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Abstract

Let Γ = 〈I1, I2, I3〉 be the complex hyperbolic (4, 4,∞) triangle group with I1I3I2I3 being unipotent. We
show that the limit set of Γ is connected and the closure of a countable union of R-circles.
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1. Introduction

The purpose of this paper is to study the limit set of a discrete complex hyperbolic
triangle group.

Recall that a complex hyperbolic (p, q, r) triangle group is a representation ρ of the
abstract (p, q, r) reflection triangle group

〈σ1,σ2,σ3 | σ2
1 = σ

2
2 = σ

2
3 = (σ1σ2)p = (σ2σ3)q = (σ3σ1)r = Id〉

into PU(2, 1) such that Ij = ρ(σj) are complex involutions, where 2 ≤ p ≤ q ≤ r ≤ ∞
and 1/p + 1/q + 1/r < 1.

For a given triple (p, q, r) with p, q, r ≥ 3, it is a classical fact that there is a
1-parameter family {ρt : t ∈ [0,∞)} of nonconjugate complex hyperbolic (p, q, r) trian-
gle groups (see for example [8]). Here ρ0 is the embedding of the hyperbolic reflection
triangle group, that is, an R-Fuchsian representation (preserving a Lagrangian plane of
H2
C

) and so the limit set is an R-circle. In [9], Schwartz conjectured that ρt is discrete
and faithful if and only if neither wA = I1I3I2I3 nor wB = I1I2I3 is elliptic. Moreover, ρt
is discrete and faithful if and only if wA is nonelliptic when p < 10, or wB is nonelliptic
when p > 13. For a discrete complex hyperbolic triangle group, it would be interesting
to know its limit set.

In [10], Schwartz studied the limit set of the complex hyperbolic (4, 4, 4) triangle
group with (I1I2I1I3)7 = Id.

This work was partially supported by the NSFC (Grant No. 12271148).
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

338

https://doi.org/10.1017/S0004972723001478 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972723001478
https://orcid.org/0009-0006-6953-9022
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972723001478&domain=pdf
https://doi.org/10.1017/S0004972723001478


[2] Complex hyperbolic triangle groups 339

THEOREM 1.1 [10]. Let 〈I1, I2, I3〉 be the complex hyperbolic (4, 4, 4) triangle group
with I1I2I1I3 being elliptic of order 7. Let Λ be its limit set and Ω its complement. Then
Λ is connected and the closure of a countable union of R-circles in ∂H2

C
. The quotient

Ω/〈I1I2, I2I3〉 is a closed hyperbolic 3-manifold.

Recently, in [1], Acosta studied the limit set of the complex hyperbolic (3, 3, 6)
triangle group with I1I3I2I3 being unipotent.

THEOREM 1.2 [1]. Let 〈I1, I2, I3〉 be the complex hyperbolic (3, 3, 6) triangle group
with I1I3I2I3 being unipotent. Let Λ be its limit set and Ω its complement. Then Λ is
connected and the closure of a countable union of R-circles in ∂H2

C
, and contains

a Hopf link with three components. The quotient Ω/〈I1I2, I2I3〉 is the one-cusped
hyperbolic 3-manifold m023 in the SnapPy census.

In this paper, we are interested in describing the limit set of the complex hyperbolic
(4, 4,∞) triangle group with I1I3I2I3 being unipotent. The main result is the following
theorem.

THEOREM 1.3. LetΛ be the limit set of the complex hyperbolic (4, 4,∞) triangle group
〈I1, I2, I3〉 with I1I3I2I3 being unipotent. Then:

(1) Λ contains two linked R-circles;
(2) Λ is the closure of a countable union of R-circles;
(3) Λ is connected.

However, the quotient of the complement of the limit set has been described as
follows.

THEOREM 1.4 [6]. Let Ω be the discontinuity set of the complex hyperbolic (4, 4,∞)
triangle group with I1I3I2I3 being unipotent. Then the quotient Ω/〈I1I2, I2I3〉 is the
two-cusped hyperbolic 3-manifold s782 in the SnapPy census.

2. Preliminaries

In this section, we briefly recall some basic facts and notation about the complex
hyperbolic plane H2

C
. We refer to Goldman’s book [5] and Parker’s notes [7] for more

details.

