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SOME IMBEDDING THEOREMS FOR SOBOLEV SPACES 

R. A. ADAMS AND JOHN FOURNIER 

1. Introduction. We shall be concerned throughout this paper with the 
Sobolev space Wm'p(G) and the existence and compactness (or lack of it) of 
its imbeddings (i.e. continuous inclusions) into various LP spaces over G, 
where G is an open, not necessarily bounded subset of ?z-dimensional Euclidean 
space En. For each positive integer m and each real p ^ 1 the space Wm'p(G) 
consists of all u in LP(G) whose distributional partial derivatives of all orders 
up to and including m are also in LP(G). With respect to the norm 

(i.i) ll«IL,.* = j Z ( \Dau(x)\vdx\llP 

Wm,p(G) is a Banach space. It has been shown by Meyers and Serrin [9] that 
the set of functions in Cm(G) which, together with their partial derivatives 
of orders up to and including m, are in LP(G) forms a dense subspace of 
Wm,p(G). Here, as usual, a = («i, . . . , an) is an w-tuple of non-negative 
integers; |a| = on + . . . + an\ Da — Dfl . . . Dn

an, where Dù = d/dx3: Con­
sistent with (1.1), || • \\o,p,o denotes the norm in LP(G). 

The domain G is said to satisfy the cone condition if there exists a finite 
cone C (the intersection of an open ball in En centred at the origin, with a 
set of the form {\x : x 6 B, X > 0} where B is an open ball not containing 
the origin) with the property that each x belonging to the boundary dG of G 
is the vertex of a finite cone Cx contained in G and congruent to C. 

For any G, bounded or unbounded, we have the natural imbedding 

(1.2) Wm>p(G)-*Lp(G). 

If G satisfies the cone condition there exist (the Sobolev imbedding theorem; 
e.g., see [7]) imbeddings of the form 

(1.3) Wm'p(G)->L«(G) 

for p ^ q ^ np/(n — mp) if n > mp, or for p S q < °° if n ^ mp, and, 
if G also has finite volume, for 1 ^ q < p as well. If G is bounded and satisfies 
the cone condition a well-known theorem of Rellich and Kondrachov [8; 10] 
asserts that (1.3) is compact for all the above values of q excepting only 
q = np/ (n — mp) if n > mp. 

The compactness of these imbeddings is a useful tool (especially in the 
case p = 2) for developing existence and spectral theory for partial differen-
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tial operators on G (especially elliptic operators with boundary conditions of 
Neumann, third, or mixed type). The question therefore naturally arises 
(e.g., see the final remarks in [5]) as to whether the Rellich-Kondrachov 
theorem possesses extensions to unbounded domains G. For the subspace 
Wom*p(G), defined as the closure in Wm'v(G) of the set of infinitely differ-
entiable functions with compact support in G, this question has been rather 
thoroughly investigated (e.g., see [1; 2; 3; 6]) and this study has resulted in 
the formulation in [3] of an analytic condition on (unbounded) G which is 
necessary and sufficient for the compactness of the imbedding 

(1.4) WQ
m'p(G)->Lp(G). 

It is clear that no imbedding of type (1.2), (1.3) or (1.4) for unbounded G 
can be compact if G contains infinitely many disjoint congruent balls, and, 
in particular, if it satisfies the cone condition. In [6], C. W. Clark notes that 
for the case m = 1, p — 2 and G contained in a cylinder of finite cross-section, 
that (1.2) cannot be compact if G has infinite volume. In sections 2 and 3 
below we generalize this, showing, for any G, that (1.3) cannot be compact 
for any q ^ p unless G has finite volume and, in fact, unless the volume of G 
outside the ball of radius k with centre the origin tends to zero faster than 
any geometric sequence as k tends to infinity. We show also that if q < p 
then Wm'p(G) C La(G) if and only if G has finite volume. In this case the 
inclusion is, in fact, a compact imbedding. 

Though necessary, the finiteness of the volume of G is not sufficient for the 
compactness of (1.3) for q ^ p (though it is sufficient for the compactness of 
(1.4); see [3]) as is shown by the following example. 

