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ON INTERSECTION PROBABILITIES OF FOUR LINES INSIDE A
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Abstract

Let n ≥ 2 random lines intersect a planar convex domain D. Consider the probabili-
ties pnk, k = 0, 1, . . . , n(n − 1)/2 that the lines produce exactly k intersection points
inside D. The objective is finding pnk through geometric invariants of D. Using
Ambartzumian’s combinatorial algorithm, the known results are instantly reestablished
for n = 2, 3. When n = 4, these probabilities are expressed by new invariants of D. When
D is a disc of radius r, the simplest forms of all invariants are found. The exact values of
p3k and p4k are established.
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1. Introduction

The problem of finding relations between probabilistic and geometric characteristics of a
convex domain that remain invariant under rigid motions goes far beyond theoretical interest.
The field has been significantly developed during recent decades, when an increasing number
of real-life applications required rigorous mathematical foundations (see [9]). For example,
the reconstruction of a convex body by its random sections is the central problem of geometric
tomography (introduced in [5]). Some recent results on finding the chord length distribution or
the distance distribution between two random points in a convex domain can be viewed in [1],
[2], [6], and [7].

The main results of this work concern the intersection probabilities of four random lines
meeting a planar convex domain. This is a classical object in stochastic geometry, with a
dominant geometric flavour. For a bounded open convex domain D ⊂R

2 we consider Nn, the
number of intersection points of n random lines in D, given that all n lines meet D. We will
assume that D contains the origin of the Cartesian plane, and for a line g ⊂R

2, we let (p, ϕ)
denote the polar coordinates of the foot of the perpendicular from the origin onto g.

Let pnk = P(Nn = k). It is easy to check that p21 = 2πF/L2, where F and L are the area and
the perimeter of D, respectively. Computation of p3k requires more invariants of D besides the
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Intersection probabilities of four lines 505

area and the perimeter. These are suggested in [8, Chapter 4] to be

I2 =
∫

g∩D�=∅

|χ (g)|2 dg and U =
∫

g1∩g2∈D
u(g1, g2) dg1 dg2,

where χ (g) = g ∩ D is the chord in D produced by the line g, |χ (g)| is the length of χ (g), and
u(g1, g2) denotes the perimeter of the convex quadrilateral whose vertices are at the points
of intersections of the lines g1 and g2 with the boundary ∂D. The measure element dg is
interpreted as dg = dp dϕ, where dp is the one-dimensional Lebesgue measure and dϕ is the
uniform measure on the unit circle.

The formulas for intersection probabilities p3k, suggested in [8, Chapter 4], contain an error.
The correct formulas are

p33 = 8I2 − U

L3
, p32 = 3U − 12I2

L3
, p31 = 6πFL − 3U

L3
, (1.1)

established earlier by R. Sulanke in [10]. These formulas imply

I2 = L3

12
(p32 + 3p33), U = L3

3
(2p32 + 3p33). (1.2)

In this paper we obtain explicit formulas for probabilities p4k, k = 1, 2, . . . , 6 in terms of
new invariants of D and find an analogue of (1.2) for those invariants. After the main results,
in the final section we provide exact computations of all the new invariants for a disc of
radius r. The simplest expressions in terms of r are reached. The exact values of intersection
probabilities p3k, 0 ≤ k ≤ 3 and p4k, 0 ≤ k ≤ 6 are found.

Our computations are based on Ambartzumian’s combinatorial algorithm (see [3,
Chapter 5]). Before passing on to the main results, the algorithm is adapted to the new situation
in Section 2.

2. The combinatorial algorithm

Let G be the space of all lines g in R
2. We equip G with a measure μ invariant under

Euclidean motions in R
2. Then, up to a constant factor,

μ(X) =
∫

X
dg,

for the measurable subsets X ⊂G (see [3]).
Let P = {Pi}n

i=1 be a finite set of points in the plane. For any line g ∈G we consider �1(g)
and �2(g), the two open half-planes generated by g. We call two lines g1, g2 equivalent
if {P ∩ �1(g1),P ∩ �2(g1)} = {P ∩ �1(g2),P ∩ �2(g2)}. G is decomposed into subsets of
equivalent lines, which we call atoms. We let r(P) denote the minimal ring containing all
bounded atoms.

If g ∩P =∅ and neither of the sets P ∩ �1(g) and P ∩ �2(g) are empty, then consider
the atom B such that g ∈ B. We will say that the atom B separates the points P ∩ �1(g) from
P ∩ �2(g).

Let ρij be the Euclidean distance between points Pi and Pj. The combinatorial algorithm
below aims to express the μ-measure of any set B ∈ r(P) by linear combinations of ρij with
integer coefficients belonging to {0, ±1, ±2}. The algorithm is introduced [3] for the case
where any three points from P are not collinear. If there are collinear triads, then (see [4]) the
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linear combinations should be taken over those indices (i, j), i < j, for which the segment PiPj

contains no other points from P . We call such points Pi and Pj neighbour points.
Let gij be the line passing through the neighbour points Pi and Pj. For sufficiently small

positive numbers δ and θ , we define two types of displacements for gij.

δ-translation. This is a set of two lines which are parallel to gij and distant from gij by δ. The
set is denoted by Tδ(gij).

θ -rotation. This is a set of two lines each passing through the midpoint of PiPj and making
angle θ with gij. The set is denoted by Rθ (gij).

If B ∈ r(P), then let us define the numbers

Rij(B) = lim
θ→0+ #[Rθ (gij) ∩ B], Tij(B) = lim

δ→0+ #[Tδ(gij) ∩ B],

where # stands for the cardinality of a set.
Obviously Rij(B), Tij(B) ∈ {0, 1, 2}. Ambartzumian’s combinatorial algorithm/formula can

now be reformulated as follows.

Theorem 2.1. Let P = {Pi}n
i=1 be a finite set of points in the plane and B ∈ r(P). Then

μ(B) =
∑

(i,j)∈I

[Rij(B) − Tij(B)]ρij, (2.1)

where I is the set of pairs (i, j) for all neighbour points Pi and Pj, i < j.

As an application, one can easily re-obtain the formulas for pnk, where n = 2, 3. For
example, let us prove the second formula in (1.1).

Here and in the next sections, for any set X ⊂R
2 we let [X] denote the set of all lines g ∈G

such that g ∩ X �=∅. Two intersection points can occur when two of the lines g1, g2, g3 have
no intersection inside D and the third one intersects each of them inside D. The three events
where either of gi is the third line are equally probable, and therefore

p32 = 3

L3

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]c

dg3 = 3

L3

∫
g1∩g2∈D

μ(B) dg1 dg2,

where B = [χ (g1)] ∩ [χ (g2)]c (the complement is taken over the sample space [D]). One can
check that among Tij(B) and Rij(B) the only non-zero coefficients are T24(B) = 2 and R12(B) =
R23(B) = R34(B) = R14(B) = 1. Then (2.1) yields

p32 = 3

L3

∫
g1∩g2∈D

(−2|χ (g2)| + u(g1, g2)) dg1 dg2.

