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Abstract: Exercise-based cardiac rehabilitation participation is effective in improving 

cardiovascular disease risk factor management, cardiopulmonary function, and quality of life. 

However, the precise mechanisms underlying exercise-induced cardioprotection remain elusive. 

Recent studies have shed light on the beneficial functions of noncoding RNAs in either exercise or 

illness models, but only a limited number of noncoding RNAs have been studied in both contexts. 

Hence, the present study aimed to elucidate the pathophysiological implications and molecular 

mechanisms underlying the association among exercise, noncoding RNAs, and cardiovascular 

diseases. Additionally, the present study analyzed the most effective and personalized exercise 

prescription, serving as a valuable reference for guiding the clinical implementation of cardiac 

rehabilitation in patients with cardiovascular diseases.  
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Introduction 

Cardiovascular diseases (CVDs) have remained the most common cause of morbidity and 

mortality worldwide for over a decade, suggesting that innovative approaches are urgently needed 

to fight these major public health problems (Ref. 1). Both the guidelines on the secondary 

prevention of CVDs and cardiac rehabilitation (CR) state that exercise, as a central element, is an 

effective nonpharmacological and nontraumatic intervention (Refs 2, 3, 4). Increasing studies have 

shown that regular exercise training (ET) reduces cardiovascular risk factors, including the 

promotion of weight loss, control of blood pressure, improvement of hyperlipidemia, and insulin 

sensitivity (Refs 5, 6, 7). Moreover, exercise-based CR is effective in improving exercise capacity, 

cardiopulmonary function, cardiovascular symptoms, adverse events, and quality of life in patients 
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with hypertension, coronary heart disease (CHD), valvular heart disease, and heart failure (HF) 

(Refs 8, 9, 10). Although strong and compelling evidence supporting the benefits of exercise has 

increased over the past years, its complex molecular mechanisms remain obscure. 

Increasing research interest has been focused on the pathological processes of 

exercise-induced cardioprotection (EIC), including the inflammatory response, myocardial 

oxidative stress, cardiac hypertrophy, vascular remodeling, myocardial metabolic adaptations in 

mitochondrial function and glucose/lipid metabolism, and systemic responses (Ref. 11). From a 

molecular standpoint, there is a limited understanding of the signaling pathways responsible for 

these processes. Similarly, translating insights from CVD research into clinical applications, such 

as warnings and controls of exercise risk, has been challenging. Noncoding RNAs (ncRNAs) have 

been recognized as a regulatory network governing gene expression in multiple 

pathophysiological processes, such as epigenetic, transcriptional, and posttranscriptional levels 

(Refs 12, 13). However, little is known about the expression and function of these ncRNAs in 

response to exercise and how they benefit cardiovascular health. 

The presented review aimed to summarize the most recent publications on the 

pathophysiological mechanism of ncRNAs in EIC, discuss potential therapeutic strategies and 

propose considerations regarding the present and future of research in this field. 

 

Beneficial effects of exercise training for cardiovascular diseases 

An accumulating number of cohort studies, systematic reviews, and meta-analyses have 

documented that ET has multiple beneficial effects for patients with CVDs, such as improving 

cardiac structure and function, reducing hospitalization, and all-cause mortality, extending life 

expectancy (Refs 14, 15, 16). A meta-analysis has suggested that achieving the recommended 

physical activity levels (150 minutes of moderate-intensity aerobic activity per week) can reduce 

CVD incidence by 17%, CVD mortality by 23%, and type 2 diabetes mellitus (T2DM) incidence 

by 26% (Ref. 17). Compared to an unhealthy diet and inactivity (UDI), a prospective cohort study 

has revealed that the reduction in all-cause and CVD mortality is associated with the following 

lifestyles: a healthy diet and activity (HDA); a healthy diet but inactivity (HDI); an unhealthy diet 

but activity (UDA) (Ref. 18). However, Kivimäki and colleagues (Ref. 19) demonstrated that 

physical inactivity is associated with a 24% high risk of CHD, a 16% enhanced risk of stroke, and 

a 42% higher risk of T2DM. The frequency of adverse cardiovascular events in acute endurance 

runners is equivalent to that in a population with a diagnosis of CHD (Ref. 20). Extreme 

endurance exercise may induce adverse cardiorenal interactions (Ref. 21). Currently, ET has been 

prescribed as a medical therapy for different CVDs. In the following section, we will discuss the 

potential protective effects of ET in CVDs in detail (Fig. 1).  

 

Exercise training reduces myocardial oxidative stress 

Reactive oxygen species (ROS), both as subcellular messengers in signal transduction 

pathways and as contributors to oxidative stress, play beneficial or deleterious roles in the 

initiation, development, and outcomes of CVDs. The main sources of ROS at the cardiac level are 

the mitochondrial electron transport chain, xanthine oxidase, NADPH oxidases (more specifically 

that of NOX5), and nitric oxide (NO) synthase (Ref. 22). Under physiological conditions, 

producing a low level of ROS is equivalent to detoxification, and it plays a pivotal role in cellular 

signaling and function. This process, termed redox signaling, is defined as the specific and 
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reversible oxidation/reduction modification of cellular signaling components for the regulation of 

gene expression, excitation-contraction coupling, cell growth, migration, differentiation, and death 

(Ref. 22). In contrast, in pathological situations, ROS cause oxidative modification of major 

cellular macromolecules (such as lipids, proteins, or DNA) in subcellular organelles, including 

mitochondria, the sarcoplasmic reticulum, and the nucleus. However, this response leads to 

atherosclerosis, endothelial and mitochondrial dysfunction, increased of blood pressure, and 

cardiomyocyte hypertrophy (Ref. 23).  

