Q) we have from (15), (16), (17)
and (18) that
RR+R+Ry3 < 3€Ad(X).

Since e is arbitrary it thus follows that

B(x) Vi
LR

(by (12) this infinite series is absolutely convergent), which completes the proof in the
first case.

(19)
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Case 2. Consider now the general case when rj > 0 may occur for some (or all)
j € Jo, i€, for some'‘large’ sets P;. We will reduce this case to the previous one.

Recall that B = Py - P, and let B* = Tljey, P, - Tljes, P, the subset of Nq
whose members have at least rj factors from P; for eachj € Jq, with no restriction on
the number of factors from P; for j € J,. Then B C B*. We define

(20) B=B*\B.

LetE = Pj<r" - (P \ Pj)°, the subset of Ng for which the number of factors from P; is
less than rj, and there are no restrictions on the number of factors from the other classes
Pi. Denote the counting functions associated with B*, B and E; by B*(x), B(x) and E;j(x),
respectively. Clearly,

(21) BC U E.
j€d
ri>0
Thus we have
(22) B*() —BX)| < > Ex).
j€d
fj >0
We know from thefirst half of the proof that the density associated with B*, i.e., the limit
. B*(¥)
AN 2

exists. Thus, in view of (22), it suffices to show that the density associated with E;j is 0
for eachj € J, for whichr; > 0, i.e, if j € J, andr; > Othen, for @l e > 0O, thereisan
Xo(e, j) such that

(23) Ei(X) < eAq(X) for X > Xo(e, j)-

For j € Jz, withr; > 0, and for A > 0, consider afinite subset F of P; with

(24) > > A.

oer [Pl
(Asj € J,, such asubset F exists.) Now consider the partition of P givenby F, P\ F, and
let H = F<"i - (P \ F)=°, the subset of Ng whose members have less than r; factors from
F.LetH = F~i(P \ F)Z0, the complement of H in Ng, namely the generalized integers
with at least r; factors from F. Denote the counting functions associated with H and H by
H(x) and H(x), respectively. Then clearly,

(25 E CH

and B

(26) H(X) + H(X) = Aa(x).
By (25) and (26), we see that (23) would follow from
(27) HX) > (1 — €)Ad(X).
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To prove this actually holds, observethat the Case 1 part of the proof of this theorem
can be applied to this situation to show the density associated with H exists, and by (4),
(11), and (19), this density is

. ﬁ(x) iRV

lim —=< =>"—,
x—+00 Ag(X)  j=g K”
where now the sequence (v,) is defined by

(28)

ax) = EHS
B 1 ) 1
pl;[F( |p|S gj (lpI1| e |pi[|)s
i1<---<iy
Piy.-Pi, €F
1 1\t 1
_ 1__)( (1——) 1o S S
(-5 kL ToF 22, Tl ol
i1<--<iy
Piys--Pi, €F
1 1
-1 (1__)(1+ 7)
W= oE 2, Geul o
1< <iy
p,l...‘,pi‘,EF

Thusthe density in (28) is

i1<--<iy

Hence, writing
I

ot [Pl

and using the fact that 1 — x < € * for x > 0, we have

(30) 1‘&5“00:,%) =1-q()
1 rj—1 1
- 1(-5p) g o )
Piys-sPi, €
1 r—1 1 t
< oo~ o) (“E(EFW) )
r—1
= exp(—o) - ([Z%(S )
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Clearly,
/rjfl ,
lim exp(—x) - X ) =0.
X—+00 \ (;0
Thusif A in (24) islarge enough it follows from (30) that

. HX
1— lim —= <
x—+o0 Ag(X)
which proves (27); and this completes the proof of the theorem. ]

REMARK 5.17. Let Ny beasystem of generalized integerswith Dirichlet series(y(s) =
Yryan/ns. For Py, ....Py a partition of the generalized primes P, and ry, .. .. e a
sequence of nonnegative integers, let B = Pf’l e Pf’k have the Dirichlet series (g (s) =
Y2 bn /n®. Assuming the hypotheses of Theorem 5.16 we have from (13) the equation
Ga(S) = Xn23 12 - Cu(9), valid for s> ar. Let By = P?" - Ng, the set of generalized integers
that have at least r; factors (counting repeats) from P;. Then from (3, 11, 19) we can
deduce

(@) A(B) =lims_q+ (a(9) /Ga(9)-
(b) A(B) =A(B1) - - A(BW).

