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Abstract
Recently, deep learning methods have achieved considerable performance in gesture recognition using surface elec-
tromyography signals. However, improving the recognition accuracy in multi-subject gesture recognition remains a
challenging problem. In this study, we aimed to improve recognition performance by adding subject-specific prior
knowledge to provide guidance for multi-subject gesture recognition. We proposed a time–frequency feature trans-
form suite (TFFT) that takes the maps generated by continuous wavelet transform (CWT) as input. The TFFT can
be connected to a neural network to obtain an end-to-end architecture. Thus, we integrated the suite into traditional
neural networks, such as convolutional neural networks and long short-term memory, to adjust the intermediate
features. The results of comparative experiments showed that the deep learning models with the TFFT suite based
on CWT improved the recognition performance of the original architectures without the TFFT suite in gesture
recognition tasks. Our proposed TFFT suite has promising applications in multi-subject gesture recognition and
prosthetic control.

1. Introduction
Surface electromyography (sEMG) is a technique involving the use of electrodes overlying a muscle to
capture biologic signals from electrical muscle activity. Recently, sEMG signals have been widely used
in several applications in electrophysiological studies, including movement intention recognition [1] and
angle prediction [2–4]. This wide usage results from the sufficient latent biological information provided
by sEMG. Meanwhile, several sEMG databases such as Ninapro [5] and MyoUp [6] have been made
publicly available as benchmarking tools for studying the relationships between sEMG and kinematics.
The popularity of public benchmark datasets enables the easy validation and comparison of proposed
methods with other existing methods, which is helpful for facilitating the progress of relevant research.

Existing methods based on sEMG data for gesture classification tasks in electrophysiological studies
can be characterised in several basic steps: (1) pre-processing sEMG data to minimise noise; (2) extract-
ing hand-crafted features such as time-domain and frequency-domain features, or capturing feature
representations automatically by creating deep learning (DL) models; and (3) completing gesture classi-
fication tasks using extracted features. Many state-of-the-art models based on DL have achieved superior
performance in gesture recognition [7–10]. However, owing to differences in the muscle strengths, fat
contents, and skin impedances of different subjects, sEMG signals almost vary with persons even on the
same motion. Some studies have focused on training a special model for each participant [11], which is
computationally costly.
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Adding artificial prior knowledge to a neural network can often provide guidance for tasks [12, 13].
However, the types of prior knowledge suitable for specific tasks require clarification. For example, we
believe that sEMG signals obtained from a human in a resting state can provide sufficient information
for characterising myoelectric properties as a prior for describing features of sampled muscles, which
is crucial for eliminating the discrepancy in the biological data of different individuals. Specifically, we
attempted to use DL models to capture features of the sEMG signals under different motion modes and
participants. Meanwhile, an external DL model is used for obtaining relevant coefficients to fine-tune
the original features.

In this study, we designed a neural network-based suite named time–frequency features transform
(TFFT). As no previous work has investigated how to obtain feature priors from different participants
for incorporation into signal feature extraction, we explored the possibility of using the time–frequency
diagrams of continuous wavelet transform (CWT) as the priors. We believe that these diagrams can
encapsulate rich prior, as our experiments show. Specifically, such time–frequency diagrams are con-
verted from multiple groups of sEMG signals produced by individuals in a resting state and packaged
into an image matrix with corresponding channels. The proposed suite is then conditioned on the multi-
channel time–frequency diagram to generate a pair of modulation parameters so that the features of the
network can be affine transformed. In summary, our contributions are as follows:

1. We proposed a DL-based time–frequency feature transform suite for gesture recognition that
uses CWT to extract subjects’ prior knowledge to improve recognition accuracy in multi-subject
scenarios.

2. The effectiveness of the TFFT suite was validated on the open dataset Ninapro DB8. Specifically,
TFFT was equipped on LSTM and CNN and compared with previous state-of-the-art models and
classical methods using temporal features. Experimental results show that LSTM and CNN with
TFFT achieve higher accuracy and validate the effectiveness of our proposed method.