Not surprisingly, numerous randomized clinical trials investigating antioxidants have been 

negative, whereas targeting mitochondria will be a promising strategy to improve mitochondrial 

functionality by nonpharmacological methods, including exercise. In the past few decades, ET has 

been developed into an established evidence-based treatment strategy for CVDs (Refs 8, 24). A 

previous study in a mouse model has demonstrated that ET increases endothelial sirtuin 1 (SIRT1) 

levels and reduces the downregulation of superoxide dismutase (SOD), glutathione peroxidase 

(GSH-Px), nuclear factor erythroid 2-related factor (NRF2), and heme oxygenase 1 (HO-1). ET 

protects against cardiac damage by inducing hyperlipidemia-induced oxidative stress, 

inflammation, and apoptosis (Ref. 25). Additional studies in patients with CHD have demonstrated 

that regular moderate ET attenuates cardiac oxidative stress by decreasing protein carbonyl, SOD, 

and GSH-Px, as well as increasing GSH and ferric reducing antioxidant power (FRAP) levels 

(Refs 26, 27). Additionally, oxidative stress is associated with the expression of ncRNAs (Refs 28, 

29). Masoumi-Ardakani and colleagues (Ref. 30) elucidated that ET improves cardiac function in 

hypertensive individuals by increasing total serum antioxidant capacity, which is related to 

reduced microRNA-21 (miR-21) and miR-222 levels. Knockdown of lncRNA SNHG8 in MI mice 

reduces myocardial infarction (MI) size and alleviates myocardial tissue injury and oxidative 

stress (Ref. 31). Similarly, lncRNA NORAD overexpression attenuates doxorubicin 

(DOX)-induced cardiac pathological lesions by decreasing cardiomyocyte apoptosis and 

mitochondrial ROS levels (Ref. 32). However, further mechanisms of ROS and ncRNAs in 

ET-induced CVDs remain to be understood.  

 

Exercise training blunts inflammatory pathways 

The inflammatory response is an equivocal topic in cardiovascular protection. It is well 

known that inflammation is involved in the development and progression of CVDs, such as 

atherosclerosis, hypertension, CHD, and rheumatic heart disease, and it provokes cardiomyocyte 

damage. Importantly, ET halts the action of inflammatory mediators and the induction of 

biological pathways to protect the heart (Refs 33, 34, 35). For instance, ET affects macrophage 

function, including downregulation of the interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), 

and nuclear factor (NF)-κB inflammatory cytokines, as well as reducing oxidized LDL, and 

improving antioxidant capacity to blunt the processes of atherosclerosis (Ref. 33). Evidence from 

a human study shows that aerobic training is beneficial for blood pressure control and CVD risk 

reduction by decreasing endothelin-1 and the C-reactive protein (CRP), monocyte chemoattractant 

protein-1, vascular cell adhesion molecule-1, and lectin-like oxidized LDL-receptor-1 

inflammatory markers (Ref. 36). A systemic review and meta-analysis have demonstrated that ET 

reduces CRP, fibrinogen, and von Willebrand factor (vWF) concentrations in CHD subjects (Ref. 

37). Nonetheless, further animal and clinical studies with high methodological qualities and large 

sample sizes are needed to improve evidence-based medicine in this area and to explore the 
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underlying molecular mechanism of different exercise mode-induced inflammation reduction in 

more CVDs. 

NcRNAs play regulatory roles in inflammation and innate immune responses. The expression 

of lncRNA INKILN is downregulated in contractile vascular smooth muscle cells (VSMCs) but 

induced in human atherosclerotic vascular diseases (ASVDs) and aortic aneurysms. Knockdown 

of lncRNA INKILN by siRNA attenuates the expression of a series of proinflammatory genes by 

blocking IL-1β-induced nuclear localization and the physical interaction between p65 and 

megakaryocytic leukemia 1 (MKL1), which is a major transcriptional activator of vascular 

inflammation (Ref. 38). MiR-15a-5p and miR-199a-3p overexpression decreases inflammatory 

pathway protein levels, such as IKKα, IKKβ, and p65, and it reduces oxidized LDL and NF-κB 

activation in VSMCs and patients with atherosclerosis (Ref. 39). Moreover, overexpression of 

miR-340-5p reduces cardiomyocyte apoptosis and inflammation via the HMGB1/TLR4/ NF-κB 

pathway in myocardial ischemia‒reperfusion injury (MIRI) (Ref. 40). 

 

Exercise training optimizes cardiac metabolism 

Cardiac metabolism represents a crucial and significant bridge between health and CVDs. 

The predisposing factors of CVDs, such as insulin resistance, DM, and obesity, are associated with 

imbalances in cardiac mitochondrial dynamics, mitochondrial fusion and fission, mitochondrial 

metabolic dysfunction, and mitophagy (Refs 41, 42). The heart is an important energy-consuming 

organ, accounting for approximately 30%-40% of mitochondria by volume of cardiomyocytes. 

Under physiological baseline conditions, the heart is considered an omnivore organ because it uses 

broad energy substrates. Cardiac ATP is mainly produced from fatty acid oxidative 

phosphorylation (40%-70%), glucose oxidative phosphorylation (20%-30%), lactate (5%-20%), 

and other energy sources, including pyruvate, pyruvate, acetate, and branched-chain amino acids 

(BCAAs). However, under pathological conditions, such as MI, myocarditis, and HF, 

cardiometabolic substrates switch from major fatty acid oxidation to carbohydrate oxidation (Ref. 

