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Bubble shape oscillations in a turbulent
environment
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We study single bubble deformation statistics in an homogeneous and isotropic turbulent
flow by means of direct numerical simulations. We consider bubbles at low Weber number
(We < 3) that have not been broken. We show that we can reproduce bubble deformations
with a linear dynamics for each spherical harmonic mode. Inferring the coefficients of
the linear model from the DNS data, we find that the natural frequency corresponds
to the Rayleigh frequency, derived in a quiescent flow. However, the effective damping
increases by a factor 7 compared with the quiescent case, at Taylor Reynolds number
Reλ = 55. Looking at the flow structure around the bubble, we argue that the enhanced
damping originates from a thick boundary layer surrounding the bubble. We demonstrate
that the effective forcing, originating from the turbulent flow forcing on the bubble surface,
is independent of bubble deformability. Therefore, the interface deformations are only
one-way coupled to the flow. From this model we conclude that bubbles break rather
from turbulent fluctuations than from a resonant mechanism. Eventually, we investigate the
pressure modes’ statistics in the absence of bubbles and compare them with the effective
forcing statistics. We show that both fields share the same probability distribution function,
characterized by exponential tails, and a characteristic time scale corresponding to the
eddy turnover time at the mode scale.

Key words: bubble dynamics, isotropic turbulence

1. Introduction

1.1. Broad context
Bubbly turbulent flows are widely used in industrial processes to enhance mass transfers
and chemical reactions. Examples involve bubble column reactors (Risso 2018) and
emulsifiers (Håkansson 2019, 2021) for instance. In geophysical contexts, bubbles are
known to control aerosol productions at the ocean–atmosphere interface, while playing
a major role in gas transfers (Deike 2022). In both industrial and natural situations, the
knowledge of the bubble size distribution and its temporal evolution is necessary to
predict mass transfers across bubble interfaces. As a consequence, the study of bubble
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breakup in turbulence has received considerable attention since the pioneering works of
Kolmogorov (1949) and Hinze (1955). They predicted that, for bubbles of size lying within
the inertial range of the turbulent cascade, the bubble dynamics and breakup are primarily
controlled by the balance between inertial and capillary forces. This ratio defines the
Weber number We(d) = ρU2d/γ , where ρ is the liquid density, U a characteristic velocity,
d the bubble volume equivalent diameter and γ the surface tension between gas and
liquid. In turbulence, assuming bubbles break due to velocity fluctuations at their scale,
Kolmogorov and Hinze postulated that the characteristic velocity U is the average velocity
increment at the bubble scale 〈δu2(d)〉1/2. When kinetic and capillary forces balance we
have We(dh) ≈ 1 ≈ Wec, which defines a critical size, the Kolmogorov–Hinze scale, dh,
separating statistically stable bubbles (d < dh) from unstable bubbles (d > dh). In practice,
the critical size (and the critical Weber number) are only defined in a statistical sense and
might depend on the time spent by the bubble within the turbulent region (Vela-Martín &
Avila 2022; Ni 2024).

However, the main physical mechanism leading to breakup remained to be understood.
Sevik & Park (1973) proposed a resonant mechanism, in which a bubble breaks due
to series of excitations at its natural frequency, while other authors argue that large
fluctuations are necessary for a bubble to break (Lee, Erickson & Glasgow 1987; Luo
& Svendsen 1996; Wang, Wang & Jin 2003). To address this question, several authors
describe the bubble deformation dynamics, either with the help of a linear damped
harmonic oscillator (Risso & Fabre 1998; Ravelet, Colin & Risso 2011; Masuk, Salibindla
& Ni 2021b) on the bubble Rayleigh modes (Rayleigh 1879), or via a tensorial equation
for the main bubble axis of deformations (Masuk et al. 2021a). The latter assumes that
bubble shape is mostly ellipsoidal while the former allows any bubble shape and describes
each mode dynamics.

More generally, bubble deformations in turbulence constitute one of the many examples
of the interaction between a turbulent flow and a deformable object. From plant oscillations
in the wind (De Langre 2008), to disk (Verhille 2022) and fibre deformations in water
(Rosti et al. 2018; Brouzet et al. 2021), many studies have aimed at finding a reduced
dynamics for the amplitude of the relevant spatial modes of deformations, in the form
of a damped harmonic oscillator, randomly forced by turbulence. A usual approach is
to model the coefficients of an ordinary differential equation, as well as the statistics of
a random forcing term that accounts for the turbulent forcing. For bubbles, the models
use the theoretical quiescent values for the coefficients of the bubble natural frequency
and damping rate. Forcing statistics are modelled using the velocity increment statistics in
single-phase turbulent flows (Risso & Fabre 1998; Ravelet et al. 2011; Masuk et al. 2021b).
We followed this approach in a previous work (Perrard et al. 2021), to show that, in the
limit of large We, the breakup time is controlled by the initial velocity statistics. Here,
we propose to follow a different approach and to directly measure the coefficients of the
model and the forcing statistics from the deformation statistics of bubbles in turbulence,
by performing numerical simulations.

We first review the bubble oscillation dynamics in quiescent flows and its
phenomenological extensions to turbulent flows.

1.2. Bubble dynamics in quiescent flows
Rayleigh (1879) investigated the oscillation dynamics of inviscid drops in vacuum and
bubbles in a quiescent inviscid flow. In the linear limit of deformation, the local radius
of a bubble (or a drop) can be decomposed into axisymmetric modes using the basis of
Legendre functions, which are indexed by the integer � ∈ [2, ∞]. Rayleigh showed that the
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amplitude of each mode � follows an harmonic oscillator equation, with a characteristic
natural frequency writing

(ω
q
�)

2 = 8(� − 1)(� + 1)(� + 2)
γ

ρd3 , (1.1)

for bubbles, with f q
� = ω

q
�/(2π) the characteristic frequency, where the exponent ·q

emphasizes that computations where made in a quiescent flow. Later on, Lamb (1932)
extended this work to gas bubbles oscillating in a liquid of low kinematic viscosity, ν. He
found that the bubbles’ modes oscillate at the Rayleigh frequency with a damping rate λq

�,
which reads

λ
q
� = 8(� + 2)(2� + 1)

ν

d2 , (1.2)

for bubbles of negligible inertia and viscosity. In three dimensions, the bubble shape can be
decomposed into the real spherical harmonic base, Ym

� (θ, φ), indexed by � ∈ [2, ∞] and m
an integer ranging from −� to �, where θ and φ are the co-latitude and longitudinal angles
in spherical coordinates. The axisymmetric modes of Rayleigh and Lamb correspond to
m = 0. We denote the dimensionless amplitude of the modes in the spherical harmonic
base by x�,m. The dynamics found by Lamb (1932) and Rayleigh (1879) applies to each
spherical harmonic mode amplitude x�,m, so that they follow a damped harmonic oscillator
equation with natural frequency ω

q
� and damping rate λq

� independent of m

ẍ�,m + λq
� ẋ�,m + (ω

q
�)

2x�,m = 0. (1.3)

When time is made dimensionless using the natural frequency ω
q
� , this equation reads

x′′
�,m + p(�)Oh x′

�,m + x�,m = 0, (1.4)

where p(�) = 2
√

2(� + 2)(2� + 1)/[(� − 1)(� + 1)(� + 2)]1/2 and ′ stands for a
derivative with respect to the dimensionless time ω

q
� t. The Ohnesorge number Oh =

μ/
√

ργ d, with μ = νρ, compares viscous with capillary effects, and controls the quality
factor Qq

� = ω
q
�/λ

q
� ∼ Oh−1 �−1/2 of the Lamb oscillations.

To estimate the damping rate of small oscillations, Lamb (1932) computed the velocity
gradients of the irrotational inviscid velocity field. Doing so, he underestimated the
dissipation rate, as shown later by Miller & Scriven (1968), as most of the dissipation takes
place within the bubble boundary layer, even when viscosity is low. Another approach
is given by the normal-mode analysis (Chandrasekhar 1959; Reid 1960; Chandrasekhar
2013), for the spherical harmonic modes. This theory predicts an evolution of the bubble
natural frequency and damping rate with the Ohnesorge number. No explicit formulation
can, however, be derived: one needs to solve a characteristic equation for each value of
Oh. This approach correctly takes into account viscous effects but only holds at long
times, presumably when oscillations have already been completely damped, and does not
describe the transient dynamics. Miller & Scriven (1968) demonstrated that, in the limit
of vanishing viscosity, the normal-mode solution converges to the irrotational one in the
bubble case. For drops, the same demonstration has been done by Chandrasekhar (1959)
and Reid (1960).

Later on, Prosperetti (1977, 1980) unified the two approaches by studying the
initial-value problem of a drop or a bubble oscillating in an initially quiescent flow.
He demonstrated that, regardless of the value of Oh, the damped harmonic oscillator
dynamics of Lamb (1932) holds at short times compared with the viscous time scale,

1001 A26-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1027


A. Rivière, K. Abahri and S. Perrard

t 
 R2
0/ν, where R0 = d/2 is the bubble equivalent radius. On the other hand, the

normal-mode description of Chandrasekhar (1959) holds at long times, t � R2
0/ν. At

intermediate time scales, Prosperetti (1977, 1980) demonstrated that the dynamics is more
complex due to the existence of a memory term in the equation of motion of the modes,
which couples the dynamics with the past evolution.

