ON THE LIMIT SET OF A COMPLEX HYPERBOLIC TRIANGLE GROUP

MENGQI SHI[™] and JIEYAN WANG

(Received 23 October 2023; accepted 13 December 2023; first published online 2 February 2024)

Abstract

Let $\Gamma = \langle I_1, I_2, I_3 \rangle$ be the complex hyperbolic $(4, 4, \infty)$ triangle group with $I_1I_3I_2I_3$ being unipotent. We show that the limit set of Γ is connected and the closure of a countable union of \mathbb{R} -circles.

2020 Mathematics subject classification: primary 22E40; secondary 20H10.

Keywords and phrases: complex hyperbolic triangle groups, limit sets.

1. Introduction

The purpose of this paper is to study the limit set of a discrete complex hyperbolic triangle group.

Recall that a complex hyperbolic (p, q, r) triangle group is a representation ρ of the abstract (p, q, r) reflection triangle group

$$\langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = (\sigma_1 \sigma_2)^p = (\sigma_2 \sigma_3)^q = (\sigma_3 \sigma_1)^r = \text{Id} \rangle$$

into PU(2, 1) such that $I_j = \rho(\sigma_j)$ are complex involutions, where $2 \le p \le q \le r \le \infty$ and 1/p + 1/q + 1/r < 1.

For a given triple (p, q, r) with $p, q, r \ge 3$, it is a classical fact that there is a 1-parameter family $\{\rho_t : t \in [0, \infty)\}$ of nonconjugate complex hyperbolic (p, q, r) triangle groups (see for example [8]). Here ρ_0 is the embedding of the hyperbolic reflection triangle group, that is, an \mathbb{R} -Fuchsian representation (preserving a Lagrangian plane of $\mathbf{H}^2_{\mathbb{C}}$) and so the limit set is an \mathbb{R} -circle. In [9], Schwartz conjectured that ρ_t is discrete and faithful if and only if neither $w_A = I_1I_3I_2I_3$ nor $w_B = I_1I_2I_3$ is elliptic. Moreover, ρ_t is discrete and faithful if and only if w_A is nonelliptic when p < 10, or w_B is nonelliptic when p > 13. For a discrete complex hyperbolic triangle group, it would be interesting to know its limit set.

In [10], Schwartz studied the limit set of the complex hyperbolic (4, 4, 4) triangle group with $(I_1I_2I_1I_3)^7 = \text{Id}$.

This work was partially supported by the NSFC (Grant No. 12271148).

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

THEOREM 1.1 [10]. Let $\langle I_1, I_2, I_3 \rangle$ be the complex hyperbolic (4, 4, 4) triangle group with $I_1I_2I_1I_3$ being elliptic of order 7. Let Λ be its limit set and Ω its complement. Then Λ is connected and the closure of a countable union of \mathbb{R} -circles in $\partial \mathbf{H}^2_{\mathbb{C}}$. The quotient $\Omega/\langle I_1I_2, I_2I_3 \rangle$ is a closed hyperbolic 3-manifold.

Recently, in [1], Acosta studied the limit set of the complex hyperbolic (3,3,6) triangle group with $I_1I_3I_2I_3$ being unipotent.

THEOREM 1.2 [1]. Let $\langle I_1, I_2, I_3 \rangle$ be the complex hyperbolic (3,3,6) triangle group with $I_1I_3I_2I_3$ being unipotent. Let Λ be its limit set and Ω its complement. Then Λ is connected and the closure of a countable union of \mathbb{R} -circles in $\partial \mathbf{H}_{\mathbb{C}}^2$, and contains a Hopf link with three components. The quotient $\Omega/\langle I_1I_2, I_2I_3 \rangle$ is the one-cusped hyperbolic 3-manifold m023 in the SnapPy census.

In this paper, we are interested in describing the limit set of the complex hyperbolic $(4, 4, \infty)$ triangle group with $I_1I_3I_2I_3$ being unipotent. The main result is the following theorem.

THEOREM 1.3. Let Λ be the limit set of the complex hyperbolic $(4, 4, \infty)$ triangle group $\langle I_1, I_2, I_3 \rangle$ with $I_1I_3I_2I_3$ being unipotent. Then:

- (1) Λ contains two linked \mathbb{R} -circles;
- (2) Λ is the closure of a countable union of \mathbb{R} -circles;
- (3) Λ is connected.

However, the quotient of the complement of the limit set has been described as follows.