REMARK 5.18. Supposethat the assumptions (a), (b) of Theorem 5.16 hold. Further-

more suppose Q C P satisfies

+00.

>

peQ |p|a
Then, for r > 0, from the proof of Theorem 5.16 we have
@ A(Q™" - (P\ Q™) =1, i.e, the set of generalized integers with at least r factors
from Q has density 1;
(b) A(Q" - (P\ Q)*°) = 0, i.e,, the set of generalized integers with exactly r factors
from Q has density 0.

Now we derive somecorollariesfrom Theorem5.16 that are easy to apply to numerous
situations. We will be using the condition Ay(x) = (1 + 0(1))x*S(x). As Ay(x) > 1 for
x > lit followsthat S(x) is eventually positive, and that Ay(X) € RV, iff S(X) € RV,.

COROLLARY 5.19. Let Ny be a system of generalized integers, and suppose o > 0
and S(x) € RV, are such that

(@ Ag(x) = (1+0(1))x*S(x), and
(b) thereisa positive constant Cy such that S(xt) > CoS(t) for t,x > 1.
Then Nqg isloaded.

PROOF. Let C; = min(1,liminfy .., S(x)). Then C; > 0 as SX) is eventually
positive, and in view of condition (b).
Choose Q > 1 suchthat Ag(Q) > 0, and for u,v > Q,
1
(31) [Aa(U) — U"S(U)| = FU"S(U)

(32) ) > %cl.
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Then for u > Q we have

(33) 2USW) < AYW) < Su'Sty)
Let C 1 C
o 0 1

€= "“”(? o 4Ad(g>)-

CLAIM. Ag(xt) > Cx*Ay(t) for x,t > 1.

Once we have proved this claim then applying Theorem 5.16 will conclude the proof
of our corollary. We break the proof of the claim into three steps.
(I) Supposex > landt> Q. Then

Adlx) > Z00)°S0) by (33)
> 2xt(CoS(0) by ()
(Co/2x* (" (1))

> (Co/ 2" (2Ad0) by (39

= (Co/3)X"Ad(t)
> O A (D).

(I1) Supposel < x,t < Q. Then

Aq(xt) > A4(t) asAq isnondecreasing
> (X*/QN)A4(L) asx* < Q“
= (1/Q7)x"Aq(t)
> Cx"Ag(t).

(1) Supposel <t < Q < x Then
Ag(x) > (Aa(t)/Ad(Q))Ad(xt) asAq(t) < Ag(Q) #0
> (Aa()/Ad() (50070 by (33)
> (28u(Q) " Ad()X"S(x)
> (2Au(@) A 3Cr by (32)

= C1(470(Q))  Ad(OX"
> Cx"Ag(t).

This concludes the proof. ]
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COROLLARY 5.20. Suppose Nq is a system of generalized integers. If « > 0 and
S(X) € RVp are such that

(@ Aa(¥) = (1+0(1))x*(x), and

(b) S(x) iseventually nondecreasing,
then Nq is loaded.

PROOF. Suppose S(x) is hondecreasing on [b, 0o). Let

_ [Sb) on(0.b]
g(")‘{S(x) on [b, c0).

Then, notingthat S(xt) > S(t) for x,t > 1, S(x) canbeused for the §(x) of Corollary 5.19
(with Co = 1). "

COROLLARY 5.21. Let Ny be a system of generalized integers such that the count
function Aq satisfies

Ad(x) = (1+0(1))Cx",
for someC > 0and o > 0. Then Ng is loaded.
PrROOF. Let §(X) = C, and apply Corollary 5.20. ]

REMARK 5.22. Finding prime number theorems for various classes of objects with
multiplication has been an important area of research throughout the century, starting
with Landau’s 1903 work [16] on prime ideals in algebraic integers, through Bateman
and Diamond's exposition [1] of Beurling's 1937 work [2] on generalized integers
and Knopfmacher’s book [13] on arithmetical semigroups. In each case they needed
conditions on the growth of the count function Aq. What is particularly interesting for
usis that their conditions are covered by Aq(x) = (1+0(1))Cx*, and hence always give
loaded systems. We will comment further on this in the final section.