Example 1. Let G be the union of infinitely many disjoint balls Bj of radius r j . 
Define Uj on G by 

/ x /0 if x £ Bj 

For q ^ p, {Uj) is bounded in Wm,v(G) provided {r;} is bounded. However 
{uj} is not precompact in LQ(G) no matter how rapidly rù tends to zero as j 
tends to infinity. Together with Theorem 2 below the method of this example 
can be used to show that (1.3) cannot be compact if G has infinitely many 
components. 

In section 4 we establish (see Theorem 5) a sufficient condition for the 
compactness of (1.2) for suitably regular G. Theorem 5 is almost a converse 
of the necessary condition for compactness obtained in section 3. The method 
involves construction of nonstationary flows in G in terms of which the 
volume decay of G at infinity can be conveniently expressed. Theorem 5 
generalizes the Rellich-Kondrachov theorem to many bounded domains (not 
satisfying the cone condition) as well as unbounded domains. 
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2. Finite volume. In this section we show that if there is a compact 
imbedding 

(2.1) W**(G)->L«(G) 

for some q, then G has finite volume. For q < p we show that there is not 
even an inclusion (2.1) unless G has finite volume. 

Consider a tesselation of En by w-cubes of side h. K will always denote a 
cube in the tesselation under discussion. N(K), called the neighbourhood of K, 
will be the cube of side 3h concentric with K and having its faces parallel 
to those of K. F(K), called the fringe of K, will be the shell N(K) ~ K. 
Let JX denote w-dimensional Lebesgue measure and let X > 0. 

Definition. K will be called \-fat if 

fi(KnG)> MF(K)r\G). 

If K is not X-fat it will be called \-thin. 

THEOREM 1. Suppose that there is a compact imbedding of the form (2.1) 
for some q ^ p. Then for each X > 0 every tesselation of En by cubes of fixed 
size contains only finitely many \-fat cubes. 

Proof. Suppose for some X > 0 that we have a tesselation of En by cubes 
of side h containing an infinite sequence {K^^i of X-fat cubes. Passing to 
a subsequence, if necessary, we can arrange that the neighbourhoods N(Kj) 
are disjoint. Clearly for each K there is a function <j>K in Co°(N(K)) with 
|#je(tf)| = I f ° r a ^ x> a n d 

4>K{X) = 1> for all x € K, 

\Da<f>K{x)\ g M, for all x £ Em 0 ^ \a\ ^ m, 

where M is a constant depending on n, m, and h, but not on K. Let ^ = Cj- <t>Kjt 

where the positive constant Cj is chosen so that 

f i ^ w r à ^ (Cjy f \d>Kj(x)\qdx 
*J G *> Kj C\ G 

= w%no = i. 
But then 

\\UW».o = {c,y E f |z>"<M*)N* 
0<|a |<m vN(Kj) C\ G 

^ const. (cjY^NiKj) fi G). 

Since K} is X-fat 

< (I + l) „CK, n G) = ( I + y {c,r\ 
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Hence ||^||pm,p,G ^ const. {Cj)v~q. Because q ^ p and Cj ̂  h~n/Q for all j we 
have that {\pj\ is bounded in Wm,p(G) and bounded away from zero in Lq(G). 
Since the functions ^ have disjoint supports {\pj\ cannot be precompact in 
LQ(G). This contradicts the assumption that (2.1) is compact. Hence there 
can be no such sequence of X-fat cubes. This completes the proof. 

Remark 1. This method also shows that if there is a continuous imbedding 
of the form (2.1) for some q > p then for any X > 0 and any tesselation of En 

by cubes of fixed side there is e > 0 such that fx(K C\ G) ^ e for all X-fat 
cubes K. For suppose to the contrary that there is a sequence {Kj\œ

j==i of 
X-fat cubes with ix(Kj C\ G) —* 0 as j tends to infinity. If Cj is defined as in 
the above proof we have Cj —> o° and ||^||m,p,G —» 0 as j—>o°. But {xf/j} is 
bounded away from zero in LQ(G), contradicting the continuity of (2.1). 