43), because glycolysis consumes less oxygen than fatty acid oxidation and the oxidative 

phosphorylation products, namely, water and carbon dioxide, are nontoxic to the heart. 

Compared to pathological conditions, cardiac workload and myocardial oxygen consumption 

markedly increase during ET, leading to an increased rate of ATP generation by increasing the use 

of fatty acid and lactic acid, as well as by reducing the consumption of glucose. However, 

myocardial glucose is significantly used during long-term exercise, which is related to the 

progression of cardiac physiological hypertrophy (Refs 44, 45). A previous study has 

demonstrated that swimming exercise-induced adaptation leads to cardiac physiological 

hypertrophy and increases glycolysis, glucose oxidation, fatty acid oxidation, and ATP production 

(Ref. 46). In addition, ET improves the imbalance of mitochondrial dynamics and abnormal 

changes in mitochondrial structure in pathological states. Treadmill exercise has been identified to 

attenuate DM-induced cardiac dysfunction by enhancing the cardiac action of fibroblast growth 

factor 21 (FGF21) and inducing the AMPK/FOXO3/SIRT3 signaling axis to prevent toxic 

lipid-induced mitochondrial dysfunction and oxidative stress (Ref. 47). A previous study involving 

ET in a mouse model has reported that ET activates the SIRT1/PGC-1α/PI3K/Akt signaling 

pathway to attenuate MI-induced mitochondrial damage and oxidative stress (Ref. 48). However, 

the biological mechanism of ET intervention to improve the energy metabolism of CVDs still 

lacks a theoretical basis and practical measures. 
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Exercise training improves microcirculation structure and function 

Recent invasive investigations have shown that nearly 60% patients of chest pain do not have 

obstructive CHD (defined as lesions with ≥50% stenosis), which has been realized as a frequent 

issue encountered in clinical practice (Ref. 49). This clinical phenomenon is defined as coronary 

microvascular dysfunction (CMD), which is mainly due to capillary rarefaction and adverse 

remodeling of intramural coronary arterioles (Ref. 50). It has been shown that ET intervention 

improves microvascular structure and function (Refs 51, 52, 53). Extensive studies with 

experimental animals have demonstrated that ET improves coronary capillary angiogenesis and 

myocardial arteriolarization, as well as increases coronary capillary exchange capacity and 

maximal coronary blood flow capacity, thus promoting coronary collateral circulation growth, 

increasing ischemic threshold and limiting MI size (Refs 53, 54). Additionally, activating NO, PGs 

and hyperpolarization factors by ET improves hemorheological parameters to reduce 

prothrombotic risk (Ref. 53). However, compared to preserved coronary flow reserve, patients 

with CMD have a higher prevalence of inducible myocardial ischemia and reduced global 

perfusion reserve, as well as coronary perfusion efficiency, during ET (Ref. 55). The underlying 

mechanism merits further investigation. Substantial evidence suggests that ET controls blood 

pressure throughout the day, including during rest or stressful events. ET enhances 

endothelium-dependent vascular relaxation through NO release and decreased reactive oxygen 

species (ROS), and it improves extracellular matrix levels by reducing collagen deposition and 

matrix metallopeptidase (MMP)-2/9 expression. ET also decreases plasma levels of 

proinflammatory cytokines, such as TNF-α, IL-1β, and norepinephrine, and it reduces vascular 

injury via the NF-κB system (Refs 52, 56). In a mouse model of MI, Chen et al.(Ref. 57) showed 

that lncRNA Malat1 repairs the cardiac microcirculation by mediating the miR-26b-5p/Mfn1 

pathway to block effects on mitochondrial dynamics and apoptosis.  

In clinical practice, invasive coronary angiography, positron emission tomography (PET), 

computed tomography (CT), cardiac magnetic resonance (CMR), and left ventricular contrast 

echocardiography are suitable for the noninvasive detection of CMD (Refs 49, 58, 59), but these 

methods still need to be further tested in large-scale randomized clinical trials for intensive and 

individualized treatment. Therefore, more investigations should be undertaken to reveal different 

adaptive changes induced by different types, models, and durations of ET in different CVD 

populations. 

 

Exercise training promotes cardiac repair and regeneration 

The end-stage manifestation of many CVDs is HF, of which the pathological driver is death 

and loss of cardiomyocytes and supporting tissues. Although adult mammalian hearts have limited 

regenerative capacity, the rate of regeneration is extremely low and declines with age. There are 

no effective treatment strategies to supplement injured cardiomyocytes and promote cardiac 

regeneration. Recent advances have verified that regular ET promotes cardiac repair and 

regeneration by inducing physiological cardiac hypertrophy, inhibiting myocardial apoptosis and 

necrosis, improving cardiac metabolism, and promoting cardiomyocyte proliferation (Refs 60, 61). 

Vujic et al. (Ref. 62) found that 8 weeks of voluntary running exercise significantly increase the 

number of new cardiomyocytes in normal adult and MI mouse hearts. Another study has also 

demonstrated that running exercise restores cardiomyogenesis in aged mice, which may be 
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associated with circadian rhythm pathways (Ref. 63). ET, as a physiological stimulus, plays an 

important cardioprotective role in adult zebrafish by inducing cardiomyocyte proliferation (Ref. 