THE DISCRETELY REGULAR CASE. Now we consider the following special case of the
problem studied so far: assumethat thereis aninteger d greater than 1 such that the sizes
of the generalized primesin P form asubset of {d, d?, ..., d",...}. We will seethat the
results from the previous section can be carried over to this new setting.

The next result showsthat the sizesof membersof adiscrete number system arerather

well-behaved.

PROPOSITION 5.23. Let Ny be a discrete system of generalized integers, and let the
positive integer d be the generator of the domain of pa, (as a cyclic subgroup of the
positive reals under multiplication). Then there isan N such that for any integer m > N
one hasa generalized integer n € Ng with |n| = d™

PrROOF. Let E(Ng) = {logy(|n|]) : n € Ng}. Then E(Ng) is a subsemigroup of the
nonnegative integers under addition, and thus (by a well-known result of Schur—see
Wilf [24], p. 97) it is eventually the set of muiltiples of the period g = ged(E(Na)) of
E(Nqg). Asd isagenerator of the domain of pa, one must haveg = 1. ]
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For conveniencein writing up the results below we designate the following sentence:

The domain of pa, is the cyclic subgroup (of the positive reals under

) multiplication) generated by the positive integer d.

THEOREM 5.24. Let Ny be a discrete system of generalized integers such that (x)
holds. If

(8 Ag € RV,(d) for some o > 0, and
(b) thereisa positive constant C such that

Ag(d™ - d") > C(d™)*Aa(d")

for integersm,n > O,
then Ny is loaded.

PROOF. The proof is essentially the same as for Theorem 5.16 after restricting vari-
ables running over the reals or integers to integer powers of d, i.e., to the domain of
paq- Note, for example, that in this situation the a,, bn, X, Yn, Z1, Vn from the proof of
Theorem 5.16 are 0 unlessnis apower of d. Thus, expressionslike Ay(x/K) in the proof
are such that both x and k are powers of d. ]

COROLLARY 5.25. Let Ng be a discrete system of generalized integers such that (x)
holds. If thereare o > 0 and S(X) € RVp(d) such that
(@ Ad(d" = (1+0(1))(d")*S(d"), and
(b) thereisa positive constant Cp suchthat S(d™-d") > CoS(d") for integersm, n > 0,
then Nq is loaded.

PROOF. The proof is essentially the same as for Corollary 5.19, again restricting
variables asin the previous proof. ]

COROLLARY 5.26. Let Ny be a discrete system of generalized integers such that (%)
holds. If « > 0 and §(X) € RVy(d) are such that
(@ Ad(d" = (1+0(1))(dM)*S(d"), and
(b) S(d") is eventually nondecreasing,
then Ny is loaded.

ProoF. Again modify the range of the variablesin the proof of Corollary 5.20. =

COROLLARY 5.27. Let Ng be a discrete system of generalized integers such that (x)
holds, and such that the count function Aq satisfies

Ag(d") = (1+0(1))C(d")”,

for some C > 0and a > 0. Then Ny is loaded.
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PROCF. Let She the constant function with value C, and apply Corollary 5.26. =

Now we consider what happens when one bounds the multiplicities of the primes.
Let Ng be a discrete system of generalized integers, and let d be a positive integer such
that the sizes of members of Ny are all powers of d. For each k € N suppose the size d*
occurswith multiplicity a. In this case, the generating function is

+00 an _ +00 1 — _ +o0 ,+00 1 o +00 f(n)
Yacllt-g) claw) cXw
where f(n) denotes the number of non-negative integer solutions (in the unknowns xi(k),
k=1.2...,i=12,...,0) of the linear additive equation

+00
(34) 2 KO 7+ x) =,

(Note that if o = 1 for @l k € N, then f(n) is equal to the well-known and intensively
studied partition function p(n).) It follows that

AgX)=> a= Y f(m).

n<x logx
- M= f5ga Togd

THEOREM 5.28. Let Ny be a given system of generalized integers. Supposethereisa
d € N such that the size of every generalized primeisin {d.d?. ..., d<,...}. Moreover,
suppose the multiplicities oy with which the sizes d* of the generalized primes occur
are uniformly bounded, i.e., thereisa U € N such that for every k there are at most U
generalized primes whose size is d. Then Aq € RVp, and hence is loaded. (In Part I
[7], the condition Ay € RV, isreferred to as front-loaded).

