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FINE SPECTRA AND LIMIT LAWS I.
FIRST-ORDER LAWS

STANLEY BURRIS AND ANDRÁS SÁRKÖZY

ABSTRACT. Using Feferman-Vaught techniques we show a certain property of the
fine spectrum of an admissible class of structures leads to a first-order law. The condition
presented is best possible in the sense that if it is violated then one can find an admissible
class with the same fine spectrum which does not have a first-order law. We present
three conditions for verifying that the above property actually holds.

The first condition is that the count function of an admissible class has regular
variation with a certain uniformity of convergence. This applies to a wide range of
admissible classes, including those satisfying Knopfmacher’s Axiom A, and those
satisfying Bateman and Diamond’s condition.

The second condition is similar to the first condition, but designed to handle the
discrete case, i.e., when the sizes of the structures in an admissible class K are all
powers of a single integer. It applies when either the class of indecomposables or the
whole class satisfies Knopfmacher’s Axiom A#.

The third condition is also for the discrete case, when there is a uniform bound on
the number of K-indecomposables of any given size.

1. Preliminaries. Throughout the paper we will be working with classes K of finite
structures, for a first-order language L. First we give a list of definitions that will be
used:

1. I(K) is the closure of K with respect to isomorphism, and
2. Pfin(K) is the closure of K with respect to finite direct products.
3. For classes K1Ò    ÒKn, the product of these classes is defined by K1 Ð Ð ÐKn =

IfA1 ð Ð Ð Ð ð An : Ai 2 Kig. We write Kn if K = K1 = Ð Ð Ð = Kn.
4. K½r is the class

S
i½r Ki.

5. An L-structure A is trivial if its universe A has only one element.
6. A member A of K is K-indecomposable if (i) its universe has at least two elements

in it, and (ii) it is not isomorphic to the direct product of two nontrivial members
of K.

7. K has unique factorization1 if every nontrivial member can be uniquely writ-
ten, up to isomorphism and the order of the factors, as a direct product of K-
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1 There is a substantial literature on unique factorization. The best overview is in McKenzie, McNulty and
Taylor’s book [17], Chapter 5. We can also recommend the two papers: Bigelow and Burris [3], and Willard
[25].
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FINE SPECTRA AND LIMIT LAWS I. FIRST-ORDER LAWS 469

indecomposables.
8. The fine spectrum õK of K is the sequence defined by: õK(n) is the number of

structures of size n in K (up to isomorphism).2

9. The (total) count function úK for K is defined by

úK(x) =
X
n�x

õK(n)

10. Given a property P let õK(n j P ) be the number of structures in K of size n having
the property P . And let úK(x j P ) =

P
n�x õK(n j P ).

11. The cumulative probability, ProbK(P ), that a property P holds in K is defined by

ProbK(P ) =: lim
n!+1

úK(n j P )
úK(n)

Ò

provided this limit exists.
12. K has a first-order law if, for every first-order sentence û, ProbK(û) exists; if the

latter is always 0 or 1 then we say K has a first-order 0–1 law.

REMARK 1.1. In much of the work on laws one considers the proportion of structures
of size n which satisfy a given property. See, for example, [5] and [6]. We have adopted
Compton’s approach to studying direct products, namely consider the proportion of
structures of size at most n which satisfy a given property.

As an example let K be the class of groups I(fZn
6 ð Zn

15 : n ½ 1g). There is, up to
isomorphism, only one K-indecomposable, namely Z6ðZ15. K has unique factorization;
the fine spectrum is: õK(n) = 1 if n is a power of 90, and = 0 otherwise; and úK(x) is 0 for
x Ú 90, and is n if 90n � x Ú 90n+1. In the last section we will see that K has a first-order
law; and in Part II [7] we show it has a first-order 0–1 law.

2. Loaded classes.

DEFINITION 2.1. A class K of finite structures is admissible3 if
ž K = IPfin(K),
ž õK(n) Ú +1 for all n, õK(1) = 1,
ž K has unique factorization, and
ž a trivial structure A in K acts as a multiplicative identity, i.e., A ð B ≤ B for all

B 2 K.

REMARK 2.2. This definition guarantees that if K is an admissible class then we can
determine its fine spectrum from the fine spectrum of the class of K-indecomposables.
Furthermore, the fine-spectrum õK can be recovered from the count function úK.

2 The fine spectrum was introduced in 1975 by Walter Taylor [22] for the case that K is an equationally
defined class of algebras.

3 Admissible classes form a select part of the general framework of arithmetical categories used by
Knopfmacher [13] in his study of generalized prime number theorems.
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470 S. BURRIS AND A. SÁRKÖZY

DEFINITION 2.3. Let K be a class of structures, and let F be the class of K-indecompos-
ables. We say that K is loaded if, for every partition F1Ò    ÒFk of F into classes closed
under isomorphism, and for every sequence r1Ò    Ò rk of nonnegative integers, the set
F½r1

1 Ð Ð Ð F½rk
k of structures A 2 K with at least ri factors from Fi, 1 � i � k, has an

asymptotic density, i.e.,

ProbK (is in F½r1
1 Ð Ð Ð F½rk

k ) exists

REMARK 2.4. Note that K is loaded also implies

Fr1
1 Ð Ð Ð Fri

i F½ri+1
i+1 Ð Ð Ð F½rk

k

has an asymptotic density as, for any property P ,

úK(n j has exactly ri factors from Fi and P )

= úK(n j has at least ri factors from Fi and P )

�úK(n j has at least ri + 1 factors from Fi and P )

3. Logical aspects. The Feferman-Vaught methods played a key role in [4] where
it is proved that every directly representable variety has a first-order law. Now we apply
them to admissible classes.

LEMMA 3.1. Let û be a first-order sentence with a Feferman-Vaught sequence
hΦÒ û1Ò    Ò ûki. Then there is a positive integer cû such that if H is a class of struc-
tures with H j= ûi or H j= :ûi, 1 � i � k, then

(a) for each positive integer n either Hn j= û or Hn j= :û, and
(b) n ½ cû implies Hn j= û, or n ½ cû implies Hn j= :û.

PROOF. Let A0Ò    ÒAn�1 2 H. Then

A0 ð Ð Ð Ð ð An�1 j= û iff 2n j= Φ([[û1]]Ò    Ò [[ûk ]])Ò(1)

where [[ûi]] is the characteristic function of the set of coordinates where ûi holds. Each
[[ûi]] is either the 1 or 0 of 2n, for n ½ 1, depending solely on whether H j= ûi or H j= :ûi.
Thus Φ([[û1]]Ò    Ò [[ûk]]) is a sentence which does not depend on n. Part (a) now follows
from (1). For (b) first recall that Skolem’s elimination of quantifiers [20] for Boolean
algebras gives, for each Boolean algebra sentence Ψ, the existence of a constant cΨ with
the property

n ½ cΨ ) 2n j= ΨÒ or

n ½ cΨ ) 2n j= :Ψ

Let cû = max
n

cΨ : Ψ = Φ(ï1Ò    Ò ïk)Ò ïi 2 f0Ò 1g
o
.

Next we introduce a simple tool which has been popular with universal algebraists.
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FINE SPECTRA AND LIMIT LAWS I. FIRST-ORDER LAWS 471

DEFINITION 3.2. The ternary discriminator function t on a set S is the mapping
t: S3 ! S defined by

t(aÒ bÒ c) =
²

c if a = b
a otherwise.

For A a structure let At denote the expansion by the ternary discriminator. And for H a
class of structures let Ht be the class of At, for A in H.

We are only going to use the simplest properties of the ternary discriminator, namely
the ability to define the indecomposable factors and to define factor congruences.

LEMMA 3.3. Let A1Ò    ÒAn be nontrivial structures.
(a) At

1 ð Ð Ð Ð ð At
n satisfies the sentence

ûind := 8x 8y 8z
��

x = y ! t(xÒ yÒ z) = z
�
^
�
x 6= y ! t(xÒ yÒ z) = x

��

iff n = 1.
(b) Given aÒ b from A1 ð Ð Ð Ð ð An the binary relation

f(cÒ d) : t(aÒ bÒ c) = t(aÒ bÒ d)g

is the kernel of the projection map

ôJ: A1 ð Ð Ð Ð ð An !
Y
j2J

Aj

where J = fi : ai = biÒ 1 � i � ng.

PROOF. (Straightforward.)

THEOREM 3.4. Suppose that K is admissible.
(a) If K is loaded then K has a first-order law.
(b) If K is not loaded then there is an admissible K0 with the same fine spectrum as K

such that K0 does not have a first-order law.