1.3. Bubble deformations in turbulence
For a bubble immersed in a turbulent flow, additional dimensionless parameters may
control the deformation. Let us consider a bubble of negligible inertia and viscosity,
equivalent diameter d, immersed in a fluid of density ρ, dynamic viscosity μ, with surface
tension γ . When the surrounding flow field is a homogeneous and isotropic turbulent
flow, characterized by an energy dissipation rate ε, and an integral length scale Lint, the
Buckingham Π theorem predicts that the dynamics is controlled by three dimensionless
numbers. Choosing a set of dimensionless numbers which decouple viscous effects from
capillary effects, we obtain that a generic measure of shape deformation δ can be written
as

δ

d
= F

(
We(d), Re(d),

d
Lint

)
, (1.5)

where F is a dimensionless function. The Weber number We(d) = 2ρε2/3d5/3/γ
compares inertial and capillary forces at the bubble scale. The Reynolds number Re(d) =√

2ρε1/3d4/3/μ balances inertial and viscous forces at the bubble scale. Finally, the ratio
d/Lint is the scale separation between the bubble scale and the integral length scale. Note
that using ε and d we can define a characteristic velocity U = √

2(εd)1/3 = 〈δu2(d)〉1/2,
the velocity increment at the bubble scale in homogeneous and isotropic turbulence (Pope
2000). When the bubble size lies within the inertial range of the turbulent cascade, the
surrounding flow is scale invariant and we expect the dynamics to be independent of
d/Lint. The bubble dynamics will then be primarily controlled by the Weber number.
In the presence of gravity g, one must also include the Bond number Bo = ρgd2/γ ,
comparing gravity with capillary effects. For simplicity, we will not consider gravity
in this study. This assumption is valid for bubble diameters smaller than the capillary
length

√
γ /(ρg) ∼ 2 mm. In practice, looking at the temporal evolution of bubble

deformation, our model may describe shape oscillations slightly above the capillary
length.

In this work we focus on bubbles which do not break, corresponding to a bubble size d
within the inertial range of the turbulent cascade and d < dh. For a typical turbulent flow
with ε = 1 m2 s−3, and Wec ≈ 3, dh = (Wecγ /(2ρε2/3))3/5 ≈ 8 mm and Re(dh) ≈ 2300.
Note that Re(dh) ∼ ρ1/5γ 4/3/(ε1/5μ) decreases as ε increases for a given pair of liquid
and gas. It is worth mentioning that, as a consequence, an increase of the Taylor Reynolds
number induces more viscous effects at the Hinze scale.

In order to predict bubble breakup, Risso & Fabre (1998) introduced a forced linear
damped oscillator equation to describe the dynamics of sub-Hinze bubbles. Observing that
the average deformation increases linearly with We, up to the threshold for bubble breakup,
they postulated that a linear dynamics would be valid to describe bubble deformations up
to this point. They assumed that the deformed radius R(t) evolves following

R̈ + λṘ + ω2R = Fex(t), (1.6)
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where λ is a damping rate, ω a natural frequency and Fex(t) an instantaneous forcing
from turbulence. Bubble deformations and breakup are mainly controlled by the second
spherical harmonic modes � = 2, which correspond to oblate–prolate oscillation (Risso &
Fabre 1998; Ravelet et al. 2011; Perrard et al. 2021). As a consequence, as a first guess, they
used the Rayleigh natural frequency of mode 2, ω = ω

q
2, (1.1), and the Lamb damping rate

λ = λq
2, (1.2), even though these values only hold in a quiescent irrotational flow. Then,

following the original idea from Kolmogorov (1949) and Hinze (1955), they assumed that
the turbulent forcing from turbulence scales as the square of the instantaneous velocity
increment at the bubble scale δu(d, t)2, leading to a forcing Fex(t) = Kd−1δu(d, t)2 from
dimensional analysis, where K is a numerical constant of order 1. Doing so, they assumed
that the presence of the bubble does not strongly affect the flow properties, so that the flow
statistics correspond to the single fluid case. Expressing length in units of d, and time in
units of 1/ω

q
2, (1.6) is now written as

r′′ + 20
√

2/3 Oh r′ + r = K̃We(t), (1.7)

where K̃ is also a numerical constant and We(t) = 2ρδu(d, t)2d/γ is the instantaneous
bubble Weber number. This model is essentially the same as (1.4), with an additional
random forcing term. This equation has been widely used for bubble (Ravelet et al. 2011;
Lalanne, Masbernat & Risso 2019; Masuk et al. 2021a,b) and drop (Galinat et al. 2007;
Maniero et al. 2012; Håkansson 2021; Roa et al. 2023) oscillations in turbulence with
adequate expressions of the damping rate and natural frequency.

However, there is no guarantee that the bubble natural frequency and damping rate
remain unchanged compared with the quiescent case. They may a priori depend on both
Re and We. Indeed, surrounding flows are known to modify the natural frequency and the
damping rate. For instance, for bubbles in a uniaxial inviscid straining flow, Kang & Leal
(1988) showed that the flow couples modes � = 2 and 4, inducing a reduction linear in
We, of the mode � = 2 natural frequency at linear order. Rivière et al. (2023) investigated
numerically the deformation dynamics of bubbles in a uniaxial straining flow at large
but finite Reynolds number. Together with the linear We-dependency, they reported an
additional Re-dependency of the natural frequency of mode � = 2.

1.4. Outline of the present work: inferring the bubble deformation dynamics from data
In this paper, following Risso & Fabre (1998), we assume a linear damped oscillator
equation with a stochastic forcing for the oscillations of each mode of bubble deformation.
However, we do not presume either the values of the coefficients of (1.6) or the form of
the forcing. Instead, we directly measure, from the deformation dynamics, the effective
natural frequency and damping rate and compare them with the quiescent values. We then
deduce the statistical properties of the effective forcing. Looking for a reduced model
of the effective forcing, we compare its statistics with the pressure field evaluated in a
single-phase flow, on a sphere. Eventually, we investigate the flow structure around the
bubble and the local dissipation rate, to discuss the origin of the damping of bubble
oscillations in turbulent flows.

2. Bubble deformations in homogeneous and isotropic turbulent flow

2.1. Numerical set-up: direct numerical simulation of a single bubble in homogeneous
and isotropic turbulent flow

We perform direct numerical simulations of an incompressible gas bubble immersed
in a homogeneous and isotropic turbulent flow of an incompressible liquid, using the
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We 2.9 2 1.43 1 0.71 0.46 0.36 0.27
N 5 5 3 3 5 3 3 5
Ttot/tc(d) 62 126 94 94 156 94 84 94

Table 1. Number of simulations and total simulated time per value of the Weber number.

open-source software Basilisk (http://basilisk.fr) (Popinet 2003, 2009; Abu-Al-Saud,
Popinet & Tchelepi 2018). Density and dynamic viscosity ratios are set to 850 and
25, respectively, close to water–air ratios (830 and 58 respectively). The simulation
goes in two steps. We first create a homogeneous isotropic turbulent flow by solving
the one-phase incompressible Navier–Stokes equations with an additional forcing term
proportional to the velocity (Rosales & Meneveau 2005). After a transient regime, the
flow reaches a statistically stationary homogeneous and isotropic turbulent state. The
turbulent fluctuations are characterized by the Taylor Reynolds number Reλ, defined at
the correlation length of the velocity gradients, namely the Taylor micro-scale λT =√

15ν/ε urms Pope (2000), where urms is the root mean square of the velocity. The
Taylor Reynolds number of the flow is Reλ = urmsλT/ν = 55. In physical units, assuming
ε = 1 m2 s−3, in water, we would have urms = 0.12 m s−1 and λT = 0.46 mm. We
then extract snapshots of the flow and use them as flow initial conditions for bubble
injection. At the bubble scale, flow structures are correlated on a typical time scale
tc(d) = ε−1/3d2/3, called the eddy turnover time. To make sure the initial conditions
are independent, we take flow snapshots separated by at least 6 tc. The spherical bubble
is injected at the centre of the simulation box by changing locally the density and
viscosity. The bubble size is chosen so that it lies within the inertial range of the
turbulent cascade where the flow is scale invariant. The bubble diameter to box length
ratio is 0.13. During this second stage, forcing is maintained to sustain turbulence,
but only in the liquid phase to guarantee that bubble deformations only come from
the fluid forcing. In both steps, we use adaptive mesh grid refinement in order to
save computational time while resolving all the physical length scales of the problem.
The minimum grid size corresponds to 34 points per bubble radius. Details of the
numerical set-up as well as a convergence study can be found in Rivière et al.
(2021).

In this study we keep the Taylor Reynolds number constant and we vary the bubble
Weber number by changing the value of the surface tension coefficient. The bubble
Reynolds number is Re(d) = 124. Assuming ε = 1 m2 s−3, this Reynolds would
correspond to a bubble of size d = 0.9 mm. We explore eight values of We ranging
from Wec ≈ 3 to 0.1Wec. For each Weber number, we run between 3 and 5 simulations.
Except when the bubble breaks (at We = 2.9), we run every simulation for at least
20 tc, so that the total time per ensemble is approximately 100 tc. Table 1 summarizes
the exact number of simulations and total computational time per Weber number we
perform.