PROOF. The casethat there are only finitely many generalized primes is handled by
precisely the arguments used to prove Corollary 9 of [4]. So now we assume that there
areinfinitely many generalized primes.

Let zdenotetheleast integer with o; > 0. By Corollary 4.3 and Lemmab.3, it suffices
to show that

pag(d™) =1,

ie.,

. Ad(t/dz) B
I A0

|
'I’_
+3
g3
/'\

> fm)( b f(m))
)

lim (Zf(n) (Zf(n))

NeN,N—+oo
N N

1— Iim (Z f(n))(ngof(n))l

NEN,N—+00 \n=NZz+1

=1
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or, in equivalent form,

(35) lim ( % f(n))(nzzljof(n))_lzo.

NeN,N—+oo n=N—z+1

First we will show that the denominator in (35) grows faster than any power of N:
N
(36) lim N7*> f(n) =+oo (forall a > 0).
N—+oco n=0

To show this, let H be a positive integer with
H> «a,

and consider H generalized primes with different sizesd < d* < ... < d*. Then
each solution (in nonnegative integers) of

(37) T X < N
i=1

is counted in the sum in (36), so that the number of solutions of (37) gives a lower
bound for this sum. Moreover, each H-tuple (x*), x*) .. . x4y with x8) € {0,1,...,
[N/(kH)]} provides asolution of (37). The number of these H-tuplesis

=1

(IN/ (kH)] +1) > NH<HHJ_:]H_[lkj)_l

so that
N H -1
S (n) > NH(HH Hk,—) .
n=0 =1

Thisholdsfor any fixed H and all N, which clearly implies (36).

Assume now that e > 0, and let L be a positive integer large enough in terms of ¢ (to
befixed later). We split the number of solutions of (34) into two parts: let f;(n) denotethe
number of those solutionswhere there are at most L pairs (k, X¥) withk € N, 1 < i <Kk,
x® > 0, i.e, there are < L non-zero terms kx® on the left-hand side of (34), and let
fo(n) denote the number of solutionswith more than L non-zero terms.

First we will give an upper bound for

N N
(38) > fi(n) <3 f(n).
n=N—z+1 n=1
Clearly we obtain an upper bound for theright hand sideif we count those sums 57y ; kx®
where all k, x¥ satisfy 1 < k,x® < N, and the number, say t, of terms satisfiest < L.
For fixedt, the k-valuesin these terms can be chosenin at most Nt way's (since repetition
is allowed). If the k-values have been fixed, then for each k, the subscript i with x* > 0
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can be chosen in at most oy < U ways, and if both k and i are fixed, then xX¥(< N) can
be chosen in at most N ways. Thus we obtain the upper bound

N L
(39) S fi(n) < S°NWUIN' = O(N?)
n=1 t=0
(for fixed L, and N — +00). It follows from (36), (38) and (39) that
N N
(40) S fy(n) = o(z f(n)) (for any fixed L, and N — +00).
n=N—z+1 n=0
In order to give an upper bound for
N
(41) > fa(n),
n=N—z+1

consider a solution counted in this sum, i.e., consider an integer nwithN —z < n <N
and a representation of n in the form (34) with more than L non-zero terms. Starting out
from each of these solutions, we construct several new equationsin the following way:
to each non-zero term kx® we assign the equation obtained by subtracting k so that x
is replaced by x® — 1:

SO X D)+ 0 — D)+ 4 x)

ik
(42) =n—k.
In this way, from each solution of (34) counted in (41) we obtain as many solutions
countedin y
(43) > f(m)

m=1

asthe number of the non-zero termsin (34), i.e., more than L solutions, so that we obtain
more than N
(44) M=L- > fn)

n=N—z+1
solutions of type (42) countedin (43). However, we may get each of these solutionsmore
than once, so that we need an upper bound for their multiplicity. If we start out from a
fixed solution of type (42) counted in (43), and we replace n — k on the right hand side
by m:

+oo . . X
(45) gj(yﬁ>+y8’+~--+y23>:m

iz
then to reconstruct the initial solution (counted in (41)), we have to add one of the
numbersk=N—z+1—-mN—-z+2—m,..., N — mto the equation (45) so that on the

left hand side we add 1 to one of the terms y® with 1 < i < ay. We may choosek and
i inat most z, resp. ax < U ways, so that we may get each of the at least M solutions
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(where M is defined in (44)) of type (45) counted in (43) with multiplicity at most zU.

Thuswe have
N L N
M >— > fAn)
m=l U n=N—z+1
whence
N zU N
> fh(n)< T > f(m).
n=N—z+1 m=1

If L islarge enoughintermsof e, zand U, then zZU /L < ¢ so that

N N

(46) > fon) <ed f(m) (for N > No(e)).
n=N—z+1 n=1

Sincee in (46) is arbitrary and f (n) = f1(n) + f2(n), thus (35) follows from (40) and (46),

and this completesthe proof of the theorem. ]

Note that some upper bound on the sizes of the multiplicities oy is necessary. To
see this, consider a sequence o growing so fast that o is greater than the number
of generalized composite integers of size at most d¥. Then the density of P, the set of
generalized primes, is not zero. But then, by Proposition 5.7(c), Ng is not loaded. This
example can be easily generalized to the following setting. Suppose ¢(n) is an arithmetic
function suchthat limsup,,_,.., ¢(n) = +oo. Thenthereisasequence(«,) of nonnegative
integers such that
_ logan
" logn

Bn':

< ¢(n)

for n sufficiently large, and Ny is not loaded for d being the sequence of powers of d
where the multiplicity of d¥ is a.

Although our result that bounded multiplicities in the discrete case guarantees front-
loaded covers an important part of the discrete generalized number systems, it would be
very interesting to know if the condition

Bn=0(1)

isthe precise upper bound condition to guarantee Ny is (front-)loaded. (See Question 8.3
of Compton’s survey paper [5].) Asjust stated, examples to show the relevance of this
condition are rather easy to construct. But to show that it is sufficient appearsto require
toolsthat go well beyond what we have developed here.

We close this section with several questionsthat we think are of interest:

1. Are‘loaded’ and ‘regular’ equivalent for systems of generalized integers Ng?

2. Do the two conditions A(P) = 0 and A(m - Ng) > 0 for m € Ng, imply that Ng is

loaded?
3. Can one simplify the definition of loaded?
(@) If theset of multiplesof H" hasadensity for every H C P and positiveinteger
r, doesit follow that Nq is loaded?
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(b) If the set of multiples of H hasadensity for every H C P, doesit follow that

Ng isloaded?
4. Dothe partition blocksof the generalized primes behave‘independently’ in loaded
systems, i.e., if Py,..., Pk is a partition of the generalized primesP andr; > 0

doesit follow that ’
APT™ - P = TIAP - Ng) ?
i=1

5. Isthe Dirichlet convolution product of the Dirichlet series for two loaded gener-
alized integer systems again loaded?

6. How fast can the multiplicities grow in the discrete case and till yield a (front-
)loaded system?

6. Applicationsto admissible classes. Now we translate the key results from the
previous section into the setting of admissible classes of structures, and give examples
where these results apply. First, from Proposition 5.15, we have the following restriction
on loaded classes.

PROPOSITION 6.1. If K is an admissible class with limsup, .., 5% = +oo then
K is not loaded.

REMARK 6.2. Higman [10] gives lower bounds on the number of (nilpotent) groups
of order p", and Knopfmacher gives related bounds for various classes of groups, rings,
and algebrasin [11] and [12]. The lower bounds for these classes K state that, for some
positive constant C,

log7i(n) > C(logn)®

on an infinite subset of the positive integers. By Proposition 6.1 we seethat such classes
K are not loaded. If they should happen to have a first-order limit law, then one must
prove it by means other than those used in this paper.