THEOREM 1.4 [6]. Let Ω be the discontinuity set of the complex hyperbolic $(4, 4, \infty)$ triangle group with $I_1I_3I_2I_3$ being unipotent. Then the quotient $\Omega/\langle I_1I_2, I_2I_3\rangle$ is the two-cusped hyperbolic 3-manifold s782 in the SnapPy census.

2. Preliminaries

In this section, we briefly recall some basic facts and notation about the complex hyperbolic plane $\mathbf{H}_{\mathbb{C}}^2$. We refer to Goldman's book [5] and Parker's notes [7] for more details.

2.1. The space H^2_{\mathbb{C}} and its isometries. Let $\mathbb{C}^{2,1}$ denote the three-dimensional complex vector space endowed with a Hermitian form H of signature (2,1). We take H to be the matrix

$$H = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

The corresponding Hermitian form is given by

$$\langle \mathbf{z}, \mathbf{w} \rangle = z_1 \bar{w}_3 + z_2 \bar{w}_2 + z_3 \bar{w}_1.$$

Here $\mathbf{z} = [z_1, z_2, z_3]^t$ and $\mathbf{w} = [w_1, w_2, w_3]^t$ are column vectors in $\mathbb{C}^{2,1} \setminus \{0\}$. Let $\mathbb{P} : \mathbb{C}^{2,1} \setminus \{0\} \to \mathbb{CP}^2$ be the natural projection map onto complex projective space. Define

$$V_0 = \{ \mathbf{z} \in \mathbb{C}^{2,1} \setminus \{0\} : \langle \mathbf{z}, \mathbf{z} \rangle = 0 \},$$

$$V_- = \{ \mathbf{z} \in \mathbb{C}^{2,1} : \langle \mathbf{z}, \mathbf{z} \rangle < 0 \},$$

$$V_+ = \{ \mathbf{z} \in \mathbb{C}^{2,1} : \langle \mathbf{z}, \mathbf{z} \rangle > 0 \}.$$

The complex hyperbolic plane $\mathbf{H}_{\mathbb{C}}^2$ is defined as $\mathbb{P}V_{-}$ and its boundary $\partial \mathbf{H}_{\mathbb{C}}^2$ is defined as $\mathbb{P}V_0$. We will denote the point at infinity by q_{∞} . Note that a standard lift of q_{∞} is $[1,0,0]^t$.

Topologically, the complex hyperbolic plane $\mathbf{H}_{\mathbb{C}}^2$ is homeomorphic to the unit ball of \mathbb{C}^2 and its boundary $\partial \mathbf{H}_{\mathbb{C}}^2$ is homeomorphic to the unit 3-sphere S^3 . Note that any point $q \neq q_{\infty}$ of $\mathbf{H}_{\mathbb{C}}^2$ admits a standard lift \mathbf{q} given by

$$\mathbf{q} = \begin{bmatrix} (-|z|^2 - u + it)/2 \\ z \\ 1 \end{bmatrix},$$

where $z \in \mathbb{C}$, $t \in \mathbb{R}$ and u > 0. Let $\mathbb{R}_{\geq 0} = \{x \in \mathbb{R} : x \geq 0\}$. Then the triple $(z, t, u) \in \mathbb{C} \times \mathbb{R} \times \mathbb{R}_{\geq 0}$ is called the *horospherical coordinates* of q. Let $\mathcal{N} = \mathbb{C} \times \mathbb{R}$ be the Heisenberg group with group law given by

$$[z_1, t_1] \cdot [z_2, t_2] = [z_1 + z_2, t_1 + t_2 - 2\operatorname{Im}(\overline{z_1}z_2)].$$

Then $\partial \mathbf{H}^2_{\mathbb{C}} = \mathcal{N} \cup \{q_{\infty}\}.$

Let U(2, 1) be the subgroup of GL(3, \mathbb{C}) preserving the Hermitian form H. Let SU(2, 1) be the subgroup of U(2, 1) consisting of unimodular matrices. The full group of holomorphic isometries of $\mathbf{H}_{\mathbb{C}}^2$ is PU(2, 1) = SU(2, 1)/{ ωI : ω^3 = 1}, which acts transitively on points of $\mathbf{H}_{\mathbb{C}}^2$ and pairs of distinct points of $\partial \mathbf{H}_{\mathbb{C}}^2$.