It follows that if there is such a continuous imbedding then either 
(a) there is a tesselation of En by cubes of fixed side and an e > 0 so that 

n(K C\ G) ^ e for infinitely many cubes K in the tesselation, or 
(b) for every X > 0 and every tesselation of En by cubes of fixed side there 

are only finitely many X-fat cubes. 
In case (a) the volume of G is infinite; indeed n{x £ G : N ^ \x\ ^ N + 1} 
does not tend to zero as N tends to infinity. In case (b), as we shall see in 
theorems 2 and 4, G has finite volume and ix{x Ç G : N ^ \x\ S N + 1} tends 
more rapidly to zero as N tends to infinity than any geometric progression. 
Clearly many domains fall between these cases and for such domains there is 
no continuous imbedding of the form (2.1) for any q > p. 

If an unbounded domain satisfies the cone condition then the Sobolev 
imbedding theorem provides imbeddings of the form (2.1) for some values 
of q > p. Such domains come under case (a). We have no examples of un­
bounded domains falling under case (b) for which there is an imbedding of the 
form (2.1) for some q > p, but our methods do not rule out this possibility. 

THEOREM 2. Suppose that there is a compact imbedding of the form (2.1) for 
some g ^ p. Then G has finite volume. 

Proof. Tesselate En by cubes of side 1 and let X = [2(3n - l ) ] " 1 . Let P be 
the union of the finitely many X-fat cubes in the tesselation. Clearly 
n(P H G) < o°. Let K be a X-thin cube. Let K± be a cube in F(K) for which 
fx(Ki r\ G) is maximal. Then 

ix{Kr\G) ^ MF(K)r\G) 
^ X(3W - 1) n{Kx r\ G) = IMCKI H G) 

because F(K) contains only 3W — 1 cubes. If Ki is also X-thin, select 

K2 c F(KX) with M(^I r\ G) ^ M^2 n G). 
Suppose that an infinite chain {K, Klf K2, . . .} of X-thin cubes can be 

constructed in the above manner. Then for each j 
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so that fi(K H G) = 0. Let Pœ denote the union of the cubes K for which 
such an infinite chain starting at K can be constructed. Then n(Pœ C\ G) = 0. 

Let Pj denote the union of the cubes K for which some such chain ends 
on the jth step (i.e., Kj is X-fat). For each K C Pj select a particular chain 
of length j starting at K and ending at some X-fat Kj. For how many K in Pj 
can a particular X-fat cube K' occur as the end Kj? Any such K must lie in 
the cube of side 2j + 1 centred on K''. Hence there are at most (2j + l)n such 
cubes. Therefore 

(2 j+l ) s
 {Pnr^ 

Hence Z V i n(P, H G) < oo. Since £B = P U P a ) U P i U P 8 U . . . we 
have ju(G) < °°- This completes the proof. 

THEOREM 3. Suppose Wm,p(G) C Lq(G) for some q < p. Then G has finite 
volume. In particular G has finite volume if there is a (continuous) imbedding 
of type (2.1) for some q < p. 

Proof. Again tesselate En by cubes of unit side and let X = [2(3W — 1)]_1 . 
Let P be the union of the X-fat cubes in the tesselation. We claim that 
n(Pr\G) < o°. If not, there is a sequence {i^f}°°t=i °f X-fat cubes with 
X)°°i-i /*(^i n G) = o°. We want the neighbourhoods N(Kt) to be disjoint. 
This can be arranged as follows. Let L be the lattice of centres of cubes in 
the tesselation. Break up L into 3n disjoint sublattices {Lj}zn

j==i with each 
Lj having period 3 in every coordinate direction. For each j let Tj be the 
set of cubes in the tesselation with centres in Lj. For some j we have clearly 

\-tatKCTj 

Let {Kt} be an enumeration of the X-fat cubes in Tj. Then {Ki} has the 
desired properties. 

Choose an integer i\ so that 

2 ^ M ^ n G ) < 4 . 