2.2. Modes of deformations
To quantify bubble deformations, we decompose the local bubble radius R into the real
spherical harmonic base Ym

� (θ, φ), where � and m are the principal and secondary numbers
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0.4

0.2

We = 1.4

We = 0.35

0x2,0

–0.2

–0.4

0 5

f2
qt

10 15

Figure 1. Typical temporal evolution for the mode (2, 0) at two different Weber numbers. Time is made
dimensionless using the Rayleigh frequency f q

2 . Modes exhibit random oscillations, with an amplitude that
is increasing with We.

respectively, and θ and φ the co-latitude and longitude,

R(θ, φ, t) = R0

[
1 +

∞∑
�=2

�∑
m=−�

x�,m(t)Ym
� (θ, φ)

]
, (2.1)

and we track the modes’ amplitude x�,m over time. Bubble shape is described in the
bubble frame of reference so that all harmonics � = 1, corresponding to bubble translation,
are null by definition. Numerically, the bubble centre is determined at each time step
recursively by moving the frame origin to minimize the amplitudes of all modes � =
1. The recursion stops when the centre displacement between two steps is less than
2.5 × 10−6R0. This condition ensures that |x1,m| < 4 × 10−6 for all values of m. Note that
the spherical harmonic decomposition holds as long as the local radius R is mono-valued.
The procedure to compute the spherical harmonics is described in detail in Perrard et al.
(2021).

Figure 1 shows two typical temporal evolutions for the mode (�, m) = (2, 0), at two
different Weber numbers. Time is made dimensionless using the Rayleigh frequency f q

2 .
For both We, we observe random oscillations around zero and the predominance of the
bubble resonant frequency f q

2 . The amplitude of the oscillations increases with We.
Since we do not prescribe any special orientation relative to the bubble shape, all modes

with the same principal number � are statistically equivalent. Indeed, one can verify that
a rotation of a mode can be expressed as a linear combination of all the other modes with
the same principal number. As a consequence, we omit m in what follows. For instance,
x�(t) represents a typical temporal evolution of one of the modes �. In addition, assuming
that x�,m are independent, the ensemble averaging operation 〈·〉 is computed over different
simulations and over the m values for a given �. Roa et al. (2023) used a reference
frame dynamically oriented with the bubble principal axis of deformations. In practice,
their reference frame maximizes the amplitude of mode (2, 0), such that the differential
elongation can be studied as the invariance by rotation is broken.
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3. Determination of the reduced dynamics

3.1. Model: a stochastic linear oscillator
Following Risso & Fabre (1998), we introduce a linear stochastic model to describe each
mode’s dynamics

ẍ� + Λ�(We)ẋ� + Ω�(We)2x� = T�(We, t), (3.1)

where Λ� and Ω� are the damping rate and natural frequency, respectively, and T� is a
random variable which models the turbulent forcing. In this section, we aim at measuring
Λ�, Ω� and the statistical properties of T� from the deformation dynamics. Note that
Λ�, Ω� and T� may also depend, in general, on the Reynolds number at the bubble
scale. However, here, we keep the bubble Reynolds number fixed and investigate the
dependency of Ω�, Λ� and T� on the Weber number We. Conversely to what other authors
have done, time is made dimensionless using the eddy turnover time at the bubble scale
tc(d) = ε−1/3d2/3 and, from now on, ·̇ denotes derivatives with respect to this
dimensionless time. This choice avoids a priori the need to have a forcing term
depending on bubble properties such as surface tension. It decorrelates the turbulent
forcing (right-hand side), from the bubble response (the left-hand side). In these units,
the Rayleigh frequency and the Lamb damping rate write (Ω

q
� )2 = 16(� − 1)(� + 1)(� +

2)/We and Λ
q
� = 8

√
2(� + 2)(2� + 1)Re(d)−1, respectively. Note that, in this study, we

have not varied the eddy turnover time. When the bubble size lies within the inertial
range of the turbulent cascade its dynamics is primarily controlled by inertial effects,
and the parameters may not depend explicitly on the bubble Reynolds number, as long
as Re(d) � 1.

In order to measure the coefficients and the force statistics of (3.1), we make the
following assumptions:

(H1) The modes’ dynamics is linear and uncoupled, which is valid for x� 
 1,
corresponding to We 
 1.

(H2) The bubble deformation is one way-coupled to the flow. This hypothesis is discussed
in § 3.5.

(H3) The forcing T� is statistically stationary.
(H4) The damping rate and the natural frequency do not depend on time.

From hypothesis (H2) the effective T�, in units of the eddy turnover time, is independent
of We. From hypothesis (H3), the effective forcing is completely determined by its
auto-correlation function (or equivalently its spectrum), and its probability distribution
function (p.d.f.).

Under these hypotheses, in the next sections, we will show that

(i) The natural frequency is not modified by the presence of the flow: Ω� = Ω
q
� .

(ii) There is an effective viscosity, driven by turbulence, so that Λ� = 0.6(� + 2)

(2� + 1) for Re(d) = 124.

Combining (i), (ii) and (3.1) we will deduce the statistical properties of the forcing T�.

3.2. Frequency response of the oscillator – amplitude of the Fourier transform
To rationalize the qualitative observations of figure 1 and identify the angular frequency
Ω�, we investigate the frequency response of the bubble. To do so, we compute the
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Figure 2. Amplitude of the modes’ Fourier transform for all We as a function of the frequency normalized by
the corresponding Rayleigh frequency. The Weber number value is colour coded.

temporal Fourier transform, x̂� of x� for all � and We

x̂�(Ω) = 1
T

∫ T

0
x(t)e−iΩtdt, (3.2)

where x̂� is also a random variable, T is the duration of the time signal and Ω is the angular
frequency. Similarly, we introduce T̂�, the Fourier transform of the effective forcing

T̂�(Ω) = 1
T

∫ T

0
T (t)e−iΩtdt. (3.3)

Figure 2 shows the ensemble average 〈|x̂�|〉 as a function of the angular frequency Ω ,
normalized by the corresponding Rayleigh natural frequency Ω

q
� .

For Ω < Ω
q
� , for every We, 〈|x̂�|〉 is approximately constant. The low-frequency

dynamics is similar to that of a white noise.
At Ω = Ω

q
� (back dotted line), for We ≤ 0.46 we observe a peak that resembles the

resonant response of an oscillator at its natural frequency. This peak does not exist
for larger values of We. Nevertheless, for every �, we observe a transition at this very
frequency.

For Ω > Ω
q
� , at all We, we report a sharp power-law decay, following at least

(Ω/Ω
q
� )−4.

Finally, for Ω > 3Ω
q
� , the spectrum amplitude is below the noise level. Note that this

part also corresponds to the end of the inertial range.
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Dimensional measurements of bubble deformation dynamics were performed by Ravelet
et al. (2011) in the context of bubbles rising in turbulence. They measured the temporal
spectrum of the horizontal bubble main axis, a proxy for the amplitude of the second
Rayleigh mode. The overall shape of their power spectrum was similar: weak variation for
Ω < Ω

q
� , no resonance at Ω

q
2 and a strong decay for Ω > Ω

q
� . In the absence of gravity,

Risso & Fabre (1998) also reported a transition at Ω
q
2 , with a rapid decay for Ω > Ω

q
� of

the projected area spectrum.
The cutoff frequency being Ω

q
� for all considered cases, we deduce that the bubble

natural frequency in turbulence, Ω� of (3.1), is not modified by the presence of the
surrounding turbulent flow and that

Ω� = Ω
q
� = 4

[
(� − 1)(� + 1)(� + 2)

We

]1/2

. (3.4)

It is surprising that the bubble natural frequency remains unchanged. Indeed, Prosperetti
(1980) showed, for a bubble in an initially quiescent flow, that viscous effects induce an
additional memory term in the bubble dynamics. This memory term can be modelled by
an effective natural frequency and damping term. The surrounding flow field can also
modify the natural frequency. In a uniaxial straining flow for instance, Kang & Leal
(1988) demonstrated that a coupling between modes � = 2 and � = 4 decreases the mode
2 natural frequency at linear order, with a corrective term linear in We. We hypothesize
that the stochastic nature of turbulence cancels, on average, these contributions. In the
following, we use the theoretical expression of Ω

q
� , for the bubble natural frequency, Ω�.

3.3. Zero frequency limit and We-dependency of the forcing
In this section, we investigate the zero frequency limit, and discuss the consequence for
the We-dependency of the forcing. By computing the Fourier transform of (3.1), combined
with (3.4), we obtain an expression linking x̂� and T̂�

|x̂�|(We, Ω) = |T̂�|(We, Ω)√
(Ω2 − Ω

q
� (We)2)2 + Λ�(We)2Ω2

. (3.5)

The spectral behaviour of each x� is a combination of the forcing spectrum T̂� and the
bubble response. In the limit case Ω = 0, using the expression of the bubble natural
frequency (3.4), we have

|x̂�|(We, 0) = |T̂�|(We, 0)

Ω
q
� (We)2

= We
16(� − 1)(� + 1)(� + 2)

|T̂�|(We, 0). (3.6)

We can use this expression to investigate the We-dependency and �-dependency of T̂� at
Ω = 0. We extract 〈|x̂�|〉(We, 0) by averaging 〈|x̂�|〉(We, Ω) over the range 5 × 10−3 <

Ω/Ω
q
� < 10−1 where the spectrum is constant.