PROOF. (a) Let û be a first-order sentence with a Feferman-Vaught sequence
hΦÒ û1Ò    Ò ûki; and let each ûi have a Feferman-Vaught sequence hΦiÒ ûiÒ1Ò    Ò ûiÒkii.
Let F0Ò    ÒF‡�1 be the equivalence classes of F, the class of K-indecomposables, ob-
tained by defining two members of F to be equivalent when they agree on the same ûiÒj’s.
Let c = maxfcûj : 1 � j � kg.

For 0 � i Ú ‡ and 0 � j � c define

Hij =

8><
>:

Fj
i if j Ú c

F
½c

i if j = c.

Then for 0 � ji � c let

pj0ÒÒj‡�1 = ProbK (is in H0Òj0 Ð Ð Ð H‡�1Òj‡�1
)
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472 S. BURRIS AND A. SÁRKÖZY

For A 2 K let ç(A) be the function in (c+1)‡, i.e., ç(A): f0Ò    Ò ‡�1g ! f0Ò    Ò cg,
defined by: ç(A)(i) is the minimum of c and the number of factors of A from Fi (in a
complete factorization of A). A consequence of Lemma 3.1 is that if ç(A) = ç(B) then
either both A and B satisfy û, or neither do.

Thus for g 2 (c + 1)‡ one has ç�1(g) � K consists of all structures A in K such that,
for 0 � i Ú ‡, A has exactly g(i) factors from Fi if g(i) Ú c, and at least c factors from
Fi if g(i) = c. Consequently

ProbK (is in ç�1(g)) = pg(0)ÒÒg(‡�1)

Define a function f : (c + 1)‡ ! f0Ò 1g by f (g) = 1 iff members of ç�1(g) satisfy û.
Then we have

ProbK(û) =
X

g2(c+1)‡
f (g) Ð pg(0)ÒÒg(‡�1)

(b) Now let us suppose that K is not loaded. Let F be the class of K-indecomposables.
Let F1Ò    ÒFk be a partition of F into classes closed under isomorphism, and let r1Ò    Ò rk

be a sequence of nonnegative integers such that

ProbK (is in F½r1
1 Ð Ð Ð F½rk

k )

is not defined. Let F0 be an expansion of Ft by 2k constants ai, bi, such that we have
ai = bi in members of Fi, and ai 6= bi in members of F n Fi. Let K0 = IPfin(F0). Then

ž K0 is admissible;
ž the set of K0-indecomposables is F0;
ž the fine spectrum of K0 is the same as that of K;
ž the K0-indecomposables F0 are defined in K0 by ûind (from Lemma 3.3);
ž as ProbK (is in F½r1

1 Ð Ð Ð F½rk
k ) does not exist, it follows that

ProbK0 (is in (F01)½r1 Ð Ð Ð (F0k)½rk ) does not exist;
ž (F01)½r1 Ð Ð Ð (F0k)½rk is defined in K0 by the sentence û which expresses “has a least

ri indecomposable factors, for 1 � i � k, which satisfy ai = bi” (such a sentence
can be constructed using Lemma 3.3).

As ProbK0 (is in (F01)½r1 Ð Ð Ð (F0k)½rk ) does not exist, it follows that K0 does not have a
first-order law.

Thus, among the admissible classes K, the ones for which knowledge of the fine
spectrum alone is sufficient to conclude a first-order law are precisely the ones that are
loaded.

4. Monotone functions and regular variation at infinity. In this section we collect
some basic facts about the behavior of f (xt)Ûf (t) as t ! +1.

DEFINITION 4.1. Let f : (0Ò+1) ! [0Ò+1) be given. Define the functions öf and öÊf
by

öf (x) = lim
t!+1

f (xt)
f (t)

Ò
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provided this limit exists and is in (0Ò+1);

öÊf (x) = lim
t!+1

f (xt)
f (t)

Ò

provided this limit exists and is in [0Ò+1];
f is said to have regular variation (at infinity) with indexã (see [9], p. 3), also indicated

by writing f 2 RVã, if
(a) dom(öf ) = (0Ò+1), and
(b) öf (x) = xã on its domain.

PROPOSITION 4.2. Suppose f : (0Ò+1) ! [0Ò+1) is nondecreasing. Then
ž öf and öÊf are nondecreasing on their domains,
ž öf is a multiplicative function on its domain, a multiplicative subgroup of the

positive reals,
ž and we have only the following three possibilities:

(a) dom(öf ) = dom(öÊf ) = (0Ò+1). In this case f 2 RVã for some ã ½ 0;
(b) dom(öf ) = dom(öÊf ) = fcn : n 2 Zg for some c ½ 1. In this case there is an

ã Ù 0 such that öf (x) = xã for x 2 dom(öf ).
(c) dom(öf ) = f1g 6= dom(öÊf ). In this case there is a c ½ 1 such that

öÊf (x) =

8><
>:

0 for x 2 (0Ò 1Ûc)
1 for x = 1
+1 for x 2 (cÒ+1).

Furthermore, no point of (1ÛcÒ 1) [ (1Ò c) is in dom(öÊf ).

PROOF. The fact that öf is nondecreasing on its domain follows simply from the
monotonicity of f since 0 Ú c Ú d implies

f (ct)
f (t)

� f (dt)
f (t)



If cÒ d 2 dom(öf ), then
f ( c

d t)

f (t)
=

f ( c
d t)

f ( 1
d t)

� f (t)

f ( 1
d t)

suffices to show the limit as t ! +1 of the left side exists, and that

öf (cÛd) = öf (c)Ûöf (d)
Thus dom(öf ) is a multiplicative subgroup of the positive reals, and öf is a multiplicative
function.

Now the multiplicative subgroups of the positive reals are either dense in the positive
reals, or they are cyclic. In the former case, as öf is multiplicative and monotone on
its domain, it follows that öf is continuous at x = 1; and then one can show dom(öf ) =
(0Ò+1), and öf is continuous on this domain. Thus it must be xã for some ã ½ 0.

The other claims are now relatively straightforward to verify.

COROLLARY 4.3. Let f be nondecreasing and nonnegative on (0Ò+1). If öf (c) = 1
for a single positive c 6= 1 then f 2 RV0.
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PROOF. From öf (c) = 1 follows öf (cn) = 1 for n 2 Z. Given x Ù 0 choose n 2 Z such
that cn � x Ú cn+1. Then we have, from the monotonicity of f ,

f (cnt)
f (t)

� f (xt)
f (t)

� f (cn+1t)
f (t)

;

and, as the limit as t ! +1 of the extremes is 1, it follows the same holds for the middle
quotient. Thus öf (x) = 1 for x Ù 0, i.e., f 2 RV0.

5. Generalized integers. The interesting questions about loaded admissible classes
K are now mainly questions about developing a better understanding of this concept—
such questions are really in the domain of number theory, in the study of Beurling’s
generalized integers, as described in the 1969 article [1] by Bateman and Diamond.

DEFINITION 5.1. Let
d = (d1Ò d2Ò   )

be a (possibly finite) sequence of integers4 with 1 Ú d1 � d2 � Ð Ð Ð . If the sequence is
infinite we require dn ! +1.

(a) The generalized integers Nd consists of the set of sequences n = (n1Ò n2Ò   ) of
nonnegative integers, of the same length as d, which are eventually 0 if d is an infinite
sequence.5

(b) The product m Ðn of two generalized integers m and n is given by coordinatewise
addition, i.e.,

m Ð n = (mi + ni)

Note that the sequence (0Ò 0Ò   ) of zeros in Nd is the multiplicative identity 1 of Nd.
(c) The generalized primes P consist of the set of elements of Nd of the form

(0Ò    Ò 0Ò 1Ò 0Ò   ), i.e., members of Nd which are 0 except for one coordinate which is
1. pi, the i-th generalized prime, has a 1 only in the i-th coordinate.

Note that the sets Nd and P depend only on the length of the sequence d.
(d) Every element of Nd different from (0Ò 0Ò   ) has a unique factorization into

members of P.
(e) The size jnj of a generalized integer n does depend on d, and is given by

jnj =
Y

dni
i 

(f) The notation
P

p2Q, where Q � P, means
P+1

n=1
P

p2Q
jpj=n

. We use the notation
Q

p2Q

in a similar manner.

4 Bateman and Diamond [1] allow the dn to be positive real numbers. Our definition of generalized integers
reflects the context of working with admissible classes. Essentially all of the results of this section carry over
verbatim to their setting.

5 Bateman and Diamond only consider the case that the sequence d is infinite. For generalized integers
they use the sizes

Q
dni

i instead of the sequences (n1Ò n2Ò   ). Of course several sequences may have the same
size, so they speak of their generalized integers as having a certain multiplicity.
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DEFINITION 5.2. (a) an is the number of generalized integers of size n, namely

an =
þþþfm 2 Nd : jmj = ng

þþþ
Note that a1 = 1.

