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MULTIPLICATIVE PROPERTIES OF 
JENSEN MEASURES 

BY 

JAMIL A. SIDDIQI 

1. Let A be a uniform algebra on the compact set X and let xp be a non-trivial 
linear functional on A. A finite non-negative measure \i on X is called a Jensen 
measure for ip if 

(l) |v</)| < exp(£ log l/l 4")> Z^-

It is a well-known theorem of Bishop [1] that if tp is multiplicative on A, then there 
exists a Jensen representing measure \i for tp (i.e. ft is a probability measure such that 
(1) holds and y(f)=Sxfdfi<,f€ A). Complementing this result, Ito and Schreiber 
[2] have proved a theorem which can be restated as follows : 

THEOREM. Let ip be a linear functional on a uniform algebra A. Then ip is multi­
plicative if and only ifip(l) = l and there exists a Jensen measure for ip. Furthermore 
this Jensen measure is a representing measure for tp. 

The object of this note is to give a measure-theoretic proof of this theorem which 
unlike the one given in [2] avoids the use of complex function theory. 

2. Proof of the theorem. It follows from (1) that 

e' = e'|y(l)l <exp(^(X)) 
for all real t. Hence p, is a probability measure and consequently [|̂ || = 1. Let a be a 
complex number and rjl9. . . 9 rjr the rth roots of unity. Then, forfeA such that 
ip(f)=0, we have 

1 = M l - o w h / ) • • • W(l-ccrjrf)\ 

< exp( J 

<j\l-*T\dfi. 

Thus for every a e C and for every t>0, 

J -(|l + taf|- l)d/n>0. 
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I f z e C a n d O < r < ; i , then 

1 l | l + ( z | 2 - l 
~(\l + tz\ - 1) = - ] ! 

f t\l + tz\ + l 
z + z+t\z\ 

as t-*0. Also 
\l + tz\ + 1 

Rez 

(|l + *z| - 1) < - | | l + f z | - l | < | z | 

Applying Lebesgue's bounded convergence theorem, we get that for all a e C, 

Re o f dp > 0. 

Hence 

/ « 

I frdp = 0. 

IffeA is arbitrary, then 

jfrdp=j[f-y(f)+f(f)]rdp 

=l($W)y-kj(f-?(f)f dp 

= ww-
Thus ^ ( / ) = J / ^ and ip(f2)=jf2d/j, = (ip(f))2. Now a routine argument shows 
that xp is multiplicative. This proves the sufficiency part of the theorem, the 
necessity part being precisely Bishop's theorem. 
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