64). Recently, animal studies have revealed that ncRNAs are linked to the control of 

cardiomyocyte regeneration, renewal, and proliferation. For instance, swimming or wheel exercise 

upregulates miR-222 expression, which targets the Kip1 (P27), homeodomain-interacting protein 

kinase 1/2 (HIPK1/2), and homeobox containing 1 (HMBOX1) to induce the proliferation and 

growth of cardiomyocytes (Ref. 65). Other miRNAs, such as miR-342-5p (Ref. 66), miR-486 (Ref. 

67), and miR-133 (Ref. 68), also play significant roles in regulating cardiac growth and survival in 

response to ET. Furthermore, swimming training promotes cardiomyocyte growth and attenuates 

cardiac remodeling in an MIRI mouse model by upregulating lncRNA CPhar expression, which 

inhibits the expression of transcription factor 7 (ATF7) by sequestering CCAAT/enhancer binding 

protein β (C/EBPβ) (Ref. 69). Although changes in ncRNA expression in animal studies are at 

least in part transferable to treatment regimes, more work is still needed to validate their safety 

and applicability for clinical application. 

 

Exercise training alleviates cardiac fibrosis 

Cardiac fibrosis (CF), mainly characterized by the unbalanced production and degradation of 

extracellular matrix (ECM) proteins, is the main pathological process of CVDs, and it leads to 

cardiac dysfunction, arrhythmogenesis, and adverse outcomes (Ref. 70). Attenuating CF is a key 

strategy for maintaining cardiac function and improving the prognosis of patients with CVDs. In 

addition to traditional drug therapy and new interventions, such as chimeric antigen receptor 

(CAR)-T-cell therapy (Refs 71, 72), increasing evidence from clinical and animal studies suggests 

that ET-based CR should be taken into consideration to prevent the progression of adverse CF 

(Refs 73, 74, 75, 76). For example, ET reduces the fibrosis-related protein levels of AT1R, 

fibroblast growth factor 23 (FGF23), lysyl oxidase like-2 (LOX-2), transforming growth factor 

(TGF)-β, p-Smad2/3, TIMP-1/2, MMP-2/9, and collagen Ⅰ (Refs 77, 78). Mechanistically, ET 

suppresses LOX-2/TGF-β-mediated fibrotic pathways to prevent CF and myocardial abnormalities 

in early-aged hypertension (Ref. 77). In addition, ET increases FGF21 protein expression and 

regulates the TGF-β1-smad2/3-MMP2/9 axis (Ref. 79). ET markedly inhibits lncRNA MIAT 

expression and upregulates miR-150 to improve cardiac remodeling by inhibiting P2X7 purinergic 

receptors (P2X7Rs) in diabetic cardiomyopathy (DCM) (Ref. 80). Additionally, ET plays a 

functional role in HF and DOX-induced cardiotoxicity (Refs 78, 81, 82). Although basic and 

clinical trials associated with antifibrotic drugs have been performed, future studies should focus 

on exploring the underlying pathophysiological mechanisms in the onset and progression of CF to 

determine integrated and personalized therapeutic strategies. In summary, the early identification, 

diagnosis, and management of CF are vital in improving the survival and prognosis of CVD 

patients.  

 

Exercise mediates cardiac protection by ncRNAs 

Most recently, an increasing number of studies have indicated that epigenetic modifications 

are involved in the promotion of cardiac health and prevention of CVDs. Lifestyle factors, such as 

exercise and diet, extensively induce epigenetic modifications, including DNA/RNA methylation, 

histone posttranslational modifications, and ncRNAs (Refs 83, 84). For example, a low-protein 

diet causes altered sncRNA content in spermatozoa, which is associated with altered levels of lipid 
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metabolites in offspring and decreased expression of specific genes starting in two-cell embryos 

(Ref. 85). However, no reported studies have evaluated the link of exercise-induced DNA 

methylation in cardiac tissue, indicating that the action of different epigenetic mechanisms in EIC 

needs further study. 

Evidence suggests that ncRNAs may be used as novel biomarkers, offering innovative 

prospects for the diagnosis, treatment, and prognosis of CVDs. In addition to the changes resulting 

from pathological conditions, ncRNAs and related signaling pathways also undergo changes due 

to ET (Fig. 2). For example, miR-1-3p is an emerging biomarker of high-volume maximal 

endurance exercise, while in low-volume doses there is an absence of response in low-volume 

doses (Ref. 86). CircRNA MBOAT2 expression is significantly decreased after 24 h of marathon 

running and can be used as a biomarker for detecting cardiopulmonary adaptation (Ref. 87). There 

are many studies of miRNA involvement in exercise adaptations, and far less is currently known 

about lncRNAs and circRNAs (Table 1). NcRNAs and their signal pathways response differently 

to exercise intensity, frequency, and tolerance. Additionally, the correlation between exercise 

prescription and ncRNAs needs to be further researched in both animal models and clinical cohort 

studies.  

 

Exercise-induced ncRNAs in myocardial infarction 

MI is a leading cause of cardiovascular death and chronic HF worldwide (Ref. 1). 

Cardiomyocytes undergo a series of pathological adaptations after MI, including myocardial 

ischemia, hypoxia, inflammatory response, necrosis, progressive cardiac fibrosis, and ventricular 

enlargement. Persisting structural cardiac abnormalities are associated with arrhythmias, HF, and 

sudden cardiac death. Although percutaneous coronary intervention and drugs have become the 

predominant treatment for MI, these strategies cannot reverse or attenuate the biological process, 

eliminate risk factors, and consistently improve patient outcomes. 