Inthefollowing wewill say that K isregular, discrete, respectively discretely regular,
if the corresponding system of generalized integers is regular, discrete, respectively
discretely regular.

REGULAR ADMISSIBLE CLASSES.

THEOREM 6.3. Let K bearegular admissible class of structures such that
(@) 7« € RV,, and
(b) thereisa positive constant C such that

T (Xt) > Cx™7¢ (1)

for t,x > 1.
Then K isloaded, and hence has a first-order limit law.

COROLLARY 6.4. Let K bean admissible classof structures. If « > 0and S(x) € RV
are such that
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(@ (9 = (1+0(1))x*(x), and
(b) thereisa positive constant Cy such that S(xt) > CoS(t) for t,x > 1,
then K isloaded, and hence has a first-order law.

COROLLARY 6.5. Let K bean admissible classof structures. If o > 0and S(X) € RVy
are such that
@ k() = (1+0(1))x*S(x), and
(b) Sx) iseventually nondecreasing,
then K isloaded, and hence has a first-order law.

COROLLARY 6.6. Let K be an admissible class of structures such that the count
function 7¢ satisfies
() = (1+0(1))Cx",

for someC > 0and « > 0. Then K isloaded, and hence has a first-order law.
Knopfmacher’'s Axiom A, mentioned in the abstract, is
k(X) = Cx* + O(x?),
where 0 < 3 < o. We can apply Corollary 6.6 to claim that all admissible classes
satisfying Axiom A are loaded, and hence have a first-order law.°

ExAMPLE 6.7. The main examples of admissible classes satisfying Axiom A from
Knopfmacher’s 1975 book [13], along with the instance of the Axiom A which they
satisfy, are given in the table below.” Zx means the integers belonging to the number

field K.
K TK
Sets x+0(1)
Semisimple Rings Cx+ O(v/X)
Semisimple Zx Algebras O(v/X) if[K:Q] <3
or Cx+<¢ O(v/xlogx) if[K:Q]=3
Zx Modules O(xE2HIKQA) ™ jf [K : Q] > 3

ExAMPLE 6.8. The study of the number of (unordered) factorizations of an integer
n by Oppenheim [18], [19] in 1926/1927 show that if we have an admissible class K
with exactly one indecomposable of each size, i.e., o (n) = 1 for al n, then we have the
following asymptotics® for 7:

2109
2,/w(l0gX)/*

6 K. Compton wasthefirst to discover the existence of afirst-order law for Abelian Groups. Hiswork was
based on the use of Tauberian theorems, as found in Knopfmacher’s book [13].

7 He gives numerous other examples of arithmetical categories, but either they are not admissible classes
(e.g., topological spaces), or the Dirichlet series has its abscissa of convergence at +oco (€.9., p-groups).

8 This result was found independently by Szekeresand Turan [21] in 1933.

() = (1+0(1))x
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Asthe function
e2vIogx

2,/m(logx)3/4
isslowly varying, and increasing for x > e, we can apply Corollary 6.5 to conclude that
K is loaded, and thus has afirst-order limit law.

One can easily find examples of such classes among lattice based structures, e.g., let
K bethe class of finite lattices which can be expressed as direct products of chains.

) =

DISCRETELY REGULAR ADMISSIBLE CLASSES. Again, for convenience in writing up
the results in this part we have the following designated sentence:

disthe positive integer that generatesthe cyclic subgroup (of the positive
reals under multiplication) generated by the sizes of the members of K.

(%)

THEOREM 6.9. Let K be a discrete admissible class such that (%) holds. If
(8) 7« € RV,(d) for somea > 0, and
(b) thereisa positive constant C such that

7i(d™ - d") = C(d™) 7 (d")

for integersm, n > 0, then K isloaded, and thus has a first-order limit law.

COROLLARY 6.10. LetK beadiscreteadmissible classsuchthat (%) holds. If « > 0
and S(x) € RV(d) are such that

(@) 7k(d" = (1+0(1))(dM)*S(d"), and

(b) thereisa positive constant Cy suchthat S(d™-d") > CoS(d") for integersm, n > 0,
then K isloaded, and thus has a first-order limit law.