An element of PU(2, 1) is called *elliptic* if it has a fixed point in $\mathbf{H}_{\mathbb{C}}^2$. If an element is not elliptic, then it is called *parabolic* or *loxodromic* if it has exactly one fixed point in $\partial \mathbf{H}_{\mathbb{C}}^2$ or exactly two fixed points in $\partial \mathbf{H}_{\mathbb{C}}^2$, respectively. A parabolic element of PU(2, 1) is called *unipotent* if it admits a lift to SU(2, 1) that is unipotent. These terms will also be used for elements of SU(2, 1).

2.2. Totally geodesic subspaces and related isometries. There is no totally geodesic subspace of real dimension three of $\mathbf{H}^2_{\mathbb{C}}$. Except for the points, geodesics and $\mathbf{H}^2_{\mathbb{C}}$ (they are obviously totally geodesic), there are two kinds of totally geodesic subspaces of real dimension two: complex lines and Lagrangian planes. A *complex line* is the intersection of a projective line in \mathbb{CP}^2 with $\mathbf{H}^2_{\mathbb{C}}$. The boundary of a complex line is called a \mathbb{C} -circle. A Lagrangian plane is the intersection of a totally real subspace in \mathbb{CP}^2 with $\mathbf{H}^2_{\mathbb{C}}$. The boundary of a Lagrangian plane is called an \mathbb{R} -circle. In particular, if an \mathbb{R} -circle contains $q_{\infty} = [1,0,0]^t$, it is called an *infinite* \mathbb{R} -circle.

An elliptic isometry whose fixed point set is a complex line is called a *complex reflection*. The complex reflections we will use in this paper have order 2 and we call them *complex involutions*.

Similarly, every Lagrangian plane is the set of fixed points of an antiholomorphic isometry of order 2, which is called a *real reflection* on the Lagrangian plane.

We will need the following lemma, which is [4, Proposition 3.1].

PROPOSITION 2.1 [4]. If I_1 and I_2 are reflections on the \mathbb{R} -circles \mathcal{R}_1 and \mathcal{R}_2 :

- (i) $I_1 \circ I_2$ is parabolic if and only if \mathcal{R}_1 and \mathcal{R}_2 intersect at one point;
- (ii) $I_1 \circ I_2$ is loxodromic if and only if \mathcal{R}_1 and \mathcal{R}_2 do not intersect and are not linked;
- (iii) $I_1 \circ I_2$ is elliptic if and only if \mathcal{R}_1 and \mathcal{R}_2 are linked or intersect at two points.
- **2.3.** Limit set. Let Γ be a discrete subgroup of PU(2, 1). The *limit set* of Γ is defined as the set of accumulation points of any orbit in $\mathbf{H}^2_{\mathbb{C}}$ under the action of Γ . It is the smallest closed nonempty Γ -invariant subset of $\partial \mathbf{H}^2_{\mathbb{C}}$. The complement of the limit set of Γ in $\partial \mathbf{H}^2_{\mathbb{C}}$ is called the *discontinuity set* of Γ .

3. The group

Let $\omega = -1/2 + i\sqrt{3}/2$ be the primitive cube root of unity. The complex involutions I_1 , I_2 and I_3 are given by

$$I_1 = \begin{bmatrix} -1 & 2(1+\omega) & 2 \\ 0 & 1 & -2\omega \\ 0 & 0 & -1 \end{bmatrix}, \quad I_2 = \begin{bmatrix} -1 & 2\omega & 2 \\ 0 & 1 & -2(1+\omega) \\ 0 & 0 & -1 \end{bmatrix}, \quad I_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

The products I_2I_3 and I_3I_1 are elliptic elements of order 4 and I_2I_1 is unipotent. In fact, $\langle I_1, I_2, I_3 \rangle$ is a discrete complex hyperbolic $(4, 4, \infty)$ triangle group. Moreover, the element $I_1I_3I_2I_3$ is unipotent.

From Theorem 1.4, one can see that the group $\langle I_1, I_2, I_3 \rangle$ is a subgroup of the Eisenstein–Picard modular group PU(2, 1; $\mathbb{Z}[\omega]$) of infinite index and has no fixed point. In [3], Falbel and Parker studied the geometry of the Eisenstein–Picard modular group PU(2, 1; $\mathbb{Z}[\omega]$). Moreover, they obtained a presentation of PU(2, 1; $\mathbb{Z}[\omega]$).