It remains to notice that
∫

g1∩g2∈D
|χ (g2)| dg1 dg2 =

∫
[D]

|χ (g2)| dg2

∫
[χ (g2)]

dg1 = 2
∫

[D]
|χ (g)|2 dg = 2I2.
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3. Introduction of new invariants: computation of p4k for k = 6, 5

Definition 3.1. For any g1 ∩ g2 ∈ D, we define

d(g1, g2) = |χ (g1)| + |χ (g2)|, c(g1, g2) = μ([χ (g1)] ∩ [χ (g2)]),

u(g1, g2) =
∣∣∣∣∂

(
conv

( 2⋃
i=1

gi ∩ D

))∣∣∣∣,

and for any three lines g1, g2, g3 such that gi ∩ gj ∈ D, 1 ≤ i < j ≤ 3, we define

v(g1, g2, g3) =
∣∣∣∣∂

(
conv

( 3⋃
i=1

gi ∩ D

))∣∣∣∣,

where conv(X) denotes the convex hull of X ⊂R
2, and |∂Y| denotes the perimeter of a convex

domain Y .

The new definition of u(g1, g2) coincides with the one we have used so far. Also, by (2.1),
we have c(g1, g2) = 2d(g1, g2) − u(g1, g2).

Along with the well-known invariants Ik = ∫
[D] |χ (g)|k dg, k = 0, 1, 2, . . . , let us consider

the following moments of the functions introduced in Definition 3.1:

Dk =
∫

g1∩g2∈D
dk(g1, g2) dg1 dg2, Ck =

∫
g1∩g2∈D

ck(g1, g2) dg1 dg2,

Uk =
∫

g1∩g2∈D
uk(g1, g2) dg1 dg2, Vk =

∫
gi∩gj∈D, 1≤i<j≤3

vk(g1, g2, g3) dg1 dg2 dg3.

It is easy to verify that

I0 = L, D0 = C0 = U0 = 2I1 = 2πF, V0 = C1 = 2D1 − U1 = 8I2 − U1

and

p21 = U0

L2
, p33 = C1

L3
, p32 = 3(U1 − D1)

L3
, p31 = 3(U0L − U1)

L3
. (3.1)

In this section we aim to express the probabilities p46 and p45 in terms of the new invariants.
In this way we first obtain expressions for two useful integrals.

Proposition 3.1. We have

∫
g1∩g2∈D

|χ (g1)||χ (g2)| dg1 dg2 = D2 − 4I3

2
,

∫
g1∩g2∈D

|χ (g1)|u(g1, g2) dg1 dg2 = 4D2 + U2 − C2

8
.
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Proof. Direct computation of D2 leads to

D2 =
∫

g1∩g2∈D
(|χ (g1)|2 + |χ (g2)|2) dg1 dg2 + 2

∫
g1∩g2∈D

|χ (g1)||χ (g2)| dg1 dg2

= 2
∫

[D]
|χ (g1)|2

∫
[χ (g1)]

dg2 dg1 + 2
∫

g1∩g2∈D
|χ (g1)||χ (g2)| dg1 dg2

= 4
∫

[D]
|χ (g1)|3 dg1 + 2

∫
g1∩g2∈D

|χ (g1)||χ (g2)| dg1 dg2,

which is equivalent to the first identity.
To prove the second identity we expand the integrand of C2 and obtain

C2 = 4D2 + U2 − 4
∫

g1∩g2∈D
|χ (g1)|u(g1, g2) dg1 dg2 − 4

∫
g1∩g2∈D

|χ (g2)|u(g1, g2) dg1 dg2.

It remains to notice that the last two integrals coincide due to symmetry. �

Definition 3.2. For g1, g2, . . . , gn ∈ [D], let 〈g1, g2, . . . , gn〉 be the set of all chords χ12 that
join an endpoint of χ (gi) to an endpoint of χ (gj), 1 ≤ i < j ≤ n. Then, for any integer k, 0 ≤
k ≤ n − 2, we define the function Ik : 〈g1, g2, . . . , gn〉 → {0, 1} by

Ik(χ12) =
⎧⎨
⎩

1 if #
(
χ12 ∩ (⋃n

i=1 χ (gi)
)) = k,

0 otherwise,

where χ (gi) is the closure of χ (gi) in R
2.

The following two integrals are essential for our further work.

Lemma 3.1. We have∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

|χ (g1)| dg3 = 4D2 − U2 + C2

8
, (3.2)

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

∑
χ12∈〈g1,g2,g3〉

|χ12|I1(χ12) dg3 = 12D2 − 3C2 − 3U2 − 2V1

2
.

(3.3)

Proof. The left-hand side of (3.2) is equal to∫
g1∩g2∈D

|χ (g1)|(2d(g1, g2) − u(g1, g2)) dg1 dg2

= 2
∫

g1∩g2∈D
|χ (g1)|2 dg1 dg2 + 2

∫
g1∩g2∈D

|χ (g1)||χ (g2)| dg1 dg2

−
∫

g1∩g2∈D
|χ (g1)|u(g1, g2) dg1 dg2

= 4I3 + (D2 − 4I3) − 4D2 + U2 − C2

8
,
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which coincides with the right-hand side of (3.2). To prove (3.3) we first notice that∑
χ12∈〈g1,g2,g3〉

|χ12|I1(χ12) =
∑

1≤i<j≤3

u(gi, gj) − v(g1, g2, g3).

Consequently, due to symmetry, the left-hand side of (3.3) becomes equal to

3
∫

g1∩g2∈D
dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

u(g1, g2) dg3 − V1

= 3
∫

g1∩g2∈D
u(g1, g2)(2d(g1, g2) − u(g1, g2)) dg1 dg2 − V1

= 12
∫

g1∩g2∈D
|χ (g1)|u(g1, g2) dg1 dg2 − 3U2 − V1

= 12(4D2 + U2 − C2)

8
− 3U2 − V1,

which coincides with the right-hand side of (3.3). �

We are now ready to compute p46 and p45.

Theorem 3.1. We have

p46 = 3U2 + 9C2 − 12D2 + 4V1

4L4
, (3.4)

p45 = 36D2 − 9U2 − 15C2 − 12V1

2L4
. (3.5)

Proof. Four lines gi ∈ [D], i = 1, 2, 3, 4 generate six intersection points inside D if and only
if g1, g2, g3 generate three intersections and g4 ∈ ⋂3

i=1 [χ (gi)]. Therefore

p46 = 1

L4

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

μ(B6) dg3, (3.6)

where B6 = ⋂3
i=1 [χ (gi)].

Let us fix g1, g2, g3 and consider the set of points P = (g1 ∪ g2 ∪ g3) ∩ ∂D. Without loss
of generality one can assume that g1 ∩ ∂D = {P1, P4}, g2 ∩ ∂D = {P2, P5}, and g3 ∩ ∂D =
{P3, P6}, where the points Pi are consecutively distributed over the boundary ∂D.