COROLLARY 6.11. LetK beadiscreteadmissibleclasssuchthat (xx) holds. If « > 0
and S(x) € RVp(d) are such that
(@ 7x(d" = (1+0(1))(d")*S(d"), and
(b) S(d") iseventually nondecreasing,
then K isloaded, and thus has a first-order limit law.

COROLLARY 6.12. Let K be a discrete admissible class such that (xx) holds. If
T)(d") = (1 + o(l))C(d”)".
for some C > 0and a > 0, then K isloaded, and thus has a first-order limit law.

REMARK 6.13. In Theorem 6.9 and its corollaries one can replace the count function
7k by the fine spectrum o« and concludethat K is loaded by showing that the hypotheses
of Theorem 6.9 are satisfied. The key stepsare (1) ok € RV, (d) impliestx € RV, (d),
and (2) ox(d™-d") > C(d™*ok(d") implies 7y (d™ - d") > C(d™)*7y (d").
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For our purposes, K nopfmacher’sAxiom A*, mentioned in the abstract, can bewritten
intheform (see[14], p. 7)

o (d") = B(d")* + O((d"").
or, see[14], p. 16, the equivalent form

m _ [ CdN +O((d)!) fO<8<a
TK(d)_[C(d”)“+O((n) ) if0=3< a,

where n runs over integers. By Corollary 6.12 all admissible classes satisfying Axiom A*
are loaded, and hence have a first-order law.

EXAMPLE 6.14. The main examples of admissible classes satisfying Axiom A* from
Knopfmacher’s 1979 book [14], along with the instance of the Axiom A* which they
satisfy, are given below.® Dq meansthering of integral functionsin an algebraic function
field in one variable over GF(q).

K ok (d")
GF[q.t] Modules Bd" + O(+/d")
Semisimple GF[q. ] Algebras | Bd" + O(+/d")
Dq Modules Bd" + O(+/d")
Semisimple D, Algebras | Bd" + O(,/d")

ExXAMPLE 6.15. In 1992 A. Knopfmacher, J. Knopfmacher and R. Warlimont [15]
looked at extensions of the Oppenheim result mentioned in Example 6.8 to the general
setting of arithmetical semigroups. What they showed, formulated in terms of a discrete
admissible class K, and where d is as in (xx), is that if the fine spectrum o of the
class of indecomposablesF satisfies axiom A%, i.e,, if o(d") = B(d")* + O((d")?), with
0 < 8 < «a, then the fine spectrum oy of K has asymptotics given by

BePvh
n3/4 )

ax(d") = (1+0(2))(d")"

Asthe function
BeP V100

- )3/4

(logg(n)
satisfiesthe conditionsof Corollary 6.11, we concludefrom Remark 6.13that K isloaded,
and thus has a first-order limit law.

THEOREM 6.16. Let K be a discrete admissible class of structures. Supposethereisa
positiveinteger d suchthat the size of every K-indecomposableisa power of d. Moreover,
supposethe multiplicities oy with which the sizes d* of the K-indecomposablesoccur are

9 Therearefurther examples of discrete arithmetical categoriesin [14] that satisfy Axiom A¥, but they are
not admissible classes (e.g., the monic polynomials of GF[q, t]).
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uniformly bounded. Then 7« is slowly varying, and thus K is loaded and has a fir st-order
law. (Note: In Part |1 [ 7] such a K will be called front-loaded, and will be shown to have
a first-order 0-1 law.)

EXAMPLE 6.17. Many varieties K of algebras from algebraic logic are discrete and
have a uniformly bounded number of indecomposables of each size, e.g., Boolean
algebras, monadic algebras, n-valued Post algebras. From group theory one has the
class A(p) of abelian p-groups. From ring theory there are the classes defined by x™ = x
(for m> 1).

In conclusion we would like to thank Professor John Knopfmacher for his detailed
comments on an earlier draft of this paper, in particular his encouragement to give a
more thorough consideration of possibilities in the discrete case.
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