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Abstract

L-carnitine has an important role in the control of oxidative stress and lipid β-oxidation during
in vitro culture and cryopreservation of ovarian follicles, oocytes and embryos. This substance
balances the acetyl-CoA/CoA ratio, maintains glucose metabolism and increases energy
production in mitochondria. It also plays a key role in reducing endoplasmic reticulum stress,
by transferring palmitate to mitochondria or eliminating it to avoid toxicity. By eliminating
reactive oxygen species, L-carnitine increases the percentages of mature oocytes with uniform
mitochondrial distribution and improves embryo post-thaw cryotolerance. Therefore,
L-carnitine controls lipid β-oxidation and oxidative stress during in vitro culture of ovarian
follicles, oocyte maturation, embryonic development and cryopreservation.

Introduction

The improvements in in vitro culture systems for ovarian follicles, oocytes and embryos are of
great relevance to increase efficiency of assisted reproduction techniques in mammalian species.
However, lipid peroxidation and imbalance in the production and elimination of reactive
oxygen species (ROS) represent the main barriers to having healthy oocytes and embryos after
in vitro culture and cryopreservation (Soto-Heras and Paramio, 2020). In this sense, the addition
of natural substances to the culture media has been an alternative to control the damages caused
by excessive ROS (Paulino et al., 2022). L-carnitine is a water-soluble vitamin-like compound
that is naturally produced and synthesized primarily from lysine and methionine in the liver to
improve lipid breakdown and generate metabolic (Modak et al., 2022). According to Carrillo-
González et al. (2023), lipids are the most abundant reservoir of energy in bovine embryos, and
triacylglycerol-containing lipid droplets represent the main stocks of fatty acids in oocytes.
These authors showed that L-carnitine mobilizes fatty acids from oocyte cytoplasm to
mitochondria, which results in β-oxidation and generation of energy. Additionally, acetyl-L-
carnitine exhibits antioxidant effects and has beneficial effects on reproductive functions (Liu
et al., 2004; Cheng and Chen, 2008; Aliabadi et al., 2012; Agarwal et al., 2018). When
administered exogenously, acetyl-L-carnitine has higher bioavailability than L-carnitine and
regulates even the production of reproduction-associated hormones (Agarwal et al., 2018).

This review aims to show the role of L-carnitine on hypothalamus-pituitary-gonad-axis and
to discuss its influence on lipid β-oxidation and oxidative stress during in vitro culture of ovarian
follicles, oocyte maturation, embryo development and cryopreservation.

Oxidative stress

Free radicals are chemical specimens that have at least one unpaired electron in their outer
orbitals, being highly reactive (Prevedello and Comachio, 2021). This characteristic enables the
transfer of electrons between neighbouring molecules, causing changes in the molecular
environment (Ferreira et al., 2020; Martelli and Nunes, 2014). The ROS are naturally produced
by cellular metabolism and play an important physiological role, being involved in several
processes, such as energy production, phagocytosis, intercellular signalling, regulation of cell
growth, immunity, cell defence and synthesis of biological substances (Prevedello and
Comachio, 2021). However, when ROS production exceeds its degradation, it causes oxidative
stress, being responsible for various damages to DNA, proteins and phospholipids in different
cell types (Simas et al., 2019). Controlling the production and neutralization of ROS is crucial for
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maintaining cellular integrity. In vivo, this control is performed
through enzymatic and non-enzymatic antioxidant systems.
Various endogenous enzymes, like catalase (CAT), peroxiredoxins
(PRDX), superoxide dismutase (SOD) and glutathione reductase/
peroxidase (GPX) constitute the endogenous antioxidant system
(Souza et al., 2020), which are capable of inactivating the harmful
effects of free radicals. The non-enzymatic system includes low
molecular weight compounds such as L-carnitine, ascorbic acid,
tocopherol, selenium, zinc, taurine, hypotaurine, carotene, lipoic
acid and other thiol compounds such as cystine, cysteine,
cysteamine and beta-mercaptoethanol (Crocomo et al., 2012).

During in vitro culture of different types of cells, the reduction
of endogenous antioxidant protection linked to other factors, such
as exposure to light and high concentrations of oxygen, favours a
significant increase in ROS production (Alves et al., 2019; Sadeesh
et al., 2014) and oxidative stress, which has been reported as one of
the main limitations of in vitro culture of various types of cells (Del
Collado et al., 2017; Soto-Heras and Paramio, 2020). In excess,
oxidative stress in granulosa cells results in follicular atresia
(Saeed-Zidane et al., 2017) and has been reported as one of the
main factors associated with poor quality of cultured ovarian
follicles (Sá et al., 2018; Paulino et al., 2022). Due to damages
caused by oxidative stress during in vitro culture, several studies
have sought to develop protocols to minimize it (Cordeiro et al.,
2023; Nascimento et al., 2022).