Figure 3(a) shows 〈|x̂�|〉(We, 0) as a function of We. Solid lines of slope 1 are
superimposed, showing that 〈|x̂�|〉(We, 0) increases linearly with We for � < 4, up to We =
2.9 ≈ Wec, when nonlinear effects start to be important. For � ≥ 4, the increase is faster
than linear. This effect might originate from nonlinear coupling with lower-order modes. It
follows from (3.6) that 〈|T̂�|〉(We, 0) is independent of We for � < 4, the most energetic
modes. This result justifies that the effective forcing from turbulence does not depend on
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Figure 3. (a) Zero frequency limit of the modes’ Fourier transform as a function of We for all �. For
comparison, solid lines have slope 1 and would represent 〈|x̂�|〉(Ω = 0) ∝ We. Error bars are estimated
using the standard deviation of the spectrum value for 5 × 10−3 < Ω/Ω

q
� < 10−1. (b) Compensated limit

〈|x̂�|〉(Ω = 0)/We, as a function of �. Colours encode We (see figure 2). Assuming T� independent of � gives
the scaling plotted in red. Assuming |T�| ∼ 1/

√
� gives the scaling plotted in black.

the bubble deformability at low frequency. The modification of the flow induced by bubble
oscillations does not impinge back on the bubble dynamics. A similar phenomenon has
been observed for drops by Vela-Martín & Avila (2021). They investigated the interfacial
stress generated by eddies depending on their distance from the interface. They concluded
that eddies further that 0.2d from the drop interface (outer eddies) generate most of the
stress. They reported that these contributions are, in addition, independent of We, as these
eddies are too far from the interface to be affected by drop deformations. We can assume
that a similar mechanism may hold also for the bubble dynamics so that T̂� does not depend
on We either, at least for � < 4. These results justify hypothesis (H2) at low frequency, and
we assume that (H2) holds for all frequencies. From now on, we therefore assume that T�

does not depend on We. This hypothesis will be further validated and tested in § 3.5. The
zero frequency limit also depends on the mode order �. Figure 3(b) shows the compensated
spectrum limit 〈|x̂�|〉(Ω = 0)/We as a function of �. We find that the zero frequency limit
decreases slightly faster than (Ω

q
� )−2 ∼ [(� − 1)(� + 1)(� + 2)]−1 of (3.6) (red line). It

suggests that |T̂�| weakly decreases with �, with |T̂�| ∼ 1/
√

�. Higher-order modes are
associated with smaller scales that are less energetic. However, the direct investigation
of pressure modes in § 5.2 showed a faster decrease of the mode energy with �. The
high-order modes � ≥ 3 may also be indirectly forced from nonlinear coupling, with mode
2 changing the �-dependency of the forcing.

3.4. Determination of the effective damping factor: additional dissipation due to
turbulence

In this section, we present a method to compute the damping factor Λ� of (3.1) from the
numerical data.

Let x̂a and x̂b be the Fourier transform x̂� of the same mode � for two Weber numbers
Wea and Web. For simplicity, here, we denote Ωa and Λa, the natural frequency and
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damping rate associated with Wea at this �. Under hypothesis (H2), the ratio Rab

Rab(Ω) =
( 〈|x̂a|〉

〈|x̂b|〉
)2

= (Ω2 − Ω2
b )2 + Λ2

bΩ
2

(Ω2 − Ω2
a )2 + Λ2

aΩ
2 (3.7)

is independent of T̂�.
Since the two natural frequencies Ωa and Ωb are known (3.4), one can estimate the two

damping factors, Λa and Λb, using Rab(Ωa) and Rab(Ωb), the ratios at the two natural
frequencies

Rab(Ωa) = (Ω2
a − Ω2

b )2 + Λ2
bΩ

2
a

Λ2
aΩ

2
a

(3.8)

Rab(Ωb) = Λ2
bΩ

2
b

(Ω2
a − Ω2

b )2 + Λ2
aΩ

2
b
, (3.9)

by solving this two-equation system. In practice, we measure Rab at Ωa and Ωb using
the Fourier amplitude shown in figure 2 and compute the corresponding values Λa and
Λb. We repeat the procedure for all pairs Wea and Web of Weber numbers. Note that
an optimization of Λa and Λb on the whole range of frequencies was less reliable. The
signal over noise ratio is optimal near the resonance, and decreases both at high and
low frequencies. Indeed, high frequencies, which are the more noisy, then dominate the
optimization procedure.

Figure 4(a) illustrates the computation of Λ�. The ratio R0.71,0.27 for � = 2, Wea = 0.71
and Web = 0.27 is represented as a function of the angular frequency Ω (grey curve).
The black and red vertical lines denote the position of the two natural frequencies Ωa
and Ωb, respectively, at which we measure R0.71,0.27. Inverting system (3.8)–(3.9) gives an
estimate of Λ0.71 and Λ0.27. Using these computed values of Λ0.71 and Λ0.27 we plot the
theoretical expression of (3.7) at all frequencies (black line). This expression captures
the main features of the ratio R0.71,0.27(Ω): the low-frequency limit, the position and
amplitude of the peak.

We then follow this procedure for every pair (Wea, Web) and obtain 14 estimations of Λ�

per Weber number per mode �. We did not find a significant bias on the estimated value
of Λ�(We) as a function of the Weber ratio Wea/Web. We then average over all values of
Web values to estimate Λ�(Wea). The values of Λ� for � = 2 and � = 3 as a function of
We, and their standard deviation, are reported in table 2. For � ≥ 4, (3.5) fails to describe
the ratio Rab. Figure 4b shows Λ� as a function of We for � = 2 and � = 3 with error
bars encoding the 95 % confidence interval. We find no clear variation of Λ� with We,
especially for � = 2. When � increases, the dissipation also increases, as smaller scales
are more efficient at dissipating energy. The increase of Λ� with � is compatible with the
�-dependency in a quiescent environment from Lamb (1932). From our observations we
found the following expression for the damping factor:

Λ� = 0.6(� + 2)(2� + 1), (3.10)

which has been validated only for � = 2 and 3. In quiescent environments, the damping
coefficient is also independent of We, Λ

q
� = 8

√
2(� + 2)(2� + 1)Re(d)−1, as it originates

from molecular diffusion in the liquid. However, we find Λ2 ≈ 6.6Λ
q
2. The surrounding

flow field induces an additional effective damping. Experimentally, Ravelet et al. (2011)
also observed an additional damping for bubbles rising in turbulence but attributed it to
the presence of the wake. Yet, similar observations come from drop oscillations in space.
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Figure 4. (a) Ratio between the Fourier spectrum at Wea = 0.71 and Web = 0.27 for the mode � = 2. The
red and black vertical lines denote the position of the Rayleigh frequency at these two We, where we evaluate
Rab. The black line results from (3.7). (b) Damping factor as a function of We for � = 2 and � = 3. The error
bars encode the 95 % confidence interval 1.96σΛ/

√
#N, where σΛ is the standard deviation of Λ� and #N the

number of samples. The solid black line corresponds to Λ2 = 12.

We 2.9 2 1.43 1 0.71 0.46 0.36 0.27
Λ2 14.3 11.7 11.9 11.0 11.0 13.8 11.9 17.1
σ 2

Λ 1.1 1.6 1.8 2.2 2.9 3.6 3.1 5.9
Λ3 20.1 16.6 17.1 16.2 17.0 30.5 25.4 29.7
σ 3

Λ 3.3 4.0 4.6 4.4 5.3 13.1 12.5 18.5

Table 2. Average damping parameter Λ� and corresponding standard deviation, for every We.

In the presence of a turbulent internal flow, drop oscillations are significantly damped
(Bojarevics & Pericleous 2003; Berry et al. 2005). This additional damping is interpreted
in terms of a turbulent eddy viscosity (Xiao et al. 2021). In addition, Vela-Martín & Avila
(2021) showed that there is a transfer of energy from the drop interface to eddies closer
than 0.2 d from the drop interface and inside the drop. They call them inner eddies. These
small eddies efficiently dissipate energy. This transfer of energy suggests that the enhanced
damping comes from an increase in the local effective diffusivity.

It is advantageous to estimate the size of an equivalent mixing length Lt. This
characteristic length of momentum transport was first introduced by Prandtl (Boussinesq
1877; Prandtl 1949; Xiao et al. 2021) to describe, in a turbulent flow, the logarithmic profile
of the velocity near a wall. By dimensional considerations, one can estimate the effective
turbulent viscosity νt, using Lt and a typical velocity scale of velocity fluctuations at that
scale, 〈δu(Lt)

2〉1/2,

νt = 〈δu(Lt)
2〉1/2Lt =

√
2ε1/3L4/3

t . (3.11)

Expressing the effective damping rate in terms of this effective turbulent viscosity gives

Λ� = 8(� + 2)(2� + 1)
νtd2/3

d2ε1/3 = 8
√

2(� + 2)(2� + 1)

[
Lt

d

]4/3

. (3.12)
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Injecting (3.10), gives an estimate for Lt

Lt = d
10

= R0

5
. (3.13)

Being of the same order of magnitude as the bubble radius, we hypothesize that the mixing
length originates from a geometric effect, similar to the separation between inner and outer
eddies from Vela-Martín & Avila (2021). We further investigate the origin of this effective
damping in the last section, by looking at the local velocity gradients close to the bubble
interface.