THEOREM 3.1 [3]. The Eisenstein–Picard modular group $PU(2, 1; \mathbb{Z}[\omega])$ has a presentation

$$\langle P, Q, R \mid R^2 = (QP^{-1})^6 = PQ^{-1}RQP^{-1}R = P^3Q^{-2} = (RP)^3 = 1 \rangle,$$

where

$$P = \begin{bmatrix} 1 & 1 & \omega \\ 0 & \omega & -\omega \\ 0 & 0 & 1 \end{bmatrix}, \quad Q = \begin{bmatrix} 1 & 1 & \omega \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad R = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

By using this presentation, the complex involutions I_1 , I_2 and I_3 can be expressed as follows.

PROPOSITION 3.2. Let $M = PQ^{-1}$ and $T = QM^3$, then:

- $I_2 = -TQ^4T(PM^2)^{-2}M^3$;
- $I_1 = I_2 T^2 Q^2$;
- $I_3 = R$.

4. The limit set

LEMMA 4.1. Let $G_0 = \langle I_1, I_2, I_3 I_2 I_3 \rangle$, as a subgroup of $\langle I_1, I_2, I_3 \rangle$. Let \mathcal{L}_0 be the Lagrangian plane, whose boundary at infinity is the infinite \mathbb{R} -circle given by $\mathcal{R}_0 = \{[x+i\sqrt{3}/2,\sqrt{3}x-\sqrt{3}/2] \in \mathcal{N} : x \in \mathbb{R}\} \cup \{q_\infty\}$. Then G_0 preserves \mathcal{L}_0 .

PROOF. Using horospherical coordinates,

$$\mathcal{L}_0 = \{ (x + i\sqrt{3}/2, \sqrt{3}x - \sqrt{3}/2, u) \in \mathbf{H}^2_{\mathbb{C}} : x \in \mathbb{R}, u > 0 \},$$

and one can compute

$$I_1(x+i\sqrt{3}/2,\sqrt{3}x-\sqrt{3}/2,u) = (-x-1+i\sqrt{3}/2,\sqrt{3}(-x-1)-\sqrt{3}/2,u),$$

$$I_2(x+i\sqrt{3}/2,\sqrt{3}x-\sqrt{3}/2,u) = (-x+1+i\sqrt{3}/2,\sqrt{3}(-x+1)-\sqrt{3}/2,u),$$

$$I_{3}I_{2}I_{3}(x+i\sqrt{3}/2,\sqrt{3}x-\sqrt{3}/2,u)$$

$$=\left(\frac{(x+1/2)^{2}-1+u}{2(x-1/2)^{2}+2u}+i\frac{\sqrt{3}}{2},\sqrt{3}\frac{(x+1/2)^{2}-1+u}{2(x-1/2)^{2}+2u}-\frac{\sqrt{3}}{2},\frac{u}{((x-1/2)^{2}+u)^{2}}\right).$$

Thus, $I_1 \mathcal{L}_0 = I_2 \mathcal{L}_0 = I_3 I_2 I_3 \mathcal{L}_0 = \mathcal{L}_0$. Therefore, the group G_0 preserves the Lagrangian plane \mathcal{L}_0 with boundary \mathcal{R}_0 at infinity.

In the same way, we can prove the following result.

LEMMA 4.2. Let $G_1 = \langle I_1, I_2, I_3 I_1 I_3 \rangle$, as a subgroup of $\langle I_1, I_2, I_3 \rangle$. Let \mathcal{L}_1 be the Lagrangian plane, whose boundary at infinity is the infinite \mathbb{R} -circle given by $\mathcal{R}_1 = \{[x + i\sqrt{3}/2, \sqrt{3}x + \sqrt{3}/2] \in \mathcal{N} : x \in \mathbb{R}\} \cup \{q_\infty\}$. Then G_1 preserves \mathcal{L}_1 .

PROPOSITION 4.3. The limit set of $\langle I_1, I_2, I_3 \rangle$ contains an \mathbb{R} -circle.

PROOF. By Lemma 4.1, the subgroup $G_0 = \langle I_1, I_2, I_3 I_2 I_3 \rangle$ is an \mathbb{R} -Fuchsian subgroup of $\langle I_1, I_2, I_3 \rangle$. Since I_1I_2 and $I_1I_3I_2I_3$ are unipotent and $I_2I_3I_2I_3$ is elliptic of order 2, the restriction $G_0|_{\mathcal{L}_0}$ is a $(2, \infty, \infty)$ -reflection triangle group. Thus, the limit set of G_0 is $\partial \mathcal{L}_0 = \mathcal{R}_0$. Therefore, the limit set of $\langle I_1, I_2, I_3 \rangle$ contains the \mathbb{R} -circle \mathcal{R}_0 .