Recall the functions <j>K used in the proof of Theorem 1, and let 

*i = 2 - l / p f ; <f>Ki. 
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Because the sets N(Kt) are disjoint, 

f i*i(*)r<fc = i 2 : f \<t>Ki(x)\vdx. 
Because Kt is X-fat, 

£ \*Ki(x)\'dx û n(N(Kt) n G ) < ( l + | ) /.(£, fi G). 

jG \Mx)\p dx < i (1 + i) è ^ n e x 2 (1 +1). 
Similarly, for \a\ ̂  m 

J p>i(x)|p(ix < 2 ( l + ~j Mp. 

Thus 

On the other hand 

f \Mx)\Qdx ^ Uy<*j: n(Kt fi G) 2: 21-5/p. 

Now choose i2 so that 

22â É /*ftn6) <23 

and let 

2̂ = (D2/P(22)-I/P £ fe. 
Î = Ï I + I 

As above, we have for |a| ^ m 

f \D"Mx)\P 
•J G 

2Mp(l + 1/X) 
\vdx< 2-2-

and also 

f |*2(*)|'<**è ^fP2
2il-q/P\ 

J G 

Proceeding in this fashion we obtain a sequence {^}°%«,i of C° functions with 
disjoint supports such that for |a| ^ m 

fiW)r^<^LiAi 
J G J 

jj^.(x)i^x^A)2î/v 

J 
and 

'G ~ \jJ 

Then yp = E V ih € TP^CG) but ^ € L« (G). 
This contradicts our assumption that PP*,P(G) C LQ(G). Therefore 

li(P C\G) < oo, and, by the argument of Theorem 2, /*(G) < oo. This 
completes the proof. 
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Of course if JLI(G) < oo then for all q < p, there is a continuous imbedding 
of the form (2.1). Moreover the usual proof of the compactness theorem for 
the case of bounded G uses only the property n(G) < o°. So for q < p we have 
the circle of implications: 

M(G) < °° => (2.1) is compact => (2.1) is continuous 
=» (2.1) exists =>ju(G) < oo. 

3. Rapid decay. Suppose that there is a compact imbedding of the form 
(2.1) for some q ^ p. By Theorem 2, G has finite volume. In this section 
we show that ix{x € G : \x\ ^ R] tends very rapidly to zero as R tends to 
infinity. 

First we extend the notions of neighbourhood and fringe introduced in the 
previous section. Fix a tesselation of En and let Q be a union of cubes K in 
the tesselation. Define 

N(Q) = U N(K), 
KCQ 

F(Q) = N(Q) ~ Q. 

Given Ô > 0, let X = ô[3w(l + S)]""1. Suppose that all the cubes K in Q are 
X-thin. As X runs through the cubes inside Q the sets F(K) are contained 
in N(Q) and cover N(Q) at most 3W times. Therefore 

M(<2HG) = £ ^ n O 
KCQ 

^ x X M(F(x) n G) 

g 3TCXM(iV((2) H G) 

= 3wx[M((2nG) + M(nQ)nG)] . 

Since M(G) < °° we can transpose and get 

M(Q n o g ^-^I^MWQ) no = WCQ) n o. 

For any set S C En let <2 be the union of the cubes K of our tesselation 
whose interiors intersect 5 and define F (5) = F(Q). If S is at a positive 
distance from the finitely many X-fat cubes, then all of the cubes in Q are 
X-thin and 

(3.1) pÇSriG) g ii{QC\G) ^ bix{F(S)C\G). 

THEOREM 4. Suppose that there is a compact imbedding of the form (2.1) for 
some q ^ p. For each r ^ 0 let GT = {x £ G : \x\ > r) and let Sr be the surface 
{x G G : \x\ = r}. Let Ar denote the n — 1 dimensional surface area of Sr. Then 

(a) gw>ew e, 6 > 0 ^ere aw/s an R so that for r ^ R, 

»(Gr) g 5ju{x £ G : r - e g |*| ^ r}, 
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(b) if AT is positive and ultimately non-increasing as r tends to infinity, for 
each e > 0, AT+€/Ar tends to zero as r tends to infinity. 

Proof. Given e > 0 tesselate En by cubes of side h = e/2-y/n. Then any 
cube K whose interior intersects GT is contained in G>_i€ and 

F(Gr) C {x € G: r - e S \x\ ^ r}. 