(b) Ad(x) is the number of generalized integers of size at most x, i.e.,

Ad(x) =
X
n�x

an

For any property P , Ad(x j P ) is the number of generalized integers of size at most x
which satisfy P .

The following simple observation is quite important.

LEMMA 5.3. The number of generalized integers of size at most x which are multiples
of a given generalized integer m is precisely Ad(xÛjmj).

PROOF. We observe that

jm Ð nj � x iff jmj Ð jnj � x iff jnj � xÛjmj

From the unique factorization property in Nd we know that m Ð n1 = m Ð n2 iff n1 = n2.
Thus the set of multiples of m which have size at most x is in one-one correspondence
with the set of generalized integers of size at most xÛjmj using the mapping m Ð n 7! n.

In terms of Dirichlet series and Euler products we have, at least formally,

+1X
n=1

anÛns =
Y

p2P

 X
n

1
jpjns

!
=
Y

p2P

 
1 � 1

jpjs
!�1

(2)

REMARK 5.4. Every admissible class K of finite structures has a system of general-
ized integers Nd associated with it, namely let D1ÒD2Ò    be representatives of the K-
indecomposables,ordered by increasing size, and let di = jDij. Define the map ó: K ! Nd

by ó(A) = n, where, given the complete factorization

A ≤ Da1
i1
ð Ð Ð Ð ð Dak

ik
Ò

n is the member of Nd with the nonzero entries nij = aj. This map satisfies ó(A ð B) =
ó(A) Ð ó(B); and its kernel is the equivalence relation of ‘is isomorphic to’.

Conversely, given generalized integers Nd, one can find an admissible class K such
that Nd is the set of generalized integers associated with K. Thus counting problems
for admissible classes, where one counts up to isomorphism, are identical to counting
problems in generalized integers.

Now let us translate the basic definitions regarding loaded classes to the language of
generalized integers.
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DEFINITION 5.5. (a) The (asymptotic) density of S � Nd is given by

∆(S) = lim
x!+1

Ad(x j is in S)
Ad(x)

Ò

provided this limit exists.

(b) For Hi � Nd define

H1 Ð Ð Ð Hk = fn1 Ð Ð Ð nk j n1 2 H1Ò    Ònk 2 Hkg

We write Hk for the set of generalized integers which can be factored as the product of
exactly k members of H. And let

H½r =
[
i½r

HiÒ

the set of generalized integers which can be written as the product of at least r members
from H.

DEFINITION 5.6. Nd is loaded if, for every partition P1Ò    ÒPk of the generalized
primes P and for every sequence r1Ò    Ò rk of nonnegative integers, the set

P½r1
1 Ð Ð Ð P½rk

k

of generalized integers which have, for each i, at least ri factors from Pi (including
repeats), has an asymptotic density.

PROPOSITION 5.7. Suppose Nd is loaded. Then

(a) for P1Ò    ÒPk a partition of P and for ri ½ 0 the set

Pr1
1 Ð Ð Ð Pri

i Ð P½ri+1
i+1 Ð Ð Ð P½rk

k

has a density;
(b) for Q � P and r a nonnegative integer, the following sets have a density:

1. Q½r Ð (P n Q)½0, i.e., the set of generalized integers which have at least r
factors from Q;

2. Qr Ð (PnQ)½0, i.e., the set of generalized integers which have exactly r factors
from Q;

3. Qr, i.e., the set of generalized integers which factor into exactly r factors, all
from Q;

4. Q½r, i.e., the set of generalized integers which factor into at least r factors,
and all factors come from Q;

(c) ∆(P) = 0, i.e., the set of generalized primes has density 0, and
(d) ∆(m Ð Nd) = limx!+1

Ad(xÛjmj)
Ad(x) = öAd(1Ûjmj) exists and is Ù 0, i.e., the set of

multiples of any generalized integer has positive density.
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PROOF. Item (a) follows essentially as in Remark 2.4. For example if P is partitioned
into two classes P1 and P2 then

Pr1
1 Ð P½r2

2 = P½r1
1 Ð P½r2

2 n P½r1+1
1 Ð P½r2

2 ;

and as P½r1
1 Ð P½r2

2 � P½r1+1
1 Ð P½r2

2 it follows that ∆(Pr1
1 Ð P½r2

2 ) exists and

∆(Pr1
1 Ð P½r2

2 ) = ∆(P½r1
1 Ð P½r2

2 ) � ∆(P½r1+1
1 Ð P½r2

2 )

Item (b) is a special case of item (a).
For item (c) first note that by (b) every set of generalized primes has a density. Now

suppose ∆(P) = a Ù 0. This clearly implies that the number of generalized primes
is infinite as the density of any finite set is 0. One can choose a sequence of integers
0 = n0 Ú n1 Ú n2 Ú Ð Ð Ð such that if we set

Q = fp 2 P : n2i Ú jpj � n2i+1g

then, with Q(x) being the counting function for Q, we have

Q(ni)
Ad(ni)

is

8<
:Ù

2
3 a if i is odd

Ú 1
3 a if i is even



But this guarantees that the set of primes Q does not have a density, contradicting item
(b). Thus ∆(P) = 0.

For item (d) we use Lemma 5.3 to see that the number of generalized integers of size
at most x which are multiples of m is precisely Ad(xÛjmj). To show that this limit exists
we simply factor m to obtain m = pr1

1 Ð Ð Ð prk
k , where the pi are distinct generalized primes.

Then let Pi = fpig, for 1 � i � k; and let Pk+1 = P n fp1Ò    Òpkg. Then P1Ò    ÒPk+1 is
a finite partition of the primes, and

m Ð Nd = P½r1
1 Ð Ð Ð P½rk

k Ð P½0
k+1

The right hand side has a density by the definition of loaded. Now we need to show this
density is positive.

First, suppose n Ð Nd has positive density for some n 6= 1. Then, by the monotonicity
of Ad, we can apply Proposition 4.2 to claim öAd(jnjk) = öAd (jnj)k Ù 0 for k 2 Z. As öAd

is nondecreasing it follows that öAd (1Ûjnj) Ù 0 for all n 2 Nd. Thus the density of each
n Ð Nd is positive.

So now suppose that ∆(n ÐNd) = 0 for every n 2 Nd, n 6= 1. Then for any finite subset
F of Nd we have ∆(F ÐNd) = 0, i.e., the density of the set of multiples of any finite subset
of generalized integers is 0. Now we can use this information to construct a sequence of
integers 0 = n0 Ú n1 Ú n2 Ú Ð Ð Ð such that if we set

Q = fp 2 P : n2i Ú jpj � n2i+1g
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then, with Q½0(x) being the counting function for Q½0, we have

Q½0(ni)
Ad(ni)

is

8<
:Ù

2
3 if i is odd

Ú 1
3 if i is even



But this guarantees that the set Q½0 does not have a density, contradicting item (b). Thus
∆(n Ð Nd) Ù 0 for all n 2 Nd.

REMARK 5.8 (BATEMAN AND DIAMOND ([1], THEOREM 4C)). prove that ∆(P) = 0
under the hypotheses (a) Ad 2 RVã for some ã Ù 0, and (b)

P
p2P

1
jpjã = +1.

The definition of regular variation is too restrictive for some of the cases we will
encounter. Thus we introduce the following:

DEFINITION 5.9. Let f : (0Ò+1) ! [0Ò+1) be given. f is said to have d-regular
variation (at infinity) with index ã, also indicated by writing f 2 RVã(d), if

lim
n!+1

f (dm Ð dn)
f (dn)

= (dm)ã

for m a non-negative integer, and for n restricted to the integers.

COROLLARY 5.10. If Nd is loaded then either
(a) Ad 2 RVã for some ã ½ 0, or
(b) there is a positive integer d such that all sizes jmj of the generalized integers from

Nd are powers of d, and Ad 2 RVã(d) for some ã ½ 0.

PROOF. The function Ad is nonnegative and monotone, so Proposition 4.2 applies.
By Proposition 5.7(d) we see that the case (c) in 4.2 cannot occur. 4.2(a) gives our (a).

The other possibility is 4.2(b). So let dom(öAd ) = fcn : n 2 Zg. Let fdn : n 2 Zg be
the cyclic subgroup generated by fjpj : p 2 Pg, the set of sizes of the generalized primes
(which must be in dom(öAd) by 5.7(d) and 4.2). We can assume d Ù 1. As d is rational,
it follows that it must be an integer. Thus all the sizes of the primes, the di’s, are powers
of a single integer d, and then it follows that all the sizes of the integers in Nd are also
powers of d. Now let

lim
n!+1

Ad(dn+1)
Ad(dn)

= åÒ

and let
ã = logd(å)

Then it is easy to check that Ad 2 RVã(d).