REMARK 4.4. The $(2, \infty, \infty)$ -reflection triangle group is a noncompact arithmetic triangle group [11].

Now, let us consider the images of \mathcal{R}_0 and \mathcal{R}_1 by the group $\langle I_1, I_2, I_3 \rangle$. Since \mathcal{R}_0 is the limit set of G_0 , the image $I_j\mathcal{R}_0$, with j=1,2, is the limit set of the group $I_jG_0I_j$. One can see that $I_jG_0I_j=G_0$. Thus, \mathcal{R}_0 is stabilised by both I_1 and I_2 . Similarly, \mathcal{R}_1 is stabilised by both I_1 and I_2 .

FIGURE 1. A schematic view of the four \mathbb{R} -circles. Here \mathcal{R}_0 and \mathcal{R}_1 are two lines intersecting at infinity.

LEMMA 4.5. The limit sets $I_3\mathcal{R}_0$ and \mathcal{R}_0 are linked and the limit sets $I_3\mathcal{R}_0$ and \mathcal{R}_1 intersect at one point.

PROOF. Since $I_3\mathcal{R}_0$ is the limit set of $I_3G_0I_3 = \langle I_3I_1I_3, I_3I_2I_3, I_2 \rangle$, it contains the parabolic fixed point $P_{I_2I_3I_1I_3}$. Therefore, $I_3\mathcal{R}_0 \cap \mathcal{R}_1 = \{P_{I_2I_3I_1I_3}\}$.

Since both $I_3\mathcal{L}_0$ and \mathcal{L}_0 contain the elliptic fixed point $P_{I_2I_3I_2I_3} \in I_3\mathcal{L}_0 \cap \mathcal{L}_0$, the product of reflections on the Lagrangian planes $I_3\mathcal{L}_0$ and \mathcal{L}_0 is elliptic. Therefore, by Proposition 2.1, the two \mathbb{R} -circles $I_3\mathcal{R}_0$ and \mathcal{R}_0 must be linked or intersect at two points.

We claim that $I_3\mathcal{R}_0$ and \mathcal{R}_0 do not intersect. One can compute that the points of $I_3\mathcal{R}_0$ are given by

$$\left[\frac{8(4x^3 - 3x + 3)}{16x^4 + 72x^2 - 48x + 21} + i\frac{4\sqrt{3}(12x^2 - 4x + 3)}{16x^4 + 72x^2 - 48x + 21}, \frac{-32\sqrt{3}(2x - 1)}{16x^4 + 72x^2 - 48x + 21}\right].$$

Suppose that $I_3\mathcal{R}_0 \cap \mathcal{R}_0 \neq \emptyset$, then

$$\frac{8(4x^3 - 3x + 3)}{16x^4 + 72x^2 - 48x + 21} + i\frac{4\sqrt{3}(12x^2 - 4x + 3)}{16x^4 + 72x^2 - 48x + 21} = x + i\sqrt{3}/2$$

should have solutions for x. However, this is impossible by a simple computation. Thus, $I_3\mathcal{R}_0 \cap \mathcal{R}_0 = \emptyset$. Therefore, $I_3\mathcal{R}_0$ and \mathcal{R}_0 are linked.

Similarly, we have the following result.

LEMMA 4.6. The limit sets I_3R_1 and R_1 are linked and the limit sets I_3R_1 and R_0 intersect at one point.

COROLLARY 4.7. The union of \mathcal{R}_i and $I_3\mathcal{R}_i$ (i = 0, 1) is connected.

PROOF. Since \mathcal{R}_0 and \mathcal{R}_1 are infinite \mathbb{R} -circles, we obtain $\mathcal{R}_0 \cap \mathcal{R}_1 = \{q_\infty\}$. From Lemmas 4.5 and 4.6, $I_3\mathcal{R}_0 \cap \mathcal{R}_1 = \{P_{I_2I_3I_1I_3}\}$ and $I_3\mathcal{R}_1 \cap \mathcal{R}_0 = \{P_{I_1I_3I_2I_3}\}$. It is obvious that $I_3\mathcal{R}_0 \cap I_3\mathcal{R}_1 = \{I_3q_\infty\} = [0,0] \in \mathcal{N}$. Now, there is a path in $\mathcal{R}_0 \cup \mathcal{R}_1 \cup I_3\mathcal{R}_0 \cup I_3\mathcal{R}_1$ between any two points in it. Thus, the union is connected. See Figure 1.

PROOF OF THEOREM 1.3. (1) This is a consequence of Lemmas 4.5 or 4.6.