It has been demonstrated that regular ET significantly improves cardiac structure and 

function by rescuing post-MI stunned myocardium (Refs 4, 9). Furthermore, exercise-mediated 

ncRNAs have great significance in the biological regulation of MI. In vivo studies have shown 

that 4 weeks of ET increases miR-126 expression and reduces the expression of PIK3R2 and 

SPRED1. In vitro results have demonstrated that miR-126 promotes angiogenesis by the 

PI3K/Akt/eNOS and MAPK signaling pathways, subsequently improving of MI cardiac function, 

including increasing left ventricular systolic pressure (LVSP) and +dp/dtmax and decreasing left 

ventricular end-diastolic pressure (LVEDP) and collagen volume fraction (Ref. 88). Compared to 

the control group, ET reduces cardiomyocyte apoptosis and improves cardiac fibrosis and systolic 

function by decreasing lncRNA MIAT expression and increasing the expression of lncRNA H19 

and lncRNA GA55 (Ref. 73). Further exploration has shown that overexpression of lncRNA H19 

also dramatically alleviates myocardial infarct size and inflammation by sponging miR-22-3p to 

target lysine (K)-specific demethylase 3A (KDM3A) (Ref. 89). Likewise, other studies have 

illustrated that lncRNA H19 plays an essential role in regulating the pathological processes of 

CVDs by acting as a molecular sponge or interacting with various proteins to target gene 

expression (Ref. 90). The above results indicate that lncRNA H19 is a potential marker or a 

promising target for CVD treatment. 

Clinical outcomes and prognosis vary with individual differences in pathophysiological 

mechanisms. In response to the common cardiac remodeling in the early and late stages of MI, 
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there are currently novel therapeutic strategies, including SGLT2-i, inflammatory modulators, and 

silencing small RNAs, have been developed (Ref. 72). Furthermore, circulating markers can be 

combined with novel cardiac imaging techniques, such as CMR and myocardial work index of the 

left ventricular 17 segment by echocardiography, to help reveal the pathophysiological mechanism 

of cardiomyopathy and better guide personalized treatment.  

 

Exercise-induced ncRNAs in myocardial ischemia‒reperfusion injury 

Recovering reperfusion after MI can cause irreversible detrimental effects known as MIRI, 

including myocardial stunning, reperfusion arrhythmia, no-reflow phenomenon, and lethal 

reperfusion injury. Pathological changes, such as inflammation, apoptosis, autophagy, and 

neurohumoral activation, are considered to have the same underlying cause as MIRI (Ref. 91). 

Recent findings have revealed that novel ncRNAs are involved in a variety of important biological 

processes and the development of MIRI (Ref. 92). Systemic reviews and meta-analyses have also 

shown that ET increases the left ventricular ejection fraction, cardiac output, and coronary blood 

flow (Ref. 93). Increased miR-17-3p inhibits TIMP 3 expression to enhance cardiomyocyte 

proliferation by activating EGFR/JNK/SP-1 signaling (Ref. 94). In addition, miR-17-3p indirectly 

regulates the PTEN/Akt signaling pathway to promote cardiomyocyte hypertrophy in vivo and in 

vitro (Ref. 94). Bei et al. reported that downregulation of miR-486 occurs in both MIRI in vivo 

and OGDR-treated cardiomyocytes in vitro. However, AAV9-mediated miR-486 overexpression 

in a mouse model of MIRI significantly reduces infarct size, the Bax/Bcl-2 ratio, and caspase-3 

cleavage (Ref. 67). Functionally, increasing miR-486 is protective against MIRI and myocardial 

apoptosis through activating the Akt/mTOR pathway to inhibit PTEN and FoxO1 expression (Ref. 

67). Concurrently, Hou et al. revealed a novel endogenous cardioprotective mechanism in which 

long-term exercise-derived circulating exosomal miR-342-5p protects the heart against MIRI. 

Mechanistically, miR-342-5p targets caspase 9 and JNK 2 to inhibit 

hypoxia/reoxygenation-induced cardiomyocyte apoptosis; it also enhances survival signaling 

(p-Akt) by targeting phosphatase gene Ppm1f (Ref. 66). Other miRNAs, such as miR-125-5p, 

miR-128-3p, and miR-30d-5p, are also important regulators of EIC against MIRI (Ref. 95). 

However, there are still few reports about exercise-mediated other ncRNAs (lncRNAs and 

circRNAs) in MIRI. Therefore, further studies are needed to clarify the underlying mechanisms of 

exercise-mediated ncRNAs in the occurrence and development of MIRI. 

 

Exercise-induced ncRNAs in heart failure 

Exercise-based CR has been recommended as a clinical consultation for HF by international 

guidelines. Individualized exercise prescription is effective in improving the 6-minute walk 

distance, cardiopulmonary function, incidence of complications, and quality of life (Refs 96, 97). 