2.1. The space H2
C

and its isometries. Let C2,1 denote the three-dimensional
complex vector space endowed with a Hermitian form H of signature (2, 1). We take
H to be the matrix

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

The corresponding Hermitian form is given by

〈z, w〉 = z1w̄3 + z2w̄2 + z3w̄1.
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Here z = [z1, z2, z3]t and w = [w1, w2, w3]t are column vectors in C2,1 \ {0}. Let P :
C

2,1 \ {0} → CP2 be the natural projection map onto complex projective space. Define

V0 = {z ∈ C2,1 \ {0} : 〈z, z〉 = 0},
V− = {z ∈ C2,1 : 〈z, z〉 < 0},
V+ = {z ∈ C2,1 : 〈z, z〉 > 0}.

The complex hyperbolic plane H2
C

is defined as PV− and its boundary ∂H2
C

is defined
as PV0. We will denote the point at infinity by q∞. Note that a standard lift of q∞ is
[1, 0, 0]t.

Topologically, the complex hyperbolic plane H2
C

is homeomorphic to the unit ball
of C2 and its boundary ∂H2

C
is homeomorphic to the unit 3-sphere S3. Note that any

point q � q∞ of H2
C

admits a standard lift q given by

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(−|z|2 − u + it)/2

z
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

where z ∈ C, t ∈ R and u > 0. Let R≥0 = {x ∈ R : x ≥ 0}. Then the triple (z, t, u) ∈
C × R × R≥0 is called the horospherical coordinates of q. Let N = C × R be the
Heisenberg group with group law given by

[z1, t1] · [z2, t2] = [z1 + z2, t1 + t2 − 2 Im(z1z2)].

Then ∂H2
C
= N ∪ {q∞}.

Let U(2, 1) be the subgroup of GL(3,C) preserving the Hermitian form H. Let
SU(2, 1) be the subgroup of U(2, 1) consisting of unimodular matrices. The full group
of holomorphic isometries of H2

C
is PU(2, 1) = SU(2, 1)/{ωI : ω3 = 1}, which acts

transitively on points of H2
C

and pairs of distinct points of ∂H2
C

.
An element of PU(2, 1) is called elliptic if it has a fixed point in H2

C
. If an element is

not elliptic, then it is called parabolic or loxodromic if it has exactly one fixed point in
∂H2
C

or exactly two fixed points in ∂H2
C

, respectively. A parabolic element of PU(2, 1)
is called unipotent if it admits a lift to SU(2, 1) that is unipotent. These terms will also
be used for elements of SU(2, 1).

2.2. Totally geodesic subspaces and related isometries. There is no totally
geodesic subspace of real dimension three of H2

C
. Except for the points, geodesics

and H2
C

(they are obviously totally geodesic), there are two kinds of totally geodesic
subspaces of real dimension two: complex lines and Lagrangian planes. A complex
line is the intersection of a projective line in CP2 with H2

C
. The boundary of a complex

line is called a C-circle. A Lagrangian plane is the intersection of a totally real
subspace in CP2 with H2

C
. The boundary of a Lagrangian plane is called an R-circle.

In particular, if an R-circle contains q∞ = [1, 0, 0]t, it is called an infinite R-circle.
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An elliptic isometry whose fixed point set is a complex line is called a complex
reflection. The complex reflections we will use in this paper have order 2 and we call
them complex involutions.

Similarly, every Lagrangian plane is the set of fixed points of an antiholomorphic
isometry of order 2, which is called a real reflection on the Lagrangian plane.

We will need the following lemma, which is [4, Proposition 3.1].

PROPOSITION 2.1 [4]. If I1 and I2 are reflections on the R-circles R1 and R2:

(i) I1 ◦ I2 is parabolic if and only if R1 and R2 intersect at one point;
(ii) I1 ◦ I2 is loxodromic if and only if R1 and R2 do not intersect and are not linked;
(iii) I1 ◦ I2 is elliptic if and only if R1 and R2 are linked or intersect at two points.

2.3. Limit set. Let Γ be a discrete subgroup of PU(2, 1). The limit set of Γ is defined
as the set of accumulation points of any orbit in H2

C
under the action of Γ. It is the

smallest closed nonempty Γ-invariant subset of ∂H2
C

. The complement of the limit set
of Γ in ∂H2

C
is called the discontinuity set of Γ.