The set B6 belongs to the ring r(P) and can be written as a union of three atoms B61, B62,

and B63, where B6i separates the points Pi, Pi+1, Pi+2 from the other points of P . By
Theorem 2.1,

μ(B61) = ρ14 + ρ36 − ρ13 − ρ46, μ(B62) = ρ25 + ρ14 − ρ24 − ρ15,

μ(B63) = ρ36 + ρ25 − ρ35 − ρ26,

where we notice that ρ14 = |χ (g1)|, ρ25 = |χ (g2)|, ρ36 = |χ (g3)|, and the six subtracted terms
represent the lengths of all chords χ12 ∈ 〈g1, g2, g2〉 that meet exactly one of the closed chords
χ (gi), i = 1, 2, 3. Thus

μ(B6) =
3∑

i=1

μ(B6i) = 2
3∑

i=1

|χ (gi)| −
∑

χ12∈〈g1,g2,g3〉
|χ12|I1(χ12). (3.7)
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Now (3.6), (3.7), and Lemma 3.1 imply

p46 = 6 · 4D2 − U2 + C2

8L4
− 12D2 − 3C2 − 3U2 − 2V1

2L4
= 3U2 + 9C2 − 12D2 + 4V1

4L4
.

Five intersection points may occur when three lines, e.g. g1, g1, g3, produce three intersec-
tions, and the fourth line, g4, intersects only g1 and g2 inside D. In this scenario, the roles of
g3 and g4 are interchangeable. Therefore the probability p45 can be written as

p45 = 1

2
·
(

4

3

)
· 1

L4

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

μ(B5) dg3, (3.8)

where B5 = ([χ (g1)] ∩ [χ (g2)] ∩ [χ (g3)]c) ∪ ([χ (g1)] ∩ [χ (g2)]c ∩ [χ (g3)]) ∪ ([χ (g1)]c ∩ [χ
(g2)] ∩ [χ (g3)]).

Using the same set P as in the case of six intersection points, one can represent B5 as a union
of six atoms B5i ∈ r(P), i = 1, . . . , 6, where B5i separates {Pi, Pi+1} from the other points of
P (when i = 6 we replace i + 1 with 1).

By Theorem 2.1,

μ(B51) = ρ13 + ρ26 − ρ12 − ρ36, μ(B52) = ρ24 + ρ31 − ρ23 − ρ41,

μ(B53) = ρ35 + ρ42 − ρ34 − ρ52, μ(B54) = ρ46 + ρ53 − ρ45 − ρ63,

μ(B55) = ρ51 + ρ64 − ρ56 − ρ14, μ(B56) = ρ62 + ρ15 − ρ61 − ρ25.

Taking into account that ρji = ρij and recognizing the type of each ρij participating in the above
formulas, we come up with

μ(B5) =
6∑

i=1

μ(B5i) = 2 ·
∑

χ12∈〈g1,g2,g3〉
|χ12|I1(χ12) − 2

3∑
i=1

|χ (gi)| − v(g1, g2, g3). (3.9)

Due to (3.8) and (3.9),

p45 = 4

L4

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

∑
χ12∈〈g1,g2,g3〉

|χ12|I1(χ12) dg3

− 12

L4

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

|χ(g1)| dg3 − 2V1

L4
.

It remains to apply Lemma 3.1 and establish (3.5) by combining the like terms. �

4. Computation of p4k for k = 4, 3, 2, 1, 0

We will use further notation in this section to make relevant calculations in all the scenarios
that may occur when four lines meet inside D at less than five points.

Given g1 ∩ g2 ∈ D, we let ρ1, ρ2, ρ3, ρ4 denote the lengths of four consecutive sides of
the quadrilateral conv((g1 ∪ g2) ∩ ∂D). To avoid ambiguity, we will always assume that the
first two sides lie in different half-planes with respect to g1. If two lines, e.g. g2 and g3, are
from [D] but do not meet inside D, then d1, d2 will stand for the lengths of the diagonals
of conv((g2 ∪ g3) ∩ ∂D), and s1, s2 will represent the lengths of the sides of the quadrilateral
which are different from χ (g2), χ (g3).
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(a) (b)

FIGURE 1. Scenarios of two lines intersecting D. (a) The case g1 ∩ g2 ∈ D. (b) The case g2 ∩ g3 �∈ D.

The new notation is illustrated in Figure 1. These are used to define the following new
invariants of D:

R =
∫

g1∩g2∈D
((ρ1 + ρ2)(ρ3 + ρ4) + (ρ2 + ρ3)(ρ4 + ρ1)) dg1 dg2,

Qs =
∫

g2∩g3 �∈D
(s1 + s2)(d1 + d2 − s1 − s2) dg2 dg3,

Qd =
∫

g2∩g3 �∈D
(d1 + d2)(d1 + d2 − s1 − s2) dg2 dg3.

To make upcoming formulas shorter, for the given pair of lines g1 ∩ g2 ∈ D we will use S
to denote the symmetric difference of [χ (g1)] and [χ (g2)]. S1 and S2 will stand for [χ (g1)] ∩
[χ (g2)]c and [χ (g1)]c ∩ [χ (g2)], respectively. Use of parentheses in integrands will be avoided
if it does not lead to misreading.

Lemma 4.1. Let IS1 and IS2 be the indicator functions of S1 and S2, respectively. Then the
following six identities hold:

∫
g1∩g2∈D

dg1 dg2

∫
S

IS1 |χ (g1)| + IS2 |χ (g2)| dg3 = U2 − C2 − 4D2

4
+ 8I3, (4.1)

∫
g1∩g2∈D

dg1 dg2

∫
S

IS1

∑
〈g2,g3〉

|χ12|I0(χ12) + IS2

∑
〈g1,g3〉

|χ12|I0(χ12) dg3 = 2Qs, (4.2)

∫
g1∩g2∈D

dg1 dg2

∫
S

∑
〈g1,g2〉

|χ12|I1(χ12) dg3 = 7U2 − 4D2 + C2

4
− 2R, (4.3)

∫
g1∩g2∈D

dg1 dg2

∫
S

∑
〈g1,g2〉

|χ12|I0(χ12) dg3 = C2 − 4D2 − U2

4
+ 2R, (4.4)
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∫
g1∩g2∈D

dg1 dg2

∫
S

IS1

∑
〈g2,g3〉

|χ12|I1(χ12) + IS2

∑
〈g1,g3〉

|χ12|I1(χ12) dg3 = 2Qd, (4.5)

∫
g1∩g2∈D

dg1 dg2

∫
S

IS1 |χ (g2)| + IS2 |χ (g1)| dg3 = U2 − C2 + 4D2

4
− 8I3. (4.6)

Proof. Since S = S1 ∪ S2 and S1 ∩ S2 =∅,∫
S

IS1 |χ (g1)| + IS2 |χ (g2)| dg3 = |χ (g1)|μ(S1) + |χ (g2)|μ(S2).