Because of the importance of the case (b) in Corollary 5.10 we introduce the following:

DEFINITION 5.11. Nd is a discrete generalized number system if the sizes of the
generalized integers are all powers of some integer d.

From Corollary 5.10 we see the study of loaded Nd’s naturally splitting into two
(overlapping!) cases:
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ž Nd is regular if Ad 2 RVã, and
ž Nd is discretely regular if the sizes of the generalized integers are all powers of

some integer d, and Ad 2 RVã(d) for some ã ½ 0.
In both cases we are able to obtain wide ranging results that apply to many examples
of generalized integers (and admissible classes) studied in the literature. Some of the
open questions in the discrete case appear to involve difficult additive number theory.
Questions regarding both cases are formulated at the end of this section.

EXAMPLE 5.12. A system of generalized integers with exactly one generalized prime
is an example of a system that is both regular and discrete.

It is no accident that this example is actually slowly varying at infinity.

PROPOSITION 5.13. Let Nd be a system of generalized integers that is both regular
and discrete. Then Ad 2 RV0.

PROOF. Let the sizes of the generalized primes in P form a subset of fdÒ d2Ò    Ò
dkÒ   g, where d is the positive integer that generates the domain of öAd . Then one can
find arbitrarily large reals t such that no sizes of members of Nd are in the interval
[tÒ 3

2 t]. Thus one can find arbitrarily large t such that Ad( 3
2 t)ÛAd(t) = 1. By the regularity

assumption it follows that limt!+1 Ad( 3
2 t)ÛAd(t) = 1. Then from Lemma 4.3 one has

Ad(x) 2 RV0.

REMARK 5.14. For any system Nd of generalized integers with P infinite, Bateman
and Diamond ([1], p. 158) show that

P
n2Nd

jnj�õ,
Q

p2P(1 � jpj�õ)�1, and
P

p2P jpj�õ
converge for the same positive real õ. The infimum of such õ will be called the abscissa
of convergence of Nd (or of P). If, furthermore, Ad 2 RVã, then they note on p. 166 of
[1] that ã is the abscissa of convergence of Nd.

PROPOSITION 5.15. Let Nd be a system of generalized integers, and let ã be the
abscissa of convergence of

P
anÛns.

(a) The abscissa of convergence is given by

ã = lim sup
n!+1

log Ad(n)
log n



(b) If ã Ú +1 then, for s Ù ã,
Ad(n) = O(ns)

(c) If Nd is loaded then ã Ú +1.

PROOF. For (a) and (b) see Titchmarsh [23], x9.14, 292–293. For (c) choose a 2 Nd

with a 6= 1. Then Nd is loaded implies a Ð Nd has positive density ç. Choose ï Ù ç�1,
and let a = jaj. Then

ç = ∆(a Ð Nd) = lim
n!+1

Ad(an)
Ad(an+1)

Ò

so Ad(an) = O(ïn). Since Ad is nondecreasing, Ad(x) = O(xloga ï). Thus by part (a) the
abscissa of convergence is at most loga ï.
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THE REGULAR CASE.

THEOREM 5.16. Let Nd be a system of generalized integers such that
(a) Ad has regular variation (at infinity) with index ã(½ 0), i.e.,

öAd(x) = lim
t!+1

Ad(xt)
Ad(t)

= xã

for x Ù 0 ;
(b) there is a positive constant C such that

Ad(xt) ½ CxãAd(t)

for tÒ x ½ 1.
Then Nd is loaded.

PROOF. Let P1Ò    ÒPk be a partition of the generalized primes P and r1Ò    Ò rk a
sequence of nonnegative integers. Let

B = P½r1
1 Ð Ð Ð P½rk

k

have the Dirichlet series
P+1

n=1 bnÛns, i.e., bn is the number of elements of B of size n; and
let B(x) be the counting function for B. Let f1Ò    Ò kg = J1 [ J2 where

J1 = fj : 1 � j � kÒ
X

p2Pj

1
jpjã Ú +1gÒ

J2 = fj : 1 � j � kÒ
X

p2Pj

1
jpjã = +1g

The class Pj is large if j 2 J2; and small otherwise.

CASE 1. First we consider the case that rj = 0 for all j 2 J2; thus P½r1
1 Ð Ð Ð P½rk

k puts
restrictions only on the number of generalized primes belonging to the ‘small’ classes
Pj. Then clearly we have

+1X
n=1

bn

ns
=
Y
j2J1

 X
‡½rj

i1�ÐÐÐ�i‡
pi1

ÒÒpi
‡
2Pj

1
(jpi1 j Ð Ð Ð jpi‡ j)s

!
Ð
Y
j2J2

Y
p2Pj

(1 � 1
jpjs )�1

=
Y
j2J1

gj(s) Ð
kY

j=1

Y
p2Pj

 
1 � 1

jpjs
!�1

Ò(3)

where

gj(s) =
Y

p2Pj

 
1 � 1

jpjs
!
Ð

X
‡½rj

i1�ÐÐÐ�i‡
pi1

ÒÒpi
‡
2Pj

1
(jpi1 j Ð Ð Ð jpi‡ j)s

(4)

https://doi.org/10.4153/CJM-1997-022-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-022-4


FINE SPECTRA AND LIMIT LAWS I. FIRST-ORDER LAWS 481

Let Xã denote the set of the Dirichlet series
P+1

n=1 enÛns that are absolutely convergent
for s = ã, i.e.,

+1X
n=1

jenj
nã

Ú +1

Clearly Xã is closed under the Dirichlet convolution product, i.e., if
P+1

n=1 enÛns andP+1
n=1 fnÛns belong to Xã then so does

P+1
n=1 gnÛns, where gn =

P
kjn ekfnÛk. Now let us

write

Y
p2Pj

 
1 � 1

jpjs
!

=
+1X
n=1

xn

ns
Ò(5)

Y
p2Pj

 
1 +

1
jpjs

!
=

+1X
n=1

yn

ns
Ò(6)

X
‡½rj

i1�ÐÐÐ�i‡
pi1

ÒÒpi
‡
2Pj

1
(jpi1 j Ð Ð Ð jpi‡ j)s

=
+1X
n=1

zn

ns
Ò(7)

and Y
p2Pj

 
1 � 1

jpjs
!�1

=
Y

p2Pj

 +1X
k=0

1
jpjks

!
=

+1X
n=1

un

ns
(8)

Clearly we have
jxnj � yn � un(9)

and
0 � zn � un(10)

It follows from j 2 J1 that the Dirichlet series in (8) belongs to Xã, thus by (9) and (10),
the Dirichlet series in (5) and (7) belong to Xã, too. Thus their product, the Dirichlet
series representing gj(s), belongs to Xã (for all j 2 J1). Thus writing

Y
j2J1

gj(s) =
+1X
n=1

vn

ns
Ò(11)

this Dirichlet series belongs to Xã, i.e.,

+1X
n=1

jvnj
nã

Ú +1(12)

By (2), (3) and (11) we have

+1X
n=1

bn

ns
=

+1X
n=1

vn

ns
Ð

+1X
n=1

an

ns
Ò(13)

whence
B(x) =

X
n�x

bn =
X

k‡�x
vka‡ =

X
k�x

�
vk

X
‡�xÛk

a‡
�

=
X
k�x

vkAd(xÛk)(14)
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Fix an è Ù 0. Then, for 1 Ú Ω Ú x we have, by (14),

(15)þþþþB(x)�
�+1X

k=1

vk

kã
�

Ad(x)
þþþþ

�
þþþþB(x) �

�X
k�Ω

vk

kã
�

Ad(x)
þþþþ + Ad(x)

X
ΩÚk

jvkj
kã

�
þþþþB(x) �

X
k�Ω

vkAd(xÛk)
þþþþ +

X
k�Ω

jvkj Ð
þþþþþAd(xÛk)� Ad(x)

kã

þþþþþ + Ad(x)
X

ΩÚk

jvkj
kã

�
þþþþ X
ΩÚk�x

vkAd(xÛk)
þþþþ +

X
k�Ω

jvkj Ð
þþþþþAd(xÛk)� Ad(x)

kã

þþþþþ + Ad(x)
X

ΩÚk

jvkj
kã



Denote the three terms in the last expression by R1, R2, and R3. It follows from (12) that
there is an Ω0(è) such that

R3 Ú èAd(x)(16)

if Ω ½ Ω0(è). Next, by the hypothesis (b) of the theorem, there is a positive constant C
such that