Emerging ncRNAs have been found to play roles in EIC and HF (Ref. 98). For instance, Stølen et 

al. (Ref. 99) found that moderate- and high- intensity ET decrease the expression of miR-31a-5p, 

miR-214-3p, and miR-495-5P in post-MI HF mice, which reduces arrhythmia susceptibility by 

slowing Ca2+ transient decay and decreasing collagen content, such as CTGF, collagen 1α1, and 

TGFβ1 expression. Other ncRNAs, such as miR-1, miR-133, miR-15 family, and 

circRNA-010567, inhibit myocardial fibrosis by regulating related pathways, including Ang-Ⅱ, 

MAPKs, and TGF-β (Refs 98, 100). However, the number of exercise-induced lncRNAs and 

circRNAs is limited, and their roles in EIC for HF are unclear. As reported by Hu et al. (Ref. 101), 
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aerobic exercise improves left ventricular remodeling and cardiac function by inhibiting lncRNA 

MALAT1 to regulate the miR-150-5p/PI3K/Akt signaling pathway. Overexpression of lncRNA 

ExACT1 has been shown to aggravate pathological hypertrophy and HF, while inhibition of 

lncRNA ExACT1 protects against cardiac fibrosis and dysfunction by inducing physiological 

hypertrophy and cardiomyogenesis (Ref. 102). The potential regulatory mechanism is that the 

function of lncRNA ExACT1 is regulated by miR-222, calcineurin signaling, and Hippo/Yap1 

signaling through dachsous cadherin-related 2 (DCHS2) (Ref. 102), which provides a potentially 

tractable therapeutic target for EIC in HF. 

 

Exercise-induced ncRNAs in cardiac hypertrophy 

Cardiac hypertrophy is characterized by a marked increase in myocardial mass index, and it 

can be categorized as physiological or pathological hypertrophy. Physiological myocardial 

hypertrophy (PMH) is an adaptive and reversible cardiac growth under chronic exercise 

stimulation and exerts cardioprotective effects. Conversely, pathological hypertrophy develops in 

response to chronic pressure or volume overload in disease settings, such as transverse aortic 

constriction (TAC) and aortic stenosis, resulting in adverse cardiac remodeling and dysfunction. 

Evidence suggests that ncRNAs are directly involved in and regulate different pathological 

stresses of cardiac hypertrophy. For instance, knocking down or overexpression of miR-30d and 

certain lncRNAs (Chast, Chaer, NRON, Mhrt, and H19) plays important regulatory roles in a 

mouse model of TAC-induced cardiac hypertrophy (Refs 103, 104). 

The roles of ncRNAs in exercise-induced cardiac hypertrophy are supported by findings in 

different animal models and training programs. The expression of miR-21, miR-27a, and miR-143 

is different after aerobic swimming training in mice presenting physiological left ventricular 

hypertrophy compared with sedentary controls (Ref. 105). Moreover, silencing lncRNA Mhrt779 

attenuates the antihypertrophic effect of exercise hypertrophic preconditioning (EHP) in TAC 

mice and in cultured cardiomyocytes treated with Ang-Ⅱ, while overexpression of lncRNA 

Mhrt779 enhances the antihypertrophic effect. Mechanistically, ET increases resistance to 

pathological pressure overload by an antihypertrophic effect mediated by the lncRNA 

Mhrt779/Brg1/Hdac2/p-Akt/p-GSK3β signaling pathway (Ref. 106). Similarly, lncRNA CPhar 

and lncRNA ExACT1 have emerged as important mediators underpinning the process of 

exercise-induced PMH (Refs 69, 102). Although some circRNAs, such as circRNA sh3rfe (Ref. 

107), circRNA Cacna1c (Ref. 108), circRNA 0001052 (Ref. 109), and circRNA Ddx60 (Ref. 110), 

have been found to be closely related to cardiac hypertrophy, only circRNA Ddx60 has been 

identified to be needed for exercise-induced PMH in mice on the basis of a forced swim training 

model. CircRNA Ddx60 contributes to the antihypertrophic effect of EHP by binding and 

activating eukaryotic elongation factor 2 (eEF2) (Ref. 110).  

Notably, multiple factors, such as genetic background, species, and gender differences, may 

influence the adaptations and outcomes of exercise. Konhilas et al. (Ref. 111) found that female 

mice have a greater increase in PMH after treadmill or voluntary wheel running. It has been 

revealed that common genetic variants are important pathogenic factors in hypertrophic 

cardiomyopathy, suggesting the existence of non-Mendelian inheritance patterns with ethnic 

differences (Ref. 112). Current knowledge on the different expression, regulation, and 

pathology-related functions of ncRNAs in terms of both sex and age is limited (Refs 113, 114). 

Additionally, whether genetic or sex differences influence the expression of ET-induced ncRNAs 
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and their signaling pathway responses remain to be clarified.  

 

Exercise-induced ncRNAs in other CVDs 

T2DM is a metabolic disorder characterized by hyperglycemia, hyperinsulinemia and high 

insulin resistance, which causes macrovascular and microvascular complications, such as 

atherosclerosis, CHD, and diabetic cardiomyopathy (DCM). Increasing ncRNAs have been 

recommended as exercise indicators for cardiovascular prescriptions and as preventive or 

therapeutic targets for cardiovascular complications in T2DM. MiR-126 induced by ET has been 

found to decrease vascular inflammation and apoptosis via the PI3K/Akt pathway, promote 

angiogenesis via the VEGF pathway, and increase cardiac autophagy via the PI3K/Akt/mTOR 

pathway (Refs 115, 116). Long-term ET protects against vascular endothelial injury of insulin 

resistance by downregulating the expression of several lncRNAs, including FR030200 and 

FR402720 (Ref. 117) and then attenuating the progression of atherosclerotic CVD. Similarly, 

lncRNA NEAT1 induces endothelial pyroptosis by binding Kruppel-like factor 4 (KLF4) to 

promote the transcriptional activation of the key pyroptotic protein, NOD-like receptor thermal 

protein domain-associated protein 3 (NLRP3), whereas exercise reverses these effects (Ref. 118).  

In addition, ncRNAs play significant roles in other CVDs, such as valvular heart diseases 

(Ref. 119), cardiomyopathy (Ref. 120), myocarditis (Ref. 121), and pulmonary hypertension (Ref. 