Using the technique developed in the previous two sections, one can check that μ(S1) =
u(g1, g2) − 2|χ (g2)|, μ(S2) = u(g1, g2) − 2|χ (g1)|, and consequently the left-hand side of
(4.1) becomes equal to

2
∫

g1∩g2∈D
|χ (g1)|u(g1, g2) dg1 dg2 − 4

∫
g1∩g2∈D

|χ (g1)||χ (g2)| dg1 dg2

= 4D2 + U2 − C2

4
− 2D2 + 8I3 = U2 − C2 − 4D2

4
+ 8I3.

To prove (4.2), we change the order of integration. The left-hand side of (4.2) becomes
equal to ∫

g2∩g3 �∈D
dg2 dg3

∫
[χ (g2)]∩[χ (g3)]

∑
〈g2,g3〉

|χ12|I0(χ12) dg1

+
∫

g1∩g3 �∈D
dg1 dg3

∫
[χ (g1)]∩[χ (g3)]

∑
〈g1,g3〉

|χ12|I0(χ12) dg2

= 2
∫

g2∩g3 �∈D

∑
〈g2,g3〉

|χ12|I0(χ12)μ([χ (g2)] ∩ [χ (g3)]) dg2 dg3

= 2Qs,

where the last equality holds due to
∑

〈g2,g3〉 |χ12|I0(χ12) = s1 + s2 and μ([χ (g2)] ∩ [χ (g3)]) =
d1 + d2 − s1 − s2 (see Figure 1(b)).

Let us prove (4.3). The inner integral in (4.3) can be written in the form of the sum∫
S1

∑
〈g1,g2〉

|χ12|I1(χ12) dg3 +
∫
S2

∑
〈g1,g2〉

|χ12|I1(χ12) dg3. (4.7)

The integrand of the first integral in (4.7) is piecewise constant over the set of lines g3 ∈ S1.
Indeed, look at Figure 1(a). The function is equal to ρ3 + ρ4 over the atom B+ ∈ r(P) that
separates the point P3 from the other points of P = {P1, P2, P3, P4}. On the other hand, it is
equal to ρ1 + ρ2 over B−, the atom that separates P1 from P \ P1. Taking into account that
S1 = B+ ∪ B−, we obtain∫

S1

∑
〈g1,g2〉

|χ12|I1(χ12) dg3 = (ρ3 + ρ4)μ(B+) + (ρ1 + ρ2)μ(B−).
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By our main computational engine (2.1), it is easy to verify that μ(B+) = ρ3 + ρ4 − |χ (g2)|
and μ(B−) = ρ1 + ρ2 − |χ (g2)|. Substitution of these values in the right-hand side of the last
formula yields

∫
S1

∑
〈g1,g2〉

|χ12|I1(χ12) dg3 = (ρ3 + ρ4)2 + (ρ1 + ρ2)2 − |χ (g2)|u(g1, g2),

which is equivalent to
∫
S1

∑
〈g1,g2〉

|χ12|I1(χ12) dg3 = u2(g1, g2) − |χ (g2)|u(g1, g2) − 2(ρ1 + ρ2)(ρ3 + ρ4). (4.8)

The second integral in (4.7) can be obtained from (4.8) by interchanging g1 and g2:
∫
S2

∑
〈g1,g2〉

|χ12|I1(χ12) dg3 = u2(g1, g2) − |χ (g1)|u(g1, g2) − 2(ρ2 + ρ3)(ρ4 + ρ1). (4.9)

Based on (4.7), (4.8), (4.9), and Proposition 3.1, we conclude that
∫

g1∩g2∈D
dg1 dg2

∫
S

∑
〈g1,g2〉

|χ12|I1(χ12) dg3 = 2U2 − 4D2 + U2 − C2

4
− 2R,

which is equal to the right-hand side of (4.3). The proofs of (4.4), (4.5), and (4.6) are very
similar to the ones provided for (4.3), (4.2), and (4.1) respectively, and are thus omitted. �

Theorem 4.1. Let p(1)
44 be the probability that g1, g2, g3, g4 ∈ [D] produce four intersection

points inside D and three of them intersect each other inside D. Then

p44 = p(1)
44 + p(2)

44 ,

where

p(1)
44 = 6

L4
(2V1 − 4D2 + C2 + U2), (4.10)

p(2)
44 = 3

L4

(
3U2 + C2

2
− 8I3 − 2R − Qs

)
. (4.11)

Proof. There are two scenarios where four lines gi ∈ [D], i = 1, 2, 3, 4 can generate four
intersection points inside D. In the first scenario we require three of the lines to make three
intersection points inside D (enclose a triangle inside D) and the fourth to cut exactly one of
those three inside D. Otherwise, in the second scenario, we require any three of the four lines
to make exactly two intersections inside D (the four lines enclose a convex quadrilateral inside
D). We denote the two mutually exclusive events by E1 and E2, respectively, and need to prove
that

p(E1) = 6

L4
(2V1 − 4D2 + C2 + U2), p(E2) = 3

L4

(
3U2 + C2

2
− 8I3 − 2R − Qs

)
.

In the first scenario there are four choices to select three out of four lines to enclose a trian-
gle inside D. Let those three be g1, g2, g3. Consider the set of points P = (g1 ∪ g2 ∪ g3) ∩ ∂D.
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Again, without loss of generality one can assume that g1 ∩ ∂D = {P1, P4}, g2 ∩ ∂D = {P2, P5},
and g3 ∩ ∂D = {P3, P6}, where the points Pi are consecutively distributed over the bound-
ary ∂D. Consider the set B(1)

4 ∈ r(P) comprising six atoms B(1)
4i , i = 1, 2, . . . , 6, where B(1)

4i
separates the point Pi from the other five points of P . Then

p(E1) = 4

L4

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

μ
(
B(1)

4

)
dg3.

The measure of each of the six atoms is computed below by Theorem 2.1:

μ
(
B(1)

41

) = ρ12 + ρ16 − ρ26, μ
(
B(1)

42

) = ρ23 + ρ21 − ρ31,

μ
(
B(1)

43

) = ρ34 + ρ32 − ρ42, μ
(
B(1)

44

) = ρ45 + ρ43 − ρ53,

μ
(
B(1)

45

) = ρ56 + ρ54 − ρ64, μ
(
B(1)

46

) = ρ61 + ρ65 − ρ15.

As a result, we obtain

p(E1) = 4

L4

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

6∑
i=1

μ
(
B(1)

4i

)
dg3

= 4

L4

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

2v(g1, g2, g3) −
∑

〈g1,g2,g3〉
|χ12|I1(χ12) dg3.

Finally, using Lemma 3.1, we arrive at

p(E1) = 4

L4

(
2V1 − 12D2 − 3C2 − 3U2 − 2V1

2

)
= 6

L4
(2V1 − 4D2 + C2 + U2).

In the second scenario we have

p(E2) = 3

2L4

∫
g1∩g2∈D

dg1 dg2

∫
S

μ
(
B(2)

4

)
dg3, (4.12)

where

B(2)
4 =

⎧⎨
⎩
S2 ∩ [χ (g3)] if g3 ∈ S1,

S1 ∩ [χ (g3)] if g3 ∈ S2.