R1 �
X

ΩÚk�x
jvkj Ð 1ÛC Ð Ad(x)

kã
� 1ÛC Ð Ad(x) Ð

X
ΩÚk

jvkj
kã

Ò(17)

so that by (12) there is an Ω1(è) such that

R1 Ú èAd(x)

if Ω ½ Ω1(è). Finally, it follows from the hypothesis (a) that, writing
P

k�Ω jvkj = LΩ,
there is an x0(èÒΩ) such that

þþþþþAd(xÛk)� Ad(x)
kã

þþþþþ Ú è
LΩ

Ad(x) if x ½ x0(èÒΩ)Ò

uniformly for 1 � k � Ω. Thus, for x ½ x0(èÒΩ), we have

R2 Ú
X
k�Ω

jvkj
è

LΩ
Ad(x) = èAd(x)(18)

Now let Ω = max
�
Ω0(è)ÒΩ1(è)

�
. Then for x ½ x0(èÒΩ) we have from (15), (16), (17)

and (18) that
R1 + R2 + R3 Ú 3èAd(x)

Since è is arbitrary it thus follows that

lim
x!+1

B(x)
Ad(x)

=
+1X
k=1

vk

kã
(19)

(by (12) this infinite series is absolutely convergent), which completes the proof in the
first case.
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CASE 2. Consider now the general case when rj Ù 0 may occur for some (or all)
j 2 J2, i.e., for some ‘large’ sets Pj. We will reduce this case to the previous one.

Recall that B = P½r1
1 Ð Ð Ð P½rk

k , and let BÊ =
Q

j2J1 P
½rj

j Ð Qj2J2 P½0
j , the subset of Nd

whose members have at least rj factors from Pj for each j 2 J1, with no restriction on
the number of factors from Pj for j 2 J2. Then B � BÊ. We define

B̄ = BÊ n B(20)

Let Ej = P
Úrj

j Ð (P n Pj)½0, the subset of Nd for which the number of factors from Pj is
less than rj, and there are no restrictions on the number of factors from the other classes
Pi. Denote the counting functions associated with BÊ, B̄ and Ej by BÊ(x), B̄(x) and Ej(x),
respectively. Clearly,

B̄ �
[

j2J2
rjÙ0

Ej(21)

Thus we have
jBÊ(x) � B(x)j �

X
j2J2
rjÙ0

Ej(x)(22)

We know from the first half of the proof that the density associated with BÊ, i.e., the limit

lim
x!+1

BÊ(x)
Ad(x)

exists. Thus, in view of (22), it suffices to show that the density associated with Ej is 0
for each j 2 J2 for which rj Ù 0, i.e., if j 2 J2 and rj Ù 0 then, for all è Ù 0, there is an
x0(èÒ j) such that

Ej(x) Ú èAd(x) for x Ù x0(èÒ j)(23)

For j 2 J2, with rj Ù 0, and for ∆ Ù 0, consider a finite subset F of Pj with

X
p2F

1
jpjã Ù ∆(24)

(As j 2 J2, such a subset F exists.) Now consider the partition of P given by F, P nF, and
let H = FÚrj Ð (P n F)½0, the subset of Nd whose members have less than rj factors from
F. Let H̄ = F½rj (P n F)½0, the complement of H in Nd, namely the generalized integers
with at least rj factors from F. Denote the counting functions associated with H and H̄ by
H(x) and H̄(x), respectively. Then clearly,

Ej � H(25)

and
H(x) + H̄(x) = Ad(x)(26)

By (25) and (26), we see that (23) would follow from

H̄(x) Ù (1 � è)Ad(x)(27)
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To prove this actually holds, observe that the Case 1 part of the proof of this theorem
can be applied to this situation to show the density associated with H̄ exists, and by (4),
(11), and (19), this density is

lim
x!+1

H̄(x)
Ad(x)

=
+1X
k=1

vk

kã
Ò(28)

where now the sequence (vn) is defined by

g1(x) =
+1X
n=1

vn

ns

=
Y
p2F

 
1 � 1

jpjs
! X

‡½rj
i1�ÐÐÐ�i‡

pi1
ÒÒpi

‡
2F

1
(jpi1 j Ð Ð Ð jpi‡ j)s

=
Y
p2F

 
1 � 1

jpjs
!0B@Y

p2F

 
1 � 1

jpjs
!�1

� 1 �
X

1�‡Úrj
i1�ÐÐÐ�i‡

pi1
ÒÒpi

‡
2F

1
(jpi1 j Ð Ð Ð jpi‡ j)s

1
CA

= 1 �
Y
p2F

 
1 � 1

jpjs
! 

1 +
X

1�‡Úrj
i1�ÐÐÐ�i‡

pi1
ÒÒpi

‡
2F

1
(jpi1 j Ð Ð Ð jpi‡ j)s

!


Thus the density in (28) is

g1(ã) =
+1X
n=1

vn

nã
= 1 �

Y
p2F

 
1 � 1

jpjã
!
Ð
 

1 +
X

1�‡Úrj
i1�ÐÐÐ�i‡

pi1
ÒÒpi

‡
2F

1
(jpi1 j Ð Ð Ð jpi‡ j)ã

!
(29)

Hence, writing X
p2F

1
jpjã = éÒ

and using the fact that 1 � x Ú e�x for x Ù 0, we have

1 � lim
x!+1

H̄(x)
Ad(x)

= 1 � g1(ã)(30)

=
Y
p2F

 
1 � 1

jpjã
!
Ð
 

1 +
rj�1X
‡=1

X
i1�ÐÐÐ�i‡

pi1
ÒÒpi

‡
2F

1
(jpi1 j Ð Ð Ð jpi‡ j)ã

!

� exp
 
�
X
p2F

1
jpjã

!
Ð
0
B@1 +

rj�1X
‡=1

 X
p2F

1
jpjã

!‡1CA

= exp(�é) Ð
�rj�1X
‡=0

é‡
�

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Clearly,

lim
x!+1 exp(�x) Ð

0
@rj�1X
‡=0

x‡
1
A = 0

Thus if ∆ in (24) is large enough it follows from (30) that

1� lim
x!+1

H̄(x)
Ad(x)

Ú èÒ

which proves (27); and this completes the proof of the theorem.

REMARK 5.17. Let Nd be a system of generalized integers with Dirichlet series êd(s) =P+1
n=1 anÛns. For P1Ò    ÒPk a partition of the generalized primes P, and r1Ò    Ò rk a

sequence of nonnegative integers, let B = P½r1
1 Ð Ð Ð P½rk

k have the Dirichlet series êB(s) =P+1
n=1 bnÛns. Assuming the hypotheses of Theorem 5.16 we have from (13) the equation

êB(s) =
P+1

n=1
vn
ns Ð êd(s), valid for s Ù ã. Let Bi = P½ri

i Ð Nd, the set of generalized integers
that have at least ri factors (counting repeats) from Pi. Then from (3, 11, 19) we can
deduce

(a) ∆(B) = lims!ã+ êB(s)Ûêd(s).
(b) ∆(B) = ∆(B1) Ð Ð Ð ∆(Bk).

REMARK 5.18. Suppose that the assumptions (a), (b) of Theorem 5.16 hold. Further-
more suppose Q � P satisfies X

p2Q

1
jpjã = +1

Then, for r ½ 0, from the proof of Theorem 5.16 we have
(a) ∆

�
Q½r Ð (P n Q)½0

�
= 1, i.e., the set of generalized integers with at least r factors

from Q has density 1;
(b) ∆

�
Qr Ð (P n Q)½0

�
= 0, i.e., the set of generalized integers with exactly r factors

from Q has density 0.

Now we derive some corollaries from Theorem 5.16 that are easy to apply to numerous
situations. We will be using the condition Ad(x) =

�
1 + o(1)

�
xãS(x). As Ad(x) ½ 1 for

x ½ 1 it follows that S(x) is eventually positive, and that Ad(x) 2 RVã iff S(x) 2 RV0.

COROLLARY 5.19. Let Nd be a system of generalized integers, and suppose ã ½ 0
and S(x) 2 RV0 are such that

(a) Ad(x) =
�
1 + o(1)

�
xãS(x), and

(b) there is a positive constant C0 such that S(xt) ½ C0S(t) for tÒ x ½ 1.
Then Nd is loaded.