122). The main pathophysiological processes also include inflammation, oxidative stress, 

apoptosis, extracellular matrix reorganization, and fibrosis, but they are still not sufficiently 

understood in terms of biological mechanisms. Although an increasing number of studies and 

guidelines have demonstrated that exercise-based CR has beneficial effects on these CVDs (Refs 

10, 123, 124), the specific molecular mechanisms and signaling pathways of exercise-induced 

ncRNAs await further investigation. Consequently, this limits improvements in novel therapeutic 

strategies and biomarkers of risk assessment, as well as prevention and diagnosis of CVDs. In 

addition, due to significant differences in cardiopulmonary function and different recovery 

processes after CVD events, it is necessary to develop an optimal individualized exercise-based 

CR program oriented to clinical problems according to the condition of patients. 

 

Conclusions and perspectives 

Despite the benefits of exercise and ncRNAs in CVDs, there is a limited understanding of the 

molecular regulatory mechanisms of exercise-induced ncRNAs. Additionally, performing 

exercise-based CR and detecting cardiac biomarkers in clinical practice have been challenging. 

Exploring the pathophysiological roles and molecular mechanisms induced by physical exercise 

can facilitate potential alternative strategies for CVD prevention and treatment, as well as facilitate 

the development of personalized exercise prescriptions. However, several fundamental problems 

hinder the clinical application of ncRNAs as novel biomarkers and therapeutic targets. 

It is challenging to compare ncRNAs and exercise in published studies. First, disputes exist 

as to whether different exercise prescriptions (including type, intensity, frequency, duration, 

volume, and progression) benefit CVDs. For instance, recent studies have shown that 

moderate-intensity continuous training (MICT) has a positive effect on the cardiopulmonary 

function and physical performance of patients after transcatheter aortic valve replacement (TAVR) 

(Refs 10, 125), whereas few studies have developed the application of high-intensity interval 

training (HIIT) in patients after TAVR. Thus, the HIIT-induced mechanism remains unclear.  
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NcRNAs show significant differences in expression during early, middle, and long-term ET, 

as well as between chronic and acute endurance ET. Studies have reveled that miR-1 and 

miR-133a expression is elevated following one-time resistance exercise but downregulated 

following long-term endurance ET. Furthermore, the expression level of ncRNAs may change 

dramatically during pathological processes of CVDs. For instance, lncRNA H19 expression is 

markedly upregulated post-MI at the infarct border zone with a peak during four to seven days and 

subsequently decreases within the following three weeks (Refs 73, 126). Therefore, the time 

course of exercise-induced ncRNAs in circulation needs to be considered and clinical indicators, 

such as cardiac troponin, electrocardiogram, and CMR, need to be combined to explore their 

predictive value in different stages of CVD development. 

Human studies investigated ncRNAs are far from perfect. There are significant differences in 

ncRNA expression in serum and plasma, which requires more precise approaches to detect 

ncRNAs and to combine more omics, such as metabolomics, to analyze the molecular mechanism 

of CVDs. Thottakara et al. (Ref. 127) reported the first evidence that miR-4454 expression is 

markedly increased in the plasma of hypertrophic cardiomyopathy patients compared to healthy 

individuals and that elevated miR-4454 levels are associated with the severity of cardiac fibrosis, 

which is detected by CMR, suggesting that miR-4454 may be a potential biomarker of fibrosis. 

Compared to basic experiments, there are more confounding factors in clinical work, including 

study design, gender, age, lifestyle, chronic diseases, individual differences, and medical 

intervention. It is difficult to determine whether these confounding factors have uncertain effects 

on ncRNA expression in the heart.  

Above all, exercise-induced ncRNAs in these preliminary studies have provided a positive 

perspective for the pathophysiological regulation of CVDs. However, other ncRNA families, 

particularly circRNAs, remain to be further explored in both exercise-based CR and pathological 

models. Consequently, elucidating the molecular mechanisms involved in exercise-mediated 

ncRNAs, diseases, and health will help to discover novel biomarkers, as well as therapeutic 

strategies and improve quality of life. 

Abbreviations: ASVD, atherosclerosis vascular disease; ATF7, activating transcription factor 

7; BCAAs, branched-chain amino acids; C/EBPβ, CCAAT/enhancer binding protein β; CF, 

cardiac fibrosis; CHD, coronary heart disease; CMD, coronary microvascular dysfunction; CMR, 

cardiac magnetic resonance; CR, cardiac rehabilitation; CRP, C-reactive protein; CT, computed 

tomography; CVD, cardiovascular disease; DCM, diabetic cardiomyopathy; DCHS2, dachsous 
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Table 1. Exercise mediates ncRNAs in cardiovascular diseases 

ncRNAs and 

expression 

Targets and 

expression 
Disease 

Experimental 

phenotype 

Exercise Functional role 
Reference 

Type Intensity Duration  

miR-17-3p#↑ TIMP-3*↓, 

PTEN*↓ 

MIRI, TAC C57BL/6J 

mice, NRCMs 

ramp swimming, 

voluntary wheel 

exercise 

NA 3 weeks enhance cardiomyocy

te proliferation, pro-

hypertrophy  

(Ref. 94) 

miR-21/222↓ TAC↑, 

MDA，IL-6↓ 

hypertension patient cycle ergometer moderate 3d/week, 

6 weeks 

anti-inflammation 

pro-antioxidant 

defense 

(Ref. 30) 