2. Related work
2.1. Surface electromyography and deep learning methods
Many studies have introduced DL methods for intention recognition or angle estimation based on sEMG
signals. Early methods explored the application of the convolutional neural network (CNN) architecture
in gesture recognition using sEMG [14], which is the first DL-based architecture applied to sEMG sig-
nals to classify data from the Ninapro database for improved performance compared with that of support
vector machine. Another modified CNN architecture called LeNet was used to classify 50 hand move-
ments on the Ninapro database [15]. The classification accuracy and robustness of the CNN structure
were better than those of various machine learning techniques, including linear discriminant analysis,
support vector machine, and k-nearest neighbour. These methods showed that CNNs have desirable
representation ability and perform well in sEMG-based movement recognition tasks. Moreover, many
studies have focused on the recurrent neural network (RNN), which is superior in processing tempo-
ral series. Additionally, several types of RNN-based DL algorithms, such as long short-term memory
(LSTM) and gated recurrent unit, have been used to extract temporal information from sEMG [16, 17]
while DL has been combined with certain schemes such as attention mechanism and machine learning
models for improved performance [18–20].

Contemporary sEMG algorithms are increasingly becoming more DL-based methods for learning
the mapping of sEMG signals, and they output results in an end-to-end manner. Only a few studies
have introduced prior information to make DL more robust for addressing this problem. In this study,
we explore feature priors in the form of time–frequency diagrams in a neural network framework. The
feature extraction and transformation parameter learning of the time–frequency map are also based on
time and frequency scales.
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2.2. Multiuser solutions based on sEMG signals
Several studies have attempted to address the limitations of existing models in maintaining acceptable
performance on sEMG signals from different individuals. In addition, the heterogeneity of sEMG data
from different individuals hinders performance improvement. Here, we review related solutions that are
based on sEMG signals.

Matsubara et al. [21] proposed a bilinear model that takes a user-dependent factor as one of two lin-
ear factors. They used an adaptive method to estimate the user-dependent factor, enabling the bilinear
sEMG model to extract user-independent features from new user data. The extracted features become
less relevant to users. Xiong [22] hypothesised that the non-stationary and complex waveform of sEMG
signal can be decomposed to a limited number of motor unit action potentials (MUAPs) with distinct
weight values. The authors created a model to identify the MUAPs for different individuals. Several
studies have introduced canonical correlation analysis (CCA) technology for extracting the latent corre-
lations between different sets. Khushaba et al. [23] proposed a framework for multiuser sEMG interfaces
using CCA to address the data heterogeneity of different users. Xue et al. [24] proposed a framework
based on CCA and optimal transport, further reducing the discrepancies in data distribution between the
transformed training and test sets.

These studies highlighted above focused on eliminating individual differences of sEMG signals from
many manual modes including manual feature selection, model matching, and feature transformation.
Our work differs from this work in two main aspects. First, we propose an effective DL component
to reduce the data heterogeneity in a single forward pass conditioned on the prior with meaningful
information. Our proposed TFFT network can generate feature transformed matrix and perform feature-
wise manipulation adaptively. Finally, we combine LSTM and CNN with TFFT to achieve state-of-the-
art gesture recognition performance.

3. Methodology
3.1. Overview
The generic structure of our proposed TFFT suite is shown in Fig. 1. It is necessary to generate a
subject-specific prior map from a CWT, which is then processed by a branch network to obtain a pair
of modulation parameter pairs. The modulation parameters generated by the branch network are then
added to each layer of the backbone network by the affine transform. Finally, the predictions are obtained
from these backbone networks.

3.2. Continuous wavelet transform
To generate prior maps, we used the CWT method for the sEMG signals of the related muscles at the
resting state. The CWT of signal x(t) is defined as [25]:

CWTx(a, b) = |a|− 1
2

∫ T

0

x(t)ψ∗
(

t − b

a

)
dt, (1)

∫ ∞

−∞
ψ(t)dt = 0, (2)

whereψ(t) represents the mother wavelet while a and b refer to scale and translation parameters, respec-
tively. As wavelet transformation can describe the local property of a signal, the generated CWT maps
can be the prior that provides necessary information about the subjects.