3. The group

Let ω = −1/2 + i
√

3/2 be the primitive cube root of unity. The complex involutions
I1, I2 and I3 are given by

I1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 2(1 + ω) 2
0 1 −2ω
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , I2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 2ω 2
0 1 −2(1 + ω)
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , I3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 −1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

The products I2I3 and I3I1 are elliptic elements of order 4 and I2I1 is unipotent. In
fact, 〈I1, I2, I3〉 is a discrete complex hyperbolic (4, 4,∞) triangle group. Moreover, the
element I1I3I2I3 is unipotent.

From Theorem 1.4, one can see that the group 〈I1, I2, I3〉 is a subgroup of the
Eisenstein–Picard modular group PU(2, 1;Z[ω]) of infinite index and has no fixed
point. In [3], Falbel and Parker studied the geometry of the Eisenstein–Picard modular
group PU(2, 1;Z[ω]). Moreover, they obtained a presentation of PU(2, 1;Z[ω]).

THEOREM 3.1 [3]. The Eisenstein–Picard modular group PU(2, 1;Z[ω]) has a pre-
sentation

〈P, Q, R | R2 = (QP−1)6 = PQ−1RQP−1R = P3Q−2 = (RP)3 = 1〉,

where

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 ω
0 ω −ω
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 ω
0 −1 1
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 −1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

By using this presentation, the complex involutions I1, I2 and I3 can be expressed
as follows.
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PROPOSITION 3.2. Let M = PQ−1 and T = QM3, then:

• I2 = −TQ4T(PM2)−2M3;
• I1 = I2T2Q2;
• I3 = R.

4. The limit set

LEMMA 4.1. Let G0 = 〈I1, I2, I3I2I3〉, as a subgroup of 〈I1, I2, I3〉. Let L0 be the
Lagrangian plane, whose boundary at infinity is the infinite R-circle given by R0 =

{[x + i
√

3/2,
√

3x −
√

3/2] ∈ N : x ∈ R} ∪ {q∞}. Then G0 preserves L0.

PROOF. Using horospherical coordinates,

L0 = {(x + i
√

3/2,
√

3x −
√

3/2, u) ∈ H2
C

: x ∈ R, u > 0},

and one can compute

I1(x + i
√

3/2,
√

3x −
√

3/2, u) = (−x − 1 + i
√

3/2,
√

3(−x − 1) −
√

3/2, u),

I2(x + i
√

3/2,
√

3x −
√

3/2, u) = (−x + 1 + i
√

3/2,
√

3(−x + 1) −
√

3/2, u),

I3I2I3(x + i
√

3/2,
√

3x −
√

3/2, u)

=

( (x + 1/2)2 − 1 + u
2(x − 1/2)2 + 2u

+ i

√
3

2
,
√

3
(x + 1/2)2 − 1 + u
2(x − 1/2)2 + 2u

−
√

3
2

,
u

((x − 1/2)2 + u)2

)
.

Thus, I1L0 = I2L0 = I3I2I3L0 = L0. Therefore, the group G0 preserves the Lagrangian
plane L0 with boundary R0 at infinity. �

In the same way, we can prove the following result.

LEMMA 4.2. Let G1 = 〈I1, I2, I3I1I3〉, as a subgroup of 〈I1, I2, I3〉. Let L1 be the
Lagrangian plane, whose boundary at infinity is the infinite R-circle given by R1 =

{[x + i
√

3/2,
√

3x +
√

3/2] ∈ N : x ∈ R} ∪ {q∞}. Then G1 preserves L1.

PROPOSITION 4.3. The limit set of 〈I1, I2, I3〉 contains an R-circle.

PROOF. By Lemma 4.1, the subgroup G0 = 〈I1, I2, I3I2I3〉 is an R-Fuchsian subgroup
of 〈I1, I2, I3〉. Since I1I2 and I1I3I2I3 are unipotent and I2I3I2I3 is elliptic of order 2, the
restriction G0|L0 is a (2,∞,∞)-reflection triangle group. Thus, the limit set of G0 is
∂L0 = R0. Therefore, the limit set of 〈I1, I2, I3〉 contains the R-circle R0. �

REMARK 4.4. The (2,∞,∞)-reflection triangle group is a noncompact arithmetic
triangle group [11].