miR-126*↑ PIK3↓，Akt，

eNOS, MAPK 

MI, DCM SD rat, 

HUVECs 

motorized rodent 

treadmill 

moderate 

and high 

5d/week, 

4-8 weeks 

pro-angiogenesis 

anti-cardiac 

remodeling 

(Refs 88, 

115) 

miR-30d-5p↑ 

miR-125b-5p↑, 

miR-128-3p↑, 

MAPK↓ MIRI C57BL/6J 

mice 

swimming NA 4 weeks anti-apoptosis (Ref. 95) 

miR-31a-5p↑ 

miR-214-3p↑ 

miR-497-5p↑ 

NA HF SD rat, 

hiPSC-CMs 

uphill running moderate 

and high 

5d/week, 

6-8 weeks 

anti-fibrosis 

reduced Ca2+ decay 

(Ref. 99) 

miR-222#↑ P27*↓, 

HMBOX1*↓, 

HIPK1/2*↓ 

MIRI, HF patient, 

C57BL/6J 

mice, NRVMs 

ramp swimming, 

voluntary wheel 

exercise 

NA 3 weeks anti-cardiac 

remodeling and 

dysfunction 

(Ref. 65) 

exo-miR-342-5p#↑ Caspase 9↓,  

JNK 2↓ 

MIRI SD rat, patient, 

NRVMs 

swimming high 7d/week, 

4 weeks 

anti-apoptosis 

pro-survival 

(Ref. 66) 
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miR-486#, *↑ PTEN*↓, 

FoxO1*↓, 

Akt/mTOR 

MIRI C57BL/6J 

mice, NRCMs, 

NRCFs, 

hiPSC-CMs 

swimming NA twice/d, 

4 weeks 

anti-apoptosis (Ref. 67) 

lncRNA NEAT1#↓ m6A↓, KLF4#↑, 

NLRP3↓ 

ASVD C57BL/6J 

mice, patient 

treadmill training moderate 5d/week,  

12 weeks 

mitigate endothelial 

pyroptosis 

(Ref. 118) 

lncRNA MIAT↓ miR-150↑, 

P2X7R#↓ 

MI, DCM C57BL/6J 

mice 

treadmill training low 5d/week,  

12 weeks 

anti-cardiac 

remodeling 

(Refs 73, 80) 

lncRNA H19↑, 

lncRNA GA55↑ 

NA MI Wistar rat motor-drive 

treadmill 

low 5d/week, 

4 weeks 

anti-fibrosis (Ref. 73) 

lncRNA CPhar#↑ ATF7*↓, 

C/EBPβ*↓ 

MIRI, 

hypertrophy 

C57BL/6J 

mice, NMCMs 

swimming  NA 3 weeks pro-myocardial cell 

growth, anti-fibrosis  

(Ref. 69) 

lncRNA MALAT1#, 

*↓ 

miR-150-3p*↑ 

PI3K/Akt↓ 

HF Wistar rat treadmill training moderate 5d/week, 

8 weeks 

anti-fibrosis and 

apoptosis, 

pro-autophagy 

(Ref. 101) 

lncRNA ExACT1* miR-222, 

DCHS2#, Yap1 

TAC-HF, 

hypertrophy 

mice, patient 

zebrafish, 

cardiomyocyte 

voluntary 

exercise 

NA 8 weeks induced-pathological 

and physiological 

hypertrophy, 

pro-cardiomyogenesis 

(Ref. 102) 

lncRNA Mhrt779#↑ Brg1, Hdac2, 

p-Akt, 

p-GSK3β 

hypertrophy C57BL/6J 

mice, 

cardiomyocyte 

swimming NA 4 weeks anti-cardiac 

hypertrophy 

(Ref. 106) 

circRNA Ddx60↑ eEF2, AMPK hypertrophy C57BL/6J 

mice 

swimming NA 4 weeks anti-cardiac 

hypertrophy 

(Ref. 110) 
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circRNA MBOAT2↓ NA health volunteer marathon biomarker of 

cardiopulmonary 

adaption 

(Ref. 87) 

miR-103a-3p NA health volunteer 10-km race, a half- marathon and marathon decrease SBP, 

improve cardiac 

structure and function  

(Ref. 105) 

miR-33a-5p 

miR-505-3p 

miR-345-5p 

miR-424-3p 

miR-1260a 

NA health volunteer 10-km race, a half- marathon and marathon exercise dose 

biomarkers 

(Ref. 86) 

↑ represents ‘enhanced effect’; ↓ represents ‘reduced effect’; NA represents ‘not available’; *represents ‘cell transfection’; #represents ‘genetic animal model’. 
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Figure 1. Protective effects of exercise rehabilitation in CVDs. Exercise-based cardiac 

rehabilitation plays a significant role in the pathophysiological evolution of cardiovascular health, 

including reducing myocardial oxidative stress and the inflammatory response, improving 

microvascular dysfunction and cardiac fibrosis, and promoting cardiac metabolism, physiological 

hypertrophy and cardiomyocyte proliferation. These benefits may reduce the incidence of 

cardiovascular complications, the rehospitalization rate, and mortality. VCAM1, vascular cell 

adhesion molecule-1; LOX-1, lectin-like oxidized LDL-receptor-1. 
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Figure 2. Exercise-induced ncRNAs and their regulated pathways in CVDs. The regulation 

of ncRNAs contributes to the progression of various CVDs, including hypertension, DCM, 

ASVDs, MIRI, MI, HF, and DOX-induced cardiomyopathy. 
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