3.5. Effective forcing statistics: temporal correlations and distribution
Since the left-hand side of (3.1) is now completely determined, we can compute the
right-hand side, and interpret it as a forcing term from the turbulent flow.

To interpret and comment on the statistics of the forcing term we will obtain, let us
briefly discuss the physical origin of the forces acting on a bubble in a turbulent flow. To
the best of our knowledge, there is no theoretical description of the forcing statistics acting
on a bubble. For particles lying within the inertial range, the force exerted by the flow
is often modelled by the Eulerian pressure gradient, integrated over the particle surface
(Calzavarini et al. 2009), a framework that can also be applied to bubbles (Volk et al.
2008). Decomposed in the spherical harmonic base, the pressure on a sphere of radius R
reads

p(θ, φ) = Pc

[ ∞∑
�=0

�∑
m=−�

P�,m(t) Ym
� (θ, φ)

]
, (3.14)

where Pc = ρδu(d)2 is a characteristic pressure fluctuation. There is no direct
experimental measurement of these pressure coefficients. In practice, only two-point
pressure measurements (pressure increments) have been studied. From force balance on
a finite-size particle in a turbulent flow, the modes � = 1 are the components of the
hydrodynamic force, equal to the Lagrangian particle acceleration. Practically speaking,
the pressure increments are a good proxy for the Lagrangian particle acceleration.

For the higher-order modes (� ≥ 2) there is no measurement in turbulence. Moreover,
to describe deformations rather than motions, the framework used for particle acceleration
cannot be simply extended. The interface deformations are primarily driven by the velocity
gradients at the interface, which themselves depend on the presence of the bubble. Still,
these gradients are closely related to the pressure statistics at the bubble scale. Therefore,
from time to time, we will comment on our statistics of T� (� ≥ 2) in the light of P1, namely
the Lagrangian acceleration statistics and the pressure increment. A direct measure of the
statistics of P� (� ≥ 2) in the absence of bubble is provided in § 5.

Practically, we compute T� from the modes’ Fourier transform x̂� using the following
relation:

T�(t) = 1
2π

∫ ∞

−∞
x̂�(Ω)(Ω2

� − Ω2 + iΛ�Ω)eiΩtdΩ, (3.15)

where we use the expressions of Λ� and Ω� from (3.4) and (3.10).
As expected from rotational invariance, we find that the average forcing 〈T�〉 vanishes

for all We. The standard deviation of T�, σ�
T is shown in figure 5 as a function of We for

� = 2 and 3 (colour coded). Here, σ�
T is found to be almost independent of the Weber

number. We found that the effective forcing from the turbulent flow does not depend on
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Figure 5. Standard deviation of T as a function of We for � = 2 and � = 3. No We-dependency is observed,
while σT decreases slightly for larger �.

bubble deformability. Therefore, bubble deformations are only one-way coupled to the
flow.

In physical units, the force T� then scales as α(�)ε2/3d−1/3, where α� is a function of
the mode order. The standard deviation decreases with �, compatible with α� ∼ �−1/2.

In the context of Lagrangian particle acceleration in turbulence, the standard deviation
of acceleration also decreases with particle size as d−1/3. This scaling can be predicted
using a scale invariant pressure fluctuation argument (Voth et al. 2002; Qureshi et al. 2007;
Volk et al. 2011). In addition, Lagrangian acceleration statistics do not depend explicitly
on the Reynolds number at the particle size Re(d), as long as the particle lies within the
inertial range. Only a marginal effect of the flow Taylor Reynolds number Reλ on the
variance of the acceleration (Voth et al. 2002) was found. As a consequence, we expect
the effective forcing to be independent of Reλ, Re(d) and the Weber number.

Beyond the first two moments of the effective forcing distribution, it is interesting to
look at the full distribution. Figures 6(a) and 6(b) show the probability distribution of T2
and T3, respectively, for all We, normalized by their standard deviation σ�

T . We find that
the shape of the distribution is also independent of the Weber number. These distributions
are characterized by exponential tails, and are well described by the hyperbolic secant
distribution (black dashed line)

p.d.f.(T ) = 1
2σ�

T
sech

(
π

2
T
σ�
T

)
, (3.16)

which depends on a single parameter, the standard deviation σ�
T . The probability that a

large forcing occurs is much larger than that of a Gaussian distribution (solid black line).
It is again tantalizing to compare this distribution with Lagrangian acceleration statistics

for both particles and bubbles (Voth et al. 2002; Qureshi et al. 2007; Volk et al. 2008;
Homann & Bec 2010; Prakash et al. 2012; Salibindla, Masuk & Ni 2021). For small,
neutral tracers and particles of Kolmogorov-scale size, the acceleration distributions
exhibit larger tails, decreasing slower than exponential. However, for larger particles
(d/η > 10), the shape exhibits an exponential tail, independent of bubble size and
therefore of Re(d) (Voth et al. 2002; Qureshi et al. 2007; Volk et al. 2011). The p.d.f. shape
of the Lagrangian acceleration is well described by the following expression, initially
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Figure 6. Probability density functions of T2 (a) and T3 (b) for all We (colour coded), normalized by their
standard deviations. The shape of the distribution is independent of We. The dashed line represents the
hyperbolic secant distribution, while the solid line is the Gaussian distribution.

proposed for tracer particles (Mordant, Crawford & Bodenschatz 2004; Qureshi et al.
2007):

p.d.f.(x) = e3s2/2

4
√

3

[
1 − erf

(
log(|x/√3|) + 2s2

√
2x

)]
, (3.17)

where x is the standardized variable and s an additional fitting parameter. In the range of
resolved scale, the two expressions, (3.16) and (3.17), are compatible with our experimental
data.

To characterize the temporal evolution of the effective forcing T�, we study its
ensemble-averaged Fourier transform 〈|T̂�|〉. Injecting (3.4) and (3.10) within (3.5) we
obtain an expression in Fourier space for 〈|T̂�|〉

〈|T̂�|〉(Ω) = 〈|x̂�|〉(Ω) ·
[
(Ω2 − Ω�(We)2)2 + Λ2

�Ω
2
]1/2

. (3.18)

Figures 7(a) and 7(b) show 〈|T̂2|〉 and 〈|T̂3|〉, respectively, as a function of Ω�−2/3, where
�2/3 is the eddy turnover time at scale d/� (in units of tc(d)). For all frequencies, we
found that the effective forcing spectrum does not depend on the Weber number. At
low frequencies (Ω < 1.3 �2/3), the forcing amplitude is constant, corresponding to a
white noise. For Ω > 2π�2/3, the decay of 〈|T̂�|〉 is compatible with 1/Ω2. The limit
between these two regimes is set by the eddy turnover time at scale d/�. We found that
the spectrum of the effective forcing only depends on the turbulence parameters, and
is therefore independent of the bubble deformations. As was anticipated in § 3.1, model
(3.1) decouples the turbulent forcing (the right-hand side) from the bubble response (the
left-hand side). The observation of a cutoff frequency at the characteristic time scale
of turbulent fluctuations at the mode scale d/� can be interpreted as a filtering process
originating from the integration over the bubble surface. This filtering operation is further
discussed in § 5.

From the previous observations, we propose the following expression for the forcing
spectrum:

〈|T̂�|〉(Ω) = τ�

1 + [Ω�−2/3/(2π)]2 , (3.19)
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Figure 7. Effective forcing spectrum for � = 2 (a) and � = 3 (b) deduced from (3.18) as a function of the
frequency normalized by the eddy turnover time at scale d/�. The Weber number is colour coded with the
same colour bar as in figure 2.

where τ� is a numerical constant, accounting for the �-dependency of T�, that is adjusted on
the data. From (3.6) and figure 3, we estimate τ� ∼ �−1/2. The expression (3.19) captures
quantitatively the effective forcing spectrum (solid black line in figure 7(a,b).

In the context of Lagrangian particle accelerations, Voth et al. (2002), followed by Volk
et al. (2008), computed the temporal autocorrelation of inertial particle accelerations in
turbulence. The temporal acceleration statistics of a finite-size particle is usually attributed
to a filtering effect of the small-scale turbulent fluctuations at the particle scale (Qureshi
et al. 2007). As a consequence, the correlation time of acceleration for a neutrally buoyant
particle is given by the eddy turnover time tc(d). This result has been recently extended to a
buoyant particle that exhibits a modified correlation time t ∼ tc(d)β−1/2 (Fan et al. 2024),
where β = 3ρ/(2ρ + ρp) is a function of the fluid density ρ and the particle density ρp.
For a bubble, we have β = 3, corresponding to a correlation time of order tc. In our case,
the temporal auto-correlation function CT�

(t) = 〈T�(0)T�(t)〉/(σ �
T )2 for the modes � > 1

can be deduced from the spectrum T̂� and is written as

CT�
(t) = exp(−2π�2/3t)(1 + 2π�2/3t). (3.20)

We found that the correlation time in physical units is given by tc(d)�−2/3/(2π),
which also scales as tc(d), with an additional dependency on the mode order �. The
prefactor being smaller than one, the mode oscillations decorrelate faster that the velocity
fluctuations at the bubble scale.