PROOF. Let C1 = min
�
1Ò lim infx!+1 S(x)

�
. Then C1 Ù 0 as S(x) is eventually

positive, and in view of condition (b).
Choose Ω ½ 1 such that Ad(Ω) Ù 0, and for uÒ v ½ Ω,

jAd(u) � uãS(u)j � 1
2

uãS(u)(31)

S(u) ½ 1
2

C1(32)
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Then for u ½ Ω we have

1
2

uãS(u) � Ad(u) � 3
2

uãS(u)(33)

Let

C = min
 

C0

3
Ò 1

Ωã Ò
C1

4Ad(Ω)

!


CLAIM. Ad(xt) ½ CxãAd(t) for xÒ t ½ 1.

Once we have proved this claim then applying Theorem 5.16 will conclude the proof
of our corollary. We break the proof of the claim into three steps.

(I) Suppose x ½ 1 and t ½ Ω. Then

Ad(xt) ½ 1
2

(xt)ãS(xt) by (33)

½ 1
2

xãtã
�
C0S(t)

�
by (b)

= (C0Û2)xã
�
tãS(t)

�

½ (C0Û2)xã
�2

3
Ad(t)

�
by (33)

= (C0Û3)xãAd(t)

½ CxãAd(t)

(II) Suppose 1 � xÒ t � Ω. Then

Ad(xt) ½ Ad(t) as Ad is nondecreasing

½ (xãÛΩã)Ad(t) as xã � Ωã

= (1ÛΩã)xãAd(t)

½ CxãAd(t)

(III) Suppose 1 � t � Ω � x. Then

Ad(xt) ½
�
Ad(t)ÛAd(Ω)

�
Ad(xt) as Ad(t) � Ad(Ω) 6= 0

½
�
Ad(t)ÛAd(Ω)

��1
2

(xt)ãS(xt) by (33)

½
�
2Ad(Ω)

��1
Ad(t)xãS(xt)

½
�
2Ad(Ω)

��1
Ad(t)xã

1
2

C1 by (32)

= C1

�
4Ad(Ω)

��1
Ad(t)xã

½ CxãAd(t)

This concludes the proof.
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COROLLARY 5.20. Suppose Nd is a system of generalized integers. If ã ½ 0 and
S(x) 2 RV0 are such that

(a) Ad(x) =
�
1 + o(1)

�
xãS(x), and

(b) S(x) is eventually nondecreasing,
then Nd is loaded.

PROOF. Suppose S(x) is nondecreasing on [bÒ1). Let

S0(x) =
(

S(b) on (0Ò b]
S(x) on [bÒ1).

Then, noting that S0(xt) ½ S0(t) for xÒ t ½ 1, S0(x) can be used for the S(x) of Corollary 5.19
(with C0 = 1).

COROLLARY 5.21. Let Nd be a system of generalized integers such that the count
function Ad satisfies

Ad(x) =
�
1 + o(1)

�
CxãÒ

for some C Ù 0 and ã ½ 0. Then Nd is loaded.

PROOF. Let S(x) = C, and apply Corollary 5.20.

REMARK 5.22. Finding prime number theorems for various classes of objects with
multiplication has been an important area of research throughout the century, starting
with Landau’s 1903 work [16] on prime ideals in algebraic integers, through Bateman
and Diamond’s exposition [1] of Beurling’s 1937 work [2] on generalized integers
and Knopfmacher’s book [13] on arithmetical semigroups. In each case they needed
conditions on the growth of the count function Ad. What is particularly interesting for
us is that their conditions are covered by Ad(x) =

�
1 + o(1)

�
Cxã, and hence always give

loaded systems. We will comment further on this in the final section.

THE DISCRETELY REGULAR CASE. Now we consider the following special case of the
problem studied so far: assume that there is an integer d greater than 1 such that the sizes
of the generalized primes in P form a subset of fdÒ d2Ò    Ò dkÒ   g. We will see that the
results from the previous section can be carried over to this new setting.

The next result shows that the sizes of members of a discrete number system are rather
well-behaved.

PROPOSITION 5.23. Let Nd be a discrete system of generalized integers, and let the
positive integer d be the generator of the domain of öAd (as a cyclic subgroup of the
positive reals under multiplication). Then there is an N such that for any integer m ½ N
one has a generalized integer n 2 Nd with jnj = dm.

PROOF. Let E(Nd) = flogd(jnj) : n 2 Ndg. Then E(Nd) is a subsemigroup of the
nonnegative integers under addition, and thus (by a well-known result of Schur—see
Wilf [24], p. 97) it is eventually the set of multiples of the period g = gcd

�
E(Nd)

�
of

E(Nd). As d is a generator of the domain of öAd one must have g = 1.
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For convenience in writing up the results below we designate the following sentence:

(Ê)
(

The domain of öAd is the cyclic subgroup (of the positive reals under
multiplication) generated by the positive integer d.

THEOREM 5.24. Let Nd be a discrete system of generalized integers such that (Ê)
holds. If

(a) Ad 2 RVã(d) for some ã ½ 0, and
(b) there is a positive constant C such that

Ad(dm Ð dn) ½ C(dm)ãAd(dn)

for integers mÒ n ½ 0,

then Nd is loaded.

PROOF. The proof is essentially the same as for Theorem 5.16 after restricting vari-
ables running over the reals or integers to integer powers of d, i.e., to the domain of
öAd . Note, for example, that in this situation the an, bn, xn, yn, zn, vn from the proof of
Theorem 5.16 are 0 unless n is a power of d. Thus, expressions like Ad(xÛk) in the proof
are such that both x and k are powers of d.

COROLLARY 5.25. Let Nd be a discrete system of generalized integers such that (Ê)
holds. If there are ã ½ 0 and S(x) 2 RV0(d) such that

(a) Ad(dn) =
�
1 + o(1)

�
(dn)ãS(dn), and

(b) there is a positive constant C0 such that S(dm Ðdn) ½ C0S(dn) for integers mÒ n ½ 0,

then Nd is loaded.

PROOF. The proof is essentially the same as for Corollary 5.19, again restricting
variables as in the previous proof.

COROLLARY 5.26. Let Nd be a discrete system of generalized integers such that (Ê)
holds. If ã ½ 0 and S(x) 2 RV0(d) are such that

(a) Ad(dn) =
�
1 + o(1)

�
(dn)ãS(dn), and

(b) S(dn) is eventually nondecreasing,

then Nd is loaded.

PROOF. Again modify the range of the variables in the proof of Corollary 5.20.

COROLLARY 5.27. Let Nd be a discrete system of generalized integers such that (Ê)
holds, and such that the count function Ad satisfies

Ad(dn) =
�
1 + o(1)

�
C(dn)ãÒ

for some C Ù 0 and ã ½ 0. Then Nd is loaded.
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PROOF. Let S be the constant function with value C, and apply Corollary 5.26.

Now we consider what happens when one bounds the multiplicities of the primes.
Let Nd be a discrete system of generalized integers, and let d be a positive integer such
that the sizes of members of Nd are all powers of d. For each k 2 N suppose the size dk

occurs with multiplicity ãk. In this case, the generating function is

+1X
n=1

an

ns
=

+1Y
k=1

�
1 � 1

dks

��ãk

=
+1Y
k=1

�+1X
j=0

1
d jks

�ãk

=
+1X
n=0

f (n)
dns

where f (n) denotes the number of non-negative integer solutions (in the unknowns x(k)
i ,

k = 1Ò 2Ò    , i = 1Ò 2Ò    Ò ãk) of the linear additive equation

+1X
k=1

k(x(k)
1 + x(k)

2 + Ð Ð Ð + x(k)
ãk

) = n(34)

(Note that if ãk = 1 for all k 2 N, then f (n) is equal to the well-known and intensively
studied partition function p(n).) It follows that

Ad(x) =
X
n�x

an =
X

m� log x
log d

f (m)

THEOREM 5.28. Let Nd be a given system of generalized integers. Suppose there is a
d 2 N such that the size of every generalized prime is in fdÒ d2Ò    Ò dkÒ   g. Moreover,
suppose the multiplicities ãk with which the sizes dk of the generalized primes occur
are uniformly bounded, i.e., there is a U 2 N such that for every k there are at most U
generalized primes whose size is dk. Then Ad 2 RV0, and hence is loaded. (In Part II
[7], the condition Ad 2 RV0 is referred to as front-loaded).

PROOF. The case that there are only finitely many generalized primes is handled by
precisely the arguments used to prove Corollary 9 of [4]. So now we assume that there
are infinitely many generalized primes.