Specifically, we extract a series of segments of sEMG signals of each participant in the resting state,
which is performed by adopting ‘Cgau8’ wavelet [26]. The CWT method is then applied to each frame.
Figure 2 illustrates the processing of the sEMG signals of one participant whose muscles are in the
resting state using the CWT operation to generate prior maps.
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(a)

(b) (c)

Figure 1. Time–Frequency feature transform networks.

Figure 2. The 16-channel sEMG signals that are operated by ”Cgau8” wavelet and CWT to generate
a 16-channel prior maps.

3.3. Time–frequency feature transform
The time–frequency feature transform network takes the prior maps Γ obtained by CWT as input to
learn a mapping function that outputs a modulation parameter pair (μ, ε). The parameter pair adaptively
influences the outputs through an affine transformation on each intermediate feature map in the neural
network. The mapping function F : Γ ⇒ (μ, ε) can be divided into two parts:

1. A mapping function Fα : Γ ⇒Θ is used to extract shared information from the input prior.
2. Each transformation module has a unique pair of modulation parameters (μi, εi) determined by

the mapping function Fβ :Θ ⇒ (μ, ε).
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Consequently,

(μ, ε) =Fβ(Θ) =Fβ(Fα(Γ )) =F(Γ ). (3)

Subsequently, the parameter pair (μ, ε) is used to transform the feature map F by scaling and shifting,
which is expressed as:

F � (μ, ε) = (1 +μ) � F + ε, (4)

where F has the same dimension as that of μ and ε, � refers to the scaling and shifting operation, and
�refers to the element-wise multiplication. Therefore, a transformation module performs feature-wise
manipulation according to the external prior and branch network. The architecture of the TFFT branch
network is illustrated in Fig. 1(a). The normalisation operations and dropout layers behind the CNN
layers are simplified. Here, we focus on the introduction of the external conditioning part. We use a dual-
branch CNN for Fα to capture necessary information from priors so that it can also be trained together
with the backbone network in an end-to-end manner. In addition, the branch network can generate shared
intermediate conditions Θ that can be broadcasted to all transformation modules for efficiency. Each
transformation module contains separate small convolution layers that further adapt the shared Θ to
gain specific parameters μ and ε.

3.4. Original architecture with TFFT
To normalise the performance of the proposed TFFT suite, the neural network framework consists of
two streams: a prior branch network and a backbone network. The TFFT branch network takes multi-
channel time–frequency diagrams of sEMG signals generated by CWT in the resting state as input,
which are then processed by five convolutional layers to capture useful features. The extracted prior
features are then shared by all transformation modules. We use three types of kernels in the prior branch
network. The 1 × 1 kernel restricts the receptive field of the convolutional network for the three forward
convolutional layers. However, the 1 × H and W × 1 kernels are used for integrating information in the
scales of time and frequency.

We select the basic LSTMs or CNNs architecture as backbone networks, in which the intermediate
features take scaling and shifting operations according to the modulation parameter pair μ and ε. We
apply the Softmax function and set a fully connected layer as the classifier to recognise gesture. Although
we only attempt two common architectures for the backbone network, we believe their variants are
applicable and can be combined with the TFFT suite to improve performance.

If we take the LSTM architecture as the backbone network, the output Fi of each LSTM layer would
perform scaling and shifting with the parameter pair (μi, εi). Thus, we would concentrate on the output
hi of the last time step of each layer, followed by a fully connected layer as a classifier to infer category.
Otherwise, if we apply the CNNs architecture as the backbone network, several convolution layers would
be considered, and the output would perform the operation of (4), as well as a fully connected layer as
the classifier. As illustrated in Fig. 1(b) and (c), we omit all normalisation operations and dropout layers
behind the LSTM and CNN layers to show the architecture of backbone networks clearly.