In summary, we found that all the statistics of T� are independent of We, which confirms
the initial intuition of Risso & Fabre (1998) that the bubble dynamics and turbulent forcing
are decoupled. We found that the bubble deformation by the flow field can be described
by a one-way coupling model: the flow field generated by bubble oscillations does not
significantly impinge back on the bubble dynamics. In addition, experimental results from
the literature suggest that these statistics are likely to be independent of Re(d), as long as
we consider bubbles larger than the Kolmogorov scale.

From the stationary hypothesis (H3), the forcing is completely characterized by its
distribution and temporal autocorrelation function. The combination of an explicit form
for the p.d.f. (3.16) and for the autocorrelation function (3.20) then provides a complete
model of a synthetic stochastic effective forcing for bubble deformations in turbulence.
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Figure 8. (a) Modes’ standard deviation as a function of the Weber number for all �. The two solid lines are
the results from our linear model, for modes � = 2 and � = 3. (b) Modes’ standard deviation compensated by
We as a function of the mode principal number.

Previous modelling approaches have used two-point velocity measurements to model an
effective forcing term (Risso & Fabre 1998; Lalanne et al. 2019; Masuk et al. 2021b),
following the original idea from Kolmogorov (1949) and Hinze (1955). Here, we found
that the statistics of the effective forcing differ significantly from two-point statistics, in
particular due to the volumetric filtering effect at the particle size.

4. Model validation

To describe the bubble deformation, we have inferred step by step an equation including,
damping, the natural frequency and a statistical model for the effective forcing term T�. To
validate and draw the limits of our model, we compare the output of the linear model with
our direct numerical simulation (DNS) data.

4.1. Modes’ standard deviation and distributions
We first look at the modes’ standard deviation σ�

x .
Figure 8(a) shows the modes’ standard deviation of the DNS as a function of the Weber

number for � ∈ [2, 5]. We find that σ�
x can be approximated by σ�

x ≈ We/[(� − 1)(� +
1)(� + 2)], with a constant of order one. We compute σ�

x from the model in Fourier space
using expressions of (3.4), (3.10) and (3.19) and the Parseval identity. The results are
superimposed by the solid line for � = 2 and 3, showing a quantitative agreement with
the numerical data.

A scaling for σ�
x as a function of We and � can be deduced analytically in model cases.

One natural case is to consider T� as a Gaussian white noise of autocorrelation function
C(t) = Dδ(t), where δ is the Dirac function, and D is independent of the Weber number.
In this case, from the analysis of stochastic harmonic oscillators (Gitterman 2005), the
standard deviation reads

σ�
x ∼

[
D

Λ�Ω
2
�

]1/2

. (4.1)
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From the coefficients Λ� and Ω� we extracted, this model predicts σ�
x ∝ We1/2, which

does not correspond to the observed scaling. A finite correlation time has been taken
into account. We then consider T� as an exponentially correlated Gaussian noise of
autocorrelation function 〈T�(t)T�(t′)〉 = (σ �

T )2 exp(−|t − t′|/t�), where t� = �−2/3/(2π)

is the correlation time of the effective forcing deduced from (3.20), and D is independent
of We. In this case, the mode’s standard deviation reads (Gitterman 2005)

σ�
x = σ�

T

[
t�(1 + Λ�t�)

Ω2
� Λ�(1 + Λ�t� + Ω2

� t2�)

]1/2

. (4.2)

The scaling of σ�
x now becomes a function of the ratios Λ�t� and Ω�t�. In practice, we have

Ω�t� � 1 and Ω�t� � Λ�t� for sufficiently small Weber. Considering the limit Λ�t� � 1,
(4.2) simplifies as

σ�
x = σ�

T
Ω2

�

= σ�
T

(� − 1)(� + 1)(� + 2)
We. (4.3)

We then recover the observed scaling for small Weber number. For larger Weber number,
the ratio Ω�t� decreases, and we expect a transition to a shallower increase of σ�

x with
We. This transition should occur for larger Weber number as � increases, an interpretation
compatible with the numerical data shown in figure 8(a). The observed scaling of σ�

x with
Weber number thus corresponds to a saturation of the bubble deformations dominated
rather by the long correlation time of the forcing (frozen turbulence hypothesis applied to
bubble deformations Ruth et al. 2019) than an accumulation of random forcing events on a
time scale 1/Λ�. It is worth noticing that the estimate of the correlation time of the forcing
is therefore essential to predict the amplitude of bubble deformations.

To further check the dependency on �, figure 8(b) shows the compensated standard
deviation σ�

x /We. We recover that the decrease of the modes’ amplitude with � can be
mainly attributed to the increase of the natural frequency with �, with a small correction
originating from the weak dependency of T� with �. Eventually, we found a quantitative
agreement between the standard deviation x� and the result from the linear model. The
model captures the evolution of σ�

x with both We and �.
The linear increase of σ�

x with We, up to We ≈ 3, has important consequences when
modelling bubble breakup. Risso & Fabre (1998) suggested that the threshold for breakup
is close to the value above which the deformations start to be nonlinear. A linear model
would then be sufficient to describe bubble deformations up to the breakup threshold.

We then look at the entire statistics of x�. Figure 9 shows the probability density
functions of the modes � = 2 for all Weber numbers (9a) normalized by their standard
deviation. We find that the shape of the p.d.f. does not depend on the Weber number
and corresponds to the hyperbolic secant distribution (black dashed line), equivalent to
the p.d.f. of the effective force T�. Both the forcing and the mode amplitude share the
same p.d.f. that deviates from Gaussianity (solid black line) with exponential tails. As the
distributions exhibit fat tails, the probability that bubbles experience large deformations
leading to breakup is large compared with a Gaussian distribution (black dotted line).
Moreover, for larger �, the deviation from a Gaussian distribution increases, as shown in
figure 9(b) for We = 1.
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Figure 9. (a) Normalized p.d.f. of x2 for all We. (b) Normalized p.d.f. at We = 1 for different �. In
both panels the black dashed line is the hyperbolic secant distribution. The solid black line the Gaussian
distribution.
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Figure 10. Comparison of the Fourier spectrum amplitude between the DNS and the model (dotted line). The
model spectrum is obtained by combining (3.10), (3.4) and (3.19) in (3.5), for the mode � = 2. The model
captures the low-frequency limit, the position of the transition as well as the high-frequency decay for all We.

4.2. Deformation spectrum
Figure 10 compares the modes’ Fourier transforms with the model (3.5) combined with
(3.10), (3.4) and (3.19) (dotted lines). For all Weber numbers, the model accurately
reproduces the zero-limit frequency as well as the amplitude of the spectrum at the bubble
natural frequency f2 and the position and slope of the decay at larger frequencies. At the
lowest Weber number (We = 0.27), the model overestimates the spectrum just below the
resonance. We remind the reader here that, for angular frequencies larger than 3Ω2, the
spectrum is dominated by numerical noise. For all other We, in the absence of resonance,
the model captures the spectrum close to the bubble natural frequency.
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4.3. Consequences for bubble breakup
Thanks to the quantitative model we have developed, we can revisit the breakup scenario
and the criterion for breakup. Two main breakup scenarios have been proposed for bubbles
in turbulence. Bubbles can break either when they encounter a turbulent fluctuation larger
than some threshold value (Lee et al. 1987; Luo & Svendsen 1996; Wang et al. 2003;
Masuk et al. 2021a) or after a series of small excitations at their natural frequency which
induce a resonance (Sevik & Park 1973; Risso & Fabre 1998). The ability of a bubble
to store energy in a mode �, is quantified by the quality factor Q� = Ω�/Λ�. The quality
factor Q� sets the number of periods over which energy can be stored. For large Q�, energy
can be accumulated, while it is dissipated in a few bubble periods for low Q�. Our linear
model provides a quantitative measure of Q�. Combining (3.4) and (3.10) we have an
explicit expression for Q� as a function of We and �

Q� = 4

√
(� − 1)(� + 1)

0.6(� + 2)(2� + 1)2 We−1/2. (4.4)

In turbulence, bubbles mainly break after oblate–prolate deformations, meaning
deformations along their second modes � = 2 (Risso & Fabre 1998; Ravelet et al. 2011;
Masuk et al. 2021b; Perrard et al. 2021). For the typical critical Weber numbers reported in
the literature, 0.1 < Wec < 10 (Sevik & Park 1973; Risso & Fabre 1998; Martínez-Bazán,
Montanes & Lasheras 1999; Rivière et al. 2021), our estimate of the quality factor for the
mode � = 2 ranges from 0.3 (Wec = 10) to 3 (Wec = 0.1). These quality factors are too
small to observe significant energy storage over several periods of oscillations. Resonance
can still occur for the largest Q� ≈ 3. However, we expect the resonant mechanism to
be subdominant at this quality factor. We conclude that bubbles break from short and
large turbulent fluctuations rather from a series of small excitations at the bubble natural
frequency (resonant mechanism).