Given 5 > 0, define X as above and take R large enough that the finitely 
many X-fat cubes are all contained in the ball of radius R — \z centred at the 
origin. Then for r ^ R all the cubes K whose interiors intersect Gr are X-thin, 
and (a) follows from (3.1). 

For (b) choose RQ SO that A r is non-increasing in [R0, o°). Fix e', ô > 0 and 
let e = Je'. Let R be as in (a). If r ^ max{i?0 + e, R} then 

€ t / r + € € 

^ - IJL{X £G :r ^ \x\ ^ r + e} 

= - I A s ds <; 8A r. 
eJr 

Since er and 5 are arbitrary, (b) follows. This completes the proof. 

COROLLARY. If there is a compact imbedding of the form (2.1) for some q ^ p 
then for all k 

lime*r
M(Gr) = 0. 

Proof. From (a), we have that ix(Gr+i) S àv>{GT) for given 5 > 0 and all 
sufficiently large r. Thus ix(GT) tends to zero more rapidly than e~kr for any k. 

Remark 2. The argument used in the proof of (a) works for any norm 
p on En. For (b), we need in addition to have that Ar is well defined and that 

J»r+€ 

Asds. 

This is true, for instance, when p(x) = max \xi\. 

Remark 3. For the proof of (b), it is sufficient that Ar have an equivalent, 
positive, non-increasing majorant. That is, there should exist a positive, 
non-increasing function / and a constant M > 0 so that for all sufficiently 
large r, AT ^ f(r) ^ MAr. Indeed, if there is such a majorant then (a) and (b) 
are equivalent. 

I t is easier to determine whether a domain satisfies the conclusions of 
Theorem 4 than it is to determine wrhether it satisfies those of Theorem 1. 
We now show, however, that Theorem 1 is sharper than Theorem 4. 
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Example 2. (A horn) Let / Ç Cl([Q> o°)) be positive and non-increasing, 
with bounded der iva t ive / ' . Let G be the horn-shaped domain in £ 3 given 
by G = {(r, 0, s) : z > 0, r < f(z)} where (r, 0, z) are cylindrical polar 
coordinates. Let p be the supremum norm on E3, i.e., 

pfo?,*) = max (M> bl» W)-
Then for all sufficiently large s, As = ir[f(s)]2. Clearly G satisfies conclusion 
(b) of Theorem 4 if and only if 

(3.2) l i m ^ 7 ^ = 0 f o r a l l e > 0 . 

The monotonicity of / implies that conclusion (a) of Theorem 4 also holds if 
and only if (3.2) does. 

We shall see later that, for domains of this type, the natural imbedding 

(3.3) Wm»(G)-*L*(G) 

is compact. (In fact the techniques of [4] can be used to show this.) 
Example 3. (A bihorn) L e t / be as in example 2 above, satisfying (3.2) and 

also / ' ( ( ) ) = 0. Choose a positive, non-increasing function g Ç (^([O, °°)) 
satisfying 

(a) g(0) = / ( 0 ) / V 2 , « ' ( 0 ) = 0 , 
(b) g (s) g / ( s ) for all s è 0 , 
(c) g is constant on infinitely many disjoint intervals of unit length. 

Let h = V ( / 2 "~ g2)- Consider the domain 

G = {(r, 0, z) : r < g{z) if s à 0, r < h(-z) if z < 0}. 

Once again we have that As = 7r[/(s)]2 for all sufficiently large s, and that G 
satisfies the conclusions of Theorem 4. 

Tesselate En by cubes of side \ with faces parallel to the coordinate planes, 
one of the cubes being centred at the origin. There are infinitely many X-fat 
cubes with centres on the positive js-axis, for X < J. By Theorem 1 the natural 
imbedding (3.3) is not compact. 

Theorem 4 fails to reveal this fact because its conclusions are global con­
ditions and the compactness of (3.3) seems to depend on the local properties 
of G. 