The measure μ
(
B(2)

4

)
can be computed by Theorem 2.1 with reference to Figure 2.

The formula (2.1) implies

μ
(
B(2)

4

) =
∑

〈g1,g2〉∪〈g1,g3〉
|χ12|I1(χ12) −

∑
〈g2,g3〉

|χ12|I0(χ12) − 2|χ (g1)| if g3 ∈ S1

and

μ
(
B(2)

4

) =
∑

〈g1,g2〉∪〈g2,g3〉
|χ12|I1(χ12) −

∑
〈g1,g3〉

|χ12|I0(χ12) − 2|χ (g2)| if g3 ∈ S2.
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(a) (b)

FIGURE 2. The distribution of signs over the chords participating in the combinatorial decomposition of

μ
(

B(2)
4

)
. (a) The case g1 ∩ g2 ∈ D and g3 meets χ (g1) but not χ (g2). (b) The case g1 ∩ g2 ∈ D and g3

meets χ (g2) but not χ (g1).

By incorporating the indicator functions ISi , we plug the obtained expressions into (4.12):

p(E2) = 3

2L4

∫
g1∩g2∈D

dg1 dg2

∫
S

2 ·
∑

〈g1,g2〉
|χ12|I1(χ12) dg3

− 3

2L4

∫
g1∩g2∈D

dg1 dg2

∫
S

IS1

∑
〈g2,g3〉

|χ12|I0(χ12) + IS2

∑
〈g1,g3〉

|χ12|I0(χ12) dg3

− 3

2L4

∫
g1∩g2∈D

dg1 dg2

∫
S

2 · IS1 |χ (g1)| + 2 · IS2 |χ (g2)| dg3.

Finally, due to Lemma 4.1 (the first three identities), we come up with

p(E2) = 3

2L4

(
2 ·

(
7U2 − 4D2 + C2

4
− 2R

)
− 2Qs − 2 ·

(
U2 − C2 − 4D2

4
+ 8I3

))

= 3

L4

(
3U2 + C2

2
− 8I3 − 2R − Qs

)
.

The proof is thus complete. �

Three intersection points made by four lines from [D] can occur in three ways.

Event 1. The lines produce three chords each possessing two intersection points, and one
containing no intersection point.

Event 2. The lines produce two chords each possessing two intersection points, and the other
two each possessing one intersection point.
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Event 3. The lines produce three chords each possessing one intersection point, and one
possessing three intersection points.

We let p(1)
43 , p(2)

43 , and p(3)
43 denote the probabilities of Event 1, Event 2, and Event 3,

respectively.

Theorem 4.2. We have
p43 = p(1)

43 + p(2)
43 + p(3)

43 ,

where

p(1)
43 = 4

L4
(C1L − V1), (4.13)

p(2)
43 = 12

L4
(Qs + 2R − U2), (4.14)

p(3)
43 = 3

L4
(C2 − 4D2 − U2) + 4

L4
(Qd + 2R) + 64

L4
I3. (4.15)

Proof. Events 1, 2, and 3 are mutually exclusive and cover all the cases of three intersections
inside D.

Let us now define an undirected graph T with the vertex set {1, 2, 3, 4}, where the vertices i
and j are adjacent if and only if gi ∩ gj ∈ D. If g1, g2, g3, g4 are placed as described in Event 1,
then there are four possibilities to make a graph T (three vertices of degree 2, and one vertex
of degree 0). Thus

p(1)
43 = 4

L4

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

μ
(
B(1)

3

)
dg3,

where B(1)
3 = [χ (g1)]c ∩ [χ (g2)]c ∩ [χ (g3)]c.

Since μ
(
B(1)

3

) = L − v(g1, g2, g3), we obtain

p(1)
43 = 4

L3

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

dg3 − 4V1

L4
= 4p33 − 4V1

L4
.

As by (3.1), p33 = C1/L3, we establish (4.13).
If g1, g2, g3, g4 are placed as described in Event 2, then the number of possible graphs T

(with two vertices of degree 2 and two vertices of degree 1) is 12. This number will be reduced
to 4 if we also require vertices 1 and 2 to be adjacent, and vertex 3 to be adjacent to either 1 or
2 but not both (see Figure 3). Hence we acquire

p(2)
43 = 12

4L4

∫
g1∩g2∈D

dg1 dg2

∫
S

μ
(
B(2)

3

)
dg3, (4.16)

where

B(2)
3 =

⎧⎨
⎩

[χ (g1)]c ∩ (
[χ (g2)]
[χ (g3)]

)
if g3 ∈ S1,

[χ (g2)]c ∩ (
[χ (g1)]
[χ (g3)]

)
if g3 ∈ S2,

and 
 stands for the symmetric difference operation.
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FIGURE 3. Versions of T where 1 is adjacent to 2, and 3 is adjacent to either 2 or 1 but not both
(Event 2).

FIGURE 4. Versions of T where 1 is adjacent to 2, and 3 is adjacent to either 2 or 1 but not both
(Event 3).

In the last scenario, if g1, g2, g3, g4 are placed as described in Event 3, then there are only
four graphs T (three vertices of degree 1 and one vertex of degree 3). An extra restriction
requiring vertices 1 and 2 to be adjacent, and vertex 3 to be adjacent to either 1 or 2 but not
both, allows us to construct only two graphs T . These are displayed in Figure 4. Consequently

p(3)
43 = 4

2L4

∫
g1∩g2∈D

dg1 dg2

∫
S

μ
(
B(3)

3

)
dg3, (4.17)

where

B(3)
3 =

⎧⎨
⎩

[χ (g1)] ∩ [χ (g2)]c ∩ [χ (g3)]c if g3 ∈ S1,

[χ (g1)]c ∩ [χ (g2)] ∩ [χ (g3)]c if g3 ∈ S2.

It remains to calculate μ
(
B(2)

3

)
and μ

(
B(3)

3

)
and then the integrals (4.16) and (4.17) accord-

ingly. For the measures, we apply the combinatorial formula (2.1), while the integrals need the
Lemma 4.1 to be used. Computation is similar to that used for proving (4.11) and is therefore
omitted. �

Two intersection points generated by four lines are possible in two scenarios.

Event 1. One chord possesses two intersection points, two of the chords possess one
intersection point each, and one chord does not possess any intersection point.

Event 2. Each chord of the four lines possesses exactly one intersection point.

Let the probabilities of the above-mentioned events be p(1)
42 and p(2)

42 respectively.