Let z denote the least integer with ãz Ù 0. By Corollary 4.3 and Lemma 5.3, it suffices
to show that

öAd(d�z) = 1Ò

i.e.,

lim
t!+1

Ad(tÛdz)
Ad(t)

= lim
t!+1

� X
m� log t

logd �z

f (m)
�� X

m� log t
log d

f (m)
��1

= lim
N2NÒN!+1

�N�zX
n=0

f (n)
�� NX

n=0
f (n)

��1

= 1 � lim
N2NÒN!+1

� NX
n=N�z+1

f (n)
�� NX

n=0
f (n)

��1

= 1
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or, in equivalent form,

lim
N2NÒN!+1

� NX
n=N�z+1

f (n)
�� NX

n=0
f (n)

��1
= 0(35)

First we will show that the denominator in (35) grows faster than any power of N:

lim
N!+1

N�ã NX
n=0

f (n) = +1 (for all ã Ù 0)(36)

To show this, let H be a positive integer with

H Ù ãÒ

and consider H generalized primes with different sizes dk1 Ú dk2 Ú Ð Ð Ð Ú dkH . Then
each solution (in nonnegative integers) of

HX
j=1

kjx(kj) � N(37)

is counted in the sum in (36), so that the number of solutions of (37) gives a lower
bound for this sum. Moreover, each H-tuple (x(k1)Ò x(k2)Ò    Ò x(kH )) with x(kj) 2 f0Ò 1Ò    Ò
[NÛ(kjH)]g provides a solution of (37). The number of these H-tuples is

HY
j=1

�
[NÛ(kjH)] + 1

�
Ù NH

�
HH

HY
j=1

kj

��1

so that
NX

n=0
f (n) Ù NH

�
HH

HY
j=1

kj

��1


This holds for any fixed H and all N, which clearly implies (36).
Assume now that è Ù 0, and let L be a positive integer large enough in terms of è (to

be fixed later). We split the number of solutions of (34) into two parts: let f1(n) denote the
number of those solutions where there are at most L pairs (kÒ x(k)

i ) with k 2 N, 1 � i � k,
x(k)

i Ù 0, i.e., there are � L non-zero terms kx(k)
i on the left-hand side of (34), and let

f2(n) denote the number of solutions with more than L non-zero terms.
First we will give an upper bound for

NX
n=N�z+1

f1(n) �
NX

n=1
f1(n)(38)

Clearly we obtain an upper bound for the right hand side if we count those sums
P

kÒi kx(k)
i

where all kÒ x(k)
i satisfy 1 � kÒ x(k)

i � N, and the number, say t, of terms satisfies t � L.
For fixed t, the k-values in these terms can be chosen in at most Nt ways (since repetition
is allowed). If the k-values have been fixed, then for each k, the subscript i with x(k)

i Ù 0
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can be chosen in at most ãk � U ways, and if both k and i are fixed, then x(k)
i (� N) can

be chosen in at most N ways. Thus we obtain the upper bound

NX
n=1

f1(n) �
LX

t=0
NtUtNt = O(N2L)(39)

(for fixed L, and N ! +1). It follows from (36), (38) and (39) that

NX
n=N�z+1

f1(n) = o
� NX

n=0
f (n)

�
(for any fixed L, and N ! +1).(40)

In order to give an upper bound for

NX
n=N�z+1

f2(n)Ò(41)

consider a solution counted in this sum, i.e., consider an integer n with N � z Ú n � N
and a representation of n in the form (34) with more than L non-zero terms. Starting out
from each of these solutions, we construct several new equations in the following way:
to each non-zero term kx(k)

i we assign the equation obtained by subtracting k so that x(k)
i

is replaced by x(k)
i � 1:

X
j6=k

j
�
x(j)

1 + x(j)
2 + Ð Ð Ð + x(j)

ãj

�
+k
�
x(k)

1 + Ð Ð Ð + x(k)
i�1 + (x(k)

i � 1)+x(k)
i+1 + Ð Ð Ð + x(k)

ãk

�

= n � k(42)

In this way, from each solution of (34) counted in (41) we obtain as many solutions
counted in

NX
m=1

f (m)(43)

as the number of the non-zero terms in (34), i.e., more than L solutions, so that we obtain
more than

M = L Ð
NX

n=N�z+1
f2(n)(44)

solutions of type (42) counted in (43). However, we may get each of these solutions more
than once, so that we need an upper bound for their multiplicity. If we start out from a
fixed solution of type (42) counted in (43), and we replace n � k on the right hand side
by m:

+1X
j=1

j(y(j)
1 + y(j)

2 + Ð Ð Ð + y(j)
ãj

) = mÒ(45)

then to reconstruct the initial solution (counted in (41)), we have to add one of the
numbers k = N� z + 1�mÒN � z + 2�mÒ    ÒN �m to the equation (45) so that on the
left hand side we add 1 to one of the terms y(k)

i with 1 � i � ãk. We may choose k and
i in at most z, resp. ãk � U ways, so that we may get each of the at least M solutions
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(where M is defined in (44)) of type (45) counted in (43) with multiplicity at most zU.
Thus we have

NX
m=1

f (m) Ù L
zU

NX
n=N�z+1

f2(n)

whence
NX

n=N�z+1
f2(n) Ú zU

L

NX
m=1

f (m)

If L is large enough in terms of èÒ z and U, then zUÛL Ú è so that

NX
n=N�z+1

f2(n) Ú è
NX

m=1
f (m) (for N Ù N0(è))(46)

Since è in (46) is arbitrary and f (n) = f1(n) + f2(n), thus (35) follows from (40) and (46),
and this completes the proof of the theorem.

Note that some upper bound on the sizes of the multiplicities ãk is necessary. To
see this, consider a sequence ãk growing so fast that ãk is greater than the number
of generalized composite integers of size at most dk. Then the density of P, the set of
generalized primes, is not zero. But then, by Proposition 5.7(c), Nd is not loaded. This
example can be easily generalized to the following setting. Suppose û(n) is an arithmetic
function such that lim supn!+1 û(n) = +1. Then there is a sequence (ãn) of nonnegative
integers such that

ån :=
logãn

log n
Ú û(n)

for n sufficiently large, and Nd is not loaded for d being the sequence of powers of d
where the multiplicity of dk is ãk.

Although our result that bounded multiplicities in the discrete case guarantees front-
loaded covers an important part of the discrete generalized number systems, it would be
very interesting to know if the condition

ån = O(1)

is the precise upper bound condition to guarantee Nd is (front-)loaded. (See Question 8.3
of Compton’s survey paper [5].) As just stated, examples to show the relevance of this
condition are rather easy to construct. But to show that it is sufficient appears to require
tools that go well beyond what we have developed here.

We close this section with several questions that we think are of interest:
1. Are ‘loaded’ and ‘regular’ equivalent for systems of generalized integers Nd?
2. Do the two conditions ∆(P) = 0 and ∆(m Ð Nd) Ù 0 for m 2 Nd, imply that Nd is

loaded?
3. Can one simplify the definition of loaded?

(a) If the set of multiples of Hr has a density for every H � P and positive integer
r, does it follow that Nd is loaded?
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(b) If the set of multiples of H has a density for every H � P, does it follow that
Nd is loaded?

4. Do the partition blocks of the generalized primes behave ‘independently’ in loaded
systems, i.e., if P1Ò    ÒPk is a partition of the generalized primes P and ri ½ 0
does it follow that

∆(P½r1
1 Ð Ð Ð P½rk

k ) =
kY

i=1
∆(P½ri

i Ð Nd) ?

5. Is the Dirichlet convolution product of the Dirichlet series for two loaded gener-
alized integer systems again loaded?

6. How fast can the multiplicities grow in the discrete case and still yield a (front-
)loaded system?

6. Applications to admissible classes. Now we translate the key results from the
previous section into the setting of admissible classes of structures, and give examples
where these results apply. First, from Proposition 5.15, we have the following restriction
on loaded classes.

PROPOSITION 6.1. If K is an admissible class with lim supx!+1
log úK(x)

log x = +1 then
K is not loaded.

REMARK 6.2. Higman [10] gives lower bounds on the number of (nilpotent) groups
of order pn, and Knopfmacher gives related bounds for various classes of groups, rings,
and algebras in [11] and [12]. The lower bounds for these classes K state that, for some
positive constant C,

log úK(n) ½ C(log n)2

on an infinite subset of the positive integers. By Proposition 6.1 we see that such classes
K are not loaded. If they should happen to have a first-order limit law, then one must
prove it by means other than those used in this paper.

In the following we will say that K is regular, discrete, respectively discretely regular,
if the corresponding system of generalized integers is regular, discrete, respectively
discretely regular.

REGULAR ADMISSIBLE CLASSES.

THEOREM 6.3. Let K be a regular admissible class of structures such that
(a) úK 2 RVã, and
(b) there is a positive constant C such that

úK(xt) ½ CxãúK(t)

for tÒ x ½ 1.
Then K is loaded, and hence has a first-order limit law.