Note that a sequence of oscillations at the bubble natural frequency may be observed
for sufficiently large quality factor, typically Q2 > 10, corresponding to We < 8 × 10−3.
Even though such a Weber number corresponds to a bubble size much smaller than the
Kolmogorov Hinze scale, which will never break, a resonant breakup may be observed
experimentally.

5. Link between model coefficients and surrounding turbulent fields

In this section, we aim at connecting the effective variables we identified, namely the
forcing T� and the damping coefficient Λ�, to flow statistics in turbulence. The presence
of a bubble modifies the flow statistics in its surrounding, through dynamical boundary
conditions at the interface and incompressibility. Nevertheless, for drops, it has been
shown that the outer eddies (further than 0.2d from the interface) generate most of the
normal stress (Vela-Martín & Avila 2021). These outer eddies may be less affected by the
presence of the interface. Therefore, it is natural to compare the flow statistics on a sphere
in the absence of a bubble with the effective force statistics. In § 3.5, we argued that the
pressure modes are a good proxy for the effective forcing. In this section, we then compare
the statistics of T� with the pressure modes’ statistics in the single-phase case. On the
other hand, the damping is expected to give rise to eddies contained in the boundary layer
near the interface (Vela-Martín & Avila 2021). To rationalize the origin of the additional
damping from the flow statistics, we will therefore study the local dissipation in the bubble
boundary layer.
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Figure 11. (a) Typical temporal evolution of the pressure at two points in space. We observe small-amplitude
oscillations together with rare intense negative peaks. (b) Local pressure distribution normalized by its standard
deviation σp = 0.67Pc. The solid black line follows the hyperbolic secant distribution centred while the black
dashed line follows a Gaussian distribution with standard deviation 4/5.

5.1. Point statistics of the pressure field
As a reference case, we first consider the Eulerian point statistics of pressure in
homogeneous and isotropic turbulence, at the same Taylor Reynolds number Reλ = 55,
corresponding to the two-phase flow case. To compare with the bubble dynamics, we will
still express length scales in units of d, time scales in units of tc(d) and therefore velocity
in terms of velocity increments at the bubble scale 〈δu(d)2〉1/2.

We run single-phase DNSs and record the Eulerian pressure fluctuations p(x, t) at seven
different fixed locations well separated in space. We run three simulations for a total of
245tc(d). Resolution is increased compared with the two-phase problem and would be
equivalent to 68 points per bubble radius and 3.6 points per Kolmogorov length. Note that
increasing the resolution was not necessary but allows us to obtain more precise results,
especially in the viscous range. In this section, ensemble averages are performed over the
three simulations and the seven locations.

Figure 11(a) illustrates two temporal evolutions of pressure, normalized by the
characteristic pressure difference at the bubble scale, Pc = ρδu(d)2. We found a pressure
standard deviation σp = 0.67Pc. Pressure exhibits random oscillations of small amplitude
around zero, together with large negative drops. This asymmetry between positive and
negative fluctuations is better observed on the pressure p.d.f. plotted in figure 11(b). We
recover that negative values are exponentially distributed, while positive values follow a
Gaussian distribution (dashed black line). The existence of the large negative peaks leading
to an asymmetric p.d.f. is well known and has been reported both in experiments (Abry
et al. 1994; Pumir 1994; Cadot, Douady & Couder 1995) and DNSs of homogeneous
isotropic turbulence (Cao, Chen & Doolen 1999; Vedula & Yeung 1999). It has been
shown that these large negative peaks correspond to vorticity filaments (Douady, Couder
& Brachet 1991; Fauve, Laroche & Castaing 1993; Cadot et al. 1995) passing through the
measurement point. As the bubble moves in the fluid, it may experience different pressure
statistics and the Lagrangian pressure statistics could also be relevant.

Lagrangian pressure statistics have also been investigated numerically. Numerical
studies involve measuring pressure statistics along the paths of point particles (Bappy,
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Figure 12. (a) Amplitude of the local pressure Fourier transform. The vertical dotted line corresponds to
the angular frequency Ωc(L) of eddies of integral length scale in size, while the dashed line corresponds to
the angular frequency Ωc(η) of eddies of Kolmogorov length scale in size. Inset plot: compensated Fourier
transform 〈|p̂|〉/p̂K . The solid line corresponds to 〈|p̂|〉 = p̂K/10.

Carrica & Buscaglia 2019), as well as (sub-Kolmogorov) finite-size bubbles (Bappy et al.
2020a,b) whose dynamics is modelled using a pure advection or a Maxey–Riley equation
(Maxey & Riley 1983; Toschi & Bodenschatz 2009), respectively. They found that larger
particles have a higher probability of being within low pressure regions. Nevertheless,
the overall shape of the pressure p.d.f., with an exponential tail for negative values and a
Gaussian distribution of positive values, is conserved.

To investigate the frequency statistics of the local pressure, we compute the temporal
Fourier transform of each pressure signal p̂

p̂(Ω) = 1
T

∫ T

0
p(t)e−iΩt dt. (5.1)

The average amplitude of its Fourier transform 〈|p̂|〉 is plotted in figure 12. The
corresponding inertial range in frequency space is delimited by the inverse of the eddy
turnover time at the integral scale Ωc(L) = 2π/tc(L) (black dotted line) and the inverse of
the eddy turnover time at the Kolmogorov scale, Ωc(η) (dashed line). For low frequencies,
Ω < Ωc(L), 〈|p̂|〉 slowly decreases with Ω . Abry et al. (1994) have shown that this
evolution at low frequencies originates from the contribution of vorticity filaments, since
their typical lifetime is the integral time scale (Douady et al. 1991; Pumir 1994). Removing
their contributions flattens the low-frequency spectrum (Abry et al. 1994).

In the inertial range of the turbulent cascade, Ωc(L) < Ω < Ωc(η), 〈|p̂|〉 decays down
to the noise level near Ωc(η). In the spatial Fourier space, and a fortiori in the temporal
Fourier space, there is no consensus for the scaling of the pressure power spectrum
within the inertial range (Pullin & Rogallo 1994). A Kolmogorov-like scaling predicts
|p̂(k)|2 ∼ ε4/3k−7/3 with k the mode’s wave number (reported by Ishihara et al. (2003)
for instance) but other authors have also reported a k−5/3 scaling (Gotoh & Rogallo 1999;
Vedula & Yeung 1999). To transform the spatial power spectrum into a temporal power
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Figure 13. (a) Pressure standard deviation, σ�
P as a function of �, showing an exponential decay with � (black

dotted line). (b) Distributions of P�, normalized by σ�
P , as a function of �. All the pressure modes share the

forcing distribution given in (3.16).

spectrum, a classical way is to consider that the small-scale structures are advected by the
large scales. This is the sweeping hypothesis (Kraichnan 1964; Tennekes 1975), which has
been successfully used to reproduce pressure temporal autocorrelation (Yao et al. 2008).
Combining this argument with the Kolmogorov prediction, we find that 〈p̂〉 should scale
as p̂K ∼ ε2/3u5/6

rmsΩ
−4/3, with a proportionality constant of order 1. We find a reasonable

agreement, as shown by the compensated spectrum 〈p̂〉/p̂K in the inset of figure 12. As
evidenced by Pumir (1994), Pullin & Rogallo (1994) and Vedula & Yeung (1999), the
Kolmogorov scaling might only hold in a narrow range of frequencies, corresponding to
scales just below the integral scale, due to the limited inertial range. The proportionality
constant is around 0.1 in our case (solid black line) lower than the value of 7 proposed by
Pumir (1994). The third regime Ω > Ωc(η), corresponds to the end of the inertial range
and is close to the limit of resolution of our DNS, as Ωc(�x) = 3Ωc(η), where �x is the
minimum grid size.

5.2. Pressure field on a sphere
To compare the pressure statistics with the effective forcing T�, we interpolate the pressure
field pS(θ, φ) in the single-phase DNS on a sphere of radius R0, and compute its spherical
harmonic decomposition

pS(θ, φ) = Pc

[ ∞∑
�=0

�∑
m=−�

P�,m(t) Ym
� (θ, φ)

]
. (5.2)

Similarly to the modes of deformation x�,m, the statistics of P�,m are independent of m.
Ensemble averages are then computed over the three simulations and the m values. For
pressure, the modes � = 0 and � = 1 are non-zero, however, we focus in the following
on modes � ≥ 2, which are relevant for bubble deformations. Figure 13(a) shows that
the standard deviation of each mode �, σ�

P, varies exponentially with �. A higher � is
associated with fluctuations at a smaller scale, which are known to be less energetic.
However, we have no explanation for the exponential scaling. We also observed a decay
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Figure 14. (a) Amplitude of the pressure Fourier transform 〈|P̂�|〉 for each mode � as a function of the
angular frequency in units of the eddy turnover time at the bubble scale. The black dashed line represents
the eddy turnover time at scale η. The black dotted line is the eddy turnover time at the integral length scale.
(b) Normalized pressure Fourier transform as a function of frequency in units of the eddy turnover time at scale
d/�. The black line follows Ω−3.

of σ�
T with � (figure 5). The symmetry between positive and negative values is restored,

as shown in figure 13(b). Distributions now show exponential tails for both negative and
positive pressure values. The shape of the distribution is found to be independent of �,
corresponding to the same hyperbolic secant distribution (3.16) as the effective forcing
distribution we previously identified.