4. Other state-of-the-art frameworks
We compared the TFFT suite with two state-of-the-art structures for gesture recognition: DL models
equipped with attention mechanisms [27] and temporal convolutional network (TCN) [28]. The detailed
structure is illustrated in Fig. 3(a) and (b).

The strong modelling ability of the attention mechanism in time series data results from assigning
different weight coefficients to inputs at different positions. The weight increases with increasing degree
of correlation. First, the input data X go through the embedding layer to expand their feature dimension
for consistency with the hidden dimension. After the embedding, an activation function, a residual con-
nection, and positional encoding are required. The embedding layer, activation function, and position
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(a) Architecture of attention network.

(b) Architecture of temporal convolutional network.

Figure 3. State-of-the-art networks.

encoding use the fully connected layer, tanh, sine and cosine functions, respectively.

E = Embedding(X), (5)

Y = Activation(E) + E, (6)

M = PositionalEncoding(Y), (7)

Q = MWQ, K = MWK , V = MWV , (8)

where W* ∈ R
d×d is weight matrix, and d is hidden dimension.

Attention(Q, K, V) = softmax

(
QKT

√
d

)
V , (9)

MultiHead(Q, K, V) = Concat(h1, · · ·, hh)W , (10)

where hi = Attention(QWq
i , KWk

i , VWv
i ), W , W*

i are parameter matrices. After Eqs. (5)–(7), the three
input matrices of the self-attention layer are obtained. In Eqs. (9) and (10), QKT computes the attention
score, which is divided by

√
d to scale. The multi-head attention mechanism is used to parallelise the

computation and focus on information at different locations.
TCN also has a good performance in time series modelling; information obtained by the current node

only includes the previous node information, which is logically reasonable. However, a new problem
would arise. As the length of the input sample data increases, covering the entire receptive field would
be at the expense of increasing the number of network layers. Consequently, the number of network
layers would maintain a linear relationship with the length of the input sample. Dilated convolution is
introduced to alleviate this problem. Without sacrificing the receptive field, the number of network layers
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Figure 4. Sensor layout of NinaPro DB8.

maintains a logarithmic relationship with the length of the input data. Additionally, the introduction of
weight normalisation not only increases the computational efficiency, it also counteracts the gradient
explosion. Meanwhile, the activation function increases the nonlinear fitting ability of the network while
the dropout operation improves the generalisation ability.

Both structures are stacked with four layers, consistent with the TFFT framework. In the training
of our model, we apply the cross-entropy loss, which is widely used in the classification problem. In
multiple classification problems, the cross-entropy loss is computed by the following equation:

CELoss(p|q) = 1

M

M∑
1

C∑
i=1

pilog(qi), (11)

where C represents the number of categories; M represents the number of samples; and p and q represent
the real and prediction probabilities, respectively.

5. Experiments and results
5.1. Experimental setup
5.1.1. Datasets
For the experiments, we used the NinaPro DB8 database, which comprises nine movements, includ-
ing single-finger and functional movements: thumb flexion/extension, thumb abduction/adduction,
index finger flexion/extension, middle finger flexion/extension, combined ring and little fingers flex-
ion/extension, index pointer, cylindrical grip, lateral grip, and tripod grip. The database also contains
the sampling data of the finger at rest. The creators of the database applied 16 active double-differential
wireless sensors to record sEMG signals in correspondence to the radiohumeral joint of the right hand
(see Fig. 4) without targeting specific muscles. The sEMG signals were sampled at a rate of 1,111 Hz and
denoised in advance by data providers. Ten physically healthy and two right-handed transradial amputee
participants were enlisted to obtain the dataset. The participants were asked to repeat nine movements,
each movement lasting for 6–9 s and consecutive trials interrupted by 3 s of rest.