Theorem 4.3. We have
p42 = p(1)

42 + p(2)
42 ,

where
p(1)

42 = 4p32 − 3

L4
(C2 − 4D2 − U2 − 4(Qs + 2R)), (4.18)

p(2)
42 = 12π2F2

L4
+ 48I3

L4
− 3

4L4
(U2 − C2 + 12D2) − 1

4

(
p(1)

44 + 2p(2)
43

)
. (4.19)
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Proof. Events 1 and 2 are mutually exclusive, so it remains to verify (4.18) and (4.19). We
first notice that

p(1)
42 = 12

2L4

∫
g1∩g2∈D

dg1 dg2

∫
S

μ
(
B(1)

2

)
dg3,

where B(1)
2 = [χ (g1)]c ∩ [χ (g2)]c ∩ [χ (g3)]c. Since μ

(
B(1)

2

) = L − v(g1, g2, g3), we obtain

p(1)
42 = 6

L3

∫
g1∩g2∈D

μ(S) dg1 dg2 − 6

L4

∫
g1∩g2∈D

dg1 dg2

∫
S

∑
〈g1,g2,g3〉

|χ12|I0(χ12) dg3.

We recognize that the first term above is equal to 6 · 2
3 p32 = 4p32. Evaluation of the second

term is based on (4.4) and (4.2). Indeed∫
g1∩g2∈D

dg1 dg2

∫
S

∑
〈g1,g2,g3〉

|χ12|I0(χ12) dg3

=
∫

g1∩g2∈D
dg1 dg2

∫
S

IS1

∑
〈g1,g2〉∪〈g1,g3〉

|χ12|I0(χ12) + IS2

∑
〈g1,g2〉∪〈g2,g3〉

|χ12|I0(χ12)

+ IS1

∑
〈g2,g3〉

|χ12|I0(χ12) + IS2

∑
〈g1,g3〉

|χ12|I0(χ12) dg3

=
∫

g1∩g2∈D
dg1 dg2

∫
S

2
∑

〈g1,g2〉
|χ12|I0(χ12) + IS1

∑
〈g2,g3〉

|χ12|I0(χ12)

+ IS2

∑
〈g1,g3〉

|χ12|I0(χ12) dg3 = C2 − 4D2 − U2

2
+ 4R + 2Qs,

and (4.18) is proved.
The other ‘partial’ probability can be expressed by the following integral:

p(2)
42 = 1

2

(
4

2

)
1

L4

∫
g1∩g3 �∈D

dg1 dg3

∫
[χ (g1)]∩[χ (g3)]c

μ
(
B(2)

2

)
dg2, (4.20)

where B(2)
2 = [χ (g3)] ∩ [χ (g2)]c ∩ [χ (g1))]c. Then

μ
(
B(2)

2

) = 2|χ (g3)| − μ

( 3⋂
i=1

[χ (gi)]

)
− μ(([χ (g1)]
[χ (g2)]) ∩ [χ (g3)]). (4.21)

Since
1

L4

∫
g1∩g3 �∈D

dg1 dg3

∫
[χ (g1)]∩[χ (g3)]c

μ

( 3⋂
i=1

[χ (gi)]

)
dg2 = 1

12
p(1)

44

and

1

L4

∫
g1∩g3 �∈D

dg1 dg3

∫
[χ (g1)]∩[χ (g3)]c

μ(([χ (g1)]
[χ (g2)]) ∩ [χ (g3)]) dg2 = 1

6
p(2)

43 ,
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then due to (4.20) the proof will be finished if we show that
∫

g1∩g3 �∈D
dg1 dg3

∫
[χ (g1)]∩[χ (g3)]c

|χ (g3)| dg2 = 2π2F2 + 8I3 − U2 − C2 + 12D2

8
. (4.22)

By the combinatorial formula,

μ([χ (g1)] ∩ [χ (g3)]c) = s1 + s2 − d1 − d2 + 2|χ (g1)|.
Then the integral in (4.22) is equal to

2
∫

g1∩g3 �∈D
|χ (g1)||χ (g3)| dg1 dg3 −

∫
g1∩g3 �∈D

|χ (g3)|(d1 + d2 − s1 − s2) dg1 dg3. (4.23)

The first term in (4.23) is equal to

2
∫

[D]
dg1

∫
[D]

|χ (g1)||χ (g3)| dg3 − 2
∫

g1∩g3∈D
|χ (g1)||χ (g3)| dg1 dg3 = 2π2F2 − D2 + 4I3,

while the second term is equal to
∫

g1∩g3 �∈D
|χ (g3)| dg1 dg3

∫
[χ (g1)]∩[χ (g3)]

dg2

= 1

2

∫
g1∩g2∈D

dg1 dg2

∫
S

IS1 |χ (g2)| + IS2 |χ (g1)| dg3

= U2 − C2 + 4D2

8
− 4I3,

where the last equality holds due to (4.6).
To complete the proof, it remains to subtract the last expression from 2π2F2 − D2 + 4I3

and check that it is equal to the right-hand side of (4.22). �

Theorem 4.4. We have

p41 = 2p31 − 2p(2)
42 − 6U1

L3
+ 6U2

L4
.

Proof. The only possible way to generate one intersection point inside D is having two
chords possessing one intersection point each, and two more chords possessing no intersection
points. The model yields

p41 =
(

4

2

)
1

L4

∫
g1∩g3 �∈D

dg1 dg3

∫
[χ (g1)]∩[χ (g3)]c

μ(B1) dg2, (4.24)

where B1 = [χ (g3)]c ∩ [χ (g2)]c ∩ [χ (g1))]c. We deliver the computation of μ(B1) by the
combinatorial algorithm through Figure 5.

Let us fix g1, g2, g3 ∈ [D] such that the first two intersect each other inside D, and g3 inter-
sects none of the chords χ (g1), χ (g2). Consider the set of points P = (g1 ∪ g2 ∪ g3) ∩ ∂D.
Without loss of generality, we assume that g1 ∩ ∂D = {P1, P5}, g2 ∩ ∂D = {P2, P6}, and
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FIGURE 5. The distribution of signs over the chords participating in the combinatorial decomposition
of μ(B1).

g3 ∩ ∂D = {P3, P4}, where the points Pi are consecutively distributed over the boundary ∂D.
As usual, we let ρij denote the Euclidean distance between points Pi and Pj. Then B1 consists
of the lines that lie in the complement of the convex hull of P and the atom A ∈ r(P) that sepa-
rates the points P3, P4 from the other four. Hence μ(B1) = L − ρ12 − ρ23 − · · · − ρ61 + μ(A).
Since μ(A) = ρ24 + ρ35 − |χ (g3)| − ρ25, we obtain

μ(B1) = L − u(g1, g2) − 2|χ (g3)| + ρ24 + ρ35 − ρ23 − ρ45.

On the other hand, ρ24 + ρ35 − ρ23 − ρ45 can be interpreted as the measure of the set of lines
that cut χ (g3) and meet at least one of the chords χ (g1), χ (g2). From (4.21), that measure is
equal to 2|χ (g3)| − μ

(
B(2)

2

)
, and therefore we establish

μ(B1) = L − u(g1, g2) − μ
(
B(2)

2

)
.