- (2) From Proposition 4.3, the limit set Λ contains an \mathbb{R} -circle. Then the Γ -orbit of the \mathbb{R} -circle is contained in Λ . Since Λ is the smallest closed nonempty invariant subset of $\partial \mathbf{H}^2_{\mathbb{C}}$ under the action of Γ , it is the closure of the Γ -orbit of the \mathbb{R} -circle. Thus, Λ is the closure of a countable union of \mathbb{R} -circles.
- (3) Let n be a positive integer and $\gamma = \gamma_1 \gamma_2 \cdots \gamma_n \in \Gamma$, where $\gamma_i \in \{I_1, I_2, I_3\}$ for $i = 1, \dots, n$. Let $\mathcal{U}_0 = \mathcal{R}_0 \cup \mathcal{R}_1$ and $\mathcal{U}_i = \gamma_1 \cdots \gamma_i \mathcal{U}_0$. Since $\mathcal{R}_0 \cap \mathcal{R}_1 = \{q_\infty\}$, the subset \mathcal{U}_i of Λ is connected for $i = 0, 1, \dots, n$. For $i \in \{0, 1, \dots, n-1\}$, we see that

$$\mathcal{U}_i \cap \mathcal{U}_{i+1} = \gamma_1 \cdots \gamma_i \mathcal{U}_0 \cap \gamma_1 \cdots \gamma_{i+1} \mathcal{U}_0 = \gamma_1 \cdots \gamma_i (\mathcal{U}_0 \cap \gamma_{i+1} \mathcal{U}_0).$$

By Lemmas 4.5 and 4.6, $\mathcal{U}_0 \cap \gamma_{i+1}\mathcal{U}_0 \neq \emptyset$, so $\mathcal{U}_i \cap \mathcal{U}_{i+1} \neq \emptyset$. Thus, there is a path in Λ from q_∞ to γq_∞ . From item (2), Λ is the closure of the Γ -orbit of an \mathbb{R} -circle. Hence, Λ is connected.

REMARK 4.8. We note that Λ is not *slim* (see [2] for the definition). In other words, there are three distinct points of Λ lying in the same \mathbb{C} -circle.

Acknowledgement

We would like to thank the referee for comments which improved a previous version of this paper.

References

- [1] M. Acosta, 'On the limit set of a spherical CR uniformization', *Algebr. Geom. Topol.* **22** (2022), 3305–3325.
- [2] E. Falbel, A. Guilloux and P. Will, 'Slim curves, limit sets and spherical CR uniformisations', Preprint, 2022, arXiv:2205.08797.
- [3] E. Falbel and J. R. Parker, 'The geometry of the Eisenstein–Picard modular group', *Duke Math. J.* 131 (2006), 249–289.
- [4] E. Falbel and V. Zocca, 'A Poincaré's polyhedron theorem for complex hyperbolic geometry', J. reine angew. Math. 516 (1999), 133–158.
- [5] W. M. Goldman, Complex Hyperbolic Geometry, Oxford Mathematical Monographs (Oxford University Press, Oxford, 1999).
- [6] Y. Jiang, J. Wang and B. Xie, 'A uniformizable spherical CR structure on a two-cusped hyperbolic 3-manifold', *Algebr. Geom. Topol.* 23 (2023), 4143–4184.
- [7] J. R. Parker, Notes on Complex Hyperbolic Geometry (University of Durham, Durham, 2003). https://maths.dur.ac.uk/users/j.r.parker/img/NCHG.pdf.
- [8] A. Pratoussevitch, 'Traces in complex hyperbolic triangle groups', Geom. Dedicata 111 (2005), 159–185.
- [9] R. E. Schwartz, 'Complex hyperbolic triangle groups', in: Proceedings of the International Congress of Mathematicians, Beijing, 2002, Volume II: Invited Lectures (ed. T. Li) (Higher Education Press, Beijing, 2002), 339–350.
- [10] R. E. Schwartz, 'Real hyperbolic on the outside, complex hyperbolic on the inside', *Invent. Math.* **151** (2003), 221–295.
- [11] K. Takeuchi, 'Arithmetic triangle groups', J. Math. Soc. Japan 29 (1977), 91–106.

MENGQI SHI, School of Mathematics, Hunan University, Changsha 410082, PR China e-mail: mqshi@hnu.edu.cn

JIEYAN WANG, School of Mathematics, Hunan University, Changsha 410082, PR China e-mail: jywang@hnu.edu.cn