COROLLARY 6.4. Let K be an admissible class of structures. If ã ½ 0 and S(x) 2 RV0

are such that
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(a) úK(x) =
�
1 + o(1)

�
xãS(x), and

(b) there is a positive constant C0 such that S(xt) ½ C0S(t) for tÒ x ½ 1,
then K is loaded, and hence has a first-order law.

COROLLARY 6.5. Let K be an admissible class of structures. If ã ½ 0 and S(x) 2 RV0

are such that
(a) úK(x) =

�
1 + o(1)

�
xãS(x), and

(b) S(x) is eventually nondecreasing,
then K is loaded, and hence has a first-order law.

COROLLARY 6.6. Let K be an admissible class of structures such that the count
function úK satisfies

úK(x) =
�
1 + o(1)

�
CxãÒ

for some C Ù 0 and ã ½ 0. Then K is loaded, and hence has a first-order law.

Knopfmacher’s Axiom A, mentioned in the abstract, is

úK(x) = Cxã + O(xå)Ò

where 0 � å Ú ã. We can apply Corollary 6.6 to claim that all admissible classes
satisfying Axiom A are loaded, and hence have a first-order law.6

EXAMPLE 6.7. The main examples of admissible classes satisfying Axiom A from
Knopfmacher’s 1975 book [13], along with the instance of the Axiom A which they
satisfy, are given in the table below.7 ZK means the integers belonging to the number
field K.

K úK
Sets x + O(1)
Semisimple Rings Cx + O(

p
x)

Semisimple ZK Algebras
or
ZK Modules

9>>=
>>; Cx +

8>><
>>:

O(
p

x) if [K : Q] Ú 3
O(
p

x log x) if [K : Q] = 3
O(x1�2(1+[K:Q])�1

) if [K : Q] Ù 3

EXAMPLE 6.8. The study of the number of (unordered) factorizations of an integer
n by Oppenheim [18], [19] in 1926/1927 show that if we have an admissible class K
with exactly one indecomposable of each size, i.e., õF(n) = 1 for all n, then we have the
following asymptotics8 for úK:

úK(x) =
�
1 + o(1)

�
x

e2
p

log x

2
pô(log x)3Û4



6 K. Compton was the first to discover the existence of a first-order law for Abelian Groups. His work was
based on the use of Tauberian theorems, as found in Knopfmacher’s book [13].

7 He gives numerous other examples of arithmetical categories, but either they are not admissible classes
(e.g., topological spaces), or the Dirichlet series has its abscissa of convergence at +1 (e.g., p-groups).

8 This result was found independently by Szekeres and Turán [21] in 1933.
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As the function

S(x) =
e2
p

log x

2
pô(log x)3Û4

is slowly varying, and increasing for x Ù e, we can apply Corollary 6.5 to conclude that
K is loaded, and thus has a first-order limit law.

One can easily find examples of such classes among lattice based structures, e.g., let
K be the class of finite lattices which can be expressed as direct products of chains.

DISCRETELY REGULAR ADMISSIBLE CLASSES. Again, for convenience in writing up
the results in this part we have the following designated sentence:

(ÊÊ)
(

d is the positive integer that generates the cyclic subgroup (of the positive
reals under multiplication) generated by the sizes of the members of K.

THEOREM 6.9. Let K be a discrete admissible class such that (ÊÊ) holds. If

(a) úK 2 RVã(d) for some ã ½ 0, and
(b) there is a positive constant C such that

úK(dm Ð dn) ½ C(dm)ãúK(dn)

for integers mÒ n ½ 0, then K is loaded, and thus has a first-order limit law.

COROLLARY 6.10. Let K be a discrete admissible class such that (ÊÊ) holds. If ã ½ 0
and S(x) 2 RV0(d) are such that

(a) úK(dn) =
�
1 + o(1)

�
(dn)ãS(dn), and

(b) there is a positive constant C0 such that S(dm Ðdn) ½ C0S(dn) for integers mÒ n ½ 0,

then K is loaded, and thus has a first-order limit law.

COROLLARY 6.11. Let K be a discrete admissible class such that (ÊÊ) holds. If ã ½ 0
and S(x) 2 RV0(d) are such that

(a) úK(dn) =
�
1 + o(1)

�
(dn)ãS(dn), and

(b) S(dn) is eventually nondecreasing,
then K is loaded, and thus has a first-order limit law.

COROLLARY 6.12. Let K be a discrete admissible class such that (ÊÊ) holds. If

úK(dn) =
�
1 + o(1)

�
C(dn)ãÒ

for some C Ù 0 and ã ½ 0, then K is loaded, and thus has a first-order limit law.

REMARK 6.13. In Theorem 6.9 and its corollaries one can replace the count function
úK by the fine spectrum õK and conclude that K is loaded by showing that the hypotheses
of Theorem 6.9 are satisfied. The key steps are (1) õK 2 RVã(d) implies úK 2 RVã(d),
and (2) õK(dm Ð dn) ½ C(dm)ãõK(dn) implies úK(dm Ð dn) ½ C(dm)ãúK(dn).
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For our purposes, Knopfmacher’s Axiom A#, mentioned in the abstract, can be written
in the form (see [14], p. 7)

õK(dn) = B(dn)ã + O
�
(dn)å

�
Ò

or, see [14], p. 16, the equivalent form

úK(dn) =
(

C(dn)ã + O
�
(dn)å

�
if 0 Ú å Ú ã

C(dn)ã + O(n) if 0 = å Ú ã,

where n runs over integers. By Corollary 6.12 all admissible classes satisfying Axiom A#

are loaded, and hence have a first-order law.

EXAMPLE 6.14. The main examples of admissible classes satisfying Axiom A# from
Knopfmacher’s 1979 book [14], along with the instance of the Axiom A# which they
satisfy, are given below.9 Dq means the ring of integral functions in an algebraic function
field in one variable over GF(q).

K õK(dn)

GF[qÒ t] Modules Bdn + O(
p

dn)
Semisimple GF[qÒ t] Algebras Bdn + O(

p
dn)

Dq Modules Bdn + O(
p

dn)
Semisimple Dq Algebras Bdn + O(

p
dn)

EXAMPLE 6.15. In 1992 A. Knopfmacher, J. Knopfmacher and R. Warlimont [15]
looked at extensions of the Oppenheim result mentioned in Example 6.8 to the general
setting of arithmetical semigroups. What they showed, formulated in terms of a discrete
admissible class K, and where d is as in (ÊÊ), is that if the fine spectrum õF of the
class of indecomposables F satisfies axiom A#, i.e., if õF(dn) = B̂(dn)ã + O

�
(dn)å

�
, with

0 � å Ú ã, then the fine spectrum õK of K has asymptotics given by

õK(dn) =
�
1 + o(1)

�
(dn)ã

BeD
p

n

n3Û4


As the function

S(n) =
BeD

p
logd(n)

�
logd(n)

�3Û4

satisfies the conditions of Corollary 6.11, we conclude from Remark 6.13 that K is loaded,
and thus has a first-order limit law.

THEOREM 6.16. Let K be a discrete admissible class of structures. Suppose there is a
positive integer d such that the size of every K-indecomposable is a power of d. Moreover,
suppose the multiplicities ãk with which the sizes dk of the K-indecomposables occur are

9 There are further examples of discrete arithmetical categories in [14] that satisfy Axiom A#, but they are
not admissible classes (e.g., the monic polynomials of GF[qÒ t]).

https://doi.org/10.4153/CJM-1997-022-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-022-4


FINE SPECTRA AND LIMIT LAWS I. FIRST-ORDER LAWS 497

uniformly bounded. Then úK is slowly varying, and thus K is loaded and has a first-order
law. (Note: In Part II [7] such a K will be called front-loaded, and will be shown to have
a first-order 0–1 law.)

EXAMPLE 6.17. Many varieties K of algebras from algebraic logic are discrete and
have a uniformly bounded number of indecomposables of each size, e.g., Boolean
algebras, monadic algebras, n-valued Post algebras. From group theory one has the
class A(p) of abelian p-groups. From ring theory there are the classes defined by xm = x
(for m Ù 1).

In conclusion we would like to thank Professor John Knopfmacher for his detailed
comments on an earlier draft of this paper, in particular his encouragement to give a
more thorough consideration of possibilities in the discrete case.
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21. G. Szekeres and P. Turán, Über das zweite Hauptproblem der “Factorisatio Numerorum”, Acta Litt.
Szeged 6(1933), 143–154.

22. W. Taylor, The fine spectrum of a variety, Algebra Universalis 5(1975), 263–303.

https://doi.org/10.4153/CJM-1997-022-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-022-4


498 S. BURRIS AND A. SÁRKÖZY
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