It is easy to verify that

1

L4

∫
g1∩g3 �∈D

dg1 dg3

∫
[χ (g1)]∩[χ (g3)]c

L dg2 = 1

3
p31

and

1

L4

∫
g1∩g3 �∈D

dg1 dg3

∫
[χ (g1)]∩[χ (g3)]c

μ
(
B(2)

2

)
dg2 = 1

3
p(2)

42 .
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Integration of u(g1, g2) requires a change of order:

1

L4

∫
g1∩g3 �∈D

dg1 dg3

∫
[χ (g1)]∩[χ (g3)]c

u(g1, g2) dg2

= 1

L4

∫
g1∩g2∈D

u(g1, g2) dg1 dg2

∫
[χ (g1)]c∩[χ (g2)]c

dg3

= 1

L4

∫
g1∩g2∈D

u(g1, g2)(L − u(g1, g2)) dg1 dg2

= U1

L3
− U2

L4
.

Now from (4.24) we conclude that

p41 = 6 ·
(

1

3
p31 − 1

3
p(2)

42 − U1

L3
+ U2

L4

)
= 2p31 − 2p(2)

42 − 6U1

L3
+ 6U2

L4
. �

Finally, the probability of having no intersection points inside D is p40 = 1 − ∑6
k=1 p4k.

5. Representation of I3 and V1 by intersection probabilities

In this section we first aim to express the invariants V1 and I3 by intersection probabilities
to establish an analogue of (1.2). Looking through the formulas of p4k obtained in the previous
two sections, we notice that the family of new invariants can be reduced to U2, C2, D2, Kd, Ks,
V1, and I3, where Ks = Qs + 2R and Kd = Qd + 2R. I3 is known (by Crofton; see e.g. [8]) to
be equal to 3F2, but we will not be using this result below.

Theorem 5.1. The following identities hold:

V1 = L4
(

p33 − 1

4
p(1)

43

)
, (5.1)

I3 = L4

32

(
4p33 + p(3)

43 − p(1)
43

)
. (5.2)

Proof. Equation (5.1) immediately follows from (3.1) and (4.13).
Let us compute the mean number of the intersection points generated by four lines inside

D. We directly use the formulas for intersection probabilities p4k, k = 6, 5, . . . , 1 obtained in
the previous two sections. By combining the like terms accurately, we obtain

6∑
k=1

kp4k = 12πF

L2
+ 3

L4
(−3U2 + 3C2 − 12D2 + 4V1 + 4Kd + 32I3). (5.3)

On the other hand, the mean number of intersection points generated by n lines inside D is
known (see [8]) to be equal to n(n − 1)πF/L2. Thus, from (5.3), we obtain

−3U2 + 3C2 − 12D2 + 4V1 + 4Kd + 32I3 = 0.

Based on (4.15), the last identity can be rewritten as p(3)
43 · L4 + 4V1 − 32I3 = 0, that is,

p(3)
43 = 4

L4
(8I3 − V1). (5.4)

Now (5.2) follows from (5.1) and (5.4). �

https://doi.org/10.1017/jpr.2022.60 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.60


522 D. MARTIROSYAN AND V. OHANYAN

Below we check the results against the second moment of the number of intersection points
generated by n lines inside D (for the formula below, see [8]):

E(v2) = 2π

(
n

2

)
F

L2
+ 24π2

(
n

4

)
F2

L4
+ 24

(
n

3

)
I2

L3
. (5.5)

We start with the direct substitution of the obtained probabilities into the second moment
formula.

6∑
k=1

k2p4k = 2p31 + 16p32 − 1

2
p(1)

44 − p(2)
43 + 1

L4
(−36U2 + 30C2 − 120D2

+ 42V1 + 288I3 + 12Ks + 36Kd + 36LC1 + 24π2F2 − 6LU1).

Further substitution of the known expressions for p31, p32, p(1)
44 , and p(2)

43 results in

6∑
k=1

k2p4k = 12πF

L2
+ 24π2F2

L4
+ 36(U1 + C1) − 192I2

L3

+ 1

L4
(27C2 − 27U2 − 108D2 + 36Kd + 288I3 + 36V1). (5.6)

Since 36(U1 + C1) = 72D1 = 288I2 and, from (4.15),

27C2 − 27U2 − 108D2 + 36Kd + 576I3 = 9L4p(3)
43 ,

(5.6) implies

6∑
k=1

k2p4k = 12πF

L2
+ 24π2F2

L4
+ 96I2

L3
+ 9

L4

(
p(3)

43 · L4 + 4V1 − 32I3
)
.

Due to (5.4), the last expression in the parentheses is equal to zero. This means that we have
reached the right-hand side of (5.5) for n = 4.

6. Computation of intersection probabilities for a disc with radius r

The formulas obtained for intersection probabilities motivated us to compute invariants of
D through simulations. For example, we used Python 3.8.8 software to approximate the val-
ues of I2, U1, I3, and V1 for the unit disc. The code for the simulations can be found here:
http://rb.gy/1wei7h. Expressions of all the new invariants in terms of r for a disc of radius r are
established in the current section.

Let D be the disc of radius r centred at the origin. For g1 ∩ g2 ∈ D, we consider g1 to be the
horizontal line y = −r sin a (0 < a < π/2) in the Cartesian plane, and g2 the line that passes
through the points (r cos w1, r sin w1) and (r cos w2, r sin w2), where −a < w1 < π + a < w2 <

2π − a (see Figure 6).
Then

dg1 = 2πr cos a da and dg2 = 1

2
r sin

w2 − w1

2
dw1 dw2,

and therefore
dg1 dg2 = πr2 cos a sin

w2 − w1

2
dw1 dw2. (6.1)
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FIGURE 6. The model of two random lines g1 and g2 intersecting each other inside
D = {(x, y) : x2 + y2 < r2}.

Lemma 6.1. If D is a disc with radius r then

U1 =
(

2π3 + 32

3
π

)
r3.

Proof. It is easy to verify that

u(g1, g2) = 2r

(
cos

w1 − a

2
− cos

w2 − a

2
+ sin

w1 + a

2
+ sin

w2 + a

2

)
.

Then by (6.1) we obtain

U1 = 2πr3
∫ π/2

0
cos a da

∫ π+a

−a
dw1

∫ 2π−a

π+a

(
cos

w1 − a

2
− cos

w2 − a

2

+ sin
w1 + a

2
+ sin

w2 + a

2

)
sin

w2 − w1

2
dw2,

and reduce it to

U1 = 8π2r3
∫ π/2

0
cos2 a da + 16πr3

∫ π/2

0
cos3 a da =

(
2π3 + 32

3
π

)
r3, (6.2)

thus completing the proof. �

Corollary 6.1. If D is a disc with radius r then

p33 = p30 = 4

π2
− 1

4
and p32 = p31 = 3

4
− 4

π2
.

https://doi.org/10.1017/jpr.2022.60 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.60


524 D. MARTIROSYAN AND V. OHANYAN

Proof. The proof immediately follows from (1.1), the identity I2 = 16
3 πr3 (see [8]), and

Lemma 6.1. �

The above technique can be applied to reveal the exact numerical values of further invariants
of D.