5.1.2. Sliding window
Open databases are mostly pre-processed, as reported in relevant papers and data source websites. To
fully exploit open data and obtain acceptable results, we use the sliding window method to generate
time slice data as a sample. Given an original sEMG sequence, X = [x1, x2, . . . , xt], which is resampled
at a sampling rate υ = 500 Hz, and the sliding window method aims to segment X with a length of L
milliseconds (window size W = L

2
). The step size of the sliding windows is set to 16 ms. Figure 5 presents

the segmentation and combination of multi-channel sEMG signals. The converted sEMG samples are
RC × W , where C refers to the number of electrodes.
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Figure 5. Segmentation of the sEMG signals to a series of samples by the sliding window method. pi

represents a segment of sEMG signals at time i; ce represents sEMG signals sampled by electrodes e.

The length of the window represents the time latency of prediction with past status. To test the per-
formance of the proposed algorithm under different time latencies in this study, we varied the window
size. The step size of the sliding window is also fixed at 16 ms.

5.1.3. Preparation
After acquiring the NinaPro DB8 [29] dataset, we prepared the data for our validation experiments.
As we focused on the gesture recognition of healthy persons, we only downloaded data of 10 healthy
individuals and removed the data that were corrupted during the downloading. Finally, the data of eight
individuals were retained; the data of each individual contained 16 channels. As illustrated in Fig. 6, the
preparation process was divided into three steps:

1. We segmented the data according to their labels. The data segment with a label of zero was
separated from that with other labels (the zero label indicates a resting state).

2. The data were resampled at a rate of 500 Hz using the sliding window method with a certain
window length. The window length affects the recognition performance of the system. Therefore,
we used window lengths of 200 ms, 300, 400, and 500 ms to segment the data. The data of all
categories were then split into training and test sets in ratio 7:3.

3. Finally, the data labelled zero were resampled at a rate of 500 Hz and extracted under each subject
through a window with a length of 2,400 ms. The sEMG signal segment of 16 channels was
transformed by CWT to generate 16-channel prior maps.

5.1.4. Training setting
In the model training state, the number of training iterations was set to 120. We used the Adam optimiser
[30], with β1 = 0.9. The learning rate was set to 1 × 10−3 and then decayed by a factor of 10 in 60 and
100 epochs. Other hyperparameter settings are presented in Table I.

5.2. Qualitative evaluation
5.2.1. Comparison with original architecture approaches
We compared the proposed hybrid architectures based on the TFFT suite with approaches based on the
original architecture, such as CNNs and LSTMs. Our proposed TFFT-based models are TFFT-CNNs
and TFFT-LSTMs. To evaluate the advantages of the proposed TFFT suite, we ensured that all original
architectures had four-layer depths. These four models take the sEMG signals that are self-processed
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Figure 6. Flowchart of data preparation process after acquiring NinaPro DB8 dataset.

according to the operations described in Section 5.1.3 as input, which are then trained on the training set
of all subjects. The performance of the trained models was compared in two aspects: overall recognition
accuracy and individual recognition accuracy of each subject. From the experiment of evaluating the
performance of the models according to the individual recognition accuracy of each subject, we only
present the experimental results of the case in which the window length is set as 500 ms. The influence
of our proposed TFFT suite on recognition accuracy was determined by comparing the results of the
CNNs, LSTMs, TFFT-CNNs, and TFFT-LSTMs.

Figure 7 presents the overall recognition accuracy results of each model for different window lengths.
When the window length was 200, 300, and 400 ms, the proposed TFFT-LSTMs obtained the best per-
formance on NinaPro DB8. When the window length was 500 ms, the proposed TFFT-CNNs obtained
the highest recognition accuracy. In general, the hybrid models based on the TFFT suite outperformed
the pure models, demonstrating that performance was improved by introducing prior information to
fine-tune the latent characteristics of the input sEMG signals.

Figure 8 presents the recognition accuracy of each evaluated model on different participants. The
traditional methods based on CNN and LSTM obtained a higher recognition accuracy for participants
s4 and s6 but a poor effect for some individuals, such as s8. The evaluated model based on our proposed
TFFT suite not only improved the gesture recognition accuracy of all individuals but also narrowed the
gap in the recognition performance in the data of different individuals.
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Table I. Training hyperparameter setting.