Eventually, we compute the temporal Fourier transform P̂� of the spherical pressure
modes P�. Figure 14(a) shows the ensemble average of the norm, 〈|P̂�|〉 as a function
of the frequency. For each �, we recover the three regimes we observed for the point
pressure spectrum and T�. The transition between the two first regimes depends on the
mode �. Considering that the pressure spectrum shares the same characteristic frequency
as the effective forcing spectrum, we expect the transition to occur at Ω = 2π�2/3, the
frequency associated with eddies of size d/�, in units of tc(d). We show in figure 14(b) the
spectra 〈|P̂�|〉 normalized by their low-frequency limit, P̂0

�, as a function of the frequency
normalized by �2/3, the eddy turnover time at scale d/�. All curves collapse onto a
single master curve, showing that the pressure and effective forcing share the same time
scales. Below the critical frequency (Ω < Ω�), the spectrum amplitude converges to a
constant value, significantly above the integral frequency ΩL. Similarly to Abry et al.
(1994), the pressure spectrum at low frequency is now constant. We can assume that the
averaging over the sphere has filtered the contribution from localized structures, and in
particular the vorticity filaments. A flat spectrum in the range Ωc(L) < Ω < 2π�2/3 also
indicates that the contribution of eddies larger than d/�, which are roughly homogeneous
at the mode scale, has also been filtered out: a bubble is mainly deformed by eddies
at its scale. For 2π�2/3 < Ω < Ωη, 〈|P̂�|〉 follows Ω−3. This decay is steeper than the
�-dependency of 〈|T̂�|〉 which follows Ω−2. This might be attributed to the discrepancy
between Eulerian and Lagrangian statistics. From the sweeping effect (Kraichnan 1964),
the temporal decorrelation of Eulerian quantities is expected to occur faster than their
Lagrangian counterpart.

To summarize, we have shown that the effective forcing T� deforming a bubble shares
the same statistics as the corresponding pressure mode on a sphere of the same radius.
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As a consequence of the filtering effect induced by the integration over a sphere, the
characteristic frequency associated with each mode � is the eddy turnover time at scale
d/�, the frequencies smaller than �2/3 are well described by a white noise and the forcing
amplitude decreases with �.

5.3. Dissipation profiles
Our analysis of bubble deformation shows that (i) the effective forcing originates from
turbulent fluctuations near the bubble, and it is not affected by bubble deformability.
(ii) The damping of bubble oscillations is significantly enhanced compared with the
quiescent case. This damping can either originate from additional dissipation in the
turbulent boundary layer or an energy transfer from the bubble oscillations to the turbulent
flow. Both mechanisms depend on the boundary layer thickness. Using a turbulent
viscosity hypothesis we estimated that energy was transported on a boundary layer of size
Lt = R0/5, independent of We. In this section we investigate the velocity gradient profile
near the bubble, on a distance comparable to bubble typical deformation. To do so, we
need to compute a local distance r to the interface, which is not provided by the Basilisk
volume of fluid (VOF) algorithm.

The method principle is the following. For every bulk point, we find the closest grid
point on the interface. We then interpolate the bubble surface around this point, using
a quadratic interpolation on the 20 closest neighbouring interfacial points. To find the
neighbours efficiently, the interfacial grid points are stored in a k − d tree structure. The
distance r to the interface is then found by minimizing the distance from the bulk point
to the quadratic manifold. We follow this procedure for both outside (r > 0) and inside
(r < 0) bulk points.

We diagnose the additional dissipative term of the linear model by investigating the local
dissipation rate profile around the bubble. The energy dissipation rate per unit of mass in
a elementary volume is related to the local velocity gradients by

〈ε〉(x) = 2ν〈(∂iuj + ∂jui)
2〉, (5.3)

where we use Einstein notations. For each run, we output snapshots of the full flow field at
times separated by at least one eddy turnover time at the bubble scale, to ensure statistical
independence. We then compute profiles of the local dissipation near the interface by
averaging on shells of constant distance from the bubble interface, as illustrated in
figure 15. Eventually, for each Weber number, we ensemble average the flow snapshots
(see table 3) to extract a mean profile.

Figure 16(a) shows the average local dissipation, divided by the kinematic viscosity,
〈ε〉(r)/ν, as a function of the distance r to the bubble interface. Far from the bubble
interface, for r > R0/2 and r < −R0/2, the local dissipation converges to a constant. In
the gas, velocity gradients are maximum at r = −R0/15. The existence of a maximum
inside the bubble near the interface originates from the nearly no-slip boundary condition
imposed by the denser fluid on the gas inside the bubble. A similar boundary layer
has indeed been observed near a solid particle’s surface (no-slip boundary condition)
(Shen et al. 2022; Chiarini & Rosti 2024). For bubbles, we therefore expect that decreasing
the gas density increases the amplitude of the peak. The velocity gradients inside and
outside the bubble share the same order of magnitude: the dissipation hence mainly takes
place outside the bubble, in the liquid, where the dynamical viscosity is much larger. To
understand the origin of the additional damping we then focus on the outside boundary
layer.
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Figure 15. Example of the distance computation on a slice of a bubble at We = 2. The red points are on the
interface. Isocontours are separated by 0.0625R0. We also show the association between one bulk points and
the corresponding interfacial point.

We 2 1.43 1 0.71 0.46 0.36 0.27
N 48 68 68 27 46 24 52

Table 3. Number of snapshots per Weber number used to compute the flow profiles.

For r > 0, we observe a thick boundary layer of typical size R0/5 (see figure 16a),
compatible with our estimation of Lt (see (3.13)). Figure 16(b) shows the dissipation rate
value at the interface in the liquid 〈ε〉|0+ as a function of the Weber number. At vanishing
Weber number, we find a non-zero dissipation originating from a geometrical boundary
layer. The interfacial value varies between 3 times (We = 0.27) and four times (We = 2)
larger than that in the bulk. In addition, we find an increase compatible with a linear
dependency of the interfacial dissipation with We. If we interpret this additional dissipation
as an energy transfer rate from the surface deformation to the flow, it would scale as
Λ�(ẋ�)

2. We have (ẋ�)
2 ∼ (ω

q
�σ

�
x )2 ∝ We. This interpretation is therefore compatible with

a damping coefficient Λ independent of We.
In the absence of flow, the thickness of the boundary layer of the oscillating bubble can

be estimated by
√

2ν/ω
q
2. For a Weber number ranging from 2.9 to 0.27, this estimation

gives a boundary layer of size ranging from 0.07R0 to 0.04R0, which is much thinner
than the boundary layer thickness we measured. We conclude that the boundary layer is
geometric. It is not produced by bubble oscillations. The existence of a thick boundary
layer was completely disregarded in the computation of Lamb (1932) for a potential flow
far from the interface. The thick boundary layer we observed for the dissipation profile
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Figure 16. (a) Local velocity gradient inside and outside the bubble as a function of the distance to the
interface, for all We. (b) Limit of the dissipation rate at the bubble interface in the liquid phase as a function of
the Weber number.

is then consistent with an effective damping one order of magnitude larger than in the
quiescent case.

6. Conclusion

In summary, we have shown that the deformations of bubbles in turbulence can be
described in terms of a stochastic linear oscillator on the Rayleigh modes of oscillations
up to a Weber of order unity. Conversely to previous works, we have directly measured,
using DNS of bubbles in turbulence, the coefficients of this reduced model, namely, the
damping rate and the natural frequency, together with the statistical properties of the
effective forcing. We have shown that the natural frequency associated with each mode of
deformation is not modified compared with the quiescent case. For the effective damping
coefficient, we found that the damping is one order of magnitude larger than the prediction
from Lamb. Looking at the dissipation profiles near the interface, we confirmed that the
additional damping originates from a thick geometrical boundary layer of size Lt ≈ R0/5
in our case. In physical units, we expect the damping coefficients Λ� to scale as ν/d2Re(d).
Eventually, we found that the effective forcing does not depend on the Weber number. This
observation confirms that bubble deformations are one-way coupled to the flow: the back
reaction of bubble deformations on the surrounding turbulent flow can be neglected. This
effective forcing is characterized by a probability distribution with exponential tails and
a typical correlation time which scales with the eddy turnover time at the mode’s scale
tc(d/�). We also looked at the statistics of pressure fluctuations on a sphere in the absence
of bubbles, and we showed that the effective forcing shares the same p.d.f. as the pressure
modes’ p.d.f. as well as the same characteristic time scale. Due to the enhanced damping
compared with the quiescent case, we showed that the resonant oscillation mechanism is
not statistically relevant to explaining breakups. Indeed, at a Weber number of order unity,
the bubble cannot accumulate deformation energy on several periods of oscillations as the
quality factor Q2 = Ω2/Λ2 of the main bubble oscillations is too small. As a consequence,
bubbles break rather from short and large turbulent fluctuations than from a series of
small-amplitude excitations at the bubble natural frequency (resonant mechanism).
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