Effects of L-carnitine on hypothalamus-pituitary-gonadal axis

The L-carnitine influences the hypothalamus-pituitary-gonad axis
and upregulates gonadotropin-releasing hormone (GnRH) secre-
tion from the hypothalamus and, consequently, induce depolari-
zation of hypothalamic neuronal cells to increase secretory activity
(Agarwal et al., 2018; Krsmanovic, et al., 1994). Also, L-carnitine
has been reported to increase the levels of other hormones, like
luteinizing hormone (LH), progesterone and oestradiol, while it
decreases prolactin secretion inmammalian species (Agarwal et al.,
2018; Genazzani et al., 2011; Krsmanovic et al., 1992). Figure 1
illustrates the effects of L-carnitine on the reproductive system of
mammalian females.

The L-carnitine and its primary ester have direct effects against
oxidative stress, minimizing cell death by apoptosis and main-
taining cellular energy (Agarwal et al., 2018; Abdelrazik et al., 2009;
Infante et al., 2002; Vanella et al., 2000). To minimize oxidative
stress, L-carnitine can also be used in combination with other
antioxidant commonly known for quenching free radicals such as
vitamins (C, E and β-carotene), and some metalloenzymes,
including GPx, CAT and SOD (Nimse and Pal, 2015). Thus,
due to its energy generation property combined with its
antioxidant property, L-carnitine has been studied for use in
reproductive technologies, including in vitro culture of ovarian

follicles, in vitro maturation, in vitro embryo production and
cryopreservation.

Effects of L-carnitine on in vitro follicle development and
oocyte maturation

The role of L-carnitine in ovarian follicles in vitro is still little
explored. Dunning and Robker (2012) reported that L-carnitine
did not alter survival, growth or differentiation of mouse secondary
follicles in vitro. However, it significantly increased β-oxidation
and markedly improved fertilization rate and blastocyst develop-
ment. Recently, Modak et al. (2022) reported that L-carnitine
increased the rate of oocytes in metaphase II (MII) stage from early
antral follicles cultured in vitro. Furthermore, the presence of
L-carnitine decreased the rate of degeneration and even promoted
the formation of structures similar to antrum after the in vitro
culture of buffalo oocyte granulosa complexes.

In mouse oocytes, L-carnitine acts through the electrogenic
force of voltage-gated Naþ channels and it is transported by Naþ/
organic cationic transporter-2 (OCTN-2) to oocytes (Infante et al.
2002; Dunning and Robker 2012). In the oocyte, L-carnitine is
converted to acetyl-L-carnitine by carnitine palmitoyltransferase-I
(CPT-I) in the mitochondria and can act on the endoplasmic
reticulum, mitochondria and even in ooplasm (Mingorance et al.,
2011) (Figure 2). Various studies have shown that L-carnitine
optimizes glucose metabolism by transferring fatty acids to the
mitochondria and facilitating β-oxidation since lipidmetabolism is
one of the primary regulators of oocyte maturation (Stojkovic et al.,
2001; Dunning et al., 2010; Agarwal et al., 2018). Within the
oocyte, L-carnitine is converted to acetyl-L-carnitine and keeps
glucose metabolism through the citric acid cycle and, conse-
quently, increases energy production (Infante et al., 2002; Agarwal
et al., 2018) (Figure 2). The L-carnitine reduces pyruvate entry into
the citric acid cycle and transports palmitate and other long-chain
fatty acids to facilitate their utilization through β-oxidation

Figure 1. Effects of L-carnitine on hypothalamus-pituitary gonad axis.

Figure 2. Direct effects of L-carnitine on oocytes of mammals.
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(Dunning et al., 2010) (Figure 2). The L-carnitine reduces the levels
of palmitate in the endoplasmic reticulum by transferring it to
mitochondria or by eliminating it from where it can cause oocyte
lipotoxicity by oxidative stress (Agarwal et al., 2018). L-carnitine
increases the proportion of mature oocytes with uniform
mitochondrial distribution and supports in vitro oocyte matura-
tion and embryonic development in mice and pigs (Zare et al.,
2015; Somfai et al., 2011). Chankitisakul et al. (2013) showed that
L-carnitine increases the rate of bovine embryo production after in
vitro maturation and subsequent vitrification of oocytes. Marin
et al. (2020) also reported that L-carnitine increased oocyte
competence during buffalo oocyte maturation in the absence of
foetal bovine serum.

In vivo, L-carnitine can stabilize the mitochondrial membrane
and protect DNA against ROS-induced damage in oocytes of
women with polycystic ovary syndrome (PCOS) (Mohd Shukri
et al., 2022; Ismail et al., 2014; Fenkci, et al., 2008). Using a mouse
model of PCOS, oral administration of acetyl-L-carnitine
alleviated ovarian dysfunction associated with that syndrome
through its antioxidant/glycation activity and mitochondria
potentiation (Di Emidio et al., 2020).