Lemma 6.2. If D is a disc with radius r then

D2 =
(

2

3
π4 + 17π2

)
r4, (6.3)

U2 =
(

2

3
π4 + 41π2

)
r4, (6.4)

C2 =
(

10

3
π4 − 73

3
π2

)
r4, (6.5)

V1 = (
41π2 − 2π4)r4, (6.6)

R =
(

2

3
π4 + 47

3
π2

)
r4, (6.7)

Qs =
(

2

3
π4 − 2π2

)
r4, (6.8)

Qd =
(

2

3
π4 + 11

3
π2

)
r4. (6.9)

Proof. For g1 ∩ g2 ∈ D, the lengths of intersecting chords are

|χ (g1)| = 2r cos a and |χ (g2)| = 2r sin
w2 − w1

2
.

Since

D2 = 4I3 + 2
∫

g1∩g2∈D
|χ (g1)||χ (g2)| dg1 dg2,

then due to (6.1), we obtain (hereafter, long intermediate steps of integration are omitted)

D2 = 12π2r4 + 8πr4
∫ π/2

0
cos2 a da

∫ π+a

−a
dw1

∫ 2π−a

π+a
sin2 w2 − w1

2
dw2

=
(

2

3
π4 + 17π2

)
r4.

Evaluation of U2 is provided by

U2 = 4πr4
∫ π/2

0
cos a da

∫ π+a

−a
dw1

∫ 2π−a

π+a

(
cos

w1 − a

2
− cos

w2 − a

2

+ sin
w1 + a

2
+ sin

w2 + a

2

)2

sin
w2 − w1

2
dw2

=
(

2

3
π4 + 41π2

)
r4.
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Now (6.5) follows from (6.3), (6.4), the identity

C2 = 4D2 + U2 − 8 ·
∫

g1∩g2∈D
|χ (g1)|u(g1, g2) dg1 dg2,

and (see (6.2))

∫
g1∩g2∈D

|χ (g1)|u(g1, g2) dg1 dg2 = 16r4
(

π2
∫ π/2

0
cos3 a da + 2π

∫ π/2

0
cos4 a da

)

= 50

3
π2r4.

V1 is an integral over three lines that produce three intersection points inside D. To compute
V1 with the technique already developed, we need to represent it by an integral over g1 ∩ g2.
We complete this task in two steps. First we apply the combinatorial algorithm to suggest an
alternative expression for the left-hand side of (3.3):

∫
g1∩g2∈D

dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

∑
χ12∈〈g1,g2,g3〉

|χ12|I1(χ12) dg3

= 3
∫

g1∩g2∈D
dg1 dg2

∫
[χ (g1)]∩[χ (g2)]

∑
χ12∈〈g1,g2〉

|χ12|I1(χ12) dg3

= 3
∫

g1∩g2∈D
{(ρ1 + ρ3)[|χ (g1)| + |χ (g2)| − ρ2 − ρ4] + (ρ2 + ρ4)

× [|χ (g1)| + |χ (g2)| − ρ1 − ρ3]} dg1 dg2

= 6
∫

g1∩g2∈D
{|χ (g1)|u(g1, g2) − (ρ1 + ρ3)(ρ2 + ρ4)} dg1 dg2

= 100π2r4 − 6
∫

g1∩g2∈D
(ρ1 + ρ3)(ρ2 + ρ4) dg1 dg2.

In the second step we make the obtained expression equal to the right-hand side of (3.3),
substitute C2, D2, and U2 with their known values, and calculate

V1 = 6
∫

g1∩g2∈D
(ρ1 + ρ3)(ρ2 + ρ4) dg1 dg2 − (

23π2 + 2π4)r4. (6.10)

The pairs of the lengths of the opposite sides in the quadrilateral conv((g1 ∪ g2) ∩ ∂D) are

2r cos
w1 − a

2
, 2r sin

w2 + a

2
and −2r cos

w2 − a

2
, 2r sin

w1 + a

2
.
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This enables us to compute the integral in (6.10):

∫
g1∩g2∈D

(ρ1 + ρ3)(ρ2 + ρ4) dg1 dg2

= 4πr4
∫ π/2

0
cos a da

∫ π+a

−a
dw1

×
∫ 2π−a

π+a

(
cos

w1 − a

2
+ sin

w2 + a

2

)(
sin

w1 + a

2
− cos

w2 − a

2

)
sin

w2 − w1

2
dw2

= 4πr4
∫ π/2

0

(
16

3
cos2 a + 2π cos3 a

)
da

= 32

3
π2r4.

Now (6.6) follows from (6.10). We omit the proof of (6.7) since we have already established
the expressions of ρi in terms of parameters a, w1, w2.

The proofs for (6.8) and (6.9) are similar. Let us prove the first. To model the case g1 ∩ g2 �∈
D, we simply need to adjust the position of parameters w1 and w2. They must now satisfy either
−a < w1 < w2 < π + a, or π + a < w1 < w2 < 2π − a.

If −a < w1 < w2 < π + a, then

s1 + s2 = 2r

(
sin

w1 + a

2
+ cos

w2 − a

2

)
, d1 + d2 = 2r

(
cos

w1 − a

2
+ sin

w2 + a

2

)
.

If π + a < w1 < w2 < 2π − a, then

s1 + s2 = 2r

(
sin

w2 + a

2
− cos

w1 − a

2

)
, d1 + d2 = 2r

(
sin

w1 + a

2
− cos

w2 − a

2

)
.

As a result,

Qs = 4πr4
∫ π/2

0
cos a da

∫ π+a

−a
dw1

∫ π+a

w1

(
sin

w1 + a

2
+ cos

w2 − a

2

)

×
(

cos
w1 − a

2
+ sin

w2 + a

2
− sin

w1 + a

2
− cos

w2 − a

2

)
sin

w2 − w1

2
dw2

+ 4πr4
∫ π/2

0
cos a da

∫ 2π−a

π+a
dw1

∫ 2π−a

w1

(
sin

w2 + a

2
− cos

w1 − a

2

)

×
(

sin
w1 + a

2
− cos

w2 − a

2
− sin

w2 + a

2
+ cos

w1 − a

2

)
sin

w2 − w1

2
dw2

=
(

2

3
π4 − 2π2

)
r4. �
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The following results directly follow from the last two lemmas and the theorems proved in
Sections 3 and 4.

Theorem 6.1. If D is a disc with radius r, then

p46 = 1

4
− 17

π2
, p45 = 29

8π2
− 1

4
,

p44 = 43

4π2
− 7

8
, p(1)

44 = 23

2π2
− 1, p(2)

44 = 1

8
− 3

4π2
,

p43 = 1 − 29

4π2
, p(1)

43 = 23

4π2
− 1

2
, p(2)

43 = 1 − 35

4π2
, p(3)

43 = 1

2
− 17

4π2
,

p42 = 7

4
− 121

8π2
, p(1)

42 = 3

2
− 13

π2
, p(2)

42 = 1

4
− 17

8π2
,

p41 = 29

8π2
− 1

4
, p40 = 13

2π2
− 5

8
.
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