Now, let us consider the images of R0 and R1 by the group 〈I1, I2, I3〉. Since R0 is
the limit set of G0, the image IjR0, with j = 1, 2, is the limit set of the group IjG0Ij.
One can see that IjG0Ij = G0. Thus, R0 is stabilised by both I1 and I2. Similarly, R1 is
stabilised by both I1 and I2.
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FIGURE 1. A schematic view of the four R-circles. Here R0 and R1 are two lines intersecting at infinity.

LEMMA 4.5. The limit sets I3R0 and R0 are linked and the limit sets I3R0 and R1
intersect at one point.

PROOF. Since I3R0 is the limit set of I3G0I3 = 〈I3I1I3, I3I2I3, I2〉, it contains the
parabolic fixed point PI2I3I1I3 . Therefore, I3R0 ∩ R1 = {PI2I3I1I3}.

Since both I3L0 and L0 contain the elliptic fixed point PI2I3I2I3 ∈ I3L0 ∩ L0, the
product of reflections on the Lagrangian planes I3L0 and L0 is elliptic. Therefore, by
Proposition 2.1, the two R-circles I3R0 and R0 must be linked or intersect at two points.

We claim that I3R0 and R0 do not intersect. One can compute that the points of I3R0
are given by

[ 8(4x3 − 3x + 3)
16x4 + 72x2 − 48x + 21

+ i
4
√

3(12x2 − 4x + 3)
16x4 + 72x2 − 48x + 21

,
−32
√

3(2x − 1)
16x4 + 72x2 − 48x + 21

]
.

Suppose that I3R0 ∩ R0 � ∅, then

8(4x3 − 3x + 3)
16x4 + 72x2 − 48x + 21

+ i
4
√

3(12x2 − 4x + 3)
16x4 + 72x2 − 48x + 21

= x + i
√

3/2

should have solutions for x. However, this is impossible by a simple computation. Thus,
I3R0 ∩ R0 = ∅. Therefore, I3R0 and R0 are linked. �

Similarly, we have the following result.

LEMMA 4.6. The limit sets I3R1 and R1 are linked and the limit sets I3R1 and R0
intersect at one point.

COROLLARY 4.7. The union of Ri and I3Ri (i = 0, 1) is connected.

PROOF. Since R0 and R1 are infinite R-circles, we obtain R0 ∩ R1 = {q∞}. From
Lemmas 4.5 and 4.6, I3R0 ∩ R1 = {PI2I3I1I3} and I3R1 ∩ R0 = {PI1I3I2I3}. It is obvious
that I3R0 ∩ I3R1 = {I3q∞} = [0, 0] ∈ N . Now, there is a path in R0 ∪ R1 ∪ I3R0 ∪ I3R1
between any two points in it. Thus, the union is connected. See Figure 1. �
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PROOF OF THEOREM 1.3. (1) This is a consequence of Lemmas 4.5 or 4.6.
(2) From Proposition 4.3, the limit set Λ contains an R-circle. Then the Γ-orbit of

the R-circle is contained inΛ. SinceΛ is the smallest closed nonempty invariant subset
of ∂H2

C
under the action of Γ, it is the closure of the Γ-orbit of the R-circle. Thus, Λ is

the closure of a countable union of R-circles.
(3) Let n be a positive integer and γ = γ1γ2 · · · γn ∈ Γ, where γi ∈ {I1, I2, I3} for

i = 1, . . . , n. LetU0 = R0 ∪ R1 andUi = γ1 · · · γiU0. SinceR0 ∩ R1 = {q∞}, the subset
Ui of Λ is connected for i = 0, 1, . . . , n. For i ∈ {0, 1, . . . , n − 1}, we see that

Ui ∩Ui+1 = γ1 · · · γiU0 ∩ γ1 · · · γi+1U0 = γ1 · · · γi(U0 ∩ γi+1U0).

By Lemmas 4.5 and 4.6,U0 ∩ γi+1U0 � ∅, soUi ∩Ui+1 � ∅. Thus, there is a path in
Λ from q∞ to γq∞. From item (2), Λ is the closure of the Γ-orbit of an R-circle. Hence,
Λ is connected. �

REMARK 4.8. We note that Λ is not slim (see [2] for the definition). In other words,
there are three distinct points of Λ lying in the same C-circle.
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