Effects of L-carnitine on in vitro embryo development

The ROS may originate in the embryo itself or from exogenous
sources. During oocyte in vitro fertilization (IVF), strategies to
reduce ROS production, such as addition of free radical scavengers
and lowering the oxygen tension are important for improving the
fertility potential in assisted reproductive technologies (Agarwal
et al., 2014). The ROS are involved in defective embryo
development and retardation of embryo growth and induce cell
membrane damage, DNA damage and apoptosis (Volpe et al.,
2018). Apoptosis results in fragmented embryos, which have
limited potential to implant and therefore, result in poor fertility
rates (Agarwal et al., 2014).

The antioxidant capacity of L-carnitine might account for its
preferential use to improve in vitro oocyte and embryo develop-
ment. The treatment of porcine embryos with antioxidants
improved blastocyst production (Castillo-Martín, et al., 2014).
Moreover, the presence of L-carnitine in the culture medium was
associated with increased cleavage and blastocyst rates in porcine
species (Lowe et al., 2017). Finally, the supplementation of
L-carnitine to bovine embryo culture medium has been shown to
scavenge ROS within two-cell stage embryos (Takahashi
et al., 2013).

Effects of L-carnitine on cryopreservation of ovarian follicles,
oocytes and embryos

The cryopreservation technique allows the sub-zero storage of
tissues or cells by dramatically reducing natural cellular
biochemical processes for extended periods of time (Vining
et al., 2021). Currently, cryopreservation is a modern and safe
method which assists in the preservation of genetic material from
follicles, oocytes and embryos in human and animals (Sekhon
et al., 2018), but the cells can still be seriously damaged during
cryopreservation (Truong, et al., 2022; Spijkers et al., 2017; Barsky
et al., 2016; Beyer and Griesinger, 2016). Unfortunately, frozen
follicles, oocytes and embryos are still reported to contain a higher
proportion of apoptotic cells compared to their non-frozen
counterparts, with freezing procedures generally associated with
triggering apoptotic cell death (Vining, et al., 2021). Exposure to
high concentrations of cryoprotectants, osmolarity and rapid

temperature changes during cryopreservation have been shown to
affect gamete and embryo physiology (Somoskoi et al., 2015;
Dalcin et al., 2013), as well as their gene expression (Sahraei et al.,
2018; Monzo et al., 2012). These deleterious effects are strongly
associated with the occurrence of oxidative stress during
cryopreservation.

Production of ROS during the vitrification of gametes may be a
crucial mediator of damage to proteins and DNA (Costa et al.,
2022; Zhang et al., 2020). Disturbances in the oxidativemetabolism
and damage in cell membranes are other important stress factors
related to vitrification. Together, these effects decrease glutathione
(GSH) levels, alter expression of regulatory genes and are
associated with decreasing maturation rate and developmental
competence of follicles, oocytes and embryos after cryopreserva-
tion (Berteli et al., 2022; Zare et al., 2022; Costa et al., 2022; Wu
et al., 2019; Pan et al., 2018). Furthermore, cryopreservation of
oocytes or embryos has been reported to cause mitochondrial
dysfunction, such as changes in membrane potential and reduced
adenosine triphosphate (ATP) production (Gualtieri et al., 2021;
Iwata, 2021). However, the detrimental effects of cumulative stress
have been shown to be partly improved by adding antioxidants in
vitrification media, such as L-carnitine. Some reports have already
demonstrated that L-carnitine plays an important role in
attenuating the deleterious effects of oxidative stress on cryopre-
served follicles. For instance, Zhang et al. (2015) observed lower
rates of apoptosis and malondialdehyde, as well as higher levels of
oestradiol in mice ovarian follicles cryopreserved in situ. These
results were translated into increased follicular survival. Zolini
et al. (2019) demonstrated that the addition of L-carnitine in
embryo culture medium improved post-thaw cryotolerance but
had no effect on pregnancy and implantation rate after transfer of
cryopreserved bovine embryos.

The L-carnitine is well known for its role in β-oxidation, ATP
production and decreasing the lipid content during embryo
development, providing improved cryo-survivability (Truong
et al., 2016). In buffaloes, the addition of L-carnitine to the
medium significantly benefits embryonic developmental compe-
tence after vitrification, as evidenced by the high cleavage rate and
the formation of morulae and blastocysts. Improving the
cryotolerance of buffalo embryos directly after thawing may be
through increased lipid metabolism (El-Sokary et al., 2021).
Furthermore, L-carnitine acts as an antioxidant blocking degen-
erative changes arising from oxidative stress during embryonic
development (Bhakty et al., 2021). Lowe et al. (2017) reported that
the antioxidant capacity of L-carnitine was associated with the
increased cleavage rate and the improved cryotolerance of
resultant porcine blastocysts. Supplementation of L-carnitine to
bovine embryo culture medium has been shown to scavenge ROS
within two-cell stage embryos, antagonize the cryodamage and
enhance the cryotolerance of blastocysts (Takahashi et al., 2013). It
is plausible to suggest that L-carnitine may be used to improve the
freezing survival of oocytes or embryos (Li et al., 2023). Table 1
shows some effects of L-carnitine during in vitro culture of follicles,
oocytes and embryos in different species.