4. Flows. In this section we prove that the natural imbedding 

(4.1) Wm>p(G)->L*>(G) 

is compact for a class of domains which includes the horn of example 2 (when 
(3.2) is satisfied). We need a sequence {HN}œ

N==i of subdomains of G for which 
the imbedding is known to be compact, and we require the volume of G to 
decay very rapidly in each branch of GN, the complement of HN in G. Another 
way to state this second property is that the volume should increase rapidly 
as we flow towards the origin through GN. 
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Definition. By a flow on G we mean a C1 map <£ : £/ —> G, where [/ is an 
open set in G X £1 containing G X {0}, and where 0(x, 0) = x for all x in G. 

For fixed x in G the curve Ji—>$(x, /) is called a streamline of the flow. 
For fixed / the map <j>t : x •—> <£(x, /) sends a subset of G into G. We shall be 
concerned with the Jacobian det<f)/(x) of this map (where 0 / denotes the 
Frechet derivative). Sometimes it is required of a flow that 0s+f = <t>s o 0„ 
but we do not need this property and so do not assume it. 

Example 4. Take G to be the horn of example 2 with (3.2) satisfied. Define 

0(r, (9, s, 0 = ( r fpA ,0,z-t) (or t< z. 

The flow is toward the plane z = 0 and the streamlines diverge as the domain 
widens. This indicates that <j)t is a local magnification for / > 0. Indeed 

det 0/(r , 0, z) = l f(~\ ) -» °° as s -* oo. 

In this case the magnification is just Az_t/Az because the speed of the flow 
in the z direction is constant. Thus the local properties of the flow reflect the 
global behaviour of the volume and cross-sectional area of G. 

For N = 1, 2, . . . let HN = {(r, 6, z) Ç G : 0 < z < N + 1}. The natural 
imbeddings Wm,v(HN) —» LP(HN) are known to be compact because these sets 
are bounded and satisfy the cone condition. This compactness together with 
the above properties of the flow are sufficient to force the compactness of 
(4.1) for our horn. 

THEOREM 5. Let G be an open set in Enfor which 
(a) there is a sequence {HN}co

N==i of open subsets of G such that for all N the 
imbedding W1,P(HN) —>LP(HN) is compact; 

(b) there is a flow <t> : U —» G such that if GN = G ~ HN then 
(i) GN X [0, 1] e V for each N, 

(ii) <j>t is one-to-one for all t, 

(iii) — 4>(x,t) S M for all (x, t) in U; 

(c) the functions dN (t) — supz€GiV. |det 0 / (x ) | _ 1 satisfy 
(i) dN(l) -> 0 as N -» oo $ and, 

(ii) I dN(t)dt->0asN-
Jo 

• o o . 

Then the imbedding (4.1) is compact. 

Proof. Let \J/ £ C1(G). We want to estimate J GN\\f/(x)\dx. For each x in GN 

we have 

*(*) = *(*i(*)) - J0 | *(*«(*)) *• 
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Now 

And 

f \H<t>i(x))\dx^dN(l) f | ^ i (* ) l | de t<h ' (* ) |<Zx 

èdN(l) f \*(y)\dy 

S W ) f |*(y)|dy. 

•/CjV I «/0 Of I 

^ { dx ( |V*(*,(*))| |-<*>,(*) U 

g j * I |ViK<Ê«(*))|M(fo 
J 0 •/ GN 

^ M I dN(t) dt f |ViK*,(*))| |det * f ' ( * ) | d* 
•*0 J GN 

=g M^j\N(t) dtf { jG \V*(y)\dyj . 
Letting ON — max we have 

**GN J G 

and ^ —> 0 as N -» oo. 
Now suppose that u is real-valued and belongs to Cl(G) C\ W1,1(G). The 

distributional partial derivatives of \u\p are 

Dj(\u\p) = £ • \u\v~x • (sgn «) • DjU. 

By Holder's inequality 

f \DA\u(x)\*)\ dx g ^||Ditt||o lp,G||«ir1o.p.o ^ P\W\\\P,G. 
•J G 

Therefore \u\p Ç W1,1(G) and by the theorem of Meyers and Serrin [9] 
there is a sequence {^}°°i=i of functions in C1(G) C\ W1'1(G) so that ^ —> |^|p 

in PF1-1^). Then 

f |tt(*)|*dx = lim f ^ ( x ) 
«J GN j-*x> J GN 

dx 

^ limsupô^H^lli.i.o 

= «*n i«nii,i.o 
^ const. ôw||«||î'i.p,o-
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For complex-valued u in Cl{G) C\ Wl,p{G) we can apply the above argument 
to the real and imaginary parts of u to obtain the Poincaré inequality 

(4.2) I \u(x)\vdx :g const. 5^11«| I l .P.G-

Since Cl(G) C\ Wl>p(G) is dense in W™(G), inequality (4.2) holds for all u in 
Wl>p(G). 