Training Hyperparameters Values
Epochs 120
Batch size 1200
Dropout rate 0.2
Initial learning rate 1e-3
Decayed factor of learning rate 10
Decayed epochs of learning rate [60, 100]
Channels of backbone network 32
Channels of TFFT suite 16

Figure 7. Comparison of recognition accuracy of original architecture approaches.

Figure 8. Comparison of recognition accuracy of different subjects.
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Figure 9. Comparison of recognition accuracy of different state-of-the-art frameworks and classical
algorithms.

5.2.2. Comparison with different state-of-the-art frameworks and classical algorithms
To demonstrate the superiority of the TFFT suite, we compared the original TFFT architecture with
existing state-of-the-art frameworks and classical algorithms using temporal features. Specifically, we
chose two state-of-the-art DL models, namely the attention model and the TCN. Two other support
vector machines (SVM) and decision trees (DT) that use variance and mean absolute value as temporal
features were used as comparisons. As shown in Fig. 9, the model with the TFFT suite achieved the best
accuracy for each window. SVM and DT algorithms based on temporal features do not perform as well
as other methods. Although attention and temporal convolution process temporal data effectively, their
interpretability is poor. This result not only shows that TFFT is effective but also shows that it intuitively
considers the extracted feature information.

Although the performance of all models improved as the window size increased, different models
require different costs. When the attention mechanism calculates the correlation matrix, the time and
space complexity is squared, and the number of network layers of the TCN also increases logarithmically
as the window becomes larger. However, the LSTM and CNN with TFFT are unaffected, making TFFT
irreplaceable.

5.2.3. Comparison with different prior maps
We quantitatively compared our hybrid models that generate prior maps by CWT with other types of
prior maps. As we aimed to discuss the efficiency of the prior maps obtained by CWT, we further
considered the zero and randomly generated matrix for each individual as the prior inputs. Hence, by
using the NinaPro DB8 for training, we obtained six evaluated models TFFT-CNNs (zeros), TFFT-CNNs
(rand), TFFT-CNNs (CWT), TFFT-LSTMs (zeros), TFFT-LSTMs (rand), and TFFT-LSTMs (CWT).

Figure 10 presents the recognition results of each model in the datasets obtained under different
window lengths. The proposed hybrid models based on the TFFT suite and CWT yielded better out-
puts. Naive prior input concatenation is insufficient for exerting the necessary condition for representing
the characteristics of subject-specific sEMG signals. Thus, using the prior graph obtained by CWT
as input in the proposed TFFT suite is a feasible attempt at achieving considerable performance in
multi-individual gesture recognition using sEMG signals.

https://doi.org/10.1017/S026357472200159X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472200159X


786 Xin Zhou et al.

Figure 10. Comparison of recognition accuracy of different priors.

6. Conclusion
In this study, we investigated the use of a TFFT suite based on prior maps generated by CWT for multi-
subject gesture recognition using sEMG signals. The advantages of TFFT are summarised as follows:
(1) It enables the construction of a function with a few parameters that allow the intermediate feature
transformation of a network in a single forward pass. (2) It can automatically capture necessary subject-
specific information from prior input. (3) Each element of the intermediate features has independent
affine transformation parameters. (4) It can be easily introduced into the existing network to construct
an end-to-end network structure and the entire layers can be trained simultaneously.

The TFFT suite was introduced into CNNs and LSTMs and compared with pure CNNs and LSTMs,
demonstrating superior recognition accuracy. The TFFT suite effectively narrowed the gap between the
recognition performance in the data of different individuals. Moreover, LSTM and CNN equipped with
TFFT outperformed two other state-of-the-art frameworks and classical algorithms, namely attention,
TCN, SVM, and DT. We further demonstrated the feasibility of improving the recognition performance
by introducing the maps generated using CWT in the sEMG signals from the human resting state as
priors. However, this work is a first attempt at using CWT feature maps as prior knowledge and at
designing the TFFT suite to learn modulation parameters. Therefore, we will perform different complex
sEMG-based recognition tasks, consider different types of prior knowledge, and explore DL methods to
enhance performance in the future work.
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