Final considerations

Many factors inherent to the oocyte itself and in vitro culture
environment determine the chance of having a complete follicular
development with success in the acquisition of oocyte competence
in vitro. A culture system, with different combinations of
hormones, growth factors and mainly antioxidant factors, at each
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stage of growth, is necessary to allow the follicles to present an
adequate size in a long-term culture period. This review shows that
L-carnitine can be used to regulate oxidative stress and lipid
β-oxidation during in vitro culture of ovarian follicles, oocyte
maturation, embryo production and cryopreservation, especially
due to stimulation energy generation combined with its
antioxidant properties.

Competing interests. The authors declare that there is no conflict of interest
that would prejudice the impartiality of this scientific work.

Funding. This work was supported by the National Council for Scientific and
Technological Development (CNPq, Brazil, Grant No. 407992/2021-9) and
Coordination for the Improvement of Higher Education Personnel (CAPES).

References

Abdelrazik, H., Sharma, R., Mahfouz, R. and Agarwal, A. (2009) L-carnitine
decreases DNA damage and improves the in vitro blastocyst development
rate inmouse embryos. Fertility and Sterility 91(2), 589–596. doi: 10.1016/j.fe
rtnstert.2007.11.067

Agarwal, A., Durairajanayagam, D. and du Plessis, S. S. (2014) Utility of
antioxidants during assisted reproductive techniques: an evidence based
review. Reproductive Biology and Endocrinology, 12, 112. doi: 10.1186/1477-
7827-12-112.

Agarwal, A., Sengupta, P. and Durairajanayagam, D. (2018) Role of
L-carnitine in female infertility. Reproductive Biology and Endocrinology
16(1), 1–18. doi: 10.1186/s12958-018-0323-4

Aliabadi, E., Soleimani Mehranjani, M., Borzoei, Z., Talaei-Khozani, T.,
Mirkhani, H. and Tabesh, H. (2012) Effects of L-carnitine and L-acetyl-
carnitine on testicular spermmotility and chromatin quality. Iranian Journal
of Reproductive Medicine 10(2), 77–82.

Alves, C. S., Furtado, R. A., Nascentes, G. A. N., Rumpf, R. andTavares, D. C.
(2019) Evaluation of melatonin effects on the production of bovine embryos

obtained by in vitro fertilization and somatic cell nuclear transfer. Revista
Brasileira de Reprodução Animal 43(4), 815–823. doi: 10.5555/20203153822

Barsky, M., St Marie, P., Rahil, T., Markenson, G. R. and Sites, C. K. (2016)
Are perinatal outcomes affected by blastocyst vitrification and warming?
American Journal of Obstetrics andGynecology 215(5), 603. doi: 10.1016/j.ajo
g.2016.06.002

Berteli, T. S., Vireque, A. A., Da Luz, C.M., Borges, E. D., Ferreira, C. R. and
Navarro, P. A. (2022) Equilibration solution composition and extended
exposure to equilibration phase affect embryo development and lipid profile
of mouse oocytes. Reproductive Biomedicine Online 44(6), 961–975.
doi: 10.1016/j.rbmo.2022.01.006

Beyer, D. A. and Griesinger, G. (2016) Vitrified-warmed embryo transfer is
associated with mean higher singleton birth weight compared to fresh
embryo transfer. European Journal of Obstetrics, Gynecology, and
Reproductive Biology 203, 104–107. doi: 10.1016/j.ejogrb.2016.05.041

Bhakty, Z. W., Kaiine, M., Karjan, W. K. and Setiadim, A. (2021) L-carnitine
supplementation enhances nuclear and cytoplasmic maturation rates of
sheep oocytes. In vitro Tropical Animal Science Journal 44(2), 131–137.
doi: 10.5398/tasj.2021.44.2.131

Carrillo-González, D. F., Hernández-Herrera, D. Y. and Maldonado-
Estrada, J. G. (2023) The role of L-carnitine in bovine embryo metabolism.
A review of the effect of supplementation with a metabolic modulator on
in vitro embryo production. Animal Biotechnology 34(2), 413–423. doi: 10.
1080/10495398.2021.1938593

Castillo-Martín, M., Bonet, S., Morató, R. and Yeste, M. (2014) Comparative
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