Finally, let {UJ}00
j==i be bounded in WltP(G). To show that {uj} is precompact 

in LP(G) it suffices, by a diagonalization argument, to prove that 
(i) the sequence {UJIH^J^I is precompact in LP{HN), for all N, and 

(ii) for every e > 0 there exists N such that H^/HO.P.G^ < € for all j . 
But (i) is true by assumption (a) of the theorem, and (ii) follows from the 
Poincaré inequality and the fact that dN —» 0 as N —» o°. Thus the imbedding 
W1'P(G) ->LP(G) is compact. For m > 1 the imbedding Wm'p(G) -» W1'P(G) 
is continuous and so the composition Wm,p(G) —» LP(G) is compact. This 
completes the proof. 

Remark 4. We note that in example 4 

dN{t) = sup l - ^ f r ^ f ^ 1 for all t ^ 0. 

Also 
lim dN(f) = 0 if / > 0. 

By dominated convergence 

lim I dN(t) dt = 0. 

The assumption t h a t / ' is bounded guarantees that the speed 

jt4>(?c,t) 

is bounded. Theother hypotheses of Theorem o are easily verified, so that the 
imbedding (4.1) is compact. 

Remark 5. I t is easy to imagine more general domains to which Theorem 5 
applies, although it may be difficult to specify a suitable flow. There appears 
to be such a flow, for instance, in a connected domain with infinitely many 
horn-like branches, as long as the volume decays rapidly enough in each 
branch. Indeed, for unbounded domains in which the volume decays mono-
tonically in each branch, Theorem 5 is essentially the converse to Theorem 4. 
That is, we can apply the argument of Theorem 4 separately to each branch 
and show that, if the natural imbedding (4.1) is compact, then for all e > 0 

(4.3) l i m ^ - 0 , 
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where AT is the cross-sectional area of the branch. If the domain is sufficiently 
regular it will carry a flow, such that, as in example 4, the magnification in 
each branch will imitate the behaviour of AT-t/Ar. Since AT is monotonie and 
(4.3) holds, Theorem 5 applies and the natural imbedding is compact. 

Remark 6. Theorem 5 can also be applied to bounded domains. Consider, 
for example, a domain like the horn of example 4 except that it is centred on 
a bounded spiral rather than the s-axis. Such a domain carries a flow much 
like the one in example 4, and by Theorem 5 the natural imbedding (4.1) is 
compact. The usual compactness theorem does not apply to this domain, 
however, because it does not satisfy the cone condition. 

As another example consider a bounded domain which satisfies the cone 
condition except in neighbourhoods of one point where it has a cusp. Imagine 
a flow out of this cusp and let HN consist of all points in the domain distant 
at least \/N from the tip of the cusp. Again Theorem 5 can be used to show 
that the natural imbedding is compact. 

Remark 7. The proof of Theorem 5 can be modified to work with weaker 
hypotheses than (b) and (c). There are domains which appear not to satisfy 
(b) and (c) but for which some modified argument works. For instance, there 
are horns for which the natural imbedding is compact although / fails to be 
monotonie or even to have an equivalent non-increasing majorant. Most of 
the changes are fairly obvious, however, and we omit the details. 

Remark 8. Finally, are there compact imbeddings of the sort Wm'p(G) —> 
LQ(G) for G unbounded and q > p? By Theorem 2 such a domain would have 
to have finite volume and could not satisfy the cone condition. I t does not 
even appear to be known whether there are any such domains for which there 
is a continuous imbedding of the above sort with q > p. If, however, such a 
continuous imbedding exists, then a standard interpolation argument shows 
that the imbedding Wm,v(G) —» Lr(G) is compact